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a b s t r a c t

This paper deals with asymptotic results on a multivariate ultrastructural errors-in-
variables regression model with equation errors. Sufficient conditions for attaining con-
sistent estimators for model parameters are presented. Asymptotic distributions for the
line regression estimators are derived. Applications to the elliptical class of distributions
with two error assumptions are presented. The model generalizes previous results aimed
at univariate scenarios.
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1. Introduction

It is well known that maximum-likelihood estimators (MLEs) and ordinary least squares estimators are generally
inconsistent if covariates are measured with errors and are intentionally ignored. More specifically, the estimation of the
slope parameter of a linear model is attenuated [9] by the presence of measurement errors. It is then expected that the
same should occur in multivariate contexts. When variables are subject to measurement errors, we must add to the model
appropriate measurement equations in order to capture the measurement error effects. This procedure, when feasible,
produces consistent, efficient and asymptotically normally distributed estimators. A careful and rigorous exposition of the
inferential process in simple and multiple errors-in-variables models can be seen in [9] and the references therein.

It is however our impression that multivariate ultrastructural errors-in-variables (or measurement errors) regression
models have not been as extensively studied in the statistical literature as the multiple and simple regression models.
It seems that the majority of the references consider separately the structural and functional versions. For instance,
multivariate functional models were studied in [11,10,4,6], while the structural version was studied from a factor analysis
point of view [19]. Anemiya and Fuller [1] study both versions of this multivariate model without equation errors.

In this paper we consider amultivariate ultrastructural errors-in-variables regressionmodel with equation errors which,
to the best of our knowledge, was not previously exploited in the statistical literature. We present consistent estimators
having asymptotic normal distributions. These results are basically attained by usingmoment estimators and deltamethods;
see, for instance, [15] and [13, Ch. 3]. The main motivation for considering equation errors comes from epidemiological [14]
and astrophysical [12] studies, where equation errors are justified by the influence of factors other than those specified in
the model for explaining the variation of the response variable (see also [17]). Multivariate analyses with measurement
errors and equation errors are listed as one topic of great methodological challenge for the coming decade in astrophysics,
as can be seen on theweb page http://nedwww.ipac.caltech.edu/level5/Sept03/Feigelson/Feigelson5.html. Here, we present
a multivariate regression model with homoscedastic measurement errors and equation errors. Although astrophysical data
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sets typically contain heteroscedastic errors and censoring, we believe that the results of this paper can be used for further
generalizations in studying those challenges. According to [8], measurement errors may be among the reasons for high
biological false positive rates identified in actual regulatory network models. The authors used a multivariate structural
errors-in-variables model with equation errors considering normality and homoscedasticity for modeling gene regulatory
networks [20]. Our results generalize this study by relaxing the normality supposition; therefore, the results may also be
applied for gene expression data and other regulatory network models. Our paper is intended to be of a theoretical nature
and we expect to report on real data applications in future research.

The model proposed in this paper can be seen as a generalization of the multiple regression model considered in [18,9],
Section 2.2, and it is also a generalization of the multivariate structural version applied in [8]. The model is defined in its full
generality by the following three stochastic equations:

yi = a + Bxi + qi, (1)
Yi = yi + ei, (2)
Xi = xi + ui, (3)

i = 1, . . . , n. We have in Eq. (1) a multivariate regression model, where y1, . . . , yn and x1, . . . , xn are the true response and
covariate vectors of dimension p1 × 1 and p2 × 1, respectively, a is a p1 × 1 vector of model intercepts, B is a p1 × p2 matrix
of slope parameters, and q1, . . . , qn are random vectors of dimension p1 × 1 representing the equation errors. Moreover,
as indicated by Eqs. (2) and (3), Yi and Xi, i = 1, . . . , n, are measurements of the true (unobservable) vectors yi and xi, i =

1, . . . , n, respectively, where the respective measurement errors are represented by ei and ui, i = 1, . . . , n. Hence, in order
to make inferences on unknown parameters, it is common to suppose that the full vectors ri = (q⊤

i , e
⊤

i , u
⊤

i , (xi − ξi)
⊤)⊤,

i = 1, . . . , n, where ξi = E(xi), are independent, and identically and symmetrically distributed (typically assumed to be
normally distributed), with

E(r1) = 0 and Var(r1) = Σr = diag(Σq,Σe,Σu,Σx). (4)

Consequently, if we denote the observable vectors by Zi = (Y⊤

i ,X
⊤

i )
⊤, i = 1, . . . , n, we have from the above assumptions

that they are independent with mean vectors µi, i = 1, . . . , n, and common covariance matrix Σ given by

µi =


a + Bξi

ξi


and Σ =


BΣxB⊤

+ Σq + Σe BΣx

ΣxB⊤ Σx + Σu


. (5)

Therefore, if Σx = 0 (where 0 denotes the zero matrix with appropriate dimensions) then the ultrastructural model (1)–(3)
reduces to the functional model. Otherwise, if ξ1 = · · · = ξn = ξx, then the ultrastructural model becomes the classical
multivariate structural model. Gleser [10] considered a functional multivariate model with Σq = 0 and the measurement
error vector (e⊤

i , u
⊤

i )
⊤ having null mean vector and covariance matrix of the form σ 2Σ0, where σ 2 is a parameter to be

estimated and Σ0 is a known matrix. Anemiya and Fuller [1] consider this model in an ultrastructural version with the
covariancematrix of themeasurement error replaced by an estimator. As can be seen, themodel considered by these authors
is not nested with our proposal.

It is clear from (5) that the model (1)–(3) considering (4) is not identifiable when, e.g., the normal assumption is
considered. It is only possible to estimate the covariance matrices Var(qi + ei) = Σq + Σe and Var(xi + ui) = Σx + Σu
rather than each of those components separately. However, if the matrices Σe and Σu are assumed to be known, the model
becomes identifiable. Knowledge of these covariance matrices will then be one of the assumptions considered. In addition,
to derive the main results of this paper, we assume that Σq is a positive definite matrix and that the following assumptions
hold:

(A1) there exists a p2 × 1 vector ξ and a p2 × p2 matrix Σξ such that Σx + Σξ is positive definite,
√
n (ξ̄ − ξ) → 0 and

√
n (Sξ − Σξ ) → 0,

as n → ∞, where ξ̄ = n−1 ∑n
k=1 ξk and Sξ = n−1 ∑n

k=1(ξk − ξ̄)(ξk − ξ̄)⊤;
(A2) Var[vech(r1r⊤

1 )] < ∞.

Here, for any p × q matrix C with columns c1, . . . , cq, vec(C) is the (pq) × 1 vector defined by vec(C) = (c⊤

1 , . . . , c
⊤
q )

⊤.
Moreover, when p = q and C = C⊤, vech(C) denotes the [p(p + 1)/2] × 1 vector that contains all the diagonal and
(different) subdiagonal elements of C . Furthermore, in this last case, there exists a p2 × p(p + 1)/2 duplication matrix D
such that vec(C) = Dvech(C), or vech(C) = D+vec(C), where D+

= (D⊤D)−1D⊤ is the Moore–Penrose inverse of D. We
also use the notation Nd (µ,Σ) to represent a d-variate normal distribution with mean µ and covariance matrix Σ.

Conditions (A1)–(A2) are needed to guarantee convergence in probability and distribution of the estimators and the
existence of their limiting covariance matrix. They are conditions usually stated in the ultrastructural measurement error
literature, as can be seen, for example, in [5,9,3,2].

This paper is organized as follows. Section 2 establishes the main results of the present article. It presents consistent
estimators and, moreover, the joint asymptotic distribution of the line parameter estimators. Section 3 applies the results
to the elliptical class of distributions which specializes to results previously derived in the literature.
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2. Main results

In this section, the main concern is to develop consistent estimators for the parameters of the novel model defined
by (1)–(4). Furthermore, it is also of interest to study their asymptotic distribution. As mentioned in the Introduction, the
inconsistency of themaximum-likelihood estimators for the univariate functional casewithout equation error iswell known
(see, for instance, [9,5]). However, alternative consistent estimators can be proposed. Schneeweiss [18] obtains the limiting
distribution of consistent estimators in a multiple regression model considering the measurement error covariance matrix
of the independent variables to be known. The author makes no use of normality assumptions for the error terms. Thus,
following this line of thought, Proposition 1 presents consistent estimators for the model parameters in the multivariate
context. On the other hand, Proposition 2 establishes the asymptotic distribution for the estimator of θ = (a⊤, vec(B)⊤)⊤.
These results are based on the asymptotic behavior of the sample mean vector and covariance matrix of the observable
vectors Z1, . . . , Zn, which are given by

Z̄ =


Ȳ
X̄


and SZ =


SY SYX
SXY SX


,

where X̄ = n−1 ∑n
i=1 Xi, Ȳ = n−1 ∑n

i=1 Yi, SX = n−1 ∑n
i=1(Xi − X̄)Xi

⊤, SY = n−1 ∑n
i=1(Yi − Ȳ )Yi

⊤ and SXY = n−1 ∑n
i=1

(Xi − X̄)Yi
⊤. The asymptotic properties of Z̄ and SZ are established next in Lemma 1, but they appear in [3]. For this, we note

first that the assumptions considered in Section 1 imply that the random vectors εi = Zi−µi, i = 1, . . . , n, are independent
and identically distributed (i.i.d.) for all n ≥ 1, and that they have mean vector 0 (the null vector) and covariance matrix Σ,
where µi and Σ are given in (5). Also, by (A1) we have that ξ̄ → ξ and Sξ → Σξ as n → ∞. Hence, for µ̄ = n−1 ∑n

i=1 µi
and Sµ = n−1 ∑n

i=1(µi − µ̄)(µi − µ̄)⊤ we obtain, as n → ∞, that

µ̄ → µ =


a + Bξ

ξ


and Sµ → Σµ =


BΣξB⊤ BΣξ

ΣξB⊤ Σξ


. (6)

Moreover, ε1 = Z1 − µ1 = Ar1, where

A =


Ip1 Ip1 0 B
0 0 Ip2 Ip2


, (7)

where Ip is the (p × p) identity matrix. Under the assumption that the distribution of r1 is symmetric we have that
E[ε1vech(ε1ε

⊤

1 )
⊤
] = 0 andΛ = Var[vech(ε1ε

⊤

1 )] = Var[vech(Ar1r⊤

1 A⊤)] = D+(A⊗A)Λr(A⊗A)⊤D+⊤
< ∞ since by (A2)

Λr = Var[vec(r1r⊤

1 )] < ∞, whereD+
= (D⊤D)−1D⊤, withD being the [d2 ×d(d+1)/2] corresponding duplicationmatrix,

d = p1 + p2 and the symbol ⊗ indicates the Kronecker product. Thus, the results presented next follow from Theorem 2.1
in [3].

Lemma 1. Let Zi = (Y⊤

i ,X
⊤

i )
⊤, i = 1, . . . , n, be the observable random vector for the model (1)–(3), so that, by assumption,

the random vectors Zi − µi, i = 1, . . . , n, are independent, and identically and symmetrically distributed, with mean vector 0
and covariance matrix Σ, where µi and Σ are given in (5). Then:

(i) under (A1) it follows that, as n → ∞,

Z̄ =


Ȳ
X̄


a.s.

−→ µ =


a + Bξ

ξ


and

SZ =


SY SYX
SXY SX


a.s.

−→ Σ + Σµ =


BΓ x+ξB⊤

+ Σq + Σe BΓ x+ξ

Γ x+ξB⊤ Γ x+ξ + Σu


where Γ x+ξ = Σx + Σξ ;

(ii) under (A1)–(A2) it follows that, as n → ∞,
√
n(Z̄ − µ)

d
−→ Nd (0,Σ)

and
√
n vech(SZ − Σ − Σµ)

d
−→ Nd(d+1)/2


0,Λ + Λµ


and they are asymptotically independent, where

Λ = D+
{(A ⊗ A)Λr(A ⊗ A)⊤}D+⊤ and Λµ = 4D+(Σ ⊗ Σµ)D+⊤

, (8)

where the matrix A is defined in (7).
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Remark. The version of this lemma in [3] is proved under the assumption that Σξ is positive definite. However, the lemma
is still valid under the less restrictive condition that Σx + Σξ is positive definite, as can be seen in [10], where this last
condition is considered.

Notice that the above asymptotic distributions depend on the distribution of ri only through the quantities Σr (see
Eq. (4)) and Λr = Var[vec(r1r⊤

1 )]. In the next section we give some examples related to the class of the elliptical distri-
butions. We present next the main results of the paper.

Proposition 1. Consider model (1)–(3)with the assumption (4). Suppose also that the covariancematricesΣe andΣu are known
and that condition (A1) holds. Then, parameters a, B, ξ, Σq and Γ x+ξ are consistently estimated by

a = Ȳ −BX̄,B = SYX (SX − Σu)
−1,ξ = X̄,Σq = SY − SYX (SX − Σu)

−1SXY − Σe,Γ x+ξ = SX − Σu.

Considering part (i) of Lemma 1, the proof of Proposition 1 is straightforward, since all of these estimators are continuous
functions of the sample mean vector Z̄ and of the sample covariance matrix SZ .

Proposition 2. In addition, if we consider condition (A2) in Proposition 1, then the asymptotic distribution of θ = (a⊤,
vec(B)⊤)⊤ is given by √

n(a − a)
√
nvec(B − B)


d

−→ Np1+p1p2


0
0


,


Φa ΦaB
ΦBa ΦB


,

where

Φa = PΣP⊤
+ (ξ⊤

⊗ Ip1)ΦB(ξ ⊗ Ip1),

ΦaB = Φ⊤

Ba = −(ξ⊤
⊗ Ip1)ΦB,

ΦB = QD(Λ + Λµ)D⊤Q⊤,

with

P = (Ip1 ,−B), Q = (Γ −1
x+ξ ⊗ Ip1)(H2 ⊗ H1)− (Γ −1

x+ξ ⊗ B)(H2 ⊗ H2),

Λ + Λµ defined in (8), H1 = (Ip1 , 0) and H2 = (0, Ip2)matrices such that SYX = H1SZH⊤

2 and SX = H2SZH⊤

2 .

Proof. First, after some algebra, we can write

a − a = P(Z̄ − µ)− (ξ⊤
⊗ Ip1)vec(B − B). (9)

Moreover, since SYX = H1SZH⊤

2 and SX = H2SZH⊤

2 , where H1 = (Ip1 , 0) and H2 = (0, Ip2), we have thatB = B(SZ ) =

H1SZH⊤

2 (H2SZH⊤

2 − Σu)
−1 is a continuous function of the sample covariance matrix SZ . We define ak as the kth element of

vech(SZ ). Hence, by applying the matrix derivatives methodology (see, e.g., [13,16]) we have that

∂B
∂ak

= H1


∂SZ
∂ak


H⊤

2 (SX − Σu)
−1

− SYX (SX − Σu)
−1H2


∂SZ
∂ak


H⊤

2 (SX − Σu)
−1,

leading to

∂vec(B)
∂ak

= [((SX − Σu)
−1H2)⊗ H1]D

∂vech(SZ )
∂ak

− [((SX − Σu)
−1H2)⊗ (SYX (SX − Σu)

−1H2)]D
∂vech(SZ )
∂ak

.

That is, the Jacobian at Σ + Σµ reduces to

∂{vec(B)}
∂{vech(SZ )⊤}


SZ=Σ+Σµ

= (Γ −1
x+ξ ⊗ Ip1)(H2 ⊗ H1)D − (Γ −1

x+ξ ⊗ B)(H2 ⊗ H2)D = QD,

where Q = (Γ −1
x+ξ ⊗ Ip1)(H2 ⊗H1)− (Γ

−1
x+ξ ⊗B)(H2 ⊗H2). Therefore, by the delta method we have that

√
n vec(B−B) d

−→

Np1p2(0,ΦB)where

ΦB = QD(Λ + Λµ)D⊤Q⊤.
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Moreover, from Lemma 1(ii) it follows that
√
n (Z̄ − µ) and

√
n vec(B − B) are asymptotically independent, with

√
n (Z̄ − µ)

d
−→ Nd (0,Σ); thus, the proof follows by noting from (9) that √
n(a − a)

√
nvec(B − B)


=

P −(ξ⊤
⊗ Ip1)

0 Ip1p2

  √
n(Z̄ − µ)

√
nvec(B − B)


. �

Notice that for the structural case, we have ξi = ξ for all i = 1, . . . , n and Σξ = 0; then Γ x+ξ = Σx and Λµ = 0. For the
functional case, we have Σx = 0; then Γ x+ξ = Σξ . Defining

Φ =


Φa ΦaB
ΦBa ΦB


,

then it may be consistently estimated by replacing the unknown parameters with their consistent estimators given in
Proposition 1. The ith element ofθ is asymptotically normally distributed with standard errors given by the square root
of the ith diagonal element of Φ divided by

√
n. Thus, we can formulate statistical hypotheses for the individual coefficients

or, more generally, for contrasts of the form

H0 : Cθ = d Versus H1 : Cθ ≠ d,

which can be tested by using Wald-type statistics conveniently expressed as

n(Cθ − d)⊤

CΦC⊤

−1
(Cθ − d). (10)

Under the null hypotheses, (10) has a limit χ2(m) distribution where m = rank(C) corresponds to the number of linear
restrictions.

It is important to remark that the estimation of ΦB may involve plugging in estimators for both Σx and Σξ . As it is not
possible to estimate these quantities separately, one must choose working with the structural (Σξ = 0) or the functional
(Σx = 0) version. We present one example with this characteristic in the next section.

3. The elliptical class of distributions

We shall use a definition for an elliptical distribution that is the same as the one presented in [7]. That is, we say that
an s × 1 random vector Y has a multivariate elliptical distribution with location parameter µ and a positive definite scale
matrix Ψ if its density function exists and is given by

fY (y) = |Ψ |
−1/2g


(y − µ)⊤Ψ−1(y − µ)


, (11)

where g : R → [0,∞) is the density generator and it is such that


∞

0 u
s
2 −1g(u) < ∞.We use the notation Y ∼ Els(µ,Ψ , g).

It is possible to show that the characteristic function of Y is given by ψ(t) = E(exp(it⊤Y )) = exp(it⊤µ)ϕ(t⊤Ψ t), where
t ∈ Rs and ϕ : [0,∞) → R. Then, if ϕ is twice differentiable at zero, we have that E(Y ) = µ and Var(Y ) = δΨ , where
δ = −2ϕ′(0). A detailed description of the elliptical multivariate class given in (11) can be found in [7].

For the general elliptical situation, we consider two cases.

Case 1: Let ri
i.i.d.
∼ El2d(0,Ψ , g); then Var(r1) = δΨ = Σr . Since Z1 − µ1 = Ar1, we have that Z1 − µ1 ∼ Eld(0,AΨA⊤, g),

where Var(Z1) = δAΨA⊤
= Σ. As mentioned before, the asymptotic covariance matrix of

√
n(a − a, vec(B − B)) just

depends on r1, only through Σr and Λr . Therefore, following [3] (see page 209, Eq. 2.3) and by using matrix properties, we
have that

Λr = Var[vec(r1r⊤

1 )] = (1 + κ)(I4d2 + K2d,2d)(Σr ⊗ Σr)+ κvec(Σr)vec(Σr)
⊤,

where Ks1,s2 is a commutation matrix such that for the s1-vector a and the s2-vector b,Ks1,s2(b ⊗ a) = (a ⊗ b) and κ =

ϕ′′(0)/[ϕ′(0)]2−1 is the kurtosis parameter assumed to be known. According to Lemma4.1 in [2], the following relationships
hold: δ = E[U/(2d)] and δ2(κ + 1) = E{U2/[4d(d + 1)]}, where U has the same distribution as r⊤

1 Ψ−1r1.
The following example illustrates Case 1 in the context of the simple linear regression model with measurement errors.

Example 1. Let’s consider the univariate measurement error model, that is, when p1 = p2 = 1,

yi = a + bxi + qi, Yi = yi + ei and Xi = xi + ui

with ri = (qi, ei, ui, (xi − ξi))
⊤

∼ El4(0,Ψ , g), where Var(ri) = δΨ = diag(σ 2
q , σ

2
e , σ

2
u , σ

2
x ). Define the sample moments

SXY =
∑n

i=1(Xi − X̄)Yi/n, SX =
∑n

i=1(Xi − X̄)Xi/n, Ȳ =
∑n

i=1 Yi/n and X̄ =
∑n

i=1 Xi/n. Then, under the suppositions (A1)
and (A2),b = SYX/(SX − σ 2

u ) is a consistent estimator for b and
√
n(b − b)

d
−→ N1 (0, φb)
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where

φb =
(3κ + 2)b2σ 4

u + (κ + 1)[σ 2
u (b

2σ 2
x + σ 2

q + σ 2
e )+ σ 2

x (σ
2
q + σ 2

e )] + σ 2
ξ (b

2σ 2
u + σ 2

q + σ 2
e )

(σ 2
x + σ 2

ξ )
2

.

The asymptotic variance φb is computed by specializing the matrices Q ,D,Λ and Λµ of Proposition 2 under p1 = p2 = 1
and the additional supposition ri ∼ El4(0,Ψ , g). Taking σ 2

e = 0 we get the same result as in Theorem 3.3 of [3]; in addition,
if σ 2

e = κ = 0 we obtain the same results as in [5]. In this example, when κ ≠ 0, the estimation of the asymptotic variance
φb depends on both σ 2

x and σ 2
ξ , so the user must decide which approach to use: functional or structural.

Case 2: Suppose that qi
i.i.d.
∼ Elp1(0,Ψ q, gq), ei

i.i.d.
∼ Elp1(0,Ψ e, ge), ui

i.i.d.
∼ Elp2(0,Ψu, gu) and vi = xi−ξi

i.i.d.
∼ Elp2(0,Ψ x, gx) are

independent random vectors; then Var(ri) = Σr = diag(δqΨ q, δeΨ e, δuΨ u, δxΨ x), where δq, δe, δu and δx depend on their
characteristic functions, respectively (as defined previously). Wemust compute Var(vec(r1r⊤

1 )) = Var(r1 ⊗ r1). Notice that
there exists a matrix J such that (r1 ⊗ r1) = Jw, where

w = (w⊤

1 ,w
⊤

2 ,w
⊤

3 ,w
⊤

4 ,w
⊤

5 ,w
⊤

6 ,w
⊤

7 )
⊤

withw⊤

1 = (q⊤

1 ⊗q⊤

1 , e
⊤

1 ⊗e⊤

1 , u
⊤

1 ⊗u⊤

1 , v
⊤

1 ⊗v⊤

1 )
⊤,w2 = (e1⊗q1),w3 = (u1⊗q1),w4 = (v1⊗q1),w5 = (u1⊗e1),w6 =

(v1 ⊗ e1),w7 = (v1 ⊗ u1). Then, Var(r1 ⊗ r1) = JVar(w)J⊤, where
Var(w) = diag(Σw1 ,Σe,q,Σu,q,Σv,q,Σu,e,Σv,e,Σv,u)

with Σw1 = diag(Λq,Λe,Λu,Λx),Σa,b = Σa ⊗ Σb,

Λa = (1 + κa)(Ip2a + Kpa,pa)(Σa ⊗ Σa)+ κavec(Σa)vec(Σa)
⊤,

pa being the dimension of the generic vector a, κa the kurtosis parameter of a and Σa the variance matrix of a for
a = q, e, u, x.

The following example illustrates Case 2 in the context of the simple linear regression model with measurement error.

Example 2. Let’s consider the same model as in Example 1, with ri = (qi, ei, ui, (xi − ξi))
⊤ where (I) qi

i.i.d.
∼ El1(0, ψq, gq),

(II) ei
i.i.d.
∼ El1(0, ψe, ge), (III) ui

i.i.d.
∼ El1(0, ψu, gu) and (IV) vi = (xi − ξi)

i.i.d.
∼ El1(0, ψx, gx) are independent random variables.

Consider the same sample moments as were defined in the previous example. Then,b = SYX/(SX − σ 2
u ) is also a consistent

estimator for b and, under the suppositions (A1) and (A2) together with (I)–(IV), we have
√
n(b − b)

d
−→ N1 (0, φb)

where

φb =
(3κu + 2)b2σ 4

u + (σ 2
e + σ 2

q )σ
2
u + (b2σ 2

u + σ 2
q + σ 2

e )(σ
2
ξ + σ 2

x )

(σ 2
x + σ 2

ξ )
2

.

The asymptotic variance φb is computed by specializing the matrices Q ,D,Λ and Λµ of Proposition 2, under p1 = p2 = 1
and the additional suppositions (I)–(IV). Notice that, when qi, ei, ui and xi are independent random variables, the asymptotic
variance ofb just depends on the distribution of ui. Taking σ 2

e = 0 we obtain φb = {(3κu + 2)b2σ 4
u + σ 2

q σ
2
u + (b2σ 2

u +

σ 2
q )(σ

2
x +σ 2

ξ )}/(σ
2
x +σ 2

ξ )
2; in addition, if σ 2

e = κu = 0we attain φb = {2b2σ 4
u +σ 2

q σ
2
u + (b2σ 2

u +σ 2
q )(σ

2
x +σ 2

ξ )}/(σ
2
x +σ 2

ξ )
2

which is the very same asymptotic variance as was derived in [5].

In general, Zografos [21] showed that, if z ∼ El2d(0,Ψ , g), then the kurtosis parameter is given by

κ =
πd


∞

0 wd+1g(w)dw
4d(d + 1)Γ (d)δ2

− 1

where δ was defined previously. Then, assumption (A2) is always true under the elliptical class of distributions if ϕ is twice
differentiable at zero, such that ϕ′(0) ≠ 0 and


∞

0 wd+1g(w)dw < ∞.

Acknowledgments

We gratefully acknowledge helpful suggestions from two anonymous referees and important comments from the
associate editor. Grants from FAPESP and CNPq (Brazil) and FONDECYT 1085241 (Chile) are also acknowledged.

References

[1] Y. Anemiya, W.A. Fuller, Estimation for the multivariate errors-in-variables model with estimated error covariance matrix, The Annals of Statistics 12
(1984) 497–509.

[2] R.B. Arellano-Valle, H. Bolfarine, L. Gasco, Measurement error models with nonconstant covariance matrix, Journal of Multivariate Analysis 82 (2002)
395–415.

[3] R.B. Arellano-Valle, H. Bolfarine, R. Vilca-Labra, Ultrastructural elliptical model, The Canadian Journal of Statistics 24 (1996) 207–216.



392 A.G. Patriota et al. / Journal of Multivariate Analysis 102 (2011) 386–392

[4] N.N. Chan, T.K. Max, Estimation of multivariate linear functional relationships, Biometrika 70 (1983) 263–267.
[5] C.L. Cheng, J.W. Van Ness, On the unreplicated ultrastructural model, Biometrika 78 (1991) 442–445.
[6] P.F. Dahm, W.A. Fuller, Generalized least squares estimation of the functional multivariate linear errors-in-variables model, Journal of Multivariate

Analysis 19 (1986) 132–141.
[7] K.T. Fang, S. Kotz, K.W. Ng, Symmetric Multivariate and Related Distributions, Chapman and Hall, London, 1990.
[8] A. Fujita, A.G. Patriota, J.R. Sato, S. Miyano, The impact of measurement errors in the identification of regulatory networks, BMC Bioinformatics 10

(2009) 412.
[9] W. Fuller, Measurement Error Models, Wiley, Chichester, 1987.

[10] L.J. Gleser, Estimation in a multivariate ‘‘errors in variables’’ regression model: large sample results, The Annals of Statistics 09 (1981) 24–44.
[11] J.D. Healy, Maximum likelihood estimation of a multivariate linear functional relationship, Journal of Multivariate Analysis 10 (1980) 243–251.
[12] B.C. Kelly, Some aspects of measurement error in linear regression of astronomical data, The Astrophysical Journal 665 (2007) 1489–1506.
[13] T. Kollo, D. von Rosen, Advanced Multivariate Statistics with Matrices, in: Mathematics and its Applications, Springer, Dordrecht, New York, 2005.
[14] S.B. Kulathinal, K. Kuulasmaa, D. Gasbarra, Estimation of an errors-in-variables regression model when the variances of the measurement error vary

between the observations, Statistics in Medicine 21 (2002) 1089–1101.
[15] E.L. Lehmann, G. Casella, Theory of Point Estimation, 2nd ed., Springer-Verlag, New York, 1998.
[16] J.R. Magnus, H. Neudecker, Matrix Differential Calculus with Applications in Statistics and Econometrics, third ed., Wiley, Chichester, 2007.
[17] A.G. Patriota, H. Bolfarine, M. de Castro, A heteroscedastic structural errors-in-variables model with equation error, Statistical Methodology 6 (2009)

408–423.
[18] H. Schneeweiss, Consistent estimation of a regression with errors in the variables, Metrika 23 (1976) 101–115.
[19] C.M. Theobald, J.R. Mallison, Comparative calibration, linear structural relationships and congeneric measurements, Biometrics 34 (1978) 39–45.
[20] M. Xiong, J. Li, X. Fang, Identification of genetic networks, Genetics 166 (2004) 1037–1052.
[21] K. Zografos, On Mardia’s and Song’s measures of kurtosis in elliptical distributions, Journal of Multivariate Analysis 99 (2008) 858–879.


	A multivariate ultrastructural errors-in-variables model with equation error
	Introduction
	Main results
	The elliptical class of distributions
	Acknowledgments
	References


