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1. INTRODUCTION

Tests for multivariate normality (multinormality), which have received
so much attention in statistical literature, are important since many
multivariate statistical inferences are based on normality. Several tests
for multinormality have been proposed and some of them have been
summarized in the paper by Mardia (1980). Empirical studies of 10
representative tests were discussed by Romeu and Ozturk (1993).

This paper is devoted only to projection pursuit-type tests. Projection
pursuit (PP) is well-surveyed in Huber (1985). The multivariate measures
of skewness and kurtosis proposed in Malkovich and Afifi (1973) are
known as two of the earliest practical applications of the PP technique (see
Krzanowski and Marriott, 1994, Chap. 4). In this paper we investigate the
asymptotic performances of the multivariate measure of kurtosis.

Malkovich and Afifi (1973) introduced

[;M
2 ]2= max

: # Sp&1 _E[(:$X&:$+)]4

(:$7:)2 &3&
2

as a measure of multivariate kurtosis of a random p-dimensional column
vector X having expectation + and nonsingular covariance matrix 7. Here
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S p&1 designates the unit sphere in R p. Let X1 , ..., XN be N independent
observations of X. The multivariate empirical kurtosis of X1 , ..., XN is
defined as

[bM
2, N]2= max

: # Sp&1
[b2, N(:)&3]2, (1.1)

where

b2, N(:)=
N &1 �N

j=1 (:$Xj&:$X� )4

(:$S:)2 , (1.2)

X� is the sample mean vector and S is the sample covariance matrix. Sup-
pose X has an elliptically symmetric distribution with mean vector + and
nonsingular covariance matrix 7. Let

%=
E[(:$X&:$+)]4

(:$7:)2

for : # S p&1 and

BM
2, N= max

: # Sp&1
|b2, N(:)&%|.

We note that % does not depend on : and that BM
2, N=bM

2, N if %=3.
Baringhaus and Henze (1991) discussed asymptotic theory of BM

2, N when
null hypothesis is ``ellipticity.'' They showed that - N(b2, N(:)&%) converges
weakly to some Gaussian random field say, W(:) and that - N BM

2, N

converges weakly to max: # Sp&1 |W(:)| from the continuous mapping
theorem. However, the result on the distribution of max: # Sp&1 |W(:)| was
not developed since the distribution for the maxima of the modulus of
Gaussian random field is generally hard to obtain.

Let z be a fixed positive real number. Then it holds that

P[bM
2, N�z]=P[[bM

2, N]2�z2]. (1.3)

In this paper, the power of the test for multinormality by bM
2, N or equivalently

by [bM
2, N]2 against elliptically symmetric distributions is investigated. The

power of the test against elliptically symmetric distributions is to evaluate
(1.3) in the case that z is suitably chosen critical point under normality.
Under elliptically symmetric distributed random vector X such that %{3,
it is not easy to evaluate the left-hand side of (1.3), but, the right-hand side
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of (1.3) is easily evaluated. That is, it will be shown that there exist positive
constants aX , bX (both are independent of :) such that

- N _[bM
2, N]2&bX

aX &
converges weakly to the maxima of some nonsingular differentiable
Gaussian random field. Further, if X satisfies z>bX , the problem turns out
to be that of tail probability of the maxima of Gaussian random field. Since
its covariance function satisfies some regularity conditions, we can finally
apply the result established by Sun (1993) to our problem. Therefore, as far
as we evaluate the power against elliptically symmetric distributions, it
suffices to advance asymptotic theory of [bM

2, N]2 rather than bM
2, N . By this

approach, we can obtain not only the weak convergence property of bM
2, N

or [bM
2, N]2 as discussed in Baringhaus and Henze (1991), but also the

information about the distribution of the random variable to which
[bM

2, N]2 converges weakly after normalization by aX and bX .
In Section 2, the weak convergence theorem of a random field on S p&1

related to [bM
2, N]2 is given. The result is straightforwardly obtained from

weak convergence property of - N(b2, N(:)&%) given in Baringhaus and
Henze (1991). Further an approximation formula of the power of the test
by [bM

2, N]2 against elliptically symmetric distributions is derived under
some conditions by using the result of Sun (1993). Similar approximation
formula of the test by bM

2, N is obtained by using (1.3). Illustration of examples
are provided in Section 3.

2. MAIN RESULTS

Suppose that X is distributed as spherically symmetric with E[XX$]=Ip .
This implies that E[ |X |2]= p, where | } | stands for the Euclidean norm.
We define mk=E[|X | k], for k�1.

Let C(S p&1) be the separable Banach space of real-valued continuous
functions defined on S p&1, endowed with the supremum norm. We first
introduce a random field

WN(:)=
1

- N
:
N

j=1

[(:$Xj)
4&%[2(:$Xj)

2&1]],

which is a random elements of C(S p&1). In what follows, WN( } ) O W( } )
means that the distribution of a random element WN( } ) of C(S p&1) con-
verges weakly to the distribution of a random element W( } ) of C(S p&1).
Note that E[WN(:)]=0 for : # S p&1, and the covariance function of
WN(:) is
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c(:, :� )#E[WN(:) WN(:� )]

=
24m8

p( p+2)( p+4)( p+6)
(:$:� )4

+72 _ m8

p( p+2)( p+4)( p+6)
&

2m4m6

p2( p+2)2 ( p+4)

+
m3

4

p3( p+2)3& (:$:� )2

+9 _ m8

p( p+2)( p+4)( p+6)
&

4m4m6

p2( p+2)2 ( p+4)

+
4m3

4

p3( p+2)3&
m2

4

p2( p+2)2& (2.1)

for :, :� # S p&1. At first, we note the following result under spherical terms
which was obtained in Baringhaus and Henze (1991).

Theorem 2.1 (Baringhaus and Henze, 1991, Theorem 3.1, Lemma 3.2).
Let X=(X1 , ..., Xp)$ have a spherically symmetric distribution with unit
covariance matrix such that m8<�. Let %=E[X 4

1]. Then there exists a
zero-mean Gaussian random field W(:), : # S p&1, with continuous sample
paths and covariance kernel c(:, :� ) such that

WN( } ) O W( } ).

Further,

sup
: # Sp&1

|WN(:)&- N [b2, N(:)&%]|

converges to zero in probability, which leads to

- N[b2, N( } )&%] O W( } ).

Next, let X be an elliptically symmetric distributed random p-vector with
mean + and covariance matrix 7 and let _2 be c(:, :) given by (2.1) with

m2k=E[[(X&+)$ 7&1(X&+)]k]

for k=2, 3, 4. Note that _2 does not depend on :. Define that
Z(:)=W(:)�_. Obviously Z(:) is also Gaussian with mean zero and the
covariance function \(:, :� )#E[Z(:) Z(:� )]=c(:, :� )�_2, for :, :� # S p&1.
From the continuous mapping theorem and the affine invariance of bM

2, N ,
we obtain the following result.
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Theorem 2.2. Let X be an elliptically symmetric distributed random
p-vector with mean + and covariance matrix 7. Let Y=7&1�2(X&+)=
(Y1 , ..., Yp)$, %=E[Y 4

1]. Suppose that m8=E[|Y |8]=E[[(X&+)$
7&1(X&+)]4]<� and %{3. Then we have

- N _[bM
2, N]2&[%&3]2

2 |%&3| _ &O max
: # Sp&1

Z(:).

Proof. Let Yj=7&1�2(Xj&+) for j=1, ..., N, where 7&1�2 is a positive
definite square root of 7&1. Let b� M

2, N and b� 2, N(:) be the ones as in (1.1)
and (1.2), respectively, with Yj instead of Xj . Since bM

2, N is affine invariant
and both of % and _2 do not depend on :, it follows that

- N _[bM
2, N]2&[%&3]2

2 |%&3| _ &=- N _[b� M
2, N]2&[%&3]2

2 |%&3| _ &
= max

: # Sp&1
- N _[b� 2, N(:)&3]2&[%&3]2

2 |%&3| _ &
= max

: # Sp&1

[b� 2, N(:)+%&6] - N [b� 2, N(:)&%]
2 |%&3| _

.

Here b� 2, N(:) converges, as a member of C(S p&1), to % in probability.
Similarly, let

W� N(:)=
1

- N
:
N

j=1

[(:$Yj)
4&%[2(:$Yj)

2&1]], : # S p&1.

Since Yj 's are independently distributed as spherical, it holds from
Theorem 2.1 that

sup
: # Sp&1

|W� N(:)&- N [b� 2, N(:)&%]|

converges to zero in probability and W� N( } ) O W( } ), where W( } ) is a zero
mean Gaussian random field with the covariance function c(:, :� ) given by
(2.1) with

m2k=E[[(X&+)$ 7&1(X&+)]k]=E[|Y | 2k]

for k=2, 3, 4. These imply

[b� 2, N( } )+%&6] - N [b� 2, N( } )&%]
2 |%&3| _

O Z( } ) (=W( } )�_).
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Therefore, by the continuous mapping theorem,

- N _[bM
2, N]2&[%&3]2

2 |%&3| _ &O max
: # Sp&1

Z(:),

which completes the proof. K

Some modifications of Proposition 3.3 in Baringhaus and Henze (1991)
gives the following representation of Z( } ). This result will be used to derive
an approximation formula of tail probability.

Proposition 2.3. The limiting Gaussian random field Z(:), : # S p&1,
can be represented in the form

Z(:)='1�2
1 :

&(4)

l=1

.4, l (:) N4, l+'1�2
2 :

&(2)

l=1

.2, l (:) N2, l+'1�2
3 N0 , (2.2)

where N0 ; N2, l , l=1, ..., &(2); N4, l , l=1, ..., &(4) are independent standard
normal random variables and [.2, l : l=1, ..., &(2)], [.4, l : l=1, ..., &(4)] are
linearly independent surface harmonics of degree 2 and 4, respectively, being
orthonormal with respect to the uniform distribution on S p&1, where

&(4)=
p( p&1)( p+1)( p+6)

24
, &(2)=

( p&1)( p+2)
2

.

Further, 'k=$k �_2 for k=1, 2, 3 with $k 's are all given in Proposition 3.3 of
Baringhaus and Henze (1991) and

_2=
105m8

p( p+1)( p+4)( p+6)
&

180m4 m6

p2( p+2)2 ( p+4)

+
108m3

4

[ p( p+2)]3&
9m2

4

[ p( p+2)]2 .

The fact that the limiting random field derived from [bM
2, N]2 is Gaussian

with mean zero and unit variance as shown in Theorem 2.2 motivates us to
use the following theorem established by Sun (1993).

Theorem 2.4 (Sun, 1993). Suppose Z(t) is a d-dimensional nonsingular
differentiable Gaussian random field on a bounded d-dimensional set I, with
mean zero, unit variance and covariance function v(s, t). Under some
regularity conditions for v(s, t), as z � �,

P[max
t # I

Z(t)�z]=}0� \z2

2
,

d+1
2 ++}2 � \z2

3
,

d&1
2 + [1+o(1)],
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where

�(x, d )=|
�

x
yd&1 exp(& y) dy

is an incomplete gamma function and }0 , }2 are two geometric constants
represented as

}0=
1

2?(d+1)�2 |
I

&V(t)&1�2 dt1 } } } dtd , (2.3)

}2=
1

4?(d+1)�2 |
I

1
2

[&S(t)&d(d&1)] &V(t)&1�2 dt1 } } } dtd . (2.4)

Here &V(t)& is the determinant of the d_d matrix

V(t)={�2v(s, t)
�si �tj } s=t=

and S(t) is the scalar curvature of the manifold which has V(t) as its metric
tensor.

Let us define a hemisphere

S p&1�2=[:=(:1 , ..., :p)$ # S p&1 : :p�0].

Since b2, N(:)=b2, N(&:), its maxima is unchanged if : is restricted to a
hemisphere S p&1�2. Note again that both of % and _ do not depend on :.

Let z be a fixed positive real number. Assume that X satisfies the condi-
tions of Theorem 2.2 and z>(%&3)2. For using Theorem 2.4, we evaluate
the probability as

P[[bM
2, N]2�z]=P[ max

: # Sp&1�2
[[b2, N(:)&3]2&(%&3)2]�z&(%&3)2]

=P { max
: # Sp&1�2

- N _[b2, N(:)&3]2&(%&3)2

[2 |%&3| _] &�x=
rP[ max

: # Sp&1�2
Z(:)�x]

=P[max
, # I,

Z(,)�x], (2.5)

where Z(:) is that in Theorem 2.2 and x=- N [z&(%&3)2]�(2 |%&3| _).
Since z>(%&3)2, x can be regarded as a point in tail of the distribution
of max Z(:) for large N. The parameter space of the Gaussian random field
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Z(:) is d=( p&1)-dimension. It is possible to reparametrize : in terms of
, by the spherical polar coordinate transformation,

:=:(,)=(:1(,), ..., :p(,))$,

,=(,1 , ..., ,p&1) # [0, ?]_ } } } _[0, ?]#I, /R p&1,

where ,p&1=0 and ,p&1=? represent the same point. Thus by putting
Z(:)=Z(:(,))#Z(,), for , # I, , Z(,) is a ( p&1)-dimensional non-
singular differentiable Gaussian random field with mean zero, unit variance
and covariance function \(,, ,� )=\(:(,), :(,� )), for ,, ,� # I, , where the
expression of \( } , } ) is given in the paragraph before Theorem 2.2. The
regularity conditions for \( } , } ) given in Sun (1993) can be easily checked.
Especially the fact that Z( } ) has finite Karhunen�Loe� ve expansion as given
in (2.2) guarantees that the critical radius of the tube of the manifold
derived from \( } , } ) is positive, so that Theorem 2.4 is applicable to Z(,)
in (2.5).

Now the covariance function of Z(,) is, by (2.1),

\(,, ,� )=[{1(:(,)$ :(,� ))4+{2(:(,)$ :(,� ))2+{3]�_2,

where

{1=
24m8

p( p+2)( p+4)( p+6)
,

{2=72 _ m8

p( p+2)( p+4)( p+6)
&

2m4m6

p2( p+2)2 ( p+4)2+
m3

4

p3( p+2)3& ,

{3=9 _ m8

p( p+2)( p+4)( p+6)
&

4m4m6

p2( p+2)2 ( p+4)2

+
4m3

4

p3( p+2)3&
m2

4

p2( p+2)2& .

The metric tensor matrix is obtained as the following diagonal matrix:

R(,)={�2\(,, ,� )

�, �,� },=,� =
=\4{1+2{2

_2 + diag { :
p

u=1
\�:u

�,1 +
2

, ..., :
p

u=1
\ �:u

�,p&1+
2

= .
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Thus, straightforward computations give the scalar curvature

S(,)=&( p&1)( p&2) \4{1+2{2

_2 +
&1

.

Detailed calculations are found in Naito (1996). By using these, two
geometric constants corresponding to (2.3) and (2.4) can be obtained
respectively as

}0 =
1

2? p�2 |
I,

&R(,)&1�2 d,1 } } } d,p&1=
|p&1

4? p�2 \4{1+2{2

_2 +
( p&1)�2

, (2.6)

}2=
1

4? p�2 |
I,
{&

S(,)
2

&
( p&1)( p&2)

2 = &R(,)&1�2 d,1 } } } d,p&1

=
( p&1)( p&2) |p&1

16? p�2 \4{1+2{2

_2 +
( p&1)�2

_\4{1+2{2

_2 +
&1

&1& , (2.7)

where |d&1 is the surface area of Sd&1 given as |d&1=2?d�2�1(d�2).
For any fixed q # (0, 1), let zq be the upper 100q percent point of [bM

2, N]2

under normality. Then, from above arguments, we obtain the following
result.

Proposition 2.5. The power of the 100q level test for multinormality by
[bM

2, N]2 against elliptically symmetric distributions satisfying the conditions
of Theorem 2.2 and zq>(%&3)2 is approximately given as

P[[bM
2, N]2�zq]r}0� \x2

2
,
p
2++}2 � \x2

2
,

p&2
2 + , (2.8)

where x=N1�2[zq&(%&3)2]�(2 |%&3| _); }0 and }2 are given in (2.6) and
(2.7), respectively.

Let z~ q be the upper 100q percentile of bM
2, N (not [bM

2, N]2) under
normality. We see from (1.3) that Proposition 2.5 simultaneously gives an
approximation formula of the power of the test by bM

2, N . It is summarized
as follows.

Proposition 2.6. The power of the 100q level test for multinormality by
bM

2, N against elliptically symmetric distributions satisfying the conditions of
Theorem 2.2 and z~ 2

q>(%&3)2 is approximately given as

P[bM
2, N�z~ q]r}0� \y2

2
,

p
2++}2� \y2

2
,

p&2
2 + ,
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where y=N1�2[z~ 2
q&(%&3)2]�(2 |%&3| _); }0 and }2 are given in (2.6) and

(2.7), respectively.

3. EXAMPLES

In this section, we provide some examples to illustrate the results in
Section 2. Some elliptical distributions to which Proposition 2.5 is
applicable are considered. The quantities which are necessary to obtain
geometric constants }0 and }2 are given. As in Proposition 2.5, zq stands
for the upper 100q percentile of [bM

2, N]2 under normality.

Example 3.1 (Contaminated normal distribution). If the random
vector X has the density

f (x)=
(1&=)

(2?) p�2 |2|1�2 exp _&
1
2

(x&+)$ 2&1(x&+)&
+

=
(2?) p�2 |c2|1�2 exp _&

1
2c

(x&+)$ 2&1(x&+)&
for some constant vector + # Rp, some symmetric positive definite matrix 2
and some positive c({1), we say that X has a contaminated normal
distribution and denote it by XtCNp(c, +, 2) for 0<=<1 (see Anderson,
1993, p. 9). We have

E[X]=+, E[(X&+)(X&+)$]=[1+=(c&1)] 2=7.

For XtCNp(c, +, 2), since (X&+)$ 2&1(X&+) has the density

(1&=)
2p�21( p�2)

t p�2&1 exp(&t�2)+
=

(2c) p�2 1( p�2)
t p�2&1 exp(&t�(2c)),

we obtain

m4=p( p+2)
[1+=(c2&1)]
[1+=(c&1)]2 ,

m6=p( p+2)( p+4)
[1+=(c3&1)]
[1+=(c&1)]3 ,

m8=p( p+2)( p+4)( p+6)
[1+=(c4&1)]
[1+=(c&1)]4 .
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Therefore,

%=3 _[1+=(c2&1)]
[1+=(c&1)]2& ,

_2=
105[1+=(c4&1)]

[1+=(c&1)]4 &
180[1+=(c2&1)][1+=(c3&1)]

[1+=(c&1)]5

+
108[1+=(c2&1)]3

[1+=(c&1)]6 &
9[1+=(c2&1)]2

[1+=(c&1)]4 ,

4{1+2{2=
240[1+=(c4&1)]

[1+=(c&1)]4 &
144[1+=(c2&1)][1+=(c3&1)]

[1+=(c&1)]5

+
72[1+=(c2&1)]3

[1+=(c&1)]6 .

By using these, we can obtain }0 and }2 in (2.8). Further, for any given =,
we can apply Proposition 2.5 to XtCNp(c, +, 2) with c satisfying
(%&3)2<zq which is equivalent to

1<
[1+=(c2&1)]
[1+=(c&1)]2<1+

- zq

3
.

Example 3.2 (Symmetric Kotz Type distribution). The random vector
X is said to have a symmetric Kotz Type distribution if X has the density

f (x)=
sr(2a+ p&1)�(2s)1( p�2)

? p�21((2a+ p&2)�(2s))
|2|&1�2 [(x&+)$ 2&1(x&+)]a&1

_exp[&r[(x&+)$ 2&1(x&+)]S],

r, s>0, 2a+ p>2, for some vector + # R p and some symmetric positive
definite matrix 2 (see Fang et al. (1989, p. 76)). We shall denote this by
XtMKp(a, r, s, +, 2).

We have

E[X]=+, E[(X&+)(X&+)$]=
1((2a+ p)�(2s))

pr1�21((2a+ p&2)�(2s))
2=7.

In the special case s=1 and a=1, these family of distributions include the
multivariate normal distribution. For XtMKp(a, r, s, +, 2), since (X&+)$
2&1(X&+) has the density

sr(2a+ p&2)�(2s)1( p�2)
1((2a+ p&2)�(2s))

t p�2+a&2 exp(&rts), t>0,
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direct computations give, for XtMKp(a, r, 1, +, 2) such that a{1,

m4=p2 2a+ p
2a+ p&2

,

m6=p3 (2a+ p+2)(2a+ p)
(2a+ p&2)2 ,

m8=p4 (2a+ p+4)(2a+ p+2)(2a+ p)
(2a+ p&2)3 .

Thus

%=3 _ p(2a+ p)
( p+2)(2a+ p&2)& ,

_2=
(2a+ p) p3

( p+2)(2a+ p&2)3 _105(2a+ p+4)(2a+ p+2)
( p+4)( p+6)

&
180(2a+ p+2)(2a+ p)

( p+2)( p+4)
+

108(2a+ p)2

( p+2)2 &
&{ 3p(2a+ p)

( p+2)(2a+ p&2)=
2

,

4{1+2{2={ p
(2a+ p&2)=

3

_240(2a+ p+4)(2a+ p+2)(2a+ p)
( p+2)( p+4)( p+6)

&
288(2a+ p+2)(2a+ p)2

( p+2)2 ( p+4)2 +
144(2a+ p)3

( p+2)3 & .

We can apply Proposition 2.5 to XtMKp(a, r, 1, +, 2) with the parameter
a satisfying

a{1, a> &
p
2

+1, &
- zq

3
<

4(1&a)
( p+2)(2a+ p&2)

<
- zq

2
.

Example 3.3 (Symmetric multivariate Pearson Type VII distribution).
If the random vector X has the density

f (x)=
1(a)

1(a& p�2)(?m) p�2 |2|1�2 {1+
1
m

(x&+)$ 2&1(x&+)=
&a

for some vector + # R p and some symmetric positive definite matrix 2, we
say that X has a symmetric multivariate Pearson Type VII distribution and
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we shall denote it by XtMPVIIp(m, a, +, 2) (a>p�2, m>0; see Fang et
al., (1989, p. 81)). Note that in the case m is a positive integer and
a=( p+m)�2, then it is multivariate t-distribution. In Examples 2.9 and 3.8
of Baringhaus and Henze (1991), m2k for k=2, 3, 4 are presented. From
these we have

%=3 _2a& p&2
2a& p&4& ,

_2=
105(2a& p&2)3

(2a& p&4)(2a& p&6)(2a& p&8)
&

180(2a& p&2)3

(2a& p&4)2 (2a& p&6)

+108 {2a& p&2
2a& p&4=

3

&9 {2a& p&2
2a& p&4=

2

,

4{1+2{2=
240(2a& p&2)3

(2a& p&4)(2a& p&6)(2a& p&8)
&

144(2a& p&2)3

(2a& p&4)2 (2a& p&6)

+72 {2a& p&2
2a& p&4=

3

.

If we choose XtMPVIIp(m, a, +, 2) with the parameter a satisfying

a>max {p
2

+4,
p
2

+2+
3

- zq
= ,

we can apply Proposition 2.5 to such X.

Example 3.4 (Symmetric multivariate Pearson Type II distribution).
The random vector X is said to have a symmetric multivariate Pearson
Type II distribution if X has the density

f (x)==
1( p�2+m+1)

1(m+1) ? p�2 |2|1�2

_[1&(x&+)$ 2&1(x&+)]m_I[(x&+)$ 2&1(x&+)�1]

for some vector + # R p and some symmetric positive definite matrix 2
(m # R, m>&1 see Fang et al. (1989, p. 89)). We shall denote this by
XtMPIIp(m, +, 2).

By using Examples 2.8 and 3.7 of Baringhaus and Henze (1991), we have
for XtMPIIp(m, +, 2),
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%=3 _p+2m+2
p+2m+4& ,

_2=
105( p+2m+2)3

( p+2m+4)( p+2m+6)( p+2m+8)

&
180( p+2m+2)3

( p+2m+4)2 ( p+2m+6)

+108 { p+2m+2
p+2m+4=

3

&9 { p+2m+2
p+2m+4=

2

,

4{1+2{2=
240( p+2m+2)3

( p+2m+4)( p+2m+6)( p+2m+8)

&
144( p+2m+2)3

( p+2m+4)2 ( p+2m+6)
+72 {p+2m+2

p+2m+4=
3

.

We can check the conditions of Proposition 2.5 through the parameter m.
If we choose XtMPIIp(m, +, 2) with the parameter m satisfying

m>&
( p+4)

2
+

3

- zq

,

we can apply Proposition 2.5 to X, since m8<� and (%&3)2<zq .
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