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Abstract

Fast emerging high-throughput technology advances scientific applications

into a new era by enabling detection of information-bearing signals with un-

precedented sizes. Despite its potential, the analysis of ultrahigh-dimensional

data involves fundamental challenges, wherein the deluge of a large amount of

irrelevant data can easily obscure the true signals. Classical statistical methods

for low to moderate-dimensional data focus on identifying strong true signals us-

ing false positive control criteria. These methods, however, have limited power

for identifying weak true signals embedded in an extremely large amount of

noise. This paper seeks to facilitate the detection of weak signals by introduc-

ing a new approach based on false negative instead of false positive control.

As a result, a high proportion of weak signals can be retained for follow-up

study. The new procedure is completely data-driven and fast in computation.

We show in theory its efficiency and adaptivity to the unknown features of the

data including signal intensity and sparsity. Simulation studies further evalu-

ate the method under various model settings. We apply the new method in a

real-data analysis on detecting genomic variants with varying signal intensities.

Keywords: False negative control, Multiple testing, Variable screening, Variable

selection, Trichotomous analysis
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1 Introduction

1.1 Background and Motivation

Signal detection is a central topic in modern Statistics that considers the problem

of discerning between information-bearing signals and random noise. Signal detec-

tion arises in a wide spectrum of applications such as the detection of astrophysical

sources, surveillance for disease outbreaks, identification of genetic associations, etc.

Fast emerging high-throughput technology advances scientific applications into a new

era by enabling detection of information-bearing signals with unprecedented sizes.

However, we pay the price for analyzing high-dimensional data, not only by extensive

computational cost, but also by the capacity to identify the true signals, as they are

more easily obscured by the large amount of noise. Examples can be found in Zaykin

and Zhivotovsky [34], Han et al. [16], etc.

Contemporary statistical methods often use false positive control as the criterion

to select true signals. Signals that are strong enough to stand outside the range of

noise can be identified with high confidence. Popular false positive control criteria

include family-wise error (FWER) control [9] and false discovery rate (FDR) control

[2]. However, when data dimension is extremely high, such as in genome-wide associ-

ation study, majority of the true signals may not be able to stand out from the noise,

as the range of noise increases with the dimensionality of data. As a result, these true

signals cannot be efficiently identified by methods based on false positive control.

Having recognized this limitation, researchers working with ultrahigh dimensional

data often use subjective criterion to select an a% top-ranked candidates for follow-

up study, where a% is a pre-fixed percentage determined by either prior knowledge

in application or convention [29]. In high-dimensional regression, the problem of re-

taining a high proportion of signals has been studied from a different perspective. In

the seminal paper of Fan and Lv [12], sure independent screening is proposed based

on the ranking of the marginal sample correlations between the response and each

predictor. It has been shown that when regression coefficients are large enough, the

top d variables, where d is smaller than the sample size, include all the relevant vari-
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ables with high probability. However, in real applications, the condition on regression

coefficients is usually unverifiable. Even if we know a priori that the condition on

regression coefficients is reasonable, always selecting a fixed number of d variables

is not the most efficient approach as the selection does not adapt to the underlying

sparsity and effect sizes of the relevant variables.

The limitation of the current methodology calls for statistical studies on efficient

variable screening based on adaptive control on false negatives. Such development is

highly relevant when the control of false negatives is of primary interest. For example,

in early exploratory stage of ultrahigh dimensional data analysis, computationally

efficient dimension reduction is often needed due to the extremely large number of

candidates. However there has not been an agreement on how to select a subset of

variables with a guarantee of retaining most of the ture signals. The proposed method

could provide a data-driven dimension reduction for analyzing ultrahigh dimensional

data. On the other hand, the results of the method can be combined with the results

of multiple testing procedures to provide important insights of the data. For example,

if the results of false negative control and false positive control are close, then it is

likely that the signals in the dataset are strong and sparse; otherwise, signals are

relatively weak and dense. By further analyzing these results, follow-up studies can

be designed more efficiently.

1.2 A Trichotomous Framework

We propose a trichotomous framework to account for the fact that the high-dimensional

data composed of a mixture of signal and noise would naturally fall into three sub-

sets. The signal subset includes only strong signals that stand outside the range

of noise. The noise subset includes only noise. The third subset is most interesting,

where relatively weak signals mix indistinguishably with noise. We call this the mixed

subset.

In this paper, we consider the trichotomous framework on p-values. Assume that

the p-value

Pi ∼ U1{i∈S0} +G1{i∈S1}, i ∈ {1, . . . , n}, (1)
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where S0 is the collection of the noise, S1 is the collection of signals, U the uniform

distribution on [0, 1], and G some unknown continuous distribution with G(t) > U(t)

for all t ∈ (0, 1). Rank the observed p-values increasingly, so that the p-values from S1

would rank relatively higher than those from S0. Define J1 as the positions of the first

noise minus one and J2 the last signal, i.e., J1 = min{i : p(i) from a noise}−1 and J2 =

max{i : p(i) from a signal}. J1 and J2 are random, varying from sample to sample, and

not directly observable from the data. We define the signal, mixed, and noise subsets

as S = {candidates ranked 1, . . . , J1}, M = {candidates ranked J1 + 1 . . . , J2}, and

N = {candidates ranked J2 + 1, . . . , n}, respectively.

The following example illustrate the natural formation of the three subsets. We

generate n observations, among which 200 observations are signals generated from

N (µ, 1) and the rest are noise generated from N (0, 1). We calculate the p-values

of the observations and rank them increasingly. Figure 1 shows the scatter plots of

the ordered p-values. In Figure 1 (a), signal intensity µ = 7 and data dimension

n = 1, 000. Signals are so strong that all of them rank ahead of the noise. Therefore,

J1 = J2 = 200 and the mixed subset M does not exist. In Figure 1 (b), signal

intensity reduces to µ = 3, only 98 out of the 200 signals rank ahead of the noise,

whereas the rest enter subset M between J1 = 98 and J2 = 446. In Figure 1 (c),

signal intensity remains the same, but the data dimension increases to n = 5, 000.

In this case, fewer signals (J1 = 65) stand outside the range of the noise and more

signals enter M between J1 = 65 and J2 = 1639. This example shows that the mixed

subset is more likely to exist when the intensity of signals is relatively low or the data

dimension is sufficiently high.
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Figure 1: Formation of the signal, noise, and mixed subsets.

4



1.3 Our Contributions

We focus on the scientific challenge of detecting the true signals in M that are mixed

indistinguishably with noise and, therefore, cannot be addressed by multiple testing.

Although one can always relax the control level of false positives in multiple testing to

include more signals, it is not clear by how much should the control level be relaxed.

A pre-fixed high level would certainly not work for different datasets.

In this paper, we propose a data-driven screening procedure to identify the mixed

and noise subsets. Theoretical analysis shows that our screening method can retain

a large proportion of true signals with high probability. Our method is also readily

adaptive to the underlying sparsity and intensity level of signals, so that the size of

the identified mixed subset varies with these unknown features. The adaptivity of our

method separates it from the existing screening procedures that often select a prefixed

number or percentage of top ranked candidates. We further provide some insights on

the characteristics of the three subsets by showing the sufficient and almost necessary

conditions for the existence of the three subsets for a Gaussian model. The results can

be connected to studies in mixture model detection and signal recovery, and provide

additional insights to the phase diagram in high-dimensional inference.

The algorithm of our proposed method is easy to implement and efficient in com-

putation with complexity at the order of O(n lnn). No prior information of the signal

distribution is needed; neither are tuning parameters involved in the algorithm. These

practical properties of the method make it easy to be adopted in a wide spectrum of

applications. The method can be particularly valuable when data has relatively small

signal-to-noise ratio under high-dimensionality. Application examples include asso-

ciation analysis for rare genomic variants, structural variation analysis in germline

constitutional genome, etc. In this paper, we apply the trichotomous analysis to a

real-data example to detect copy number variations based on genotyping data gener-

ated from Illumina HumanHap550 array.

From extensive literature search, we find that the idea of separating data into three

categories has been pursued in various applications. For example, Drton and Perlman

[8] introduced an “indeterminate set” for Gaussian graphical model selection. This set
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is determined by looking at the scatter plot of the p-values and subjectively selecting

the middle range where p-values are not too large or too small. This procedure is

simple to implement but obviously ad hoc. Another related study can be found in

Jeske et al. [18], where a Bayes classifier is proposed for microbial community profiling,

and a “neutral zone” is defined as the set of data where the weight of evidence is too

weak for the Bayes classifier to make decisions. This approach needs to pre-specify

the density function of signals, which is not required for the implementation of our

method. A fundamental difference between the existing studies and the study here

is that the existing studies define the “middle” sets based on the results of certain

methods, whereas we first define and characterize the three subsets from the data,

and then develop data-driven methods to identify them with statistical accuracy.

2 Identification of the Three Subsets

Recall the definitions of signal, noise, and mixed subsets in Section 1.2 based on

ranked p-values. Since no noise rank ahead of J1, it is natural to identify S through

a procedure controlling family-wise Type I error. Such procedures have been widely

studied in literature [9]. Note that the main purpose of identifying S is to reveal

the three-subset structure of the data. This is different from the purpose of multiple

testing, which is to make dichotomous decisions about whether to reject each of the

null hypotheses.

In this paper, we focus on the more challenging problem of identifying M and

N. We propose a new selection rule based on p-value ranking. We refer to the

new selection rule as an Adaptive False Negative Control (AFNC) procedure. For

illustrative purposes, we first study an ideal setting where the number of signals (s)

is known a priori. Then, the AFNC procedure is developed for unknown s.

2.1 AFNC with the number of signals known a priori

In order to identify M and N, we need to find the separation point J2. Even when

s is known, one still do not know the location of J2 as signals may be mixed in-
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distinguishably with noise. We propose the AFNC procedure, which traverses the

ordered p-values until all signals are likely to be included. Given the number of sig-

nals, s(= |S1|), the AFNC procedure is constructed as follows.

(1) Order the p-values: p(1) ≤ p(2) ≤ . . . ≤ p(n).

(2) Find the point

Tfn = s+ min{j ≥ 1 : p(s+j) ≤ ds,j(γ)}1{s>t1}, (2)

where ds,j(γ) is a pre-specified critical sequence and t1 = max{j : p(j) < ds,1(γ)}.
(3) Retain the top {1, . . . , Tfn} candidates.

This simple procedure seeks to include a high proportion of signals while incurring

as few false positives as possible. The critical sequence ds,j(γ) is generated from p-

values of n− s noise and defined as the 100γ-th percentile of U(j), where U(j) is the

cdf of P(j) from n − s noise and γ a prefixed small number. The occurrence of the

event p(s + j) ≤ ds,j(γ) implies that all signals have been included in the top s + j

candidates with probability of at least 1− γ. We suggest to stop as early as possible

when this event occurs. On the other hand, the indicator 1{s>t1} separates the case

where all signals are strong enough to rank ahead of noise from the case where some

signals are relatively weak and mixed indistinguishably with noise.

Define FN(i) as the number of false negatives for selecting the top {1, . . . i} can-

didates ranked by their p-values. We have the following theoretical results on the

efficiency of AFNC.

Theorem 1 Assume model (1) with s = |S1| known a priori. Then the AFNC

procedure optimally controls the probability of having at least one false negatives at

level γ based on the ranked p-values, i.e.,

Tfn = min{i ≥ 1 : Pr{FN(i) ≥ 1} ≤ γ}. (3)

Theorem 1 says that the top {1, . . . Tfn} candidates include all the signals with high

probability (1−γ). Furthermore, this selected set of AFNC is the smallest set achiev-

ing this false negative control property. Given the efficiency of AFNC, Tfn can be

used as a surrogate of J2 to separate the mixed and noise subsets.
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2.2 AFNC with unknown number of signals

In real-data applications, the number of signals is usually unknown. Various estima-

tors have been developed in the literature to estimate the signal proportion π(= s/n).

For example, Genovese and Wasserman [15] and Meinshausen and Rice [26] proposed

two proportion estimators for the p-value model as in (1). Cai et al. [5], Jin and Cai

[22], and Jin [21] developed proportion estimators for normally distributed observa-

tions. Consistency of the aforementioned estimators has been studied under indepen-

dence assumption on the variables. Proportion estimators can be used to improve

power of multiple testing methods [15, 30]. Here, we incorporate an existing propor-

tion estimator in AFNC when s is unknown. For algorithm simplicity, we choose the

estimator introduced in Meinshausen and Rice [26], which is also constructed based

on p-values.

π̂ = max
1<i<n/2

i/n− p(i) −
√

2 ln lnn/n
√
p(i)(1− p(i))

1− p(i)

. (4)

The consistency of π̂ for estimating the proportion of both dense and sparse signals

has be proved for independent p-values [26]. Let π = n−C for some C ∈ [0, 1). Assume

Model (1) with independent p-values and either

C ∈ [0, 1/2) and inf
t∈(0,1)

G′(t) = 0, (5)

or

C ∈ [1/2, 1) and ∀q ∈ (0, 1), lim
n→∞
{lnG−1(q)}/(lnn) = −r, r > 2(C − 1/2).

(6)

Then, it has been shown that Pr{(1 − ε)π ≤ π̂ ≤ π} → 1 as n → ∞ for any ε > 0.

Condition (5) considers relatively dense signals with πn� √n; and all we need is the

“pure” condition inft∈(0,1)G
′(t) = 0 [15, 26]. Condition (6) considers sparse signals

with πn ≤ √n. In this case, stronger condition is needed for signal intensity, which

is implied by (6).

Utilizing a consistent estimator π̂ for signal proportion, we develop the AFNC

with

T̂fn = π̂n+ min{j ≥ 1 : p(π̂n+j) ≤ dπ̂n,j(γ)}1{π̂n>tπ̂,1}, (7)
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where the critical sequence dπ̂n,j(γ) is defined as the 100γ-th percentile of the distri-

bution of the j-th ordered p-value from (1 − π̂)n noise, γ a prefixed small number,

and tπ̂,1 = max{j : p(j) < dπ̂n,1(γ)}.
It can be shown that the AFNC can control false negatives by controlling the

probability of missing a small proportion of signals. Recall the definition of FN(i)

as the number of false negatives for selecting the top {1, . . . i} candidates ranked by

their p-values. We have the following theoretical results.

Theorem 2 Assume model (1) with independent p-values and condition (5) or (6).

Then the AFNC procedure asymptotically controls the probability of having at least a

small proportion of false negatives at level γ, i.e.,

Pr{FN(T̂fn)/s > ε} ≤ γ + ∆, (8)

where ∆ = o(1) for arbitrarily small constant ε > 0.

The result in (8) is weaker than that in (3). This is the price to pay for not knowing

the number of signals a priori. To show a similar result of optimality as in Theorem

1, delicate analysis is necessary to explore the effect of the convergence speed of π̂ to

π on T̂fn. More specific assumptions on the model may be needed. This analysis is

deferred to future work.

In addition to the false negative control property, AFNC is adaptive to the un-

known signal proportion and intensity. When all signals are strong enough to rank

ahead of noise. T̂fn converges to s.

Theorem 3 Assume model (1) with independent p-values. If signals are strong

enough, such that sḠ(n−r) → 0 for some r > 1. Then, with high probability,

the mixed subset does not exist, and for any γ = γn satisfying γn = o(1) and

γn > n−(r−1), the AFNC procedure consistently selects the top s candidates, i.e.,

Pr(T̂fn = J1 = J2 = s)→ 1 as n→∞.

An intuitive understanding for the condition sḠ(n−r) → 0, r > 1, is that Ḡ(n−r) �
1/s = 1/n1−C = o(1), which means that the total mass of G is asymptotically between

0 and n−r. Note that the expectation of the smallest p-value from n independent
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noise is at the order of n−1. Therefore, with r > 1, all the p-values of signals are

well-separated from all the p-values of noise.

Theorem 2 and 3 demonstrate the validity and efficiency of the AFNC with π̂

defined as in (4). If other proportion estimators are implemented in (7), conditions

in Theorem 2 and 3 need to be changed accordingly. For example, the proportion

estimator in Cai et al. [5] is designed for normally distributed noise and signals.

Utilizing the additional assumptions for the model, this estimator is consistent under

a weaker condition on the signal intensity in the sparse scenario compared to (6) [5].

The validity and efficiency of the AFNC can be proved in a similar way.

2.3 Prior Knowledge-Based AFNC

In applications, data may not satisfy the conditions for the existence of a consistent

proportion estimator. However, prior knowledge can often allow practitioners to

provide a possible range for the number of signals. Suppose s is bounded by

s− ≤ s ≤ s+. (9)

Utilizing this information, the prior knowledge-based AFNC can be developed with

T̃fn = s+ + min{j ≥ 1 : p(s++j) ≤ dj(γ)}1{s+>t1}.

Result on the validity of the prior knowledge-based AFNC can be proved similarly as

in Theorem 2.

Corollary 2.1 Assume model (1) and condition (9). Then we have

Pr{FN(T̃fn) > 1} ≤ γ.

Compared to T̂fn, T̃fn may include more noise. However, the prior knowledge-based

AFNC can be useful in applications where conditions for the consistency of proportion

estimation are hard to be satisfied and some informative knowledge of the number of

signals is available.
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3 Insights on the Formations of the Three Subsets

We provide some additional insights on the natural formations of S, M, and N. The

following theorem shows the sufficient and almost necessary conditions for the ex-

istence of the three subsets under a Gaussian model. This model has been widely

studied in high-dimensional inference. Assume the data are generated by

Xi ∼ N (0, 1)1{i∈S0} +N (µ, σ2)1{i∈S1}, i = 1, . . . , n, (10)

where µ > 0 and σ > 0. Define n0 = |S0|.

Theorem 4 Assume model (10). The observed p-values are ranked increasingly.

Then, we have

Pr(S 6= ∅)→ 1 if µ ≥
√

2(1 + ε) lnn0 − σ
√

2 ln s, (11)

Pr(S = ∅)→ 1 if µ ≤
√

2(1− ε) lnn0 − σ
√

2 ln s, (12)

Pr(M 6= ∅)→ 1 if µ ≤
√

2(1− ε) lnn0 + σ
√

2 ln s (13)

Pr(M = ∅)→ 1 if µ ≥
√

2(1 + ε) lnn0 + σ
√

2 ln s (14)

Pr(N 6= ∅)→ 1 if ln s ≤ (1− ε) lnn0, (15)

Pr(N = ∅)→ 1 if ln s ≥ (1 + ε) lnn0, (16)

for arbitrarily small constant ε > 0.

Theorem 4 says that all three subsets asymptotically exist when signals are sparse as in

(15) and the signal intensity is between the two bounds in (11) and (13). Moreover,

(13) shows that the higher the dimensionality is, the more likely that the mixed

subset exists. Note that since ε is an arbitrarily small constant, (12), (14), and (16)

imply that (11), (13), and (15) are sufficient and almost necessary conditions for the

existence of the three subsets respectively.

We find some interesting connections between the formations of the three subsets

to the problem of mixture model detection in Donoho and Jin [7] and Cai et al. [6],

and to the problem of exact signal recovery in Xie et al. [33] and Ji and Jin [19].

Adopting the calibration used in the aforementioned papers, let

π = n−γ, 0 < γ < 1, and µ = µn =
√

2r lnn, r > 0. (17)
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We have the following result. The proof is straightforward, and thus, omitted.

Corollary 3.1 Assume model (10) with calibration (17). Then, asymptotically, the

noise subset always exists, and the sufficient and necessary condition for Pr(S 6= ∅)→
1 is

r > (1− σ
√

1− γ)2, (18)

and for Pr(M 6= ∅)→ 1 is

r < (1 + σ
√

1− γ)2. (19)

We find that condition (18) coincides with the upper half of the detection boundary

introduced in Cai et al. [6] for mixture model detection. The problem of mixture

model detection is to test the global null, Xi ∼ N (0, 1) for all i = 1, . . . , n, versus the

global alternative, Xi ∼ (1−π)N (0, 1) +πN (µ, σ2) for all i = 1, . . . , n. Corollary 3.1

implies the following result.

Corollary 3.2 For the problem of mixture model detection with calibration (17) and

γ ∈ (1/2, 1), only when the signal subset exists is it possible to successfully separate

the global null from the global alternative.

We also find that condition (19) delineates the complementary set of the exact recov-

ery region in Xie et al. [33] and Ji and Jin [19]. The problem of exact signal recovery

is to show under what condition, Pr(all signals can be separated from noise) → 1.

Corollary 3.1 implies the following result.

Corollary 3.3 For the problem of exact signal recovery with calibration (17), only

when the mixed subset does not exist, is it possible to fully recover all the signals.

The above study on the formations of the three subsets provides additional insights

to the phase diagram in high-dimensional inference.

4 Simulation Studies

In this section, we demonstrate the finite sample performance of AFNC. In each ex-

ample, 10, 000 observations are generated, in which the noise data points are sampled
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independently from N (0, σ) and signals from N (µ, 1). The results of AFNC with

T̂fn as in (7) and γ = 0.05 are compared to those of the Bonferroni with α = 0.05,

the BH-FDR with α = 0.05 [2], and the adaptive FDR [3]. Note that we can use

Bonferroni to separate the signal and mixed subsets (S-M Separation) and T̂fn to

separate the mixed and noise subsets (M-N Separation).

We report the number of top-ranked variables selected by AFNC as T̂fn, by Bon-

ferroni as tbonf , by BH-FDR as tFDR, and by adaptive FDR as taFDR. Corresponding

numbers of false positives (FP) and false negatives (FN) for each procedure are also

computed. We repeatedly generate the observations and compute performance mea-

sures for 100 times in each simulation example. The median and mean absolute

deviation (MAD) of these measures are reported for more robust comparison results

against the outliers in the 100 replications.

Example 1 demonstrates the effect of signal proportion. Set σ = 1 and µ = 3.

The signal proportion π changes from 1% to 20%. As signal proportion increases,

the adaptive FDR significantly outperforms BH-FDR. To save space, the results of

the latter are omitted in this example. As shown in Table 1, the number of selected

candidates of all the methods increases with π, and taFDR is always in between tbonf

and T̂fn. The FN of T̂fn is much smaller than those of the other methods and remains

fairly robust over different signal proportions. This shows that T̂fn is a valid false

negative control procedure which is adaptive to the unspecified signal proportion. The

FP of tbonf remains around 0 showing that this procedure only selects true signals and

therefore can be used as a surrogate of J1. The adaptive FDR has both FP and FN

increasing with signal proportion. When the proportion of true signals is relatively

large, large numbers of FN are observed for adaptive FDR. This example shows that

the trichotomous analysis is a valuable addition to the dichotomous decision rules.

Example 2 demonstrates the effect of signal intensity. Set σ = 1 and π = 0.01.

Signal mean µ varies from 2.5 to 5.5. Since the signal proportion is very small, the

results of BH-FDR and the adaptive FDR are very close. To save space, the results of

the latter are omitted in this example. Figure 2 presents the histograms of T̂fn from

the 100 replications for µ = 2.5 and 5.5. It shows that as signal intensity increases,

the distribution of T̂fn becomes more concentrated. Table 5 shows that the cut-off
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Table 1: Effect of signal proportion. Median and MAD (in parentheses) of tbonf ,

tFDR, T̂fn, and their corresponding FP and FN over 100 replications. µ is fixed at 3.

S-M Separation adapFDR M-N Separation

π tbonf FP FN taFDR FP FN T̂fn FP FN

1% 8(3) 0(0) 92(3) 27(7) 1(1) 74(6) 227(140) 147(135) 21(12)

5% 40(6) 0(0) 460(6) 259(13) 12(4) 253(13) 1119(494) 645(462) 31(28)

10% 81(8.9) 0(0) 919(9) 647(18) 31(4) 386(18) 1960(589) 996(548) 38(31)

20% 172(11) 0(0) 1828(10) 1543(32) 72(11) 529(24) 3224(660) 1268(614) 46(32)

locations of all three procedures converge to the number of true signals as signal

intensity increases. This demonstrates the adaptivity of T̂fn with finite sample.
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Figure 2: Histograms of T̂fn for µ = 2.5 and 5.5 from 100 replications.

Table 2: Effect of signal intensity. π is fixed at 1%.

S-M Separation BH-FDR M-N Separation

tbonf FP FN tFDR FP FN T̂fn FP FN

µ = 2.5 3(1) 0(0) 97(1) 8(4) 0(0) 92(4) 325(269) 261(253) 28(19)

µ = 3.5 17(3) 0(0) 83(3) 54(7) 2(1) 48(6) 194(113) 103(97) 11(9)

µ = 4.5 54(4) 0(0) 46(5) 92(4) 4(3) 12(3) 126(44) 29(34) 3(3)

µ = 5.5 86(3) 0(0) 14(3) 103(1) 4(1) 1(1) 104(9) 4(3) 1(1)

Example 3 has heterogeneous noise generated for 10% of the observations. With

signal intensity and proportion fixed at µ = 3.5 and π = 1%, the proportion of het-
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erogeneous noise is 10 times the proportion of signals. This example demonstrates

a common scenario in real-data applications where unjustified artifacts causes het-

erogeneity in the background noise. The heterogeneous noise in this example are

randomly generated from N (0, σ) with σ ∼ Gamma(2, θ). Let the scale parameter θ

vary from 0.5 to 2, which results in increasing variability for the noise. Due to the

small signal proportion, the results of the adaptive FDR are very close to those of

the BH-FDR and omitted in this example. Table 3 shows that FPs of all procedures

increase with θ. FNs, on the other hand, are very stable. Corollary 2.1 provides some

explanation for the robustness of T̂fn in controlling false negatives in this example.

Since heterogeneous noise can result in large jumps, the estimated proportion π̂ is

larger than the true π. Constructed using this π̂, T̂fn is close to T̃fn in (2.3). The

false negative control of T̃fn is presented in Corollary 2.1.

Table 3: Robustness for heterogeneous noise. Set µ = 3.5 and π = 1%.

S-M Separation BH-FDR M-N Separation

tbonf FP FN tFDR FP FN T̂fn FP FN

θ = 0.5 22(4) 5(3) 82(3) 69(9) 15(4) 45(6) 196(67) 107(60) 12(7)

θ = 1 53(7) 35(6) 81(4) 132(12) 71(9) 38(4) 443(180) 347(174) 7(4)

θ = 1.5 94(10) 75(9) 80(4) 195(15) 130(13) 35(4) 556(230) 459(223) 7(3)

θ = 2 134(12) 113(10) 80(4) 249(12) 182(10) 33(4) 556(179) 466(175) 9(4)

Example 4 generates autocorrelated observations with ρij = a|i−j| for a = 0, 0.5, 0.7

and 0.9. The number of observations are reduced to 1,000 to save computation time.

Set σ = 1, π = 0.05, and µ = 3. The results summarized in Table 4 are quite stable

over different values of the autocorrelation parameter a with T̂fn having slightly better

control on false negatives for large a.

Example 5 illustrates the false negative control property presented in Theorem

2 under finite sample. Particularly, Theorem 2 shows that under certain conditions

on the signal proportion and intensity, AFNC asymptotically controls the probability

of having a small proportion of false negatives. Since the result in Theorem 2 with

arbitrarily small constant ε is implied by Pr{FN(T̂fn)/s > εn} ≤ γ+ ∆ for εn → 0 as

n→∞, we set εn = 1/ ln(n) and record the empirical probability of FN(T̂fn)/s > εn
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Table 4: Robustness under autocorrelation. Set π = 0.05 and µ = 3.

S-M Separation BH-FDR M-N Separation

tbonf FP FN tFDR FP FN T̂fn FP FN

a = 0 14(3) 0(0) 36(3) 27(4) 1(1) 25(4) 74(45) 30(33) 7(7)

a = 0.5 13(4) 0(0) 37(4) 24(7) 1(1) 27(7) 69(35) 27(28) 7(7)

a = 0.7 13(7) 0(0) 37(6) 28(9) 1(1) 24(7) 67(44) 25(33) 5(8)

a = 0.9 14(13) 0(0) 36(13) 29(17) 0(0) 20(15) 72(51) 27(41) 3(4)

from 100 replications in Table 5. It is clear that except the very challenging case with

sparse signal (small π) and low intensity level (small µ), the empirical probability

is generally small, which shows the control of the probability for having a small

proportion of false negatives by AFNC.

Table 5: Empirical probability of FN(T̂fn)/s > εn with εn = 1/ ln(n).

π = 5% π = 10% π = 20%

µ = 2.5 0.29 0.05 0

µ = 3.5 0.02 0 0

µ = 4.5 0 0 0

5 Application to DNA Structural Variation Anal-

ysis

We apply the trichotomous framework to analyze DNA structural variation based on

high-throughput SNP array data. Here, we focus on an important type of structural

variants called copy number variants (CNVs), which play important roles in popu-

lation diversity and disease association [25]. Our dataset is generated from Illumina

HumanHap 550 array, where genotypes are measured at ∼ 500, 000 SNP locations

along the human genome. It has been reported that most CNVs from the germline

constitutional genome are very sparse and short, ranging less than 20 SNPs [35].

Many of these subtle signals cannot reach significance levels of multiple testing in
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genome-wide search.

In this paper, instead of presenting a list of candidates that pass certain signif-

icance level, we aim to provide more insight of the data by identifying the signal,

noise, and mixed subsets. Our data includes three individuals from the Autism Ge-

netics Resource Exchange (AGRE) collection [4]. We specifically consider the data

on Chromosome 19, which include measurements at 9501 SNP locations for each in-

dividual. At each SNP location, the Log R ratio (LRR) is measured to represent the

total intensity of both major and minor alleles. Due to the fact that LRR deviates

from the baseline in CNV segments, LRR data are widely used for detecting CNVs

[28].

For a given individual, LRR observations are first normalized, and then the like-

lihood ratio is calculated for each interval with length ≤ L. The likelihood ratio of

an interval is defined as the standardized sum of observations in that interval, and

L is set at 20 as most of the CNVs cover less than 20 SNPs [35]. The efficiency and

optimality of using likelihood ratios as the test statistics for CNV data have been

studied in Jeng et al. [17]. There are n = 9501× 20 = 190, 020 such likelihood ratio

statistics for each individual. When the distributions of LRRs change in an interval,

the corresponding likelihood ratio for that interval is expected to deviate from the

baseline. Figure 3 demonstrates the empirical distribution of the 190, 020 likelihood

ratios for an individual. The outliers at the left tail are likely to correspond to copy

number deletions.

We calculate the p-values for these likelihood ratios assuming that the background

noise follow N (0, 1) after normalization. The likelihood ratios are locally dependent

due to the fact that the intervals are short and overlapping. In this example we treat

them as independent observations to illustrate the method. The robustness of our

method under similar local dependence is shown in Example 4 of Simulation Studies.

We find that estimating the signal proportion by (4) seems to result in a much larger

proportion estimate than commonly expected for SNP array data, possibly due to

artifacts involved in the data generation process [24]. Thus, we use a more reasonable

bound of 0 ≤ s ≤ 50 for this data set. Setting the upper bound at 50 means that

the copy number deletions on Chromosome 19 are less than 50 [35]. Consequently,
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Figure 3: Histogram of the likelihood ratios of the intervals on Chromosome 19.

the AFNC procedure with T̃fn and γ = 0.1 is used to identify the mixed subset. To

identify the signal subset, tbonf with α = 0.1 is used as it only select the true signals

with high probability. Because the intervals are overlapping, we only keep intervals

having minimum p-values among overlapping segments to indicate the locations of

copy number deletions. All the other intervals overlapping with them are removed.

tbonf and T̃fn are then re-defined as the ranks among these non-overlapping intervals.

For the three individuals, tbonf = 1, 2, 1 and T̃fn = 76, 18, 36. These results

show that only 1 or 2 candidates are strong enough to enter the signal subset. The

candidates in between tbonf and T̃fn include relatively weaker CNV signals, which are

mixed indistinguishably with noise but desirable to be kept for follow-up study. Note

that we start with n = 190, 020 candidate intervals for each individual. The resulting

T̃fn greatly reduce the number of tests in the follow-up study.

To exam whether true CNVs are included in the identified mixed subset between

tbonf and T̃fn, we compare the candidates in each identified subset to the reported

members in a CNV database maintained in The Centre for Applied Genomics

(http://projects.tcag.ca/variation/project.html). A candidate region can overlap with

zero, one, or more than one CNVs in the database. The mean value of the num-

ber of such CNVs in the database is presented for each subset in Table 6. Larger

mean value represents stronger evidence for identifying true CNVs in a subset. In

other words, let Oj = number of CNVs in the database that overlap with the j-
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th candidate in the list of ranked intervals. Define ovlap-S = mean(Oj, 1 ≤ j ≤
tbonf , ovlap-M = mean(Oj, tbonf < j ≤ T̃fn), ovlap-N = mean(Oj, T̃fn < j ≤
total number of intervals). Table 6 shows that these mean values, in general, de-

crease from ovlap-S to ovlap-N. This agrees with our intuition. For example, the

result of individual 3 shows that, on average, each candidate in the identified mixed

subset overlaps with 6.8 CNVs in the database, while the number decreases to 2.0 for

the identified noise subset. If we only select candidates based on false positive control,

many of the true signals in the mixed subset will be missed for follow-up study. The

sample correlation between the interval length and Oj are 0.17, 0.28, and 0.26 for the

three individuals, respectively, indicating that the trend observed in Table 6 is not

likely caused by the length factor.

Table 6: tbonf , T̃fn, and the mean value of Oj in each subset.

ovlap-S tbonf ovlap-M T̃fn ovlap-N

Individual 1 4 1 4.7 76 2.1

Individual 2 10.5 2 3.4 18 2.5

Individual 3 0 1 6.8 36 2.0

6 Discussion

In this paper, we study the natural formation of three subsets when analyzing high

dimensional data. An efficient screening procedure is proposed to retain the relatively

weak signals in the mixed subset. This study provides important insights for the data

and helps practitioners to quickly remove irrelevant information. Furthermore, the

results of the trichotomous analysis can help practitioners to design more efficient

follow-up studies. For example, unlike traditional sample-size calculations that need

to pre-specify signal intensity level, we may infer the number and intensities of the

signals based on the identified M and determine the sample size needed in a follow-up

study objectively. Works along this line are deferred to future research. Additional

insight for the quality of the data may also be achieved by examining the identified

M. For example, a large M suggests that there may exist many small non-null ob-
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servations, which are either true signals or, very often, caused by artifacts involved

during the data generation. Investigating the sources of possible artifacts in follow-up

studies may significantly reduce the size of M and result in better separation between

signals and noise.

The study in this paper is based on p-values. Other statistics carrying information

about signal intensity, such as the local FDR values [10, 30] may be used in place of

p-values. It will be interesting to investigate these possibilities in future research.

In this paper, we assumed independent p-values to allow a succinct theoretical

study of the new method. Simulation examples in section 4 demonstrate the robust-

ness of the proposed method for autocorrelated observations. We plan to study in

depth the three-subset identification under dependence in future works. We find the

works in multiple testing under dependence very helpful. Examples include Leek and

Storey [23], Sun and Cai [31], Friguet et al. [14], Fan et al. [11], etc. According to

these works, it is possible to adjust for the dependence structure of the test statistics

to better separate signals from noise.

Last but not least, the identification of S, M, and N can be related to the problems

of variable selection and variable screening in high-dimensional regression [32, 12,

13]. Existing studies show that under certain conditions, a pre-fixed number of top-

ranked candidates include all the relevant predictors with high probability. In other

words, those top-ranked candidates include the union of S and M. However, how to

efficiently choose the pre-fixed screening parameter remains an open question. We

expect that the data-driven construction of T̂fn may shed light on this open question.

Furthermore, recent studies in high-dimensional regression investigate the challenging

problem of controlling certain Type I error rate when performing variable selection.

For example, Meinshausen and Bühlmann [27] consider the control of familywise

error rate (FWER), Barber and Candès [1] consider the control of false discovery rate

(FDR), and Ji and Zhao [20] consider the control of marginal false discovery rate

(mFDR). Optimal multiple testing procedures for high-dimensional regression have

also been studied in Ji and Zhao [20]. We find these works very interesting and would

like to explore their connections to the problem of identifying the signal, noise, and

mixed subsets in high-dimensional regression.
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7 Proofs

7.1 Proof of Theorem 1

It is sufficient to show that

Pr{FN(Tfn) ≥ 1} ≤ γ (20)

and, for any k̃ < Tfn,

Pr{FN(k̃) ≥ 1} > γ. (21)

For (20), define ĵ = min{j ≥ 1 : p(s+j) ≤ ds,j(γ)}1{s>t1}, then Tfn = s+ ĵ. Define

TP (i) and FP (i) as the numbers of true positives and false positives for selecting the

top {1, . . . i} candidates. We have

Pr{FN(Tfn) ≥ 1} = Pr{TP (Tfn) < s}

= Pr{FP (Tfn) > Tfn − s} = Pr{FP (Tfn) > ĵ}, (22)

where the second equality is by Tfn = FP (Tfn) + TP (Tfn).

In the case of s ≤ t1, we have ĵ = 0 and Tfn = s. Then

Pr{FP (Tfn) > ĵ} = Pr{FP (s) > 0} ≤ Pr{FP (t1) > 0}. (23)

Define P n−s
(j) as the j-th smallest p-value from n−s noise and P n

(j) as the j-th smallest

p-value from n noise. By the construction of t1,

Pr{FP (t1) > 0} = Pr{P n−s
(1) < p(t1)} ≤ Pr{P n−s

(1) < ds,1(γ)} = γ. (24)

Combining (22) - (24) gives (20).

In the case of s > t1,

Pr{FP (Tfn) > ĵ} = Pr{P n−s
(ĵ)

< p(Tfn)} ≤ Pr{P n−s
(ĵ)

< ds,j(γ)} = γ, (25)

where the first step is because when the elements from S0 are more than ĵ in

{1, . . . , Tfn}, the ĵ-th smallest Pj from S0 must rank before p(Tfn), and the second

step is by the construction of Tfn. Combining (22) and (25) gives (20).
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Next, consider (21). Similar calculation as in (22) gives

Pr{FN(k̃) ≥ 1} = Pr{FP (k̃) > j̃}, (26)

where k̃ = s+ j̃. The construction of Tfn in (2) implies that p(k̃) > ds,j̃(γ), then

Pr{FP (k̃) > j̃} = Pr{P n−s
(j̃)

< p(k̃)} > Pr{P n−s
(j̃)

< ds,j̃(γ)} = γ. (27)

(21) follows from (26) and (27).

7.2 Proof of Theorem 2

Let ĵ = min{j ≥ 1 : p(π̂n+j) ≤ dπ̂n,j(γ)}1{π̂n>tπ̂,1}. Then, it can be shown that

Pr{FN(T̂fn)/s > ε}

= Pr{TP (T̂fn) < (1− ε)s} = Pr{FP (T̂fn) > T̂fn − (1− ε)s}

= Pr{FP (T̂fn) > π̂n+ ĵ − (1− ε)πn}

≤ Pr{FP (T̂fn) > π̂n+ ĵ − (1− ε)πn, π̂ ≥ (1− ε)π}+ Pr{π̂ < (1− ε)π} (28)

The following lemma summarizes part of the results in Theorem 1 and 2 in [26]. The

proof of the lemma is omitted.

Lemma 7.1 Assume the same conditions as in Theorem 2. Let π̂ be defined as in

(4). Then, as n→∞,

Pr{(1− ε)π ≤ π̂ ≤ π} → 1

for any ε > 0.

Then it is easy to see that

Pr{FP (T̂fn) > π̂n+ ĵ − (1− ε)πn, π̂ ≥ (1− ε)π}+ Pr{π̂ < (1− ε)π}

≤ Pr{FP (T̂fn) > ĵ}+ o(1). (29)

When π̂n ≤ tπ̂,1, similar arguments as in (23) - (24) give

Pr{FP (T̂fn) > ĵ} ≤ Pr{P n−s
(1) < dπ̂n,1(γ)}.
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Since

Pr{P n−s
(1) < dπ̂n,1(γ)} ≤ Pr{P n−s

(1) < dπ̂n,1(γ), π̂ < π}+ Pr(π̂ > π)

≤ Pr{P n−s
(1) < ds,1(γ)}+ o(1) = γ + o(1). (30)

Then (8) follows.

When π̂n > tπ̂,1,

Pr{FP (T̂fn) > ĵ} = Pr{P n−s
(ĵ)

< p(T̂fn)} ≤ Pr{P n−s
(ĵ)

< dπ̂n,ĵ(γ)}

≤ Pr{P n−s
(ĵ)

< dπ̂n,ĵ(γ), π̂ ≤ π}+ Pr(π̂ > π)

≤ Pr{P n−s
(ĵ)

< ds,ĵ(γ)}+ o(1) = γ + o(1).

Then (8) follows.

7.3 Proof of Theorem 3

Defines events A = {tπ̂,1 ≥ π̂n}, B = {J1 = πn}, C = {J2 = πn}, and D = {π̂n =

πn}. It is enough to show that

Pr(A ∩B ∩ C ∩D)→ 1,

which is implied by

Pr(Ac) + Pr(Bc) + Pr(Cc) + Pr(Dc)→ 0. (31)

Consider Pr(Ac) first. By the definition of tπ̂,1 and Lemma (7.1),

Pr(Ac) ≤ Pr(tπ̂,1 < πn) + Pr(π̂ > π)

≤ Pr{∃i ∈ S1 : Pi > dπ̂n,1(γn)}+ o(1)

≤ sḠ{dπ̂n,1(γn)}+ o(1)

≤ sḠ(n−r) + o(1) = o(1),

where the fourth inequality is by dπ̂n,1(γn) ≥ Cγnn
−1 and γn > n−(r−1), and the last

step is by the condition sḠ(n−r)→ 0.
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For Pr(Bc), by the definition of J1, J1 is always less or equal to s, then

Pr(Bc) = Pr(J1 < πn) = Pr(∃i ∈ S1 : Pi > P n−s
(1) )

≤ Pr(∃i ∈ S1 : Pi > n−r) + Pr(P n−s
(1) < n−r)

≤ sḠ(n−r) + o(1) = o(1).

Similar argument can be applied to show Pr(Cc) = o(1)

Now consider Pr(Dc). By lemma 7.1, it is enough to show that

Pr(π̂n ≤ πn− 1)→ 0,

which is implied by

Pr(
π̂

π
− 1 < − 1

πn
)→ 0. (32)

Define

Fn(t) =
1

n

n∑

i=1

1(Pi ≤ t), Un−s(t) =
1

n− s
n−s∑

i=1

1(P 0
i ≤ t), Gs(t) =

1

s

s∑

i=1

1(P 1
i ≤ t).

Then, by the construction of π̂ in (4), for any t ∈ [0, 1],

π̂

π
− 1 ≥ Fn(t)− t− π

π
−
√

2 ln lnn
√
t(1− t)

π
√
n

=
(1− π)Un−s(t) + πGs(t)− t− π

π
−
√

2 ln lnn
√
t(1− t)

π
√
n

= {G(t)− 1}+ {Gs(t)−G(t)}+
1− π
π
{Un−s(t)− t} − t−

√
2 ln lnn

√
t(1− t)

π
√
n

.

Let t = n−r. Then by condition sḠ(n−r)→ 0 and r > 1,

|G(t)− 1)| = Ḡ(n−r) = o(
1

s
),

|Gs(t)−G(t)| = Op(

√
G(t)(1−G(t))

s
) = Op(

√
Ḡ(n−r)

s
) = op(

1

s
),

1− π
π
|Un−s(t)− t| = Op(

1− π
π

√
t(1− t)
n− s ) = Op(

√
1− π
π

1

n(1+r)/2
) = op(

1

s
),

√
2 ln lnn

√
t(1− t)

π
√
n

=

√
2 ln lnn

π

1

n(1+r)/2
= o(

1

s
).

Therefore, (32) follows. Combining the above results for Pr(Ac), Pr(Bc), Pr(Cc), and

Pr(Dc) gives (31).
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7.4 Proof of Theorem 4

For notation simplicity, let n0 = n− s.
Consider (11) first. It can be shown that

Pr(S = ∅) = Pr(max{Xi, i ∈ S1} ≤ max{Xi, i ∈ S0})

≤ Pr(max{Xi, i ∈ S1} ≤
√

2 lnn0) + Pr(max{Xi, i ∈ S0} >
√

2 lnn0)(33)

where

Pr(max{Xi, i ∈ S0} >
√

2 lnn0) ≤ n0 Pr{N (0, σ2) >
√

2 lnn0} ≤ C/
√

lnn0 = o(1)

(34)

and

Pr(max{Xi, i ∈ S1} ≤
√

2 lnn0)

= Pr(max{Xi, i ∈ S1} − µ ≤
√

2 lnn0 − µ)

= Pr{max{Xi, i ∈ S1} − µ ≤ σ
√

2 ln s+ (
√

2 lnn0 − µ− σ
√

2 ln s)}

≤ Pr[max{Xi, i ∈ S1} − µ ≤ σ
√

2 ln s+ {
√

2 lnn0 −
√

2(1 + ε) lnn0}]

≤ Pr(max{Xi, i ∈ S1} − µ ≤ σ
√

2 ln s− C
√

lnn0) = o(1), (35)

where the first inequality is by condition (11) and the last step is by the extreme

value theory of normal random variables. Combining (33) - (35) gives (11).

Next consider (12). It can be shown that

Pr(S 6= ∅)

= Pr(max{Xi, i ∈ S1} > max{Xi, i ∈ S0})

≤ Pr(max{Xi, i ∈ S1} >
√

2 lnn0 − ln lnn0) + Pr(max{Xi, i ∈ S0} <
√

2 lnn0 − ln lnn0)

≤ Pr(max{Xi, i ∈ S1} >
√

2 lnn0 − ln lnn0) + o(1), (36)

where the second inequality is by the extreme value theory of standard normal random

variables. Also,

Pr(max{Xi, i ∈ S1} >
√

2 lnn0 − ln lnn0)

= Pr{max{Xi, i ∈ S1} − µ > σ
√

2 ln s+ (
√

2 lnn0 − ln lnn0 − µ− σ
√

2 ln s)}

≤ Pr[max{Xi, i ∈ S1} − µ > σ
√

2 ln s+ {
√

2 lnn0 − ln lnn0 −
√

2(1− ε) lnn0}]

≤ Pr(max{Xi, i ∈ S1} − µ > σ
√

2 ln s+ C
√

lnn0) = o(1), (37)
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where the first inequality is by condition (12). Combining (36) and (37) gives (12).

The claims in (13) - (16) can be proved similarly.
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