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Abstract

In this paper, we consider semiparametric varying coefficient partially linear models when
the predictor variables of the linear part are ultra-high dimensional where the dimension-
ality grows exponentially with the sample size. We propose a profile forward regression
(PFR) method to perform variable screening for ultra-high dimensional linear predictor
variables. The proposed PFR algorithm can not only identify all relevant predictors con-
sistently even for ultra-high semiparametric models including both nonparametric and
parametric parts, but also possesses the screening consistency property. To determine
whether or not to include the candidate predictor in the model of selected ones, we adopt
an extended Bayesian information criterion (EBIC) to select the “best” candidate model.
Simulation studies and a real data example are also carried out to assess the performance
of the proposed method and to compare it with existing screening methods.

Key words: Varying coefficient partially linear model; profile forward regression;
variable screening; screening consistency property; ultra-high dimension; EBIC

AMS 2010 subject classifications: primary 62G08; secondary 62J02

1. Introduction

In recent years, high-dimensional data analysis has become increasingly frequent and
important in a large variety of areas such as health sciences, economics, finance, and epi-
demiology. The analysis of high-dimensional data poses many challenges for statisticians
and thus calls for new statistical methodologies as well as theories; see Fan and Li [11].

To address these challenges, variable screening is an effective method of using a ranking
criterion to select significant variables, particularly for statistical models with nonpoly-
nomial dimensionality or “large p, small n” paradigms when p can be as large as an
exponential of the sample size n; see Li et al. [24]. The main idea is to first apply a fast,
reliable and efficient method to reduce the ultra-high dimensionality p from a large or huge
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scale to a relatively large scale s (say s ≤ n), and then apply some well-developed vari-
able selection techniques to perform the final variable selection and parameter estimation
simultaneously. In the first screening step, the sure screening property introduced by Fan
and Lv [12] needs to be satisfied such that all truly important predictors can be selected
with probability tending to 1 as the sample size goes to infinity.

Since Fan and Lv [12] proposed the sure independence screening (SIS) procedure for
ultra-high linear models, many authors had further developed the SIS method and applied
it to various statistical models. For illustration, Fan et al. [14] and Fan and Song [15]
extended SIS to generalized linear models. Wang [35] proposed a forward regression algo-
rithm for ultra-high dimensional variable screening. Fan et al. [8] studied nonparametric
independence screening (NIS) in sparse ultra-high dimensional additive models. Cui et
al. [6] and Zhu et al. [23] proposed model-free variable screening methods, respectively.
Li et al. [24, 25] proposed a robust rank correlation screening (RRCS) procedure based
on Kendall’s rank correlation coefficient. Li et al. [29] developed the sure independence
screening procedure based on the distance correlation (DC-SIS) under general paramet-
ric models. Fan et al. [13] and Liu et al. [32] extended the NIS to sparse ultra-high
dimensional varying coefficient models.

In this paper, we propose a new method for variable screening in the ultra-high dimen-
sional semiparametric varying coefficient partially linear model (VCPLM). Suppose that
Y is a response variable and (U,X>,Z>) are the associated covariates, where > denotes
transposition. The VCPLM takes the form

Y = X>α(U) +Z>β + ε, (1.1)

where α(·) = (α1(·), . . . , αq(·))> is a q-dimensional vector of unknown regression func-
tions, β = (β1, . . . , βp)> is a p-dimensional vector of unknown regression coefficients, ε
is independent of (U,X>,Z>) and follows a distribution with mean 0 and variance σ2,
and U is a univariate variable on the compact support Ω. From prior knowledge, we
assume that some of the true predictors may have varying effects while the others have
constant effects to the response variable. We further assume that the predictor variable
X has fixed dimension q, while the predictor variable Z has ultra-high dimensionality or
nonpolynomial dimensionality such that ln p = O(nκ) for some κ > 0.

Model (1.1) retains the flexibility of the nonparametric regression model and has also
the nice interpretability of the linear regression model. When the dimension p is fixed,
model (1.1) has been extensively studied in the literature including, e.g., Ahmad et al.
[1], Fan and Huang [10], Li et al. [21], Li et al. [22], Li et al. [27], Li and Liang [28],
Wu et al. [37], Xia et al. [38], Xue and Zhu [39], You and Chen [40], Zhang et al. [42],
Zhou and Liang [46]. When the dimension p grows with the sample size n, Lam and
Fan [20] considered a generalized varying coefficient partially linear model, and studied
the asymptotic properties of the profile likelihood estimator. Li et al. [23] proposed the
bias-corrected empirical likelihood method to study the VCPLM with a diverging number
of parameters.

Variable selection for Model (1.1) is challenging because it involves both nonparamet-
ric and parametric parts. We note that penalized variable selection methods have been
successfully applied to Model (1.1) when p < n, such as Hong et al. [17], Kai et al. [19],
Li et al. [26], Wang et al. [36], Zhao and Xue [43], and Zhao et al. [44]. Nevertheless,
when p > n or even grows exponentially with n, the aforementioned penalized variable
selection methods may not work for the ultra-high dimensional VCPLM (1.1) due to the
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simultaneous challenges of computational expediency, statistical accuracy and algorithm
stability.

To cater for the demand, an alternative popular and classical variable screening method,
namely the forward regression (FR) approach, has recently been proposed for ultra-high
dimensional linear regression models in Wang [35]. Zhong et al. [45] proposed a stepwise
procedure, correlation pursuit, for variable selection and screening under the sufficient
dimension reduction framework. Cheng et al. [4] extended the FR algorithm of variable
screening to sparse ultra-high dimensional varying coefficient models. Liang et al. [31]
proposed the profile forward regression (PFR) algorithm of variable screening to ultra-
high dimensional semiparametric partially linear models. Such methods enjoy desirable
theoretical properties, including the screening consistency property, and have advantages
from numerical aspects. Inspired by these advantages, we develop a new PFR algorithm of
variable screening for the semiparametric varying coefficient partially linear models with
ultra-high dimensional covariate for the linear part, where the dimension can be much
larger than the sample size. The proposed PFR method can not only identify all relevant
predictors consistently even for ultra-high semiparametric models including both nonpara-
metric and parametric parts, but also possesses the screening consistency property.

For ease of notation, we use the boldface roman B to represent a matrix, boldface
italics B to represent a vector, and Bik to represent the (i, k)th entry of the matrix B
throughout this paper. The remainder of this paper is organized as follows. In Section 2,
the PFR procedure of variable screening is introduced. In Section 3, the asymptotic
properties are derived under some regularity conditions. In Section 4, simulation studies
are carried out to assess the performance of the proposed method and to compare it with
existing methods. A real data example is used for illustration in Section 5. The technical
proofs of the main results and some lemmas are given in the Appendix.

2. Profile forward regression method

We first present the main profile idea in the population form. Assuming that β is
known, Model (1.1) becomes the following varying coefficient model:

Y −Z>β = X>α(U) + ε.

For any given U , we can solve the following profile estimation equation:

E[X{Y −Z>β −X>α(U)}|U ] = 0.

For simplicity, let

η(U) = {E(XX>|U)}−1E(XY |U), µ(U) = {E(XX>|U)}−1E(XZ>|U).

Then

α(U,β) = {E(XX>|U)}−1E(XY |U)− {E(XX>|U)}−1E(XZ>|U)β
= η(U)− µ(U)β. (2.1)

Replacing α(U) in Model (1.1) by (2.1), we get

Y −X>η(U) = {Z − µ>(U)X}>β + ε. (2.2)
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Note that Model (2.2) reduces to the linear model with the unknown nonparametric
functions E(XX>|U), E(XY |U) and E(XZ>|U), which can be estimated consistently
by using the kernel smoothing method, respectively. When the dimension p of the linear
component β is fixed, many authors have shown that the profile least squares estimator of
β is semiparametrically efficient in large samples; see, e.g., Theorem 4.1 in Fan and Huang
[10]. For this reason, Li et al. [23] showed that µ>(U)X is the projection of Z onto the
space spanned by X, and Z − µ>(U)X is orthogonal to X> for any given U . That is,

E[{Z − µ>(U)X}X>|U ] = 0.

In other words, this orthogonality will play a key role for the semiparametric efficiency
(see Fan and Huang [10]) and for the asymptotic normality of the bias-corrected empirical
log-likelihood ratio (see Li et al. [23]).

Let {(Yi;X>i ,Z>i , Ui) : 1 ≤ i ≤ n} be an independent and identically distributed
random sample from Model (1.1) with predictor variable Xi having the fixed dimension q
and predictor variable Zi having the ultra-high dimension p � n as n → ∞. For ease of
notation, let Xi = (Xi1, . . . , Xiq)> ∈ Rq and Zi = (Zi1, . . . , Zip)> ∈ Rp be the predictor
variables. Define Y = (Y1, . . . , Yn)> ∈ Rn as the response vector, X = (X1, . . . ,Xn)> ∈
Rn×q and Z = (Z1, . . . ,Zn)> ∈ Rn×p as two matrices of explanatory variables, and ε =
(ε1, . . . , εn)> as the vector of random error.

In order to perform variable screening for the linear part conveniently, we take Zij as
a relevant predictor variable if βj 6= 0; otherwise we refer to Zij as an irrelevant predictor
variable if βj = 0. Let M = {j1, . . . , jp∗} denote an arbitrary model with Zij1 , . . . , Zijp∗
as relevant predictors, and let MF = {1, . . . , p} and MT = {j : βj 6= 0} represent the
full model and the true model, respectively. In this paper, we use |M| to denote the size
of model M. Thus, |MF | = p and |MT | = p0, where p0 is the size of the true model
or the number of relevant predictors in the true model. For any candidate model M, we
use Zi(M) = {Zij : j ∈ M} to represent the subvector of Zi corresponding to M, and
Z(M) = {Zij : i = 1, . . . , n, j ∈ M} to denote the matrix consisting of the column of Z
with indices in M. Similarly, let βM denote the vector consisting of the corresponding
components of β.

In the sample form, Model (2.2) can be written as

Yi −X>i η(Ui) = {Zi − µ>(Ui)Xi}>β + εi, (2.3)

where

η(Ui) = {E(XiX
>
i |Ui)}−1E(XiYi|Ui), µ(Ui) = {E(XiX

>
i |Ui)}−1E(XiZ

>
i |Ui).

The functions η(Ui) and µ(Ui) contain the unknown nonparametric functions E(XiX
>
i |Ui),

E(XiYi|U) and E(XiZ
>
i |Ui), which need to be estimated by some nonparametric smooth-

ing methods. For convenience, we define the following notations:

Du =




X>1
U1 − u
h

X>1
...

...

X>n
Un − u
h

X>n


 , Wu = diag{Kh(U1 − u), . . . ,Kh(Un − u)},
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where Kh(·) = K(·/h)/h,K(·) is a kernel function and h is the bandwidth. We further
define the smoothing matrix by

S =




(X>1 0>)(D>u1
Wu1Du1)−1D>u1

Wu1

...
(X>n 0>)(D>unWunDun)−1D>unWun


 , (2.4)

where 0 is a q-dimensional vector of zeros. It is easy to see that the smoothing matrix
S depends only on the observations {(Ui,Xi) : 1 ≤ i ≤ n}. Similar to the results in Fan
and Huang [10] and Li et al. [23], X>i η(Ui) and µ>(Ui)Xi can be directly estimated by,
respectively,

X>i η̂(Ui) =
n∑

k=1

SikYk, µ̂>(Ui)Xi =
n∑

k=1

SikZk, (2.5)

where Sik is the (i, k)th entry of the smoothing matrix S. To facilitate the notation, we
denote Ŷ = (In − S)Y = (Ŷ1, . . . , Ŷn)>, Ẑ = (In − S)Z = (Ẑ1, . . . , Ẑn)>, where In is an
n× n identity matrix. This leads to the linear model as

Ŷi ≈ Ẑ>i β + εi, i = 1, . . . , n, (2.6)

or, in matrix form, Ŷ ≈ Ẑβ + ε. For the ultra-high dimensional semiparametric varying
coefficient partially linear Model (1.1), we have transformed the model into the ultra-high
dimensional linear model (2.6) by using the profile technique. Thus, we can apply the
forward regression method in Wang [35] to identify all relevant predictor variables in the
linear part of model (1.1). The proposed algorithm is as follows.

(1) Initially we specify a null model M(0), which can be taken as M(0) = ∅.
(2) (Profile forward regression screening)

a) (Evaluation). In Step k (k ≥ 1), the model M(k−1) is given based on a priori
knowledge. Then, for every j ∈ MF/M(k−1), construct a candidate model as
M(k−1)

j =M(k−1)
⋃{j}, whose lack of fit can be quantified by

RSS(k−1)
j = Ŷ >

{
In −H

(M(k−1)
j )

}
Ŷ ,

where
H

(M(k−1)
j )

= Ẑ
(M(k−1)

j )

{
Ẑ>

(M(k−1)
j )

Ẑ
(M(k−1)

j )

}−1
Ẑ>

(M(k−1)
j )

.

b) (Screening). Find

ak = arg minj∈MF/M(k−1)RSS(k−1)
j (2.7)

and update the candidate model as M(k) =M(k−1)
⋃{ak}.

(3) (Solution path). Iterate Step 2 for n times, then a total of n nested candidate
models are obtained by the solution path S = {M(k) : 1 ≤ k ≤ n}, where M(k) =
{a1, . . . , ak}.
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3. Theoretical properties

Before we derive the theoretical properties, we present some regularity conditions.
Throughout the paper, we denote γmin(A) and γmax(A) as the smallest and largest eigen-
values of an arbitrary positive definite matrix A, respectively. We define the profile re-
sponse and the profile predictor as Y ∗ = Y − X>η(U) and Z∗ = Z − µ>(U)X =
(Z∗1 , . . . , Z

∗
p)>, respectively.

(C1) The random variable U has a compact support Ω. The density function f(u) of U
has a continuous second derivative and is uniformly bounded away from zero and
infinity.

(C2) The q×q matrix E(XX>|U) is non-singular for each U ∈ Ω. E(XX>|U), E(XZ>|U)
and {E(XX>|U)}−1 are functions about U and all Lipschitz continuous. Further,
assume that all the elements of {E(XX>|U)}−1 and E(XZ>|U) are bounded.

(C3) α1(·), . . . , αq(·) have continuous second derivatives in u ∈ Ω.
(C4) The kernel K(·) is a bounded symmetric density function with bounded support.
(C5) The bandwidth h satisfies that nh6 → 0 and nh3/(lnn)3 →∞.
(C6) Assume that Σ is the covariance matrix of the profile predictor Z∗, and is a positive

definite matrix. There exist two positive constants τmin and τmax satisfying 0 <
τmin < τmax <∞, such that 2τmin < γmin(Σ) ≤ γmax(Σ) < 2−1τmax.

(C7) Assume that ‖β‖ ≤ Cβ for some constant Cβ > 0 and βmin ≥ νβn
−ξmin for some

ξmin > 0 and νβ > 0, where ‖ · ‖ denotes the standard L2 norm and βmin =
minj∈MT |βj |.

(C8) (Divergence speed of p and p0) There exist positive constants ξ, ξ0 and ν, such that
ln p ≤ min(νnξ, n3/10), p0 ≤ νnξ0 , and ξ + 6ξ0 + 12ξmin < 1.

(C9) (Moment constraint) Assume that max0≤j≤p E{exp(u|Z∗j |)} < ∞ for all 0 ≤ u ≤
t0/σv, where t0 and σv are positive constants, and the moment generating functions
Mj(u) of Z∗j for j = 0, . . . , p satisfy

max
0≤j≤p

sup
0≤u≤t0

∣∣∣∣
d3

du3
ln{Mj(u)}

∣∣∣∣ <∞.

Further, assume that max0≤j≤p E|Z∗j |2k ≤ σ2
v for some k > 2, and assume that ε

follows a normal distribution.

Note that the above conditions are assumed to be held uniformly in u ∈ Ω. Condi-
tions (C1)–(C4) are common in semiparametric varying coefficient partially linear models.
These conditions are mild and can be easily satisfied; see Fan and Huang [10], Li et al.
[23], and You and Zhou [41]. Condition (C5) was used in Li et al. [23], and the range
from O(n−1/3 lnn) to O(n−1/6) includes the optimal bandwidth. Conditions (C6)–(C8)
are technical requirements for the model selection or variable selection; see Liang et al.
[31], and Wang [35]. Condition (C9) was used in Liang et al. [31] to obtain an exponential
inequality for the sum of random variables; see the details in Chernoff [5].

Theorem 3.1. Under regularity conditions (C1)–(C9), as n→∞, we have

Pr
(
MT ⊂M([Knξ0+4ξmin ])

)
−→ 1,
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where MT = {j : βj 6= 0} denotes the true model, and M([Knξ0+4ξmin ]) denotes the se-
lected [Knξ0+4ξmin ]th model in the solution path S. The constant K = 4τmaxτ

−2
minC

2
βν
−4
β ν

is independent of the sample size n, the constants τmax, τmin, Cβ, νβ and ν are defined in
Conditions (C6), (C7) and (C8), and [t] denotes the smallest integer not less than t.

Remark 1. When q = 1 and X ≡ 1, Model (1.1) is reduced to an ultra-high dimensional
partially linear model. Thus, the result in Liang et al. [31] will be the special case of
Theorem 3.1. Theorem 3.1 shows that the profile forward regression method can identify
all relevant predictors within O(nξ0+4ξmin) steps, which is smaller than the sample size n,
with probability tending to 1.

Since the solution path S consists of n nested models, we need to determine which
selected model includes the candidate predictor Zk∗ in the model of selected ones. To this
end, we adopt an extended Bayesian information criterion (EBIC) as follows:

EBIC(M) = ln(σ̂2
(M)) + n−1|M| (lnn+ 2ζ ln p) , (3.1)

where ζ is a fixed constant, M is an arbitrary candidate model with |M| ≤ n,

σ̂2
(M) = n−1RSS(M) = Ŷ >{In −H(M)}Ŷ /n, H(M) = Ẑ(M){Ẑ>(M)Ẑ(M)}−1Ẑ>(M).

When ζ = 1, the EBIC criterion has been used by Chen and Chen [2], Liang et al. [31],
and Wang [35]. Let m̂ = arg min1≤k≤nEBIC(M(k)), then the selected model is M(m̂).
Then we may want to know whether the model chosen by the EBIC criterion can contain
the true model with probability tending to 1. The following theorem answers the question:
the EBIC criterion enjoys the screening consistency property.

Theorem 3.2. Under regularity conditions (C1)–(C9), as n→∞, we have

Pr(MT ⊂M(m̂)) −→ 1. (3.2)

4. Numerical studies

In this section, we present the results of Monte Carlo simulations to evaluate the finite-
sample performance of the proposed PFR algorithm of ultra-high dimensional variable
screening. Throughout this section, we use the Epanechnikov kernel K(u) = 0.75(1−u2)+.
For each setting, we repeat the experiment 200 times and compare the proposed PFR
method with the FR method in Wang [35]. The FR method is treated as a standard
method, and the results are obtained by assuming that the coefficient function vector
α(U) in (4.1) is known, then the response variable becomes Ỹ = Y −X>α(U).

Consider the following varying coefficient partially linear model:

Y = X>α(U) +Z>β + ε, (4.1)

where the nonparametric component α(U) = (α1(U), α2(U))> with q = 2. In Exam-
ples 1–3, we take α1(U) = 4 + sin(2πU) and α2(U) = 2U(1−U), where the covariate U is
uniformly distributed on [0,1], X1 = 1, and X2 follows the standard normal distribution
except for Example 2. In all examples, the noise ε is generated from the normal distri-
bution with mean 0 and variance σ2. We consider different noise level to obtain different
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signal-to-noise ratio R2 = var{X>α(U) +Z>β}/var(Y ). For the linear part, we consider
the following three commonly adopted data structures.

Example 1 (Independent predictors). In this example, the linear predictor Z is an inde-
pendent and standard normal random vector. The size of the true model is chosen to be
p0 = 8 with βj = (−1)Vj (4 lnn/

√
n + |Tj |), where Vj is a binary random variable with

Pr(Vj = 1) = 0.4 and Tj is a standard normal random variable. The variance σ2 of model
error ε is selected so that the resulting theoretical R2 is approximately 50%, 70% and
90%, respectively, to represent the different signal-to-noise ratios from weak to strong.
For comparison, we consider three sample sizes (n = 100, 150 and 200) and three predictor
dimensions (p = 500, 1000 and 2000) for the linear part.

We mainly demonstrate whether or not the PFR method can identify the relevant pre-
dictors as well as the FR method even if the model involves the nonparametric components.
Let β̂(k) = (β̂1(k), . . . , β̂p(k))> ∈ Rp denote the estimator obtained in the kth simulation
replication. Based on the EBIC, we use the proposed PFR algorithm to select the final
candidate model. The selected model is taken as M̂(k) = {j ∈ {1, . . . , p} : |β̂j(k)| > 0}.
Similar to Liang et al. [31] and Wang [35], we compute the following seven performance
measures to evaluate the PFR method.

(1) The average model size (AMS) is computed as

1
200

200∑

k=1

|M̂(k)|.

(2) The coverage probability (CP) is computed as

1
200

200∑

k=1

1(MT ⊂ M̂(k)),

which is used to measure how likely all relevant predictors will be discovered by the
PFR method.

(3) The percentage of correct zeros (CZ), which is used to characterize the PFR method’s
capability in producing sparse solutions, can be computed by

100
200(p− p0)

200∑

k=1

p∑

j=1

1(β̂j(k) = 0)× 1(βj = 0).

(4) The percentage of incorrect zeros (IZ), which is used to characterize the PFR method’s
under-fitting effects, can be computed by

100
200p0

200∑

k=1

p∑

j=1

1(β̂j(k) = 0)× 1(βj 6= 0).

(5) The percentage of correctly fitted (CF), which is used to measure the capability in
identifying the true model correctly, can be computed by

1
200

200∑

k=1

1(M̂(k) =MT ).
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(6) The percentage of submodels M̂(k) contains the jth covariate (Pj), which is used to
measure the capability that the jth covariate will be discovered by the PFR method.

(7) The average estimation error (AEE) is computed by the L2 error

1
200

200∑

k=1

‖β̂(k) − β‖2.

For getting the consistent estimators of the unknown nonparametric functions includ-
ing E(XiX

>
i |Ui), E(XiYi|Ui) and E(XiZ

>
i |Ui) by using the nonparametric smoothing

methods, we need to choose an appropriate bandwidth. In the simulation studies, the rule
of thumb is used to choose the bandwidth for convenience, that is, h = cσ̂Un

−1/5, where
σ̂U denotes the sample standard deviation of U . To check the effect of the bandwidth, we
consider Example 1 and take c = 1, 1.5, 2, three sample sizes n = 100, 150 and 200 and two
predictor dimensions p = 500 and 1000. The simulation results are presented in Table 1.
It is evident that the proposed method is not sensitive to the choice of the bandwidth.

Table 1: Simulation results for Example 1 based on various bandwidths.

p = 500 p = 1000
c n CP CZ IZ CF AMS AEE CP CZ IZ CF AMS AEE

100 3.0 99.95 60.8 2.0 3.370 16.092 0.0 99.9 70.0 0.0 2.745 21.122
1 150 32.5 99.9 20.1 29.0 6.540 7.584 20.5 99.9 26.1 18.0 6.030 8.433

200 71.5 99.9 5.4 69.5 7.615 3.129 59.5 99.9 8.0 55.5 7.425 4.160
100 3.5 99.9 60.6 3.5 3.430 10.458 1.0 99.9 70.9 1.0 2.515 16.913

1.5 150 35.0 99.9 18.3 32.5 6.635 5.959 26.0 99.9 23.8 23.5 6.170 6.211
200 63.5 99.9 6.7 60.5 7.495 3.054 57.5 99.9 7.7 55.0 7.420 2.780
100 3.0 99.96 59.9 1.0 3.410 13.484 0.5 99.9 69.1 0.0 2.625 15.341

2 150 32.0 99.9 18.6 29.5 6.590 5.772 24.0 99.9 25.1 22.0 6.060 5.898
200 71.0 99.9 5.4 70.0 7.585 2.215 61.0 99.9 7.6 58.0 7.445 3.459

Next, we provide the finite-sample performance of the proposed PFR method and the
FR method under different signal-to-noise ratios R2, different dimensions p and different
sample sizes n. The corresponding simulation results are reported in Table 2.

From Table 2, we can find the following results according to the effects of the signal-
to-noise ratios:

(1) For three different signal-to-noise ratios, the PFR and FR methods can almost truly
identify the inactive variables, and have the higher percentage of correct zeros (CZ).
This shows that two methods can produce sparse solutions with probability tending
to one.

(2) The signal-to-noise ratios have certain effect for the PFR and FR methods’ perfor-
mance in terms of the results of the coverage probability (CP), the percentage of
incorrect zeros (IZ), the percentage of correctly fitted (CF), the average model size
(AMS) and the average estimation error (AEE). For the low signal-to-noise ratio
(R2 = 50%), neither PFR nor FR performs well in terms of the coverage probability.
Wang [35] also find the FR method performs worse for the low signal-to-noise ratios.
For the high signal-to-noise ratio (R2 = 90%), the PFR and FR methods perform
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Table 2: Simulation results for Example 1 based on the PFR and FR methods.

PFR FR
R2 p n CP CZ IZ CF AMS AEE CP CZ IZ CF AMS AEE

100 0.0 99.9 85.1 0.0 1.375 19.760 0.0 99.9 85.8 0.0 1.245 16.900
500 150 0.5 99.9 70.4 0.5 2.415 12.553 0.5 99.9 71.8 0.5 2.275 10.742

200 0.8 99.9 53.4 0.8 3.760 8.225 2.0 99.9 52.4 2.0 3.835 8.061
100 0.0 99.9 87.7 0.0 1.230 25.468 0.0 99.9 87.4 0.0 1.135 19.119

0.5 1000 150 0.0 99.9 77.6 0.0 1.865 13.643 0.0 99.9 77.5 0.0 1.820 11.250
200 0.5 99.9 56.6 0.5 3.530 10.110 0.5 99.9 57.8 0.5 3.410 9.229
100 0.0 99.9 90.8 0.0 1.170 30.087 0.0 99.9 89.2 0.0 1.105 22.968

2000 150 0.0 99.9 80.5 0.0 1.655 13.993 0.0 99.9 80.3 0.0 1.625 12.348
200 0.0 99.9 63.3 0.0 2.995 10.112 0.0 99.9 64.6 0.0 2.870 10.067
100 3.5 99.9 60.6 3.5 3.430 10.458 4.5 99.9 59.9 4.5 3.230 9.626

500 150 35.0 99.9 18.3 32.5 6.635 5.959 40.0 99.9 16.0 38.0 6.765 4.686
200 63.5 99.9 6.7 60.5 7.495 3.054 67.0 99.9 5.7 65.5 7.565 2.523
100 1.0 99.9 70.9 1.0 2.515 16.913 1.5 99.9 69.9 1.5 2.480 12.789

0.7 1000 150 26.0 99.9 23.8 23.5 6.170 6.211 29.5 99.9 25.4 20.5 6.012 5.909
200 57.5 99.9 7.7 55.0 7.420 2.780 60.5 99.9 8.0 60.0 7.375 2.958
100 0.0 99.9 76.4 0.0 2.120 19.060 0.7 99.9 77.2 0.7 1.915 13.741

2000 150 14.5 99.9 33.8 12.0 5.410 8.713 23.5 99.9 31.0 21.0 5.380 6.731
200 50.0 99.9 10.5 48.0 7.205 3.995 53.5 99.9 11.4 52.5 7.100 2.646
100 98.5 99.9 0.25 80.5 8.190 4.083 100.0 99.9 0.0 93.5 8.075 2.788

500 150 100.0 99.9 0.0 93.5 8.070 1.965 100.0 99.9 0.0 97.5 8.025 1.365
200 100.0 99.9 0.0 95.0 8.055 1.345 100.0 99.9 0.0 97.5 8.025 0.810
100 97.5 99.9 0.9 73.5 8.255 5.043 98.0 99.9 0.9 88.0 8.035 3.018

0.9 1000 150 100.0 99.9 0.0 91.5 8.100 2.871 100.0 99.9 0.0 96.5 8.035 1.474
200 100.0 99.9 0.0 95.5 8.045 1.813 100.0 99.9 0.0 97.5 8.025 1.208
100 94.0 99.9 3.3 71.5 8.070 6.135 98.0 99.9 0.8 88.0 8.065 3.801

2000 150 99.5 99.9 0.6 97.0 8.055 2.073 99.5 99.9 0.6 97.0 8.020 1.127
200 100.0 99.9 0.0 95.5 8.045 1.194 100.0 99.9 0.0 99.0 8.010 0.773

better. The coverage probabilities approach 100% with the sample size n. We also
note that the results are similar in other settings from Table 2.

To reduce the computational burden, we fix c = 1.5 in the bandwidth choice and the
signal-to-signal ratio is 70% for comparing the proposed PFR method with the FR method
proposed in Wang [35] in the following three examples.

Example 2 (Autoregressive correlation). The covariate (Z>,X>) is a (p+ 2)-dimensional
multivariate normal random vector with mean zero and covariance matrix Σ = (σij) with
element σij = 0.5|i−j| for 1 ≤ i, j ≤ p+ 2. The 1st, 4th and 7th components of β are 3, 1.5
and 2, respectively. Other elements of β are fixed to be zero. For comparison, we consider
three sample sizes (n = 100, 150 and 200) and three predictor dimensions (p = 500, 1000
and 2000) for the linear part. The simulation results are reported in Table 3.

Example 3 (Compound symmetry). In this simulation, we consider the covariance struc-
ture of the linear part is compound symmetry. Specially, the covariate Z has a p-
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Table 3: Simulation results for Example 2.

p n CP CZ IZ CF AMS P1 P2 P3 AEE
Method: PFR

100 15.0 99.9 35.0 14.5 2.125 98.5 31.0 65.5 6.260
500 150 53.0 99.9 16.0 52.5 2.615 99.5 61.0 91.5 3.202

200 78.0 99.9 7.5 76.0 2.835 100.0 81.0 96.5 1.949
100 9.5 99.9 38.0 9.5 2.020 96.5 26.5 63.0 6.251

1000 150 39.0 99.9 21.3 38.5 2.535 100.0 50.5 85.5 5.602
200 77.0 99.9 8.0 76.0 2.810 100.0 80.5 95.5 3.026
100 7.0 99.9 42.2 7.0 1.940 95.5 19.0 59.0 6.996

2000 150 37.0 99.9 22.2 36.5 2.475 99.0 42.5 92.0 4.671
200 68.0 99.9 10.8 67.0 2.745 100.0 71.0 96.5 2.788

Method: FR
100 22.0 99.9 31.3 21.5 2.130 99.0 34.0 73.0 4.383

500 150 60.5 99.9 13.5 60.0 2.625 100.0 63.0 96.5 2.439
200 82.0 99.9 6.2 80.0 2.840 100.0 82.0 100.0 1.406
100 16.0 99.8 25.4 14.5 2.025 98.5 28.0 72.0 3.659

1000 150 52.5 99.9 17.0 52.0 2.545 100.0 57.0 92.0 3.535
200 79.5 99.9 7.1 78.5 2.815 100.0 81.0 98.0 2.723
100 15.5 99.9 36.5 15.5 1.945 98.5 23.5 68.5 3.621

2000 150 49.0 99.9 17.7 48.5 2.485 100.0 53.0 94.0 1.657
200 74.5 99.9 8.5 73.5 2.755 100.0 75.0 99.5 1.027

dimensional multivariate normal distribution N (0,Σ). The covariance matrix has entries
σii = 1 for all i ∈ {1, . . . , p} and σij = ρ, i 6= j. Furthermore, the nonzero coefficients
βj = 5 for j = 1, 2, 3. For comparison, we consider n = 100 and three predictor dimensions
(p = 500, 1000 and 2000) for the linear part, and ρ = 0.1, 0.5, 0.9. The simulation results
are reported in Table 4.

In the following example, we evaluate the performance of our PFR method in the
setting that Z is highly correlated with X, and meanwhile, is highly correlated with U .

Example 4. Let W = (W1, . . . ,Wp+2)> be an independent and standard normal random
vector, and (T1, T2) be independent and standard uniformly distributed random variables.
We construct (U,X>,Z>) as follows:

Xi =
Wi + t1T1

1 + t1
, Zj =

Wj+2 + t1T1

1 + t1
, U =

T2 + t2T1

1 + t2
,

where i = 1, 2 and j ∈ {1, . . . , p}. Let the nonparametric componentα(U) = (α1(U), α2(U))>

in (4.1), where

α1(U) = (U + 1)2, α2(U) =
4 sin(2πU)

2− sin(2πU)
,

and the nonzero coefficients βj be 3 for j = 1, 2. We take (t1, t2) = (2, 1) and (3, 1), cor-
responding to the correlation coefficient matrix of (X>,Z>) with non-diagonal elements
being 0.25 and 0.43, and the correlation coefficient matrix of (X>, U) and (Z>, U) with
non-diagonal elements being 0.35 and 0.46, respectively. For comparison, we consider two
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Table 4: Simulation results for Example 3.

p ρ CP CZ IZ CF AMS P1 P2 P3 AEE
Method: PFR

0.1 99.0 99.9 0.3 91.5 3.090 99.5 100.0 99.5 9.458
500 0.5 26.0 99.9 31.2 24.0 2.445 69.0 68.5 69.0 28.747

0.9 1.0 99.8 92.2 0.0 1.050 8.0 8.0 7.5 116.017
0.1 99.0 99.9 0.3 93.0 3.050 99.5 99.5 100.0 6.636

1000 0.5 24.0 99.9 37.0 23.0 2.430 62.5 64.5 62.0 40.541
0.9 0.6 99.9 95.5 0.0 1.065 3.5 5.0 5.0 126.787
0.1 97.0 99.9 1.2 88.5 3.070 98.0 99.5 99.0 9.001

2000 0.5 11.5 99.9 50.0 9.5 2.345 50.0 48.0 52.0 47.778
0.9 0.4 99.9 97.3 0.0 1.015 3.0 2.0 3.0 130.374

Method: FR
0.1 99.5 99.9 0.2 97.5 3.025 99.5 100.0 100.0 4.846

500 0.5 34.5 99.94 26.8 34.5 2.465 76.0 71.0 72.5 24.039
0.9 2.0 99.8 91.5 0.1 1.035 10.5 8.0 7.0 111.833
0.1 99.5 99.9 0.5 95.5 3.015 99.5 99.0 100.0 5.671

1000 0.5 27.0 99.9 33.2 26.5 2.380 65.5 70.0 65.0 33.586
0.9 1.0 99.9 93.8 0.0 1.010 7.0 6.5 5.0 124.342
0.1 99.0 99.9 0.3 96.5 3.015 99.5 100.0 99.5 4.752

2000 0.5 16.0 99.9 42.5 14.5 2.275 54.5 58.0 60.0 40.715
0.9 0.7 99.9 95.2 0.0 1.005 4.5 5.5 4.5 130.393

sample sizes (n = 100, 150) and three predictor dimensions (p = 500, 1000 and 2000) for
the linear part. The simulation results are reported in Table 5.

From Tables 2–5, we have the comparison results as follows.

(1) The proposed PFR method is comparable with the FR method proposed by Wang
[35], which is treated as a standard method. These simulation results numerically
confirm that the proposed PFR method is screening consistent. As a byproduct of
the screening consistency property, the percentage of incorrect zeros (IZ) approaches
quickly toward 0 as the sample size increases.

(2) For fixed p, the proposed PFR performs better as the sample size increases. For
example, the coverage probabilities become large with the sample size increasing.
But the coverage probabilities are not enough large for the signal-to-noise ratio
R2 = 70%, the reason may be that the signal-to-noise ratio is also not large and the
sample size is not enough large to obtain a satisfactory coverage probability. We
can clearly find that the coverage probabilities change substantially as the sample
size increases. As long as the sample size is enough large, the coverage probabilities
can approach approximately 100%. As is known to all, it is not sufficient that we
only use the coverage probability to assess the screening consistency of the proposed
PFR method, we can also use the other assessment criteria to illustrate the screening
consistency, such as the capability of identifying the correct zero. It is easy to see
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Table 5: Simulation results for Example 4.

p n (t1, t2) CP CZ IZ CF AMS AEE P1 P2

Method: PFR
500 100 96.5 99.9 2.0 91.5 2.035 4.213 98.5 97.5

150 100.0 99.9 0.0 94.0 2.360 3.181 100.0 100.0
1000 100 (2,1) 96.0 99.9 2.0 93.5 2.020 4.441 100.0 96.0

150 100.0 99.9 0.0 98.0 2.025 2.443 100.0 100.0
2000 100 93.5 99.9 3.3 87.0 2.015 4.622 98.0 95.5

150 100.0 99.9 0.0 96.0 2.040 2.123 100.0 100.0
500 100 78.0 99.9 12.0 77.0 1.850 6.944 90.5 85.5

150 97.5 99.9 1.3 96.0 2.010 3.514 98.5 99.0
1000 100 (3,1) 76.0 99.9 13.0 74.5 1.835 9.178 88.0 86.0

150 96.5 99.9 1.8 93.5 2.005 3.784 97.0 99.5
2000 100 68.0 99.9 18.0 63.0 1.845 10.086 82.0 82.0

150 94.5 99.9 2.8 91.0 2.000 4.161 97.5 97.0
Method: FR

500 100 99.5 99.9 0.2 97.0 2.025 1.721 100.0 99.5
150 100.0 99.9 0.0 97.5 2.025 2.064 100.0 100.0

1000 100 (2,1) 99.0 99.9 0.3 97.0 2.015 3.217 99.5 99.5
150 100.0 99.9 0.0 97.5 2.025 2.227 100.0 100.0

2000 100 97.5 99.9 1.5 96.5 2.020 3.489 99.0 98.0
150 100.0 99.9 0.0 99.0 2.010 1.309 100.0 100.0

500 100 92.0 99.9 4.0 90.0 2.015 7.077 97.5 94.5
150 99.5 99.9 0.1 98.0 2.015 3.229 100.0 99.5

1000 100 (3,1) 89.0 99.9 6.3 87.5 1.995 7.453 93.0 94.5
150 99.5 99.9 0.5 96.5 2.030 2.235 100.0 99.5

2000 100 84.0 99.9 9.5 82.5 1.985 10.238 90.0 91.0
150 99.0 99.9 0.8 96.5 2.030 2.445 100.0 99.0

that the proposed PFR method identifies correct zeros almost 100%. In addition,
the average model size is small, and is close to the true model size when the sample
size increases. Consequently, the average estimation error decreases as the sample
size increases.

(3) For the fixed sample size n, we consider the performance of the proposed PFR
method for the different dimension p of the linear predictors. It is easy to see that
the finite sample performance becomes worse as the dimension p of the covariates in-
creases. Then we may focus on the variation rate, which does not deteriorate rapidly,
when the dimension of the covariates increases. For example, Table 4 shows that
the coverage probability drops from 78% to 68% as the dimension of the covariates
increases from 500 to 4 × 500 = 2000 with n = 200. For comparison, we fix the
dimension p = 2000, but increases the sample size from n = 50 to n = 4× 50 = 200,
the coverage probability is computed. We find that the coverage probability (CP)
increases from 4.5% to 68.0%. These results show that the sample size n is more
important than the dimension of the covariates for ultra-high dimensional variable
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screening.

(4) We also compare the finite sample performance of the proposed PFR method in Table
4 when the correlation between covariates drops from high to low. We find that the
coverage probabilities deteriorate rapidly, for example, the coverage probability drops
from 99.0% to 1%, as the correlation increases from 0.1 to 0.9 with the dimension of
linear part p = 500.

(5) We evaluate the finite sample performance of the proposed PFR method when Z
is highly correlated with the covariates (X, U) in Table 5. We find that the finite
performance becomes worse as the correlation becomes higher. For example, the
coverage probability drops from 96.5% to 78% as the value of (t1, t2) ranges from
(2, 1) to (3, 1) for p = 500 and n = 100.

For other assessment criteria, we can find similar simulation results as in Tables 2–5.
In conclusion, the numerical results demonstrate that the proposed PFR method performs
better than existing methods.

5. Application to birth weight data

We demonstrate the effectiveness of the proposed PFR method by an application to
the birth weight data. Votavová et al. [34] collected the samples of peripheral blood,
placenta and cord blood from 91 women who gave birth to a baby in the Česke Budějovice
Hospital (Czech Republic) from November 2008 to March 2009. Based on the smoking
history, the women were divided into two groups, 20 smokers and 52 non-smokers, while 19
passive smokers were excluded from the study. Gene expression profiles were assayed using
HumanRef-8 v3 Expresion BeadChips with 24,526 transcripts. The study was approved
by the Local Institutional Review Board. All participants provided the written informed
consent and completed an extensive questionnaire. Birth weight of baby (BW, in kilo-
grams) was recorded along with mother’s age (MOA), gestational age (GEA), mother’s
body mass index (BMI), and parity, measurement of the amount of cotinine, a chemical
found in tobacco, in the blood. Of interest in this empirical analysis is to identify which
genes are strongly associated with the birth weight of baby (BW).

The blood and placental samples include n = 64 subjects after dropping those with
incomplete information. Dudoit et al. [7] proposed a three-step procedure to preprocess
the gene expression data: remove genes having little variation in intensity, transform
intensities to base 2 logarithms, and normalize each data vector to have sample mean 0
and standard deviation 1. This procedure results in p = 5869 genes. Based on the results
in Votavová et al. [34], we consider the varying coefficient partially linear model to fit the
birth weight data as follows:

BW = α1(U) + α2(U)GEA + α3(U)BMI +
5869∑

j=1

βjGEj + ε, (5.1)

where the variable U = MOA, GEj is the jth gene, and GEA and BMI are normalized
variables with sample mean 0 and standard deviation 1.

Epanechnikov kernel K(u) = 0.75(1−u2)+ and the bandwidth h = cσ̂Un
−1/5 are used

to fit the coefficient functions, where σ̂U denotes the sample standard deviation of U . The
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Table 6: The top ten genes and the corresponding ID numbers selected by the PFR method.

Genes NTN3 SPDYE1 FRK OR5P2 MRO
ID numbers 1656040 2250830 1727605 2059464 1800874

Genes UTS2B KCNC4 RGS9 LAGE1 CDC25A
ID numbers 2180232 1727850 2389984 1803412 1733396

proposed PFR algorithm is used to select the candidate model, and the selected top ten
genes and their corresponding ID numbers are listed in Table 6.

We note that the gene OR5P2 is also identified in Sherwood and Wang [33], and the
gene OR5P2 is lied on chromosome 11. Chromosome 11 contains the gene PHLDA2, which
is reported in Ishida et al. [18]. Ishida et al. [18] found that the gene PHLDA2 is highly
expressed in mothers that have children with low birth weight. Gilliam et al. [16] pointed
out that the gene RGS9 plays a role in obesity and the parental obesity may have influence
on the birth weight of baby (BW).

The EBIC criterion is used to select the top two genes (NTN3 and SPDYE1) in the
solution path. We find that the gene NTN3 encodes a novel human netrin mapping
to the autosomal dominant polycystic kidney disease region on chromosome 16p13.3,
and the gene SPDYE1 is located at chromosome 7p13 which is close to the Williams
Beuren syndrome chromosome region 7q11.23. It remains to be validated wether it
is really related with the birth weight of baby (BW) by biologists. Please refer to
https://www.ncbi.nlm.nih.gov/gene for the more details of other genes.

The estimated coefficient functions are reported in Figure 1. The latter shows the
mother’s age (MOA) has a positive impact on the birth weight of baby (BW) before age
30, and has a negative impact on the birth weight of baby (BW) after age 30. The fitted
curve α̂2(u) is always positive and has a rapid increasing after age 35. This implies that
the variable GEA has a positive effect on the birth weight of baby (BW), and the value
of effect increases rapidly after age 35. This also coincides with the intuition that the
birth weight of baby (BW) increases with the variable GEA and premature birth is often
strongly associated with low birth weight of baby. The fitted curve α̂3(u) is decreasing
with the mother’s age (MOA), and turns to negative about age 35. This implies that
BMI has a positive effect on the birth weight of baby (BW) before age 35, and has a
negative effect after age 35. Our findings are consistent with the results in Gilliam er al.
[16]. Hence, from a practical point of view, we have demonstrated that the proposed PFR
method is an efficient method for analyzing the varying coefficient partially linear model.
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Figure 1: The fitted coefficient functions α̂1(u), α̂2(u) and α̂3(u) from the left panel to the right panel,
respectively.

of this article.

6. Appendix

For the sake of convenience, let C ∈ (0,∞) denote a constant not depending on n and
p, but may take difference values at each appearance. We introduce the following notations
to simplify our presentation. Let Γ(u) = E(XX>|U = u), Ψ(u) = E(XY |U = u) and
Φ(u) = E(XZ>|U = u). Let Y ∗i = Yi − X>i η(Ui) be the profiled response variable
and Z∗i = Zi − µ(Ui)>Xi = (Z∗i1, . . . , Z

∗
ip)
> be the profiled predictors. Define Y ∗ =

(Y ∗1 , . . . , Y
∗
n )> ∈ Rn as the profiled response vector, and Z∗ = (Z∗1 , . . . ,Z

∗
n)> ∈ Rn×p as

the matrix of the profiled predictors. Further define Σ̂ = Ẑ>Ẑ/n and Σ∗ = Z∗
>
Z∗/n. For

any candidate model M, define Σ(M) = {Σij | i, j ∈M}.

6.1. Some lemmas
Lemma 6.1. Let W1, . . . ,Wn be independent and identically distributed random variables
with E(Wi) = 0 and var(Wi) = 1. M(t) = E{exp(tWi)} is the moment generating function
of Wi, for each i ∈ {1, . . . , n}, and assume that there exists a positive constant t0 such
that E{exp(t|Wi|)} < ∞ for all t ∈ [0, t0]. Let ank, for any 1 ≤ k ≤ n, be a sequence of
constants and A,A1, A2, . . . be a sequence of constants satisfying

An ≥
n∑

k=1

a2
nk and A ≥ max

k
|ank|/An.

If

M∗ = sup
0≤t≤t0

∣∣∣∣
d3

dt3
lnM(t)

∣∣∣∣ <∞,

then, for 0 < ξ < t0/A, we have

Pr

(∣∣∣∣∣
n∑

k=1

ankWk

∣∣∣∣∣ > ξ

)
≤ 2 exp

{
− ξ2

2An

(
1− 1

3
AM∗ξ

)}
.
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Lemma 6.2. Let W1, . . . ,Wn be independent random variables with mean E(Wi) = 0 and
variance var(Wi) = σ2

i . If E|Wi|m ≤ (m!/2)σ2
i t
m−2 for 1 ≤ i ≤ n, 0 < t < ∞, and some

m > 2, then for any δ > 0,

Pr

(∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ > δ

)
≤ 2 exp

{
− δ2

2(
∑n

i=1 σ
2
i + tδ)

}
.

Lemma 6.3. Let (Xi, Ui) be independent and identically distributed random variable vector,
where Xi = (Xi1, . . . , Xip)> ∈ Rp, and Ui is a univariate variable for each i ∈ {1, . . . , n}.
Define Gj(Ui) = E(Xij |Ui) for each j ∈ {1, . . . , p}. The weight functions wnk, 1 ≤ k ≤ n,
satisfy, with probability tending to 1,

max
1≤k≤n

n∑

i=1

wnk(Ui) = O(1), max
1≤i,k≤n

wnk(Ui) = o(n−4/5)

and

max
1≤k≤n

n∑

k=1

wnk(Ui)1(|Ui − Uk| > cn) = o(cn),

then we have

max
1≤i≤n

max
1≤j≤p

|Gj(Ui)−
n∑

k=1

wnk(Ui)Gj(Uk)| = oP (cn),

with cn = n−1/4 ln−1 n.

The proofs of Lemma 6.1–6.3 can be found in Liang et al. [31]; hence we omit the
details.

Lemma 6.4. Suppose Conditions (C1)–(C5) and (C8)–(C9) hold. We have

Ŷ − Y ∗ = oP (1), (6.1)
Ẑ− Z∗ = oP (1). (6.2)

Proof. The aim of the lemma is to show that the estimators of the profiled response vector
Y ∗ and the profiled predictors matrix Z∗ are consistent. Since the proof of (6.1) is similar
to that of (6.2), we only present the proof of (6.2). If each element of Ẑ−Z∗ is oP (1), then
we can claim that the estimator of the profiled predictor is consistent. In other words, we
only need to prove

max
1≤i≤n

max
1≤j≤p

|Ẑij − Z∗ij | = oP (1).

Note that Ẑij − Z∗ij = −µ̂>j (Ui)Xi + µ>j (Ui)Xi, where µj(Ui) is the jth column of
µ(Ui), and its estimator is µ̂j(Ui). By Condition (C2), it is easy to show that

max
1≤i≤n

max
1≤j≤p

|Ẑij − Z∗ij | = max
1≤i≤n

max
1≤j≤p

∣∣∣{µ̂j(Ui)− µj(Ui)}>Xi

∣∣∣

≤ q max
1≤i≤n

max
1≤j≤p

max
1≤`≤q

|{µ̂`j(Ui)− µ`j(Ui)}Xil|

= q max
1≤i≤n

max
1≤j≤p

max
1≤`≤q

|µ̂`j(Ui)− µ`j(Ui)| {1 +OP (1)}. (6.3)

Since q is fixed, we only need to prove

max
1≤i≤n

max
1≤j≤p

|µ̂`j(Ui)− µ`j(Ui)| = oP (1)
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for each 1 ≤ ` ≤ q. For convenience, we first introduce some notations as follows:

Γ̂(u) = nf(u)[Iq,0q](D>uWuDu)−1 = (Γ̂1(u), . . . , Γ̂q(u))>,

Γ̂`(u) =
(

Γ̂`1(u), . . . , Γ̂`2q(u)
)>

, 1 ≤ ` ≤ q,

Γ̃(u) = [Iq,0q]Γ−1(u)⊗
(

1 0
0 µ−1

2

)
= (Γ̃1(u), . . . , Γ̃q(u))>,

Γ̃`(u) = (Γ̃`1, . . . , Γ̃`2q)>, 1 ≤ ` ≤ q,

Φ̂(u) =
1

nf(u)
D>uWuZ = (Φ̂1(u), . . . , Φ̂2q(u))>,

Φ̂m(u) = (Φ̂m1(u), . . . , Φ̂mp(u))>, 1 ≤ m ≤ 2q,
Φ̃(u) = Φ(u)⊗ (1, 0)> = (Φ̃1(u), . . . , Φ̃2q(u))>,

Φ̃m(u) = (Φ̃m1(u), . . . , Φ̃mp(u))>, 1 ≤ m ≤ 2q,

where ⊗ is the Kronecker product, µ2 =
∫
u2K(u)du, Iq is a q× q identity matrix, and 0q

is a q × q zero matrix. We then find that, for each 1 ≤ ` ≤ q,

max
1≤i≤n

max
1≤j≤p

|µ̂`j(Ui)− µ`j(Ui)|

= max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣

2q∑

m=1

{Γ̂`m(Ui)Φ̂mj(Ui)− Γ̃`m(Ui)Φ̃mj(Ui)}
∣∣∣∣∣ . (6.4)

It is easy to see that (6.4) is bounded by the following three parts:

I1 = max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣

2q∑

m=1

Γ̃`m(Ui){Φ̂mj(Ui)− Φ̃mj(Ui)}
∣∣∣∣∣ ,

I2 = max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣

2q∑

m=1

{Γ̂`m(Ui)− Γ̃`m(Ui)}Φ̃mj(Ui)

∣∣∣∣∣ ,

I3 = max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣

2q∑

m=1

{Γ̂`m(Ui)− Γ̃`m(Ui)}{Φ̂mj(Ui)− Φ̃mj(Ui)}
∣∣∣∣∣ .

In the following, we mainly consider the convergence rate of I1. The convergence rates
of I2 and I3 can be obtained in a similar way. Note that

Φ̂mj(Ui) =





n∑
t=1

wnt(Ui)XtmZtj , 1 ≤ m ≤ q,
n∑
t=1

wnt(Ui)Xt(m−q)Ztj , q + 1 ≤ m ≤ 2q,

with

wnt(Ui) =

{
{nf(Ui)}−1Kh(Ut − Ui), 1 ≤ m ≤ q,
{nhf(Ui)}−1(Ut − Ui)Kh(Ut − Ui), q + 1 ≤ m ≤ 2q.

We also note that Φ̃mj(Ui) = Φmj(Ui) for 1 ≤ m ≤ q and Φ̃mj(Ui) = 0 for q+1 ≤ m ≤ 2q.
Then, we can show that I1 is bounded above by

I11 = max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣

q∑

m=1

Γ̃`m(Ui){Φ̂mj(Ui)− Φmj(Ui)}
∣∣∣∣∣
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and

I12 = max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣∣

2q∑

m=q+1

Γ̃`m(Ui)Φ̂mj(Ui)

∣∣∣∣∣∣
.

From Condition (C2), we get

I11 ≤ C max
1≤i≤n

max
1≤j≤p

max
1≤m≤q

∣∣∣∣
n∑
t=1

wnt(Ui){XtmZtj − Φmj(Ut)}
∣∣∣∣

+C max
1≤i≤n

max
1≤j≤p

max
1≤m≤q

∣∣∣∣
n∑
t=1

wnt(Ui)Φmj(Ut)− Φmj(Ui)
∣∣∣∣ . (6.5)

As wnt(Ui), 1 ≤ t ≤ n, satisfy the conditions of Lemma 6.3, we obtain that the convergence
rate of the second term of (6.5) is oP (cn).

Next we consider the convergence rate of the first term of (6.5). To this end, let A be
a constant such that A ≥ n4/5 max

1≤t≤n
wnt(Ui)/C with An = Cσ2

vn
−4/5. It is easy to show

that An and A satisfy the conditions of Lemma 6.1. For each 1 ≤ m ≤ q, we have

Pr

{
max
1≤i≤n

max
1≤j≤p

∣∣∣∣∣
n∑

t=1

wnt(Ui) {XtmZtj − Φmj(Ut)}
∣∣∣∣∣ > cn

}

≤ pnPr

{∣∣∣∣∣
n∑

t=1

wnt(Ui) {XtmZtj − Φmj(Ut)}
∣∣∣∣∣ > cn

}

≤ 2pn exp
{
− c2n

2An
(1−AMνcn)

}
≤ 2pn exp

(
− c2n

2An

)

= 2 exp
{
− c2n

2An
+ ln(pn)

}

= 2 exp
{
−n3/10 ln−2(n/C) + ln(pn)

}
. (6.6)

Then, based on Condition (C8), we see that the convergence rate of the first term of (6.5)
is oP (cn). By the above results, then I12 is bounded above by

I12 ≤ C max
1≤i≤n

max
1≤j≤p

max
1≤m∗≤q

∣∣∣∣∣
n∑

t=1

wnt(Ui)(Xtm∗Ztj − µm∗j)
∣∣∣∣∣

+C max
1≤i≤n

max
1≤j≤p

max
1≤m∗≤q

∣∣∣∣∣
n∑

t=1

wnt(Ui)µm∗j

∣∣∣∣∣ , (6.7)

where m∗ = m − q with q + 1 ≤ m ≤ 2q, and µm∗j = E(Xtm∗Ztj). Invoking a similar
argument for I11, we can obtain the convergence rate of I12 = oP (cn). Combined with
the convergence rate of I11, this yields I1 = oP (cn) for each 1 ≤ ` ≤ q. Again using the
same argument, we can prove that I2 = oP (cn) and I3 = oP (cn) for each 1 ≤ ` ≤ q. This
completes the proof of (6.2).

Lemma 6.5. Suppose Conditions (C1)–(C9) hold, and let m̃ = O(n2ξ0+4ξmin) with proba-
bility tending to 1, then we have

2τmin < min
|M|≤m̃

γmin{Σ̂(M)} ≤ max
|M|≤m̃

γmax{Σ̂(M)} < 2−1τmax. (6.8)
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Proof. Let a = (a1, . . . , ap)> be an arbitrary p-dimensional vector and a(M) be the sub-
vector corresponding to M. From Condition (C6), we get

2τmin < min
M∈MF

inf
‖a(M)‖=1

a>(M)Σ(M)a(M)

≤ max
M∈MF

sup
‖a(M)‖=1

a>(M)Σ(M)a(M) < 2−1τmax.

Here we first consider to prove the maximum eigenvalue of Σ̂M for |M| ≤ m̃ satisfying
(6.8), the result of the minimum eigenvalue of Σ̂(M) for |M| ≤ m̃ can similarly be proved.
In other words, we need to show that

Pr

(
max
|M|≤m̃

sup
||a(M)‖=1

∣∣∣a>(M){Σ̂(M) − Σ(M)}a(M)

∣∣∣ > ε

)
−→ 0, (6.9)

where ε is an arbitrary positive number. Note that

Pr

(
max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M){Σ̂(M) − Σ(M)}a(M)

∣∣∣ > ε

)

≤ Pr

(
max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M){Σ̂(M) − Σ∗(M)}a(M)

∣∣∣ > ε

2

)

+ Pr

(
max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M){Σ∗(M) − Σ(M)}a(M)

∣∣∣ > ε

2

)
. (6.10)

Now we consider the first term of the right-hand side of (6.10). Note that

Σ̂(M) − Σ∗(M) =
1
n
{Ẑ>(M)Ẑ(M) − Z∗

>
(M)Z

∗
(M)}

=
1
n
{Ẑ(M) − Z∗(M)}→{Ẑ(M) − Z∗(M)}+

1
n
{Ẑ(M) − Z∗(M)}>Z∗(M)

+
1
n

Z∗
>

(M){Ẑ(M) − Z∗(M)}. (6.11)

For any M with |M| ≤ m̃, we get

1
n

∣∣∣a>(M)

[
Z∗T(M){Ẑ(M) − Z∗(M)}

]
a(M)

∣∣∣

=
1
n

∣∣∣∣∣∣
∑

k,j∈M
akZ∗

>
(k){Ẑ(j) − Z∗(j)}aj

∣∣∣∣∣∣

≤ 1
n

∑

k,j∈M
|ak|

∣∣∣Z∗>(k){Ẑ(j) − Z∗(j)}
∣∣∣ |aj |

=
|M|
n

max
1≤i≤n
j∈M

|Ẑij − Z∗ij |
∑

k∈M
a2
k {1 +OP (1)} . (6.12)

Then, by Lemma 6.4 and the Cauchy–Schwarz inequality, we have

1
n

max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M)[Z
∗>
(M){Ẑ(M) − Z∗(M)}]a(M)

∣∣∣ = oP (cn).
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Using the same argument, we can prove that

1
n

max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M)[{Ẑ(M) − Z∗(M)}>Z∗(M)]a(M)

∣∣∣ = oP (cn),

1
n

max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M)[{Ẑ(M) − Z∗(M)}>{Ẑ(M) − Z∗(M)}]a(M)

∣∣∣ = oP (cn).

For an arbitrary positive number ε, invoking the above results, we have

Pr

(
max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M){Σ̂(M) − Σ∗(M)}a(M)

∣∣∣ > ε

2

)
−→ 0.

Next we consider the second term of the right-hand side of (6.10). Lemma 6.2 relaxes the
normality assumption on the covariates imposed in Wang [35] and provides an exponential
inequality for the sum of random variables. Therefore, using a similar technique as in
Lemma 1 of Wang [35] and Lemma 6.2, for an arbitrary positive number ε, we have

Pr

(
max
|M|≤m̃

sup
‖a(M)‖=1

∣∣∣a>(M){Σ∗(M) − Σ(M)}a(M)

∣∣∣ > ε

2

)
−→ 0.

Using the same argument, we can obtain the result of the minimum eigenvalue in (6.8).
This completes the proof of Lemma 6.5.

6.2. Proof of Theorem 3.1
Let m∗ , [Knξ0+4ξmin ]. For each k ≤ m∗, after some algebraic operations, we have

Ω(k) , RSS(M(k))− RSS(M(k+1)) = ‖H(k)
ak+1

Q(M(k))Ŷ ‖2, (6.13)

where

Q(M(k)) = In −H(M(k)), H(M(k)) = Ẑ(M(k))(Ẑ
>
(M(k))

Ẑ(M(k)))
−1Ẑ>

(M(k))
,

H(k)
j = Ẑ(k)

(j) Ẑ
(k)>

(j) ‖Ẑ
(k)
(j)‖

−2, Ẑ(k)
(j) = {In −H(M(k))}Ẑ(j),

and ak+1 = arg minj∈MF/M(k)RSS(k)
j , here Ẑ(j) is the jth column of Ẑ. SupposingMT 6⊂

M(m∗), we get

Ω(k) ≥ max
j∈M∗k

‖H(k)
j Q(M(k))Ŷ ‖2 ≥ ‖H

(k)

ĵ
Q(M(k))Ŷ ‖2,

where M∗k =MT /M(k) 6= ∅, and

ĵ = arg max
j∈M∗k

‖H(k)
j Q(M(k)){Z∗(MT )βMT }‖2.

Thus, we have

‖H(k)

ĵ
Q(M(k))Ŷ ‖2 ≥ ‖H(k)

ĵ
Q(M(k)){Z∗(MT )βMT }‖2

−‖H(k)

ĵ
Q(M(k))ε‖2 − ‖H

(k)

ĵ
Q(M(k))(Ŷ − Y ∗)‖2

≥ max
j∈M∗k

‖H(k)
j Q(M(k)){Z∗(MT )βMT }‖2 − max

j∈MT
‖H(k)

j Q(M(k))ε‖2

− max
j∈MT

‖H(k)
j Q(M(k))(Ŷ − Y ∗)‖2. (6.14)
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Since H(k)
j and Q(M(k)) are projection matrices, it follows from Lemma 6.4 that the

third term on the right-hand side of (6.14) is bounded above by ‖Ŷ − Y ∗‖2 = n oP (c2n).
Thus, we only need to consider the first two terms on the right-hand side of (6.14).

Now we deal with the first term on the right-hand side of (6.14). Given that Ẑ(k)T
(j) Q(M(k)) =

Ẑ>(j)Q(M(k)), we get

max
j∈M∗k

‖H(k)
j Q(M(k)){Z∗(MT )β(MT )}‖2

= max
j∈M∗k

‖H(k)
j Q(M(k)){Z∗(M∗k)β(M∗k)}‖

2

= max
j∈M∗k

{
‖Ẑ(k)

(j)‖
−2
∣∣∣Ẑ(k)>

(j) Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣
2
}

≥ ‖Ẑ(k)
(j∗)‖

−2
∣∣∣Ẑ>(j∗)Q(M(k)){Z∗(M∗k)β(M∗k)}

∣∣∣
2

≥ min
j∈M∗k

{
‖Ẑ(k)

(j)‖
−2
} ∣∣∣Ẑ>(j∗)Q(M(k)){Z∗(M∗k)β(M∗k)}

∣∣∣
2

= max
j∈M∗k

{
‖Ẑ(k)

(j)‖
2
}−1 ∣∣∣Ẑ>(j∗)Q(M(k)){Z∗(M∗k)β(M∗k)}

∣∣∣
2

≥
(

max
j∈M∗k

‖Ẑ(j)‖2
)−1

max
j∈M∗k

∣∣∣Ẑ>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣
2
, (6.15)

where j∗ = arg max
j∈M∗k

|Ẑ>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}|
2, and (6.15) is due to the fact that

‖Ẑ(j)‖ ≥ ‖Ẑ(k)
(j)‖. Note that

‖Q(M(k)){Z∗(M∗k)β(M∗k)}‖
2 =

∑

j∈M∗k

βj [Z∗>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}].

By Condition (C7), and invoking the Cauchy–Schwarz inequality, we can further get

‖Q(M(k)){Z∗(M∗k)β(M∗k)}‖
2

≤
( ∑

j∈M∗k

β2
j

)1/2[ ∑

j∈M∗k

|Z∗>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}|
2
]1/2

≤ Cβp
1/2
0 max

j∈M∗k
|Z∗>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}|. (6.16)

On the other hand, we can see that

max
j∈M∗k

∣∣∣Z∗>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣

= max
j∈M∗k

∣∣∣{Z∗(j) − Ẑ(j) + Ẑ(j)}>Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣

≤ max
j∈M∗k

∣∣∣Ẑ>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣

+ max
j∈M∗k

∣∣∣{Z∗(j) − Ẑ(j)}>Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣ . (6.17)
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By Lemma 6.4, it is easy to show that, with probability tending to 1,

‖Q(M(k)){Z∗(M∗k)β(M∗k)}‖
2 ≤ Cβp

1/2
0 max

j∈M∗k

∣∣∣Ẑ>(j)Q(M(k)){Z∗(M∗k)β(M∗k)}
∣∣∣ . (6.18)

Then, by (6.18) along with Lemma 6.5 and Conditions (C7)–(C8), it is easy to show that
the right-hand side of (6.15) is bounded below by
{

max
j∈M∗k

‖Ẑ(j)‖2
}−1

[‖Q(M(k)){Z∗(M∗k)β(M∗k)}‖
2C−1

β p
−1/2
0 ]2

≥ 1
2
n−1τ−1

maxp
−1
0 C−2

β ‖Q(M(k)){Z∗(M∗k)β(M∗k)}‖
4. (6.19)

Together (6.15) and (6.19) with Conditions (C7)–(C8), this leads to the conclusion that

max
j∈M∗k

‖H(k)
j Q(M(k)){Z∗(MT )β(MT )}‖2 ≥

1
2
C−2
β τ−1

maxτ
2
minν

4
βν
−1n1−ξ0−4ξmin . (6.20)

Next we consider the second term on the right-hand side of (6.14). A simple calculation
shows that

max
j∈MT

‖H(k)
(j)Q(M(k))ε‖2 = max

j∈MT
‖Ẑ(k)

(j)‖
−4‖Ẑ(k)

(j) Ẑ
(k)>
(j) Q(M(k))ε‖2

≤ τ−1
minn

−1 max
j∈MT

max
|M|≤m∗

{Z∗>(j)Q(M)ε}2. (6.21)

It is noteworthy that Z∗>(j)Q(M)ε is a normal random variable with mean 0 and variance
‖Q(M)Z∗(j)‖2 ≤ ‖Z∗(j)‖2. Thus, the right-hand side of (6.21) can be bounded above by

τ−1
minn

−1 max
j∈MT

‖Z∗(j)‖2σ2 max
j∈MT

max
|M|≤m∗

χ2
1,

where χ2
1 stands for a chi-squared random variable with one degree of freedom. As is

shown in Wang [35], max
j∈MT

max
|M|≤m∗

χ2
1 is less than 3Kνnξ+ξ0+4ξmin with probability tending

to 1. From Lemma 6.5, we know that

max
j∈MT

‖Z∗(j)‖2 ≤ 2−1nτmax.

Then the second term of (6.14) is bounded by 2−1τmaxτ
−1
min3Kνnξ+ξ0+4ξminσ2. Combining

this result with (6.14) and (6.20), we have

1
n

Ω(k) ≥
τ2
minν

4
β

2ντmaxC2
β

n−ξ0−4ξmin

(
1−

τ2
maxC

2
βν

2

τ3
minν

4
β

3σ2Knξ+2ξ0+8ξmin−1

)
(6.22)

uniformly for k ≤ m∗. Under Condition (C8), and recalling that K = 4ντmaxC
2
β/(τ

2
minν

4
β),

we have

n−1‖Ŷ ‖2 ≥ n−1

[Knξ0+4ξmin ]∑

k=1

Ω(k) ≥ 2

(
1−

τ2
maxC

2
βν

2

τ3
minν

4
β

3σ2Knξ+2ξ0+8ξmin−1

)
P−→ 2. (6.23)

Without loss of generality, we further assume that var(Y ∗i ) = 1. Then according to

Lemma 6.4, we have n−1‖Ŷ ‖2 P−→ 1, which contradicts the result of (6.23). Based on the
assumption that MT 6⊂ M(m∗) with m∗ , [Knξ0+4ξmin ], we reach a contradiction, i.e.,
the assumption is false which means that MT ⊂ M(m∗) with probability tending to 1.
Therefore, the proof of Theorem 3.1 is complete. 2
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6.3. Proof of Theorem 3.2
By Theorem 3.1, we know that MT ⊂ M[Knξ0+4ξmin ] with probability tending to 1.

Thus we only need to show that

Pr
(

min
M∗k 6=∅,k≤m∗

{BIC(k)− BIC(k + 1)} > 0
)
→ 1, (6.24)

where M∗k =MT /M(k) 6= ∅ and m∗ = [Knξ0+4ξmin ]. Note that

BIC(M(k))− BIC(M(k+1))

= ln

(
σ̂2

(M(k))

σ̂2
(M(k+1))

)
− n−1(lnn+ 2ζ ln p)

≥ ln

(
1 +

σ̂2
(M(k))

− σ̂2
(M(k+1))

σ̂2
(M(k+1))

)
− n−1(1 + 2ζ) ln p, (6.25)

where, for the last inequality, we have used the assumption of p > n. It is easy to see that
σ̂2

(M(k+1))
≤ n−1||Ŷ ||2, and by Lemma 6.4, we have n−1‖Ŷ ‖2 P−→ 1. Then with probability

tending to 1, the right-hand side of (6.25) is bounded below by

ln{1 + 2−1n−1Ω(k)} − n−1(1 + 2ζ) ln p,

where the definition of Ω(k) is given in (6.13). According to the element inequality ln(1 +
x) ≥ min(ln 2, x/2) and the inequality (6.22), the right-hand side of (6.25) is no less than,
with probability tending to 1,

min{ln 2, 4−1n−1Ω(k)} − n−1(1 + 2ζ) ln p

≥ min{ln 2, 5−1K−1n−ξ0−4ξmin} − n−1(1 + 2ζ) ln p. (6.26)

Note that, under Condition (C8), the right-hand side of (6.26) is positive with probability
tending to 1 uniformly for k ≤ m∗,M∗k 6= ∅. Hence the proof is complete. 2
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