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Nonnegative Minimum Biased Quadratic Estimation
in the Linear Regression Models
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In the paper the problem of nonnegative estimation of §'Hp + hg” in the linear
model E(y) = Xp, Var(y) = 621 is discussed. Here H is a nonnegative definite matrix
while 4 is a nonnegative scalar. An iterative procedure for the nonnegative
minimum biased quadratic estimator is described. Moreover, in the case that H and
X'X commute, an explicit formula for this estimator is given. Admissibility of the
estimator is proved. The resuits are applied to nonnegative estimation of the total
mean squared error of a linear biased estimator. & 1995 Academic Press, Inc.

1. INTRODUCTION

Let us consider a linear model M{ y, X, a>I}, where y is an n x 1 normally
distributed vector of observations, with the expectation vector E(y)=Xp
and the covariance matrix Cov(y) = g%l The nonstochastic n x p matrix X
is known and of rank p—¢q, 0<g<p<n, fis a px1 vector of unknown
parameters, while o >0 is the unknown variance of the disturbances.
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In the paper we consider the problem of nonnegative estimation of
B HPB + ho?. Here H is a nonnegative definite matrix, while 4 is a non-
negative scalar. The problem arises, for instance, if we want to estimate
accuracy of linear estimators Ly of f by means of the total mean
squared error {(TMSE), which has the structure S'Hf +ho® and it is
given by

TMSE(Ly)=E[(Ly —p) (Ly —8)]
=p(X'L' —I)X'L' - I) B+c*tr{LL"}. (1)

The estimators of TMSE are used for comparison of linear estimators
as well as for variable selection in linear regression models (see Sen and
Srivastava, 1990, p. 238; Berger and Robert, 1990).

It is well known that the ordinary least squares estimator X/ with

~

f=(X"'X)* X'y (2)
and the statistic
é*=y'My/{(n—p+q) (3)

with M =1— XX*, are the best linear unbiased estimators of Xf and o2,
respectively, in M{ y, Xf3, a’I}. However for estimation of the nonnegative
quadratic estimable function B'Hf+he®> (PHP=H, P=X(XX")"' X,
H >0, h>0) the naive estimator

BHE+hé* =y X(X'X)* HX'X)* X'y+hy'My/(n—p+q)  (4)
has bias o? tr H{(X’X)*. On the other hand the estimator
B HE+ 6 [h—tr HX'X)*] (5)

is unbiased for §’Hp + ho? and has uniform minimum variance as a function
of the minimal sufficient and complete statistics P# and 67 It is also non-
negative by construction if 2> tr H(X'X)™.

Unfortunately, the estimator (5) is unacceptable in practice if A<
tr H(X"X')™ since its values can be negative. This happens if we wish to
estimate the weighted squared length f'Hf. It can also occur if we estimate
TMSE given by (1). Thus the problem arises (c¢f. McDonald and
Galarneau, 1975; Brook and Moore, 1980; Trenkler, 1981, pp. 83, 84; and
Rukhin, 1987) how to estimate 8’ Hp + ho? where H is nonnegative definite
and k2 0, by quadratic forms ' Ay with nonnegative definite 4, in the case
h<tr{H(X'X)*}.
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2. MINIMUM BIASED QUADRATIC ESTIMATOR FOR ' Hf + ho2

For a given integer k let R*, L, and L; denote the k-dimensional
Euclidean vector space, the linear space of symmetric k x k matrices and
the convex cone of nonnegative definite k x k matrices, respectively.

For the function B'Hf +ha® which is not nonnegative estimable in
the model M{y, XB, 0} ie. for which h<tr{H(X'X)*} we can use
Hartung’s (1981) approach to find the minimum biased estimator in the
class of all quadratic forms y'dy with 4e L}, or by sufficiency of Pf
and 62, in the class of the estimators being represented by {/?’Cﬁ9 + cé?|
Cel;,c>0}.

DeriNITION 2.1. We say that ﬁ'C,,/?+c,,é{ Cyel,), cy=0, is a
nonnegative minimum biased estimator for f'HB + ho?, h<tr HX'X)*,
in the model M{y, X8, 6°I} if the pair (C,, cy) solves the following
problem

min  tr{(H—C)*} + [tr{C(X'X)*} +c—h]~ (6)

S—_—
Cel,,c20

For a given C such that tr{C(X'X)*} <h take C=H—-a(H—-C)=
(1—a) H+aC, where 0 <a <1 is such that tr C(X'X)* =h. In view of
tr{ H(X'X)*} > h such an « exists. Note that tr(H — C)?>=a? tr{(H — C)?}
<tr{(H— C)*} while [tr{C(X’X)*} —h]*=0. It follows that

tr{(H—C)?} + [te{C(X'X)*} —h]?
<tr{(H—C)*} + [tr{C(X'X)*} +c—h]2 (7)

for every nonnegative c¢. Thus if tr{H(X’X)*} >h, inA search for the
solution of (6) we can restrict our considerations to f'CfS. Hence the
problem reduces to

min p,(C), (8)
CEL;
where
pH(C)=tr{(H—C)2}+[tr{C(X/X)+—h]2}. (9)

A straightforward modification of the convex program leads to definition
of the Lagrange function

L (C, B)=p(C)—tr(CB). (10)
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where B is a nonnegative “Lagrange multiplier.” Following Hartung (1981,
Theorem 3.1) there exists a nonnegative B, such that for a solution C;; of
(9) we have tr{CyB,} =0 and

PilCr) =L Cyp, By)=min Ly(C, By). (11)

Further (Cy, By) is a saddle point of L,{C, By)on L, x L.
It can be seen that the gradient of L ,(C, B;,) with respect to C vanishes
if and only if

By =2C+2[t{C(X'X)*} —h](X'X)* —2H. (12)

Generally it is not easy to find an explicit solution of (12). However it
can readily be done when H and X'X commute. Then there exists an
orthogonal matrix E such that

EHE' =diag(y,, .., ¥,)
E(X'X)* E' =diag(},, .., 4,).

Let (X’X)" =% ,AE and H=37_, y,E, be the spectral decomposi-
tion of (X'X)* and H, respectively. Since rank(X)=p—gq, we assume
that 4;= ... =4,=0, while the remaining eigenvalues A,,,,..,4, and
Yg+1s- ¥, are ordered such that y, . /A, (Z7,,.2/4,, .2 - 2y,/4,.

For a given integer k, g <k <p, set

k k
glky="3Y i, fUy= Y i},

l=g+1 I=qg+1

,(k)=£@;" (13)

1+ flk)
Oi(ky=y;,—tlk) A, =[y:;/; — t{k}] 4;, i=q+1,..,p

Note that #(k)=31_,,,6,(k) 4, —h.

Let k, be the maximal number k among g+ 1, .., p such that &,(k)>0.
Since 0, (g + 1) =y, +hl, /(1 +22,,) >0, the integer k, is
uniquely defined.

LemMa 2.1, 8,(k,)>0 for g+ 1<i<k, and 8,(k,)<0 for i>k,.

Proof. Since y;/4, 2y, A, for g+ 1<i<k,, we obtain

*?

1

. Vi
Silk,) :H— t(k*)J PR [;h—z(k*)] Ly i=q+1, ..k,
. n

i
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Note that all J,(k,) given above are positive because

14
3y k) =[/1’: _;(k*)] A

-

1s positive. Suppose that Ok, +1(k,)>0. Then
Vk,+1>g(k*)"h
Ao o1 LHflEL)
Pe, 11+ f k)] > Al glky) —h],
Ve o LU ) T +yi Ak 1> A algth) —hT+ v 1A% s
Ve l1HSf ke, + D] >4 il gk, +1)—h],

Ve, _glk,+1)—h
Ak w1 LH+flk +1)

and consequently &, . ,(k,+1)>0, in contrast to the definition of k.
Thus J, . (k,)<0, and since y,/4, is a nonincreasing sequence we have
ik )<0forizk,.

THEOREM 2.1. If h<tr H(X'X)}* and HX'X=X'XH then the non-
negative minimum biased quadratic estimator of B'Hf + ho® in the model

M{y, XB, 6*I}, rank(X) = p —q, has the form §'Cyf with

k‘
Cy= Z [yi_’lil(k*)]Ei’ (14)

i=g+1

where (X'X)* =37, LE, and H=%"_,y,E, are the spectral decomposi-
tion of (X'X)* and H, respectively, f=(X'X)* X'y, while the eigenvalues
Agirsomdpand ¥, ...y, are ordered such that y, [, 1 2 V,42/Ag122

Zyp/lp

Proof. First note that the nonnegativity of Cp follows directly from
Lemma 2.1. By noting that tr C,{X'X)* —h=g(k,)—flk,)—h=1tk,),
from (12) we find that

r
By=2 z [li[(k*)_yi] E..
i=k +1

It follows that B, is also nonnegative definite, and the condition
tr(C, By) =0 is clearly satisfied.
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Remark 2.1. Let C be any nonnegative definite p x p-matrix and let
&=sp{E; i=1,..p}. Following Olsen er al. (1976) denote by IT the
orthogonal projection on & with respect to inner product (-, -» in L, given
by <A, B)=tr{AB}. Then C,=II{C)=Y*_, (tr{CE;})E, is also non-
negative definite, and C=Cy+ C,, where C,=C—C, L &. Since He &,
we have (H, C,> =0 and if C, 0, then

tr{(H—C)%} =(H~C,H-C)
=(H—Co, H—Cy> +<Cy, C,> >tr{(H—Cy)?}.

Moreover we have tr{C(X'X)"} =tr{Co(X'X)*}. It follows that in
looking for the solution of (8) we can restrict our considerations to Ce §.

Remark 22. If rank(H)=rank(X) and k =p, ie, y,>t(p) 4,, where

)= LX) ) b
P u{(xxy (xx) )

then C, given by (14) has the following form

C,=H—tp)X'X)". (15)
In such a case the nonnegative minimum biased quadratic estimator for
B I8 + ho? has the form

BHE—1(p) B (X' X)* B, (16)
The expectation of the estimator is ' HE —t(p) B(X'X)* B+ [tip)+h] o™

The assumption that H and X'X commute is restrictive, but as Section 4
shows, it is fulfilled in many practical situations. We describe now a proce-
dure that leads to the solution of (8) without a commutativity assumption.
In the procedure we use the trivial fact that since C,, and B,, are assumed
to be nonnegative definite, tr(C,, B,) =0 if and only if C,B,,=0.

For an arbitrary symmetric matrix A4 with the spectral decomposition
A=3%,a,P, let

A+:Za1*Pi9 A*:‘Za*"P"

with a* =max{0,a,;} and a,,=min{0, a;}, being the positive and the
negative part of A, respectively. The following corollary follows directly
from (12).
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CorOLLARY 2.1. If h<tr{H(X'X)*} then the nonnegative minimum
biased quadratic estimator of A,B’HﬁA+haz in the model M{y, Xp,c*I},
rank(X)=p —gq, has the form ' C,p with

Cy=[H-AX'X)"],, (17)

and A=tr{Cy(X'X)*} —h. The matrix By of Lagrange multipliers is given
by By=2[H— AMX'X)*]_ and an implicit formula for A is

A=[t{HX'X)*} —h)/d+ [tr{ B X' X)) — h1/24, (18)
where d=1+tr{(X'X)* (X'X)*}.

We describe now a procedure leading to the solution of (18) if A<
tr{ H(X'X)*}. For a fixed real number & put C(é)=H—-6(X'X)".

LemMA 22, Tr C_(o)X'X)™" is a nondecreasing function of é.
Proof. Let 6,>6,. Since C_ (8)—C_(6)=H—56(X'X)* we have
C(02) = C(3)—[C (8)—C_(8))] = — (5, — o)X X)*. (19)
On the other hand C,(6) C_(d)=0 implies
{CL6)+[C.(6) = CL(6NNH{C_(8)) +[C_(8;) - C_(8))]} =0.
It follows that
tr{ C,(8;) C_(8;)} +tr{C(8,) C_(8) +tr{[C_(6;)— C_(8,)]*}
— (6, =) te{[C_(d) - C_(6)UX'X)*} =0.
Since the first three traces are all nonnegative and J, —J,; >0, we find that
tr{[C_(6,) — C_(6) /(X' X)*} >0, (20)

which proves the lemma.
Let us define a sequence {d,} as follows:

So=[tr{H(X'X)*} —h)/d,
8, =[tr{C_(8,_ X' X)*}I/d+6,, n=12,.. (21)

Since h<tr{H(X'X)*}, we have 6,>J,, and by induction from
Lemma 2.2 it follows that {§,} is nondecreasing sequence. Besides taking
into account that B, =2C_(4), from (18) we have d,< 4 and

A—68,=tr{ C_(A)X'X)*}jd—tt{C_(,_ (X' X)*}/d>0.

683/54/1-9
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This implies that {d,} is bounded from above by A and by Lemma 2.2 it
follows that {d,} converges.

THEOREM 22. Let lim, _ . J8,=08, where o, is given by (21). Then
C,=C,(9)

Proof. Multiplying both sides of C (J,)—~C _(6,)=H—6,(X'X)" by
(X'X)* and taking traces we find that

tr{ C (8N X' X)) = —3,d, + w{HX'X)*} +tr{C (3 )X'X)*},
where d, =tr{(X'X)* (X'X)*}. Using (21) we get

tr{ C (3, X'X)*)
—tr{C_(8)NX'X)*} d,/d

+tr{ H(X'X }—tr{ )P ydjd+t{C_(6, NX'X)"}
=tr{C_(J,_ X)tydd+u{HX'X)* }/d
+tr{C_(SNX'X) "}

= [tr{CM,.)(X'X)*} —te{C (J, NX'X)*'}1d/d
+{HX'X)*}/d +e{ C(8,)(X'X) " }/d.

Since tr{C_(S NX'X)*} —tr{C_(J,_NX'X)*} tends to zero if n
tends to infinity, we conclude from (21) that

tr{C (ONX'X)*} =0+ tr{C_(O)X'X)"}/d=0.

This proves Theorem 2.2 in view of Corollary 2.1.

3. ADMISSIBILITY OF NONNEGATIVE MINIMUM BIASED
QUADRATIC ESTIMATORS

One can say that a small bias may not be a good reason for using a pro-
cedure if its variance is too large. For example in the problem of estimation
of variance components by invariant quadratic forms the minimum biased
procedure can produce inadmissible estimators if the mean squared error
(MSE) risk function is taken into account (cf. Gnot and Srzednicka, 1988).
We should pay attention, however, that contrary to the problem of
variance component invariant estimation, in the considered case the mean
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squared error of f'Cf + c6? for estimation of f'Hf + ho? depends not only
on ¢Z, but also on  and has the form
MSE(f Cf + ¢6?)
=[f(C—H)f+ o (r{C(X'X)*} +c—1)]
+402FC(X'X) " CB+20* tr{ C(X'X)* C(X'X)*)
+20%%*(n—p+q). (22)
We prove now that if H and X’ X commute then there does not exist a non-

negative definite matrix C and a nonnegative scalar ¢ such that §'Cf + c6?
has uniformly smaller MSE then the nonnegative minimum biased estimator.

TueoreM 3.1. If h<tr{H(X'X)*} and H and X'X commute then the
nonnegative minimum biased quadratic estimator of B Hf + ha* in the model
M{y, XB,a%l} is admissible in the class of all nonnegative quadratic
estimators with respect to the mean squared error risk function.

Proof. Consider the minimum biased estimator given by (14). Let
(X'X)*=X%r_ | AE,and H=)7_ y,E,. Let C be a nonnegative definite

i=1

p x p-matrix and ca npnnpgatiye scalar. o . i
Suppose that ' CB#p'C,B If MSE(B' CB + c6*) <MSE(S' Cpp) for
each # and ¢°, then putting first 6°> =0 and next =0, from (22) we have

[(B(C—H)I?<[F(Cy—H) B]* (23)
for each g and

2c?
n—p+gq
SU{CHX' X))} —hP +2u{ChX'X) Y CUX' X)),  (24)

(r{ C(X'X)*} +c— 2+ 2r{C(X'X)* C(X'X)*} +

with
tr{(Cy— HP?*} +[r{C X' X))} —h]?
<tr{(C—H?*} + [tr{ X' X)*} +c—h]? (25)
as a minimum bias condition for #'C, f. Note that (23) implies

tr{(C— H? E} <tr{(Cy— H)* E,}.
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Using similar arguments as in Remark 2.1, without loss of generality we
can assume that C=3Y7_, ¢,E;e & Then from above it follows that

i=1
(c,— 7)<tk )22, i=g+1, .. k,, (26)
while from (23) and (25) we get
[tr{Cr(X' X))} —hP<[tr{C(X'X)*} +c—h]~ (27)
Using now (24) and (27) we conclude that
tr{C(X'X)* C(X'X)"} <tr{Ch{X'X)* Ci{ X'X) " }. (28)

From (28) it follows that

k

P *
Yoetal< Y [yi—ttky) A1 AL (29)
i=gq+1 i=g+1
while (26) leads to
-tk A<, Ly +ilk ) A, i=qg+l, .k, (30)

Since ¢;20 for i=1, .., p, from (30) we find that ¢,>y,—tk,)4, for
i=q+1,.,k,, and

? k.
Y ARz Y [n—k) AL A2

i=qg+1 i=g+1

which contradicts (29).

4. EXAMPLES

EXAMPLE 4.1. Let us consider » random variables
Vi =H+E;, i=1,.,n,

where 4 is an unknown mean, common for each y,, while E(¢)=0,
E(e?) = g% The matrix form of the simple model is y=1,u+ ¢,
E(y)=1,u, Var(y)=0%l,, (X'X) '=1/n, and according to Remark 2.2
the nonnegative minimumn biased quadratic estimator for u? is f4°=
(Zr_, y9)/(1 +n?). The expected value of this estimator is (n’u®+ na?)/
(1 +n?), and its variance is (2n%6* + 4n’u?6?)/(1 + n?)2. Hence £i? converges
to u? in quadratic mean. Observe that the UMVU estimator for u?
is given by @2=32-3"_,(y,—7)*/n(n—1) and has the variance
[20%+4(n—1) y*0*]/n(n —1). Lehmann (1983, p. 114) comments on ° as
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follows: “... can take on negative values although the estimand is known to
be non-negative. Except when 2 =0 or » is small, the probability of such
values is not large, but when they do occur they cause an embarrassment.
This difficulty can be avoided by replacing it by zero whenever it leads to
a negative value; the resulting estimator of course, will no longer be
unbiased.” For further discussion see Ruhkin (1987).

ExaMpLE 4.2. Let us consider the one-way classification model

Vy=U;+ &y i=1,.,p, j=1,.,r,

where u=(p;,..,p,) is a vector of unknown means in p cells,
r=(ry,.,r,) is a vector for replications in cells, while 37_,r,=n is a

total number of observations. The above model can be presented in the
following matrix from

y=diag{l,} u+e, E(y)=diag{l,} u+e, Var(y)=ol,.
It is easy to check that
(X'X)~' = diag{1/r,, .. 1/r,}.

If the rs are such that k, =p then by Remark 2.2 the nonnegative mini-
mum biased estimator for p'u=37_, u; is 4'C,f, where 2= (3,, .., 7,)
with j,=¥7_, y,/r; being the mean in the i-th cell, C,=I—«(p}(X'X) ",
while

T ()
I(P)=———,}——2—-
1+32 (1)
Consequently we get
Y Py 2 ri- t(p) -
pcp=y g
i=1 i
The expectation of j4'C,4 is

E@Ch)=Y u?+1(p)c?,

i=1 4

& ori—tp)

and it tends to g’y if r, tends to infinity for each i. Note that k, =p is
equivalent to the condition

| —

>

[N | 2
(Urme) 3, —<1+ %

i=1"1i

N

r:
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where r_;, is the minimum of the integers r, .., r,. This condition my be
hurt if for instance r, =i and p > 6. If however p is fixed and r; is sufficient
large for each i, then the condition is also valid. In the balanced case r,=p
we clearly have k, = p, and the nonnegative minimum biased estimator for
#'u becomes

(8

2 r
Ly

J Al Tt

ExaMPLE 4.3. Let L be a p x n-matrix of constants. Then the total mean
squared error of linear estimator Ly of # in the model M{y, X8, a*I} is
defined as follows

BIX'L —INX'L —I) B+a2[h—tr{(LL)}].

It has been proved by LaMotte (1978, Theorem 1} that if Ly is an
admissible linear estimator of f, then there exists a p x p-matrix D such
that L = DX’. In particular choosing D= (kI+X'X) "', k=0, we get the
admissible estimator

B=(X'X+kI) "Xy,
which is also known in literature as a ridge estimator of 5. The TMSE of
B has the form (cf. Trenkler, 1981, p. 120)

TMSE(BY =k (X' X+kI) * B+o” te{ X' X(X' X +kI} 2} =B Hf + ha”,
with H=k*X'X+kl) ? and h=t{X'X(X'X+kI) ?}. It follows that
tr{ HX'X) "y <h iff K te{(X'X+kD) (XX <te{ X' XXX+ kI) 2.
Let (X’X) '=3%7_, A,E; be the spectral decomposition of (X'X) " Then
the above inequality is satisfied iff
, & /1 -2 LANE =
'S <7+k> ALY <—+k> vy (31)
SO\A S\ /
which holds for sufficiently small k. For example in the balanced one-way
classification model this is valid iff & <p. If (31) holds then the uniformly
minimum variance estimator for TMSE(f) is nonnegative, while if (31) is
hurt, the nonnegative minimum biased estimator for TMSE(/) is given by
Theorem 2.1.
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