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Abstract

This paper studies the exact distributions of the MLEs of the regression coefficient matrices in a
GMANOVA–MANOVA model with normal error. The unique conditions for linear functions of the MLEs
of regression coefficient matrices are presented, and the exact density functions or characteristic functions
for these linear functions are derived.
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1. Introduction

Consider the following GMANOVA–MANOVA (generalized multivariate analysis of variance–
multivariate analysis of variance) model with normal error:{

Y = XB1Z
�
1 + B2Z

�
2 + E,

E ∼ Nq×n(0, In ⊗ �),
(1)

where Y is a q × n observable random response matrix, X is a q × p known constant matrix,
Z1 and Z2 are the n × m and n × s known design matrices, respectively, B1 and B2 are the
p ×m and q × s unknown regression coefficient matrices, respectively, E is a q ×n unobservable
random error matrix, and A� denotes the transpose of matrix A. Model (1) was first proposed by
Chinchilli and Elswick [2], where the matrix (Z1, Z2) was assumed to be of full column rank.
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They gave the MLEs of parameters and studied the goodness-of-fit test under their assumptions.
MANOVA and GMANOVA models can be obtained as a special case of (1), therefore model
(1) is a mixture of MANOVA and GMANOVA model. For the GMANOVA model, including
extended GMANOVA model, the results about estimates of parameters and their distributions
have been extensively studied in literatures, for example, see Potthoff and Roy [7], Rao [8],
Grizzle and Allen [3], Reinsel [9], Kenward [4], von Rosen [10,11], Kollo and von Rosen [5]
and among others. Kollo and von Rosen [5] gave a good summary for some results in model (1).
They studied the MLEs of parameter matrices B1, B2 and � in this model and derived various
moment formulae for these estimators. Bai [1] studied the MLEs of the parameters in model (1)
and gave the exact distribution for MLE of covariance matrix. The MLEs given in [1] is listed
as follows.

Lemma 1. For model (1), if n�rk(Z)+q, the MLEs of B1, B2 and � are given (with probability
1) by

⎧⎪⎪⎨
⎪⎪⎩

B̂1 = (X�S−1X)−X�S−1YQZ2Z1(Z
�
1QZ2Z1)

−,

B̂2 = (Y − XB̂1Z
�
1)Z2(Z

�
2Z2)

−,

�̂ = 1

n
(Y − XB̂1Z

�
1)QZ2(Y − XB̂1Z

�
1)

�,

(2)

respectively, where S = YQZY �, Z=̂(Z1, Z2), PA denotes the orthogonal projection matrix onto
the linear subspace R(A) spanned by the columns of p × q matrix A, i.e., PA = A(A�A)−A� =
A(A�A)+A�, QA=̂Ip−PA, A− denotes the generalized inverse of matrix A such that AA−A = A,
A+ denotes the Moore–Penrose inverse of matrix A and rk(A) denotes the rank of A.

From the viewpoint of statistical inference, it is very important to study the distributions of
B̂1 and B̂2 in Lemma 1, which are not discussed in current literatures. It is easy to see that
B̂1 and B̂2 are not unique since they depend on the generalized inverses. Therefore we have
to consider the linear functions of B̂1 and B̂2, say K1B̂1L

�
1, K2B̂2L

�
2 and K1B̂1L

�
1 + K2B̂2L

�
2,

respectively, where Ki, Li(�= 0), i = 1, 2 are some constant matrices such that these linear
functions are unique. It is worth mentioning that, in general, all the above linear functions are
nonlinear functions of normal matrix Y, hence it is difficult to study their distributions and some
special techniques need to be developed. The remainder of this paper is arranged as follows.
Section 2 gives the sufficient and necessary conditions for uniqueness of K1B̂1L

�
1 and K2B̂2L

�
2.

Section 3 derives the density functions or characteristics functions for above linear functions of
the MLEs.

2. Uniqueness

We first give a lemma which is useful to determine what kind of matrices Ki, Li(�= 0), i = 1, 2
ensure that K1B̂1L

�
1, K2B̂2L

�
2 or K1B̂1L

�
1 +K2B̂2L

�
2 are unique. The obvious proofs are omitted

for saving space.

Lemma 2. Let A, B and C be given matrices, then

(i) A(A�A)−B� is unique ⇔ R(B�) ⊂ R(A�).
(ii) C(A�A)−A� is unique ⇔ R(C�) ⊂ R(A�).
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By applying Lemmas 1 and 2, we easily obtain:

Theorem 1. Let Ki, Li(�= 0), i = 1, 2 be constant matrices, then

(i) K1B̂1L
�
1 is unique ⇔ R(K�

1) ⊂ R(X�), R(L�
1) ⊂ R(Z�

1QZ2).
(ii) K2B̂2L

�
2 is unique ⇔ one of the following conditions holds:

(i) R(K�
2) ⊂ R(QX), R(L�

2) ⊂ R(Z�
2). (ii) R(L�

2) ⊂ R(Z�
2QZ1).

Remark 1. The proof of Lemma 2 can be found in Kollo and von Rosen [5]. The results in
Theorem 1 when K2 = I was given in Kollo and von Rosen [5, p. 427].

Theorem 2. For the constant matrices Ki, Li(�= 0), i = 1, 2, if there exists a nonnull d such that
K1 = dK2X and R((dL1, L2)

�) ⊂ R(Z�), then K1B̂1L
�
1 + K2B̂2L

�
2 is unique.

3. Distributions

In this section, we study the distributions of K1B̂1L
�
1, K2B̂2L

�
2 and K1B̂1L

�
1 + K2B̂2L

�
2,

respectively, where Ki, Li(�= 0), i = 1, 2 are assumed to satisfy the conditions in Theorem 1
or 2. We follow the symbols and notations in Muirhead [6] without specification. The obvious
proofs are omitted for saving the space.

Definition 1 (Wang [12]). If the density function of a p × q random matrix X is given by

pX(x) = �−pq/2 �p[(� + p + q − 1)/2]
�p[(� + p − 1)/2] |�|−q/2|V |−p/2

×|Iq + (x − �)��−1(x − �)V −1|−(�+p+q−1)/2, x ∈ Rp×q,

where � ∈ Rp×q , � > 0, V > 0, � > 0, then we say that X has a matrix-variate t-distribution
with parameters (�, �, V , �) and denote by X ∼ tp×q(�, �, V , �).

Lemma 3. Let{
X|T ∼ Np×q(�, V ⊗ T −1),

T ∼ Wp(� + p − 1, �),

then X ∼ tp×q(�, �−1, V , �).

Lemma 4. Let X ∼ Wp(n, �),A�0, a�0 and

ha(A) = E(|Ip + X−1A|−a), (3)

then

ha(A) = �rk(A)(n/2 + a)

�rk(A)((n − p + rk(A))/2)

∣∣∣∣12�

∣∣∣∣
(n−p+rk(A))/2

×�

(
n

2
+ a,

1

2
(n + rk(A) + 1); 1

2
�

)
, (4)

where � is a rk(A)×rk(A) diagonal matrix with the nonnull eigenvalues of �−1A as its diagonal
elements, and �(a, c; ·) is a confluent function defined by (12) in [6, p. 472].



P. Bai, L. Shi / Journal of Multivariate Analysis 98 (2007) 1840–1852 1843

Proof. Let the spectral decomposition of �−1/2A�−1/2 be

�−1/2A�−1/2 = P

(
� 0
0 0

)
P �,

where P is a p × p orthogonal matrix, � is a rk(A) × rk(A) diagonal matrix with the nonnull
eigenvalues of �−1/2A�−1/2 as its diagonal elements. Let

X̃ = P ��−1/2X�−1/2P =
(

X̃11 X̃12

X̃21 X̃22

)
,

where X̃11 is rk(A) × rk(A), then X̃ ∼ Wp(n, Ip) and

|Ip + X−1A| =
∣∣∣∣∣ Irk(A) + X̃−1

11·2� 0

−X̃−1
22 X̃21X̃

−1
11·2� Ip−rk(A)

∣∣∣∣∣ = |Irk(A) + X̃−1
11·2�|,

where X̃11·2 = X̃11 − X̃12X̃
−1
22 X̃21. It follows from X̃ ∼ Wp(n, Ip) and Theorem 3.2.10 in [6]

that X̃11·2 ∼ Wrk(A)(n − p + rk(A), Irk(A)). Let Y = �−1/2X̃11·2�−1/2, then Y ∼ Wrk(A)(n −
p + rk(A), �−1) and

|Ip + X−1A| = |Y |−1|Irk(A) + Y |,
thus we have

ha(A) = E(|Y |a|Irk(A) + Y |−a) = |�/2|(n−p+rk(A))/2

�rk(A)((n − p + rk(A))/2)

×
∫

Y>0
|Irk(A) + Y |−a|Y |(n−p−1)/2+aetr

(
−1

2
�Y

)
(dY );

this and the definition of function �(a, c; ·) (see (12) in [6, p. 472]) mean that (4) holds. Finally,
the nonnull eigenvalues of �−1/2A�−1/2 are the same as those of �−1A. �

Remark 2. Based on Lemma 10.6.4 in [11], the confluent function �(a, c; ·) can be obtained by
the Gaussian hypergeometric function 2F1(a, b; c; ·).

Lemma 5. Let G be an m × n random matrix with the density function pG(g), g ∈ Rm×n. Let

F = PGQ�, (5)

where P and Q are p × m and q × n nonrandom column orthogonal matrix, respectively, then
the density function of the p × q random matrix F is given by

pG(P �f Q), R(f ) ⊂ R(P ), R(f �) ⊂ R(Q). (6)

Proof. Let M and N be p × (p − m) and q × (q − n) nonrandom column orthogonal matrices
such that (P, M) and (Q, N) are nonrandom orthogonal matrices, respectively. Again let G1, G2
and G3 be, respectively, m × (q − n), (p − m) × n and (p − m) × (q − n) random matrices such
that G, G1, G2 and G3 are independent and P(Gi = 0) = 1, i = 1, 2, 3. Let

F̃ = (P, M)

(
G G1
G2 G3

)
(Q, N)�, (7)
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then from (5), we know that F̃ = F , a.s., thus F̃ and F have the identical distribution. Note that
the Jacobian determinant of the transformation from (G, G1, G2, G3) to F̃ is equal to 1 and

G = P �F̃Q, G1 = P �F̃N, G2 = M�F̃Q, G3 = M�F̃N,

hence the density function of F̃ is given by

pG(P �f Q), P �f N = 0, M�f Q = 0, M�f N = 0. (8)

Note that when P �f N = 0, M�f N = 0, we have R(f �P) ⊂ R(Q), R(f �M) ⊂ R(Q).
Now for any c ∈ R(f �), we can find d such that c = f �d, thus c = f �(PP � + MM�)d =
f �P(P �d)+f �M(M�d) ∈ R(Q). This implies that R(f �) ⊂ R(Q). Conversely, when R(f �) ⊂
R(Q), there exits a D such that f � = QD�, which gives that P �f N = 0 and M�f N =
0. Therefore P �f N = 0, M�f N = 0 ⇔ R(f �) ⊂ R(Q). Similarly, we have M�f Q =
0, M�f N = 0 ⇔ R(f ) ⊂ R(P ). Thus P �f N = 0, M�f Q = 0, M�f N = 0 ⇔ R(f ) ⊂
R(P ), R(f �) ⊂ R(Q). Since F̃ and F have the same distribution, it follows from (8) that (6)
holds. �

3.1. The distribution of K1B̂1L
�
1

Theorem 3. For model (1), if F̂1=̂K1B̂1L
�
1 is unique, then its density function is given by

p
F̂1

(f1) = (2�)−rk(K1)rk(L1)/2 �rk(K1)[(n − rk(Z) + rk(K1))/2]
�rk(K1)[(n − rk(Z) + rk(K1) + rk(L1))/2]

×�rk(K1)[(n − rk(Z) + rk(K1) + rk(L1) − q + rk(X))/2]
�rk(K1)[(n − rk(Z) + rk(K1) − q + rk(X))/2]

×|�2
1|−rk(L1)/2|�2

1|−rk(K1)/2

×etr{− 1
2 (f1 − F1)

�[K1(X
��−1X)+K�

1 ]+(f1 − F1)[L1(Z
�
1QZ2Z1)

+L�
1]+}

×1F1(
1
2 (q − rk(X)); 1

2 (n − rk(Z) + rk(K1) + rk(L1));
1
2 (f1 − F1)

�[K1(X
��−1X)+K�

1 ]+(f1 − F1)[L1(Z
�
1QZ2Z1)

+L�
1]+),

R(f1 − F1) ⊂ R(K1), R((f1 − F1)
�) ⊂ R(L1), (9)

where F1 = K1B1L
�
1, �2

1 is a rk(K1) × rk(K1) diagonal matrix with the nonnull eigenvalues of
K1(X

��−1X)+K�
1 as its diagonal elements, and �2

1 is a rk(L1) × rk(L1) diagonal matrix with
the nonnull eigenvalues of L1(Z

�
1QZ2Z1)

+L�
1 as its diagonal elements.

Proof. When F̂1 is unique, it follows from Theorem 1 that there exist C1 and D1 such that

K�
1 = X�C�

1, L�
1 = Z�

1QZ2D
�
1. (10)

From Lemma 1 and (1), we have

F̂1 = F1 + C1X(X�S−1X)−X�S−1EPQZ2 Z1D
�
1, (11)

where S = EQZE�. Note that rk(�−1/2X) = rk(X), hence �−1/2X can be written as

�−1/2X = P̃

(
� 0
0 0

)
(M, N)�, (12)
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where P̃ =̂(P̃1, P̃2) and (M, N) are, respectively, q ×q and p ×p orthogonal matrices, P̃1 and M
are, respectively, q × rk(X) and p × rk(X) matrices, and � is a rk(X) × rk(X) diagonal matrix
with positive diagonal elements. Let

T =̂
(

T11 T12
T21 T22

)
= P̃ ��−1/2S�−1/2P̃ , (13)

where T11 is a rk(X) × rk(X) matrix, then

T −1 =
(

T −1
11·2 −T −1

11·2V

−V �T −1
11·2 T −1

22·1

)
,

where T11·2 = T11 − T12T
−1
22 T21, T22·1 = T22 − T21T

−1
11 T12, V = T12T

−1
22 . From (12) and (13),

we have

X�S−1X = (M, N)

(
�T −1

11·2� 0

0 0

)
(M, N)�,

which means that

(X�S−1X)− = (M, N)

(
�−1T11·2�−1 C12

C21 C22

)
(M, N)�.

Therefore

X(X�S−1X)−X�S−1 = �1/2P̃1(Irk(X), −V )P̃ ��−1/2. (14)

Note that PZ2PQZ2 Z1 = PQZ2 Z1PZ2 = 0, hence PZ2 and PQZ2 Z1 can be simultaneously diago-
nalized by an orthogonal matrix. Since PZ2 and PQZ2 Z1 are n×n idempotent matrices with ranks

rk(Z2) and rk(Z)−rk(Z2), respectively, there exits an n×n orthogonal matrix Q̃=̂(Q̃1, Q̃2, Q̃3)

such that

PZ2 = Q̃1Q̃
�
1, PQZ2 Z1 = Q̃2Q̃

�
2, (15)

where Q̃1, Q̃2 and Q̃3 are, respectively, n × rk(Z2), n × (rk(Z) − rk(Z2)) and n × (n − rk(Z))

matrices. Let

E1 = P̃ ��−1/2EQ̃1, E2 = P̃ ��−1/2EQ̃2, E3 = P̃ ��−1/2EQ̃3, (16)

then S = �1/2P̃E3E�
3 P̃ ��1/2 (since QZ = Q̃3Q̃

�
3). From (11), (14–16), we have

F̂1 = F1 + C1�
1/2P̃1(Irk(X), −V )E2Q̃

�
2D

�
1. (17)

Let the singular value decompositions of C1�1/2P̃1 and Q̃�
2D

�
1 be

C1�
1/2P̃1 = P1�1Q

�
1, Q̃�

2D
�
1 = P2�1Q

�
2, (18)

where Pi, Qi, i = 1, 2 are column orthogonal matrices, and �1 and �1 are, respectively, r1×r1 and
s1 ×s1 diagonal matrices with positive diagonal elements, r1=̂rk(C1�1/2P̃1) and s1=̂ rk(Q̃�

2D
�
1).

By substituting (18) into (17) we have

F̂1 = F1 + P1�1Q
�
1(Irk(X), −V )E2P2�1Q

�
2=̂F1 + P1Ĝ1Q

�
2. (19)
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From (1) we know

(E1, E2, E3) = P̃ ��−1/2EQ̃ ∼ Nq×n(0, In ⊗ Iq),

which indicates that⎧⎨
⎩

E1 ∼ Nq×rk(Z2)(0, Irk(Z2) ⊗ Iq),

E2 ∼ Nq×(rk(Z)−rk(Z2))(0, Irk(Z)−rk(Z2) ⊗ Iq),

E3 ∼ Nq×(n−rk(Z))(0, In−rk(Z) ⊗ Iq),

(20)

and E1, E2, E3 are independent. Note that S = �1/2P̃E3E�
3 P̃ ��1/2, hence S and E2 are independent

and from (20) we have S ∼ Wq(n − rk(Z), �). Furthermore, V is independent of E2 (since V is a
function of S) and from (13) we have T ∼ Wq(n− rk(Z), Iq). Therefore, it follows from Lemma
3 and Theorem 3.2.10 in [6] that

V ∼ trk(X)×(q−rk(X))(0, Irk(X), Iq−rk(X), n − rk(Z) − q + rk(X) + 1). (21)

Let Ṽ = Q�
1V , then

Ṽ ∼ tr1×(q−rk(X))(0, Ir1 , Iq−rk(X), n − rk(Z) − q + rk(X) + 1). (22)

From the definition of Ĝ1 (see (19)), we have

Ĝ1 = �1(Q
�
1, −Ṽ )E2P2�1. (23)

It follows from (20) and the independence between Ṽ and E2 (since V and E2 are independent)
that

Ĝ1|Ṽ ∼ Nr1×s1(0, �2
1 ⊗ [�1(Ir1 + Ṽ Ṽ �)�1]), (24)

which means that the conditional density function of Ĝ1 given Ṽ = ṽ is

p
Ĝ1|Ṽ (g1|ṽ) = (2�)−r1s1/2|�1|−s1 |�1|−r1 |Ir1 + ṽṽ�|−s1/2

×etr[− 1
2g�

1�
−1
1 (Ir1 + ṽṽ�)−1�−1

1 g1�
−2
1 ], g1 ∈ Rr1×s1 .

Thus the density function of Ĝ1 is

p
Ĝ1

(g1) = (2�)−r1s1/2|�1|−s1 |�1|−r1E{|Ir1 + Ṽ Ṽ �|−s1/2

×etr[− 1
2g�

1�
−1
1 (Ir1 + Ṽ Ṽ �)−1�−1

1 g1�
−2
1 ]}, g1 ∈ Rr1×s1 . (25)

It follows from (22) and Definition 1 that the density function of Ṽ is given by

p
Ṽ
(ṽ) = �−r1(q−rk(X))/2 �r1 [(n − rk(Z) + r1)/2]

�r1 [(n − rk(Z) + r1 − q + rk(X))/2]
×|Ir1 + ṽṽ�|−(n−rk(Z)+r1)/2, ṽ ∈ Rr1×(q−rk(X));

this and (25) imply that the density function of Ĝ1 is

p
Ĝ1

(g1) = (2�)−r1s1/2 �r1 [(n − rk(Z) + r1)/2]
�r1 [(n − rk(Z) + r1 + s1)/2]

×�r1 [(n − rk(Z) + r1 + s1 − q + rk(X))/2]
�r1 [(n − rk(Z) + r1 − q + rk(X))/2]

×|�1|−s1 |�1|−r1E{etr[− 1
2g�

1�
−1
1 (Ir1 + V̄ V̄ �)−1�−1

1 g1�
−2
1 ]},

g1 ∈ Rr1×s1 , (26)
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where

V̄ ∼ tr1×(q−rk(X))(0, Ir1 , Iq−rk(X), n − rk(Z) + s1 − q + rk(X) + 1). (27)

From (26) and (27) there is

p
Ĝ1

(g1) = (2�)−r1s1/2 �r1 [(n − rk(Z) + r1)/2]
�r1 [(n − rk(Z) + r1 + s1)/2]

×�r1 [(n − rk(Z) + r1 + s1 − q + rk(X))/2]
�r1 [(n − rk(Z) + r1 − q + rk(X))/2]

×|�1|−s1 |�1|−r1etr(− 1
2g�

1�
−2
1 g1�

−2
1 )

×1F1(
1
2 (q − rk(X)); 1

2 (n − rk(Z) + r1 + s1); 1
2g�

1�
−2
1 g1�

−2
1 ),

g1 ∈ Rr1×s1;
this, (19) and Lemma 5 indicate that the density function of F̂1 is

p
F̂1

(f1) = (2�)−r1s1/2 �r1 [(n − rk(Z) + r1)/2]
�r1 [(n − rk(Z) + r1 + s1)/2]

×�r1 [(n − rk(Z) + r1 + s1 − q + rk(X))/2]
�r1 [(n − rk(Z) + r1 − q + rk(X))/2]

×|�1|−s1 |�1|−r1etr[− 1
2 (f1 − F1)

�P1�
−2
1 P �

1 (f1 − F1)Q2�
−2
1 Q�

2]
×1F1(

1
2 (q − rk(X)); 1

2 (n − rk(Z) + r1 + s1);
1
2 (f1 − F1)

�P1�
−2
1 P �

1 (f1 − F1)Q2�
−2
1 Q�

2),

R(f1 − F1) ⊂ R(P1), R((f1 − F1)
�) ⊂ R(Q2). (28)

It follows from (10), (12) and (18) that

K1(X
��−1X)+K�

1 = P1�
2
1P

�
1 , L1(Z

�
1QZ2Z1)

+L�
1 = Q2�

2
1Q

�
2,

hence the diagonal elements of �2
1 and �2

1 are, respectively, the nonnull eigenvalues of K1(X
��−1

X)+K�
1 and L1(Z

�
1QZ2Z1)

+L�
1, and

[K1(X
��−1X)+K�

1 ]+ = P1�
−2
1 P �

1 , [L1(Z
�
1QZ2Z1)

+L�
1]+ = Q2�

−2
1 Q�

2. (29)

From (10), (12) and (18) we have

R(P1) = R(C1XM�−1) = R(C1XM) = R(C1XMM�X�C�
1)

= R(C1XX�C�
1) = R(C1X) = R(K1).

Therefore, from definitions of r1 and P1 (see (18)), we obtain

r1 = rk(P1) = dim(R(P1)) = dim(R(K1)) = rk(K1), (30)

where dim(R) denotes the dimension of R. It follows from PQZ2 Z1QZ2Z1 = QZ2Z1 that
R(D1QZ2Z1) = R(D1PQZ2 Z1), thus from (10) and (18), we have

R(Q2) = R(D1Q̃2) = R(D1PQZ2 Z1D
�
1) = R(D1PQZ2 Z1)

= R(D1QZ2Z1) = R(L1);
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this and the definition of s1 and Q2 (see (18)) indicate that

s1 = rk(Q2) = dim(R(Q2)) = dim(R(L1)) = rk(L1). (31)

Substituting (29)–(31) into (28) leads to (9). �

Remark 3. For the GMANOVA model (corresponding to the case of Z2 = 0 in model (1)), when
X and Z1 are full rank in column, K1 and L1 are full rank in row, it follows from Theorem 3 that

p
F̂1

(f1) = (2�)−r(K1)r(L1)/2 �r(K1)[(n − m + r(K1))/2]
�r(K1)[(n − m + r(K1) + r(L1))/2]

×�r(K1)[(n − m + r(K1) + r(L1) − q + p)/2]
�r(K1)[(n − m + r(K1) − q + p)/2] |K1(X

��−1X)−1K�
1 |−r(L1)/2

×|L1(Z
�
1Z1)

−1L�
1|−r(K1)/2etr{− 1

2 (f1−F1)
�[K1(X

��−1X)−1K�
1 ]−1(f1−F1)

×[L1(Z
�
1Z1)

−1L�
1]−1}1F1(

1
2 (q − p); 1

2 (n − m + r(K1) + r(L1));
1
2 (f1 − F1)

�[K1(X
��−1X)−1K�

1 ]−1(f1 − F1)[L1(Z
�
1Z1)

−1L�
1]−1),

f1 ∈ Rr(K1)×r(L1),

where r(A) denotes the number of rows of matrix A. This is the result obtained by Kenward [4]
but with different notations.

Theorem 4. Follow the notations in Theorem 3, the characteristic function of F̂1 is given by

�
F̂1

(t) = etr[it�F1 − 1
2 t�K1(X

��−1X)+K�
1 tL1(Z

�
1QZ2Z1)

+L�
1]

×| 1
2�1(t, �)|(n−rk(Z)−q+rk(X)+r1(t,�))/2

× �rk(K1)((n − rk(Z) + rk(K1))/2)

�rk(K1)((n − rk(Z) − q + rk(X) + r1(t, �))/2)
�( 1

2 (n − rk(Z) + rk(K1)),

1
2 (n − rk(Z) − q + rk(X) + rk(K1) + r1(t, �) + 1); 1

2�1(t, �)),

t ∈ Rr(K1)×r(L1), (32)

where r1(t, �) = rk(t�K1(X
��−1X)+K�

1 tL1(Z
�
1QZ2Z1)

+L�
1), �1(t, �) is a r1(t, �) × r1(t, �)

diagonal matrix with the nonnull eigenvalues of t�K1(X
��−1X)+K�

1 tL1(Z
�
1 ·QZ2Z1)

+L�
1 as its

diagonal elements.

Proof. It follows from (19) and (24) that

F̂1|Ṽ ∼ Nr(K1)×r(L1)(F1, (Q2�
2
1Q

�
2) ⊗ [P1�1(Ir1 + Ṽ Ṽ �)�1P

�
1 ]), (33)

which indicates that the characteristics function of F̂1 is

�
F̂1

(t) = E[etr(it�F̂1)] = E{E[etr(it�F̂1)|Ṽ ]}
= etr(it�F1 − 1

2 t�P1�
2
1P

�
1 tQ2�

2
1Q

�
2)

×E[etr(− 1
2 Ṽ ��1P

�
1 tQ2�

2
1Q

�
2t

�P1�1Ṽ )], t ∈ Rr(K1)×r(L1). (34)

From (22) and Lemma 3, there exits a random matrix T̃ such that{
Ṽ |T̃ ∼ Nr1×(q−rk(X))(0, Iq−rk(X) ⊗ T̃ −1),

T̃ ∼ Wr1(n − rk(Z) − q + rk(X) + r1, Ir1).
(35)
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Therefore, we have

E[etr(− 1
2 Ṽ ��1P

�
1 tQ2�

2
1Q

�
2t

�P1�1Ṽ )]
= E{E[etr(− 1

2 Ṽ ��1P
�
1 tQ2�

2
1Q

�
2t

�P1�1Ṽ )|T̃ ]}
= E[|Ir1 + T̃ −1�1P

�
1 tQ2�

2
1Q

�
2t

�P1�1|−(q−rk(X))/2],
t ∈ Rr(K1)×r(L1). (36)

It follows from (34)–(36) and Lemma 4 that (32) holds. �

3.2. The distribution of K2B̂2L
�
2

Theorem 5. For model (1), if F̂2=̂K2B̂2L
�
2 is unique, then:

(i) When R(K�
2) ⊂ R(QX) and R(L�

2) ⊂ R(Z�
2), we have

F̂2 ∼ Nr(K2)×r(L2)(F2, [L2(Z
�
2Z2)

+L�
2] ⊗ (K2�K�

2)), (37)

where F2 = K2B2L
�
2.

(ii) When R(L�
2) ⊂ R(Z�

2QZ1), the characteristic function of F̂2 is

�
F̂2

(t) = etr{it�F2 − 1
2 t�K2�K�

2 tL2(Z
�
2Z2)

+L�
2

− 1
2 t�K2X(X��−1X)+X�K�

2 tL2[(Z�
2QZ1Z2)

+ − (Z�
2Z2)

+]L�
2}

×| 1
2�2(t, �)|(n−rk(Z)−q+rk(X)+r2(t,�))/2

× �rk(K2X)((n − rk(Z) + rk(K2X))/2)

�rk(K2X)((n − rk(Z) − q + rk(X) + r2(t, �))/2)

×�( 1
2 (n − rk(Z) + rk(K2X)),

1
2 (n − rk(Z) − q + rk(X) + rk(K2X) + r2(t, �) + 1); 1

2�2(t, �)),

t ∈ Rr(K2)×r(L2), (38)

where r2(t, �) = rk(t�K2X(X��−1X)+X�K�
2 tL2[(Z�

2QZ1Z2)
+ − (Z�

2Z2)
+]L�

2), �2 (t, �) is a
r2(t, �)×r2(t, �) diagonal matrix with the nonnull eigenvalues of t�K2X(X� ·�−1X)+X�K�

2 tL2
[(Z�

2QZ1Z2)
+ − (Z�

2Z2)
+]L�

2 as its diagonal elements.

Proof. (i) When R(K�
2) ⊂ R(QX) and R(L�

2) ⊂ R(Z�
2), there exist C2 and D2 such that

K�
2 = QXC�

2, L�
2 = Z�

2D
�
2,

hence from Lemma 1 and (1), we have

F̂2 = F2 + K2EPZ2D
�
2,

this and (1) imply that

F̂2 ∼ Nr(K2)×r(L2)(F2, (D2PZ2D
�
2) ⊗ (K2�K�

2)).

Thus (37) holds.
(ii) It follows from Lemma 1 that

F̂2 = K2YZ2(Z
�
2Z2)

−L�
2 − K2XB̂1Z

�
1Z2(Z

�
2Z2)

−L�
2=̂F̃1 − F̃2. (39)
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When R(L�
2) ⊂ R(Z�

2QZ1), there exits a D3 such that

L�
2 = Z�

2QZ1D
�
3. (40)

From (1), (14)–(16), we have{
F̃1 = K2XB1Z

�
1Z2(Z

�
2Z2)

−L�
2 + F2 + K2�1/2P̃E1Q̃

�
1QZ1D

�
3,

F̃2 = K2XB1Z
�
1Z2(Z

�
2Z2)

−L�
2 − K2�1/2P̃1(Irk(X), −V )E2Q̃

�
2QZ1D

�
3,

(41)

which shows that F̃1 and F̃2 are independent (since E1, E2 and E3 are independent, and V is a
function of E3), hence from (39) we have

�
F̂2

(t) = �
F̃1

(t)�
F̃2

(−t), t ∈ Rr(K2)×r(L2). (42)

It follows from (15), (20) and (41) that

F̃1 ∼ Nr(K2)×r(L2)(K2XB1Z
�
1Z2(Z

�
2Z2)

+L�
2 + F2, [L2(Z

�
2Z2)

+L�
2] ⊗ (K2�K�

2)), (43)

which means that

�
F̃1

(t) = etr{it�[K2XB1Z
�
1Z2(Z

�
2Z2)

+L�
2 + F2]

− 1
2 t�K2�K�

2 tL2(Z
�
2Z2)

+L�
2}, t ∈ Rr(K2)×r(L2). (44)

Further, from (39) and (40) we have

F̃2 = −K2XB̂1Z
�
1QZ2QZ1D

�
3.

Thus from Theorem 4 we have (by taking K1 = −K2X and L1 = D3QZ1QZ2Z1 in Theorem 4)

�
F̃2

(t) = etr{it�K2XB1Z
�
1Z2(Z

�
2Z2)

+L�
2 − 1

2 t�K2X(X��−1X)+X�K�
2 t

×L2[(Z�
2QZ1Z2)

+ − (Z�
2Z2)

+]L�
2}| 1

2�2(t, �)|(n−rk(Z)−q+rk(X)+r2(t,�))/2

× �rk(K2X)((n − rk(Z) + rk(K2X))/2)

�rk(K2X)((n − rk(Z) − q + rk(X) + r2(t, �))/2)

×�( 1
2 (n − rk(Z) + rk(K2X)),

1
2 (n − rk(Z) − q + rk(X) + rk(K2X) + r2(t, �) + 1); 1

2�2(t, �)),

t ∈ Rr(K2)×r(L2);
this, (42) and (44) show that (38) holds. �

3.3. The distribution of K1B̂1L
�
1 + K2B̂2L

�
2

Theorem 6. For model (1), let Ki, Li, i = 1, 2 satisfy the conditions in Theorem 2, then the
characteristic function of F̂3=̂K1B̂1L

�
1 + K2B̂2L

�
2 is

�
F̂3

(t) = etr{it�F3 − 1
2 t�K2�K�

2 tL2(Z
�
2Z2)

+L�
2 − 1

2 t�K2X(X��−1X)+X�K�
2 t

×[(dL1, L2)(Z
�Z)+(dL1, L2)

� − L2(Z
�
2Z2)

+L�
2]}

×| 1
2�3(t, �)|(n−rk(Z)−q+rk(X)+r3(t,�))/2

× �rk(K2X)((n − rk(Z) + rk(K2X))/2)

�rk(K2X)((n − rk(Z) − q + rk(X) + r3(t, �))/2)
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×�( 1
2 (n − rk(Z) + rk(K2X)),

1
2 (n − rk(Z) − q + rk(X) + rk(K2X) + r3(t, �) + 1); 1

2�3(t, �)),

t ∈ Rr(K1)×r(L1), (45)

where F3 = K1B1L
�
1 + K2B2L

�
2, d is a nonnull value determined by K1 = dK2X, r3(t, �) =

rk(t�K2X(X��−1X)+X�K�
2 t[(dL1, L2)(Z

�Z)+(dL1, L2)
� − L2(Z

�
2Z2)

+ ·L�
2]), �3(t, �) is a

r3(t, �) × r3(t, �) diagonal matrix with the nonnull eigenvalues of t�K2X(X��−1X)+X�K�
2 t

[(dL1, L2)(Z
�Z)+(dL1, L2)

� − L2(Z
�
2Z2)

+L�
2] as its diagonal elements.

Proof. When Ki, Li, i = 1, 2 satisfy the conditions in Theorem 2, there exists a nonnull value d
and D4 such that

K1 = dK2X, dL�
1 = Z�

1D
�
4, L�

2 = Z�
2D

�
4, (46)

hence from Lemma 1, we have

F̂3 = K2YPZ2D
�
4 + K2XB̂1Z

�
1QZ2D

�
4=̂F̃3 + F̃4. (47)

Substituting (1), (14)–(16) into the above equality leads to{
F̃3 = K2XB1Z

�
1PZ2D

�
4 + K2B2L

�
2 + K2�1/2P̃E1Q̃

�
1D

�
4,

F̃4 = K2XB1Z
�
1QZ2D

�
4 + K2�1/2P̃1(Irk(X), −V )E2Q̃

�
2D

�
4,

(48)

which shows that F̃3 and F̃4 are independent (since E1, E2 and E3 are independent and V is a
function of E3). Thus from (47) we have

�
F̂3

(t) = �
F̃3

(t)�
F̃4

(t), t ∈ Rr(K1)×r(L1). (49)

It follows from (1) and (47) that

F̃3 ∼ Nr(K1)×r(L1)(K2XB1Z
�
1PZ2D

�
4 + K2B2L

�
2, [L2(Z

�
2Z2)

+L�
2] ⊗ (K2�K�

2)), (50)

which indicates that

�
F̃3

(t) = etr{it�(K2XB1Z
�
1PZ2D

�
4 + K2B2L

�
2)

− 1
2 t�K2�K�

2 tL2(Z
�
2Z2)

+L�
2}, t ∈ Rr(K1)×r(L1). (51)

From (47) and Theorem 4, the characteristic function of F̃4 is (by taking K1 = K2X and L1 =
D4QZ2Z1 in Theorem 4)

�
F̃4

(t) = etr{it�K2XB1Z
�
1QZ2D

�
4 − 1

2 t�K2X(X��−1X)+X�K�
2 t

×[(dL1, L2)(Z
�Z)+(dL1, L2)

� − L2(Z
�
2Z2)

+L�
2]}

×| 1
2�3(t, �)|(n−rk(Z)−q+rk(X)+r3(t,�))/2

× �rk(K2X)((n − rk(Z) + rk(K2X))/2)

�rk(K2X)((n − rk(Z) − q + rk(X) + r3(t, �))/2)

×�( 1
2 (n − rk(Z) + rk(K2X)),

1
2 (n − rk(Z) − q + rk(X) + rk(K2X) + r3(t, �) + 1); 1

2�3(t, �)),

t ∈ Rr(K1)×r(L1). (52)

Therefore, from (49), (51) and (52) we know that (45) holds. �
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