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through the determination of the central non-isotropic configuration density. Finally, a
relationship between the determinant and the permanent of a matrix is obtained.
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1. Introduction

Determinants and their properties have been discussed quite extensively in the literature. GottfriedWilhelm von Leibniz
set the basis for their study around 1683, but some historians place the origin of the concept in ancient China and Japan,
through its application in systems of linear equations. Since then, many works discussing its computation, properties and
applications to many fields have been published.

Permanents are newer relative to determinants, and Augustin Louis Cauchy was the first to discuss the subject in 1812.
This laid the foundation for an interesting field of study, with plenty of open problems still remaining with regard to its
connection to determinants and its computation and properties. At present, no formula exists that expresses the permanent
in terms of the determinant. The fact that the permanent does not share any classical algorithm with the determinant
shows that their connection is more complex than it would appear superficially. Some modern aspects and applications
of permanents are detailed in the elaborate review article by Balakrishnan [1] and the references contained therein.

The formal definition of the determinant of a k × kmatrix A = (ai,j) is given by

|A| =


σ∈Sk

sgn(σ )

k
i=1

ai,σ (i), (1)

where the summation runs over all the permutations σ of 1, 2, . . . , k. Here, sgn(σ ) denotes the sign of σ .

∗ Corresponding author.
E-mail address: gmfarias@gmail.com (G. González-Farías).

0047-259X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2012.07.008

http://dx.doi.org/10.1016/j.jmva.2012.07.008
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:gmfarias@gmail.com
http://dx.doi.org/10.1016/j.jmva.2012.07.008


30 F.J. Caro-Lopera et al. / Journal of Multivariate Analysis 114 (2013) 29–39

On the other hand, the definition of the permanent of a k × k matrix A = (ai,j) is obtained by removing the signs in the
definition of the determinant, and is simply given by

[A] =


σ∈Sk

k
i=1

ai,σ (i), (2)

where the summation once again runs over all the permutations σ of 1, 2, . . . , k.
Both definitions seem easy from the computational viewpoint, but the operations with subindices make their compu-

tation on higher dimensions a rather hard task. In fact, an explicit formula avoiding permutations, elementary operations,
minors and factorizations, seems to be unavailable until now.

These days, modern computing technology can use existing definitions and algorithms to compute |A| and [A] quickly
and efficiently. However, from a theoretical viewpoint, it is of interest to propose representations for |A| and [A] in terms
of the matrix A, instead of the usual representation in terms of the elements ai,j or submatrices. So, some functions fd and fp
such that

|A| = fd(A)

and

[A] = fg(A),

need to be developed, instead of the classical approach of finding functions gd and gp such that |A| = gd(aij) and [A] = gp(aij).
Such representations would enable matrix transformations and facilitate developments that may not be possible if an
element-wise representationwas used instead. This is analogous to developments inmatrix-variate distribution theory: the
representation of the matrix-variate normal distribution in terms of the original randommatrix, enabling the development
of new results onWishart, linearmodels,matrix-transformations, theory of integration, and Jacobians,would not be possible
through work based on kernels expressed in terms of the elements of the randommatrix.

From a different point of view, matrix polynomials such as determinants and traces play important roles in elliptical
random matrix theory. However, most of the published work involves generator functions in terms of traces. A few
distributions try tomix traces and determinants in the corresponding density, but a general theory of elliptical distributions
indexed by kernels depending on determinants is unavailable until now. Such applications are clearly important, for
example, in the statistical theory of shape.

In this paper, some solutions are provided to the problems described above. In Section 2, a new expansion for the
determinant as a function of powers of traces, and a formula for integer powers of a determinant are presented. Both
expressions are simplified for the case of positive definite matrices, and are expanded in terms of zonal polynomials.
Section 3 uses these formulas to establish a connection between the determinant and the permanent. Section 4 applies
the formulas for powers of determinants to randommatrix theory based on elliptical distributions with kernels that depend
on determinants. Some new integrals, similar to those given in the case of traces by Herz [12], are also derived. Finally, an
application to statistical shape theory is discussed by deriving the central non-isotropic configuration density in terms of
zonal polynomials.

2. The determinant

This section provides a function fd for the determinant of a k × k matrix A, such that

|A| = fd(tr A, k).

With regard to the problem described earlier in Section 1, some approaches involving order partitions and arrays have
been attempted; see, for example [9]. However, this could also be achieved by the classical theory of symmetric functions;
see, for example, [16].

For presenting themain result of this section, let κ = (kνk , (k−1)νk−1 , . . . , 2ν2 , 1ν1) be an ordered partition of the natural
number k consisting of ν1 ones, ν2 twos, and so and on, which will be written as κ = (pνk

k , pνk−1
k−1 , . . . , pν2

2 , pν1
1 ), pj = j, j =

1, 2, . . . , k.We should alsowriteκ in the conventionalway as usual, i.e.,κ = (k1, k2, . . . , kν), where k1 ≥ k2 ≥ · · · ≥ kν ≥ 1
and ν =

k
i=1 νi is the number of parts of κ . Note that

k
i=1 piνi =

ν
i=1 ki = k. Recall that the partitions τ = (t1, t2, . . .)

and λ = (l1, l2, . . .) of k are lexicographically ordered (denoted by τ > λ) if tj > lj for the first index j for which the parts
are unequal. Then, we have the following theorem.

Theorem 1. The determinant of a k × k matrix A is given by

|A| =


κ

(−1)k+ν
k

j=1
(j − 1)!νj

k
i=1

ki!νi!

k
i=1

(tr Api)νi , (3)
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where the summation runs over all ordered partitions κ of the natural number k, denoted jointly by κ = (pνk
k , pνk−1

k−1 , . . . ,

pν2
2 , pν1

1 ) and κ = (k1, k2, . . . , kν), with ν =
k

i=1 νi and pj = j, j = 1, 2, . . . , k.

Proof. Here, we present a proof based on symmetric function theory, which is a shorter approach than the one used by
González-Farías and Caro-Lopera [9] through C-arrays.

The determinant |A| can be considered as the skew symmetrization of the lower monomial symmetric functionM1k(A);
see, for example, [16, p. 40]. But, k!M1k is the augmented symmetric function [1k

] defined by David and Kendall [3] and it
can be expressed in terms of products of power sums (see [4]), which, after some simplification, is the expansion presented
in (3). �

Next, we present the expressions of |A| for a few cases, and for simplicity, we denote
k

i=1(tr A
pi)νi by (kνk , (k − 1)νk−1 ,

. . . , 2ν2 , 1ν1), and avoid the fractions by listing k!|A|:

1!|A| = (1),
2!|A| = −(2) + (12),

3!|A| = 2(3) − 3(21) + (13),

4!|A| = −6(4) + 8(31) + 3(22) − 6(212) + (14).

Now, the expression (3) is valid for any matrix, and it gives a direct expansion in terms of the elements of the matrix.
However, for some special matrices, the expression becomes much simpler. For example, consider a positive definite k × k
matrix A, then, as we shall see, |A| can be expressed in terms of the well-known zonal polynomials Cκ(A); see [13]. In this
case, the relation is quite simple through the use of a normalization constant to expressM1k(A) in terms of C1k(A).

Explicitly (see, for example Muirhead (1982)), let Y be an m × m symmetric matrix with latent roots y1, . . . , ym, and
let κ = (k1, . . . , km) be a partition of k into no more than m parts. So, the zonal polynomial Cκ(Y ) is a symmetric and
homogeneous polynomial of degree k in the latent roots of Y , such that the term of the highest weight in Cκ(Y ) is yk11 · · · ykmm ,
which means that for some constant dκ (depending on κ)

Cκ(Y ) = dκ(y
k1
1 · · · ykmm + symmetric terms) + terms of lower weight. (4)

In terms of monomial symmetric functions, we have

Cκ(Y) = dκMκ(Y) +


λ<κ

dλMλ(Y),

where the summation runs over all the lexicographical ordered partitions λ < κ . The coefficient of the highest weight dκ

can be computed for non-degenerate zonal polynomials (Y > 0) in a closed-form given by James [14, Eqs. (5.11), (5.14)].
Then, the remaining coefficients d′

λs of lower partitions can be computed in a recursive way [14].
For the lower ordered partition 1k of k, the above expression reduces to

C1k(Y) = d1k(y
1
1 · · · y1m + symmetric terms),

where y1, . . . , ym are the latent roots of Y. In the special case of a k × k positive definite matrix Y, we just take m = k
and Y = A, with y1, y2, . . . , yk being the latent roots. Then, the monomial symmetric function M1k(A) in the parenthesis
consists of only one summand, since there does not remain any more possible products of the k latent roots given that the
full product is already included, that is,

C1k(A) = d1k(y
1
1 · · · y1k),

where d1k is obtained by taking κ = 1k in [14, Eqs. (5.11), (5.14)]. Then, noting that |A| = y1y2 · · · yk, we have established
the following result.

Corollary 2. If A is a k × k positive definite matrix, then

|A| =

k
i=1

(2 + k − i)!

2kk!2
k−1
i=1

k
j=i+1

(−i + j)
C1k(A), (5)

where C1k(A) is the zonal polynomial indexed by the partition 1k in the k latent roots of A.
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For example, for k = 1, . . . , 4, we have the following:

k = 1 : |A| = C1(A),

k = 2 : |A| =
3
4
C12(A),

k = 3 : |A| =
1
2
C13(A),

k = 4 : |A| =
5
16

C14(A).

Finally, the expansion of |A|
t , for a positive integer t , is obtained through the multinomial theorem. In this regard, first

note that (3) runs over the Nk lexicographically ordered partitions κ of k, say κ1 > κ2 > · · · > κNk . So, let us denote

xl =
(−1)k+ν

k
j=1(j−1)!νjk

i=1 ki!νi!

k
i=1(tr A

pi)νi for the l-th summand of (3), which is associated with the corresponding partition κl

implicit in
k

i=1(tr A
pi)νi . We then have

|A| =


κ

(−1)k+ν
k

j=1
(j − 1)!νj

k
i=1

ki!νi!

k
i=1

(tr Api)νi =

Nk
i=1

xκi .

Thus, we obtain the following theorem.

Theorem 3. For any k × k matrix A, and a positive integer n, we have

|A|
n

=


Nk

i=1 ri=n

n!
Nk
i=1

ri!


1≤t≤Nk

xrtt . (6)

A useful special case is when A > 0, in which case we obtain the following simple consequence of Corollary 2.

Corollary 4. If A is a k × k positive definite matrix, then

|A|
n

=


k

i=1
(2 + k − i)!

2kk!2
k−1
i=1

k
j=i+1

(−i + j)


n

Cnk(A), (7)

where Cnk(A) is the zonal polynomial indexed by the partition nk of nk in the k latent roots of A.

Proof. If A is a k×k positive definitematrix, the n-th power of C1k(A) is trivial. It is expanded in terms of only onemonomial
symmetric function (Mnk(A)) with the maximum possible number of parts k (i.e., there are no monomial symmetric
functions associated with partitions of lower weight, since they exceed the k parts and there are only k latent roots).
Moreover,Mnk(A) consists of only one summand yn1 · · · ynk , since there are no other symmetric terms given that themonomial
already consists of the full product of the k latent roots. Thus,

(C1k(A))n = dn1k(y
n
1 · · · ynk)

= dn1k(y
n
1 · · · ynk + 0 symmetric terms) + 0 terms of lower weight

= Cnk(A),

or

Cnk(A) = dn1k(y
n
1 · · · ynk) = dn1k(y

1
1 · · · y1k)

n
= dn1k |A|

n.

Strictly, takingm = nk in the definition (4) of the zonal polynomials, we have Y to be a nk× nk symmetric matrix of rank k,
with the non-null latent roots being y1, . . . , yk and yk+1 = yk+2 = · · · = ynk = 0. This means that, in the particular case of
nk, any partition λ < nk hasmore than k parts, since each part of nk is n and necessarily the next close lowerweight partition
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(nk−1, (n − 1), 1) must increase the number of parts by one and so the remaining lower partitions will have at least k + 1
parts. Thus, the corresponding monomial symmetric functionsMλ(Y) = 0 for all λ < nk, and consequently we have

Cnk(Y) =


λ≤nk

dλMλ(Y)

= dnkMnk(Y) +


λ<nk

dλMλ(Y)

= dnkMnk(Y) + 0
= dnkMnk(Y)

= dnk(y
n
1 · · · ynk + 0 symmetric terms)

= dnk(y
n
1 · · · ynk)

= dnk(y
1
1 · · · y1k)

n

= dnk |A|
n.

In this case, dnk corresponds to a degenerate case given that Y is not positive definite; then, it cannot be computed using the
results of [14] and must be calculated by the results of [5], resulting in

dnk = dn1k ,

as it must be. �

3. The permanent

First, recall that the SM tables in [3] transform the product of power-sums (S) of weight w in terms of the augmented
symmetric matrix (M). They can be seen as an inferior triangular matrix, which we shall denote by (PSk) := Sk.

In this section, we are interested in the inverse MS tables [3], which can be seen as an upper triangular matrix, denoted
by [PSk] := [M] (the MS tables by David and Kendall [3]), and which simply is the transpose of (PSk)−1

= (Sk)′−1.
Thus, if Sk is the lower triangular SM matrix, then the corresponding upper triangular MS matrix is given by

[Mk] = S′−1
k , (8)

which means that

([k], [k − 1 1], . . . , [1k
])′ = S−1

k ((k), (k − 1 1), . . . , (1k))′, (9)

with both vectors being given in a lexicographical order.
Recall that the last column of [Mk] gives the expansion of the determinant (see the preceding section).
Now, we establish by induction the following lemma.

Lemma 5. Let Nk be the number of lexicographical ordered partitions of k. Then, given the Nk × Nk lower triangular matrix Sk,
its inverse, the lower triangular matrix [Mk]

′
= (xij) satisfies the property that, for each i = 2, 3, . . . ,Nk,

Nk
j=1

xij = 0,

and trivially,
Nk
j=1

xij = 1

for i = 1.

Proof. Recall that Sk is a lower triangularmatrixwith diagonal and first column constituted by ones (the remaining elements
are non-negative integers). So, |Sk| = 1 ≠ 0, and its inverse is a lower triangular matrix with ones in the diagonal and the
remaining entries as integers.

The induction is over the Nk rows of [Mk]
′.

Then, given a Sk, by the definitions of M’s, S’s and symmetric functions, and by the Gauss–Jordan process, it is easy to

see that the first two rows satisfy the above mentioned property; specifically, if Sk =

1 0 · · ·

1 1 · · ·

.

.

.
.
.
.

. . .

, then

 [k]
[k − 1, 1]

.

.

.

 = 1 0 · · ·

−1 1 · · ·

.

.

.
.
.
.

. . .

 (k)
(k − 1)(1)

.

.

.

. Now by elementary row operations, the augmented matrix [Sk INk ] becomes

A a X y
b 1 z 1


,
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where A is the Nk − 1 identity matrix, a and y are (Nk − 1) × 1 vectors of zeros, z is a 1 × (Nk − 1) vector of zeros,
b = (b1, . . . , bNk−1), where bj = sNk,j for j = 1, 2, . . . ,Nk − 1, and X is a (Nk − 1) × (Nk − 1) lower triangular matrix with
ones in the diagonal and the elements below the diagonal are denoted by xi,j. Note that the ones in the diagonal of X follow
from the definition of the S and M functions.

Now, in order to reduce b as a vector of zeros, just multiply the i-th row of the augmented array by −bi, i = 1, 2, . . . ,
Nk − 1, respectively, and add to the last row in order to get the Nk × Nk identity matrix on the left hand side of
the augmented array and the matrix on the right side is the Nk × Nk lower triangular Mk = (xi,j), where xi,j = 0, i < j;
xi,i = 1, i = 1, . . . ,Nk; x1,1 = −sNk,1; the i-th row (i = 2, . . . ,Nk − 1) is −sNk,i(xi,1, xi,2, . . . , xi,i−1, 1); and the last row is
−sNk,1 −

Nk−1
i=2 sNk,ixi,1, − sNk,2 −

Nk−1
i=3 sNk,ixi,2, . . . ,−sNk,Nk−1, 1


.

Assume that the first Nk − 1 rows ofMk satisfy the proposition, namely,

i−1
j=1

xi,j + 1 = 0, i = 2, . . . ,Nk − 1 and
1

j=1

x1,j = 1. (10)

Then, by applying this induction hypothesis and recalling that sNk,1 = 1, we have

Nk
j=1

xNk,j = −sNk,1 −

Nk−1
i=2

sNk,ixi,1 − sNk,2 −

Nk−1
i=3

sNk,ixi,2 − · · · − sNk,Nk−1 + 1

= −sNk,1 − sNk,2(x2,1 + 1) − sNk,3(x3,1 + x3,2 + 1) − · · · − sNk,Nk−1


Nk−2
j=1

xNk−1,j + 1


+ 1

= 0,

as required. Thus, the lemma follows for every Nk. �

With these results and properties, the permanent of a matrix can now be studied.
The definition of the permanent of A in (2) differs from that of the determinant of A in (1) in that the signs of the

permutations are not taken into account. Unlike the determinant, the permanent has no easy geometrical interpretation;
it is mainly used in combinatorics and in treating boson Green’s functions in quantum field theory. The permanent seems
to be more difficult to compute than the determinant. While the determinant can be computed by Gaussian elimination,
whose execution time is bound by polynomial expressions, this and other known polynomial time methods cannot be used
to calculate the permanent. Note that the definition in (2) can be expressed in terms of the Hadamard product as follows.

Now, startingwith the formula (3) for the determinant, asmentioned earlier, the last column ofMk, ((xNk,1 · · · xNk,Nk)
′), is

given by
(−1)k+ν

k
j=1(j−1)!νjk

i=1 ki!νi!
, where the row runs over the lexicographical ordered partitions (k), (k− 1, 1), . . . , (1k); see [4].

Thus, in terms of Lemma 5, we have


κ

(−1)k+ν
k

j=1
(j − 1)!νj

k
i=1

ki!νi!

= 0.

So, if the factor (−1)k+ν is suppressed in the expansion of the determinant, clearly the permanent plus polynomials (P(κ,A))
indexed by other partitions of k are obtained. Only the coefficient of each monomial in the permanent needs to be obtained
now. By a suitable modification to the argument of [4], it can be proved that


κ

k
j=1

(j − 1)!νj

k
i=1

ki!νi!

= 1;

recall that the number of terms in the permanent is k!, the number of permutations of k. Then, we obtain


κ

k
j=1

(j − 1)!νj

k
i=1

ki!νi!

k
i=1

(tr Api)νi =


κ

k
j=1

(j − 1)!νj

k
i=1

ki!νi!

 [A] + P(κ,A)

= (1)[A] + P(κ,A),

arriving finally with the following theorem.
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Theorem 6. The permanent [A] of the k× k matrix A is the polynomial constituted by monomials indexed by the lower partition
1k with coefficient 1 in the expansion of


κ

k
j=1

(j − 1)!νj

k
i=1

ki!νi!

k
i=1

(tr Api)νi , (11)

where the summation runs over all ordered partitions κ of the natural number k, denoted jointly by κ = (pνk
k , pνk−1

k−1 , . . . ,

pν2
2 , pν1

1 ) and κ = (k1, k2, . . . , kν), with pj = j, j = 1, 2, . . . , k.

Some examples of this result are as follows:

(1) k = 1: trivially, |A| = |a| =
1
1! (1(tr (A1))1) = a and 1

1! (1(tr (A1))1) = a, and therefore [A] = a;
(2) k = 2:

|A| =

a b
c d

 =
1
2!

(−(tr (A2))1 + (tr (A))2) = ad − bc

and without negative factors,
1
2!

((tr (A2))1 + (tr (A))2) = (a2 + d2) + 1(bc + ad),

and therefore

[A] = ad + bc;

(3) k = 3:

|A| =

a b c
d e f
g h i

 =
1
3!

{2(tr (A3))1 − 3(tr (A2))1(tr (A))1 + (tr (A))3}

= −ceg + bfg + cdh − afh − bdi + aei,

and removing the negative signs, we get
1
3!

{2(tr (A3))1 + 3(tr (A2))1(tr (A))1 + (tr (A))3}

= (a3 + e3 + i3) + (a2e + ae2 + a2i + e2i + ai2 + ei2) + 2(abd + bde + acg + efh + cgi + fhi)
+ 1(ceg + bfg + cdh + afh + bdi + aei),

and therefore

[A] = ceg + bfg + cdh + afh + bdi + aei;

(4) k = 4:

|A| =


a b c d
e f g h
i j k l
m n o p

 =
1
4!

{−6tr (A4) + 8tr (A3)tr (A) + 3(tr A2)2 − 6tr (A2)tr (A)2 + tr (A)4}

= dgjm − chjm − dfkm + bhkm + cflm − bglm − dgin + chin + dekn − ahkn − celn
+ agln + dfio − bhio − dejo + ahjo + belo − aflo − cfip + bgip + cejp − agjp − bekp + afkp.

Without negative signs, we have
1
4!

{6tr (A4) + 8tr (A3)tr (A) + 3(tr A2)2 + 6tr (A2)tr (A)2 + tr (A)4}

= (a4 + f 4 + k4 + p4) + (a3f + af 3 + a3k + f 3k + ak3 + fk3 + a3p + f 3p + k3p + ap3 + fp3 + kp3)
+ (b2e2 + a2f 2 + c2i2 + g2j2 + a2k2 + f 2k2 + d2m2

+ h2n2
+ l2o2 + a2p2 + f 2p2 + k2p2)

+ 3(a2be + bef 2 + a2ci + f 2gj + cik2 + gjk2 + a2dm + f 2hn + k2lo + dmp2 + hnp2 + lop2)
+ (cf 2i + a2gj + a2fk + af 2k + +bek2 + afk2 + df 2m + dk2m + a2hn + hk2n + a2lo + f 2lo
+ a2fp + af 2p + a2kp + f 2kp + ak2p + fk2p + bep2 + afp2 + cip2 + gjp2 + akp2 + fkp2)
+ 4(abef + acik + acik + fgjk + admp + fhnp + klop) + 2(bcei + acfi + abgi + bfgi
+ acej + cefj + acip + aclm + begj + afgj + cgij + abek + befkcfik + cikp + bgik
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+ cejk + agjk + bdem + adfm + abhm + bfhm + cdim + adkm + cklm + aden + defn
+ behn + afhn + ghjn + fhkn + fgln + gkln + dhmn + adio + fhjo + diko + hjko + cilo
+ gjlo + aklo + fklo + dlmo + hlno + abep + befp + fgjp + gjkp + dfmp + bhmp
+ dkmp + clmp + denp + ahnp + hknp + glnp + diop + hjop + alop + flop)
+ 1(dgjm + chjm + dfkm + bhkm + cflm + bglm + dgin + chin + dekn + ahkn + celn
+ agln + dfio + bhio + dejo + ahjo + belo + aflo + cfip + bgip + cejp + agjp + bekp + afkp),

and therefore

[A] = dgjm + chjm + dfkm + bhkm + cflm + bglm + dgin + chin + dekn + ahkn + celn
+ agln + dfio + bhio + dejo + ahjo + belo + aflo + cfip + bgip + cejp + agjp + bekp + afkp.

4. Determinantal elliptical distributions

Noncentral elliptical multivariate distributions involve a number of general integrals that need to be determined
depending on the transformations under consideration. Yet, they all stem from the important fact that the elliptically
contoured distribution is characterized by a symmetric function, say, h(U), i.e., h(AB) = h(BA), for any square matrices
A and B. The simplest function is h(tr AB); the zonal polynomials arise naturally and many distributional results have been
developed using them during the last five decades. However, if the function takes the form h(|AB|), no general distributional
results are available in this case in the setting of zonal polynomials.

Here, we develop an application of the expansion of determinants in the context of elliptical distributions. This
would facilitate the development of new kernels which depend on determinants that can be expanded in terms of zonal
polynomials, and the classical integrals over positive definite spaces and orthogonal groups can then be used through this
expansion.

For example, Herz [12] studied the following integral representations:

1F1(a; c;X) =
Γm(c)

Γm(a)Γm(c − a)


0<Y<Im

etr(XY)|Y|
a−(m+1)/2

× |I − Y|
c−a−(m+1)/2(dY) (12)

which is valid for all symmetric X, and Re(a), Re(c), Re(c − a) > 1
2 (m − 1);

2F1(a, b; c;X) =
Γm(c)

Γm(a)Γm(c − a)


0<Y<Im

|I − XY|
−b

|Y|
a−(m+1)/2

× |I − Y|
c−a−(m+1)/2(dY) (13)

which is valid for Re(X) < I, and Re(a), Re(c − a) > 1
2 (m − 1), wherein the multivariate gamma function is defined as

Γm(a) = πm(m−1)/4m
i=1 Γ


a −

1
2 (i − 1)


, with Re(a) > 1

2 (m − 1).
These lead to the well-known Kummer and Euler relations, respectively [12]:

1F1(a; c;X) = etr(X) 1F1(c − a; c; −X), (14)

2F1(a, b; c;X) = |I − X|
−b

2F1(c − a, b; c; −X(I − X)−1)

= |I − X|
c−a−b

2F1(c − a, c − b; c;X). (15)

The extension of (12) via an elliptical model h(tr XY) is possible when a Taylor expansion of the general function in terms
of zonal polynomials is assumed, in which case the matrix generalized Kummer relation is obtained [6].

However, the extension of the Euler relation that substitutes |I − XY| in (13) for any elliptical model h(|I − XY|), or in
fact for any other particular model, is unavailable in the literature. This generalization will be handled here through the use
of zonal determinantal expansion in (5).

First, let Pr be the set of all ordered partitions ρ’s of r; (a)κ , the generalized hypergeometric coefficient associated to
ordered partition κ = (k1, . . . , km) and a complex, be defined as (a)κ =

m
i=1


a −

1
2 (i − 1)


ki
, where (a)k = a(a + 1)

· · · (a + k − 1), (a)0 = 1;


κ

σ


, the generalized binomial coefficient, be defined by Cκ (Im+Y)

Cκ (Im)
=
k

s=0


σ


κ

σ

 Cσ (Y)

Cσ (Im)
, where

the last summation runs over all ordered partitions σ of the integer s (see [17]).

Theorem 7. Let Re(X) < I and Re(a), Re(c − a) > 1
2 (m − 1). Then, we have

0<Y<Im
h(|I − XY|)|Y|

a−(m+1)/2
|I − Y|

c−a−(m+1)/2(dY)

=
Γm(a)Γm(c − a)

Γm(c)

∞
k=0

h(k)(0)
k!


m
i=1

(2 + m − i)!

2mm!
2
m−1
i=1

m
j=i+1

(−i + j)


k

Ckm(I)
km
r=0


ρ∈Pr


(km)

ρ


(−1)km

Cρ(I)
(a)ρ
(c)ρ

Cρ(X). (16)
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Proof. Expanding h(·) in a Taylor series, applying (7), and then using the generalized binomial expansion of [17, p. 267], we
obtain

0<Y<Im
h(|I − XY|)|Y|

a−(m+1)/2
|I − Y|

c−a−(m+1)/2(dY)

=

∞
k=0

h(k)(0)
k!


0<Y<Im

|I − XY|
k
|Y|

a−(m+1)/2
|I − Y|

c−a−(m+1)/2(dY)

=

∞
k=0

h(k)(0)
k!


m
i=1

(2 + m − i)!

2mm!
2
m−1
i=1

m
j=i+1

(−i + j)


k


0<Y<Im

Ckm(I − XY)|Y|
a−(m+1)/2

|I − Y|
c−a−(m+1)/2(dY)

=

∞
k=0

h(k)(0)
k!


m
i=1

(2 + m − i)!

2mm!
2
m−1
i=1

m
j=i+1

(−i + j)


k

Ckm(I)
km
r=0


ρ∈Pr


(km)

ρ



×
(−1)km

Cρ(I)


0<Y<Im

Cρ(XY)|Y|
a−(m+1)/2

|I − Y|
c−a−(m+1)/2(dY).

Now, by using the result of [17, p. 254], the required result is obtained. �

Note that the above expansion can be computed efficiently through the algorithms of [15] and the general expressions for
the k-th derivative of the generator function. Formulas for these derivatives under the classical elliptical models such as
Kotz-type, Person VII, Bessel, and Jensen-logistic are all given in [2].

Another application of the established results arises in the context of shape theory; for example, see [10] (under Gaussian
models) and [2,7] (under elliptical models). Incidentally, all these works are in terms of traces.

First, let X : N × K have a determinantal matrix-variate elliptically contoured distribution if its density with respect to
the Lebesgue measure is given by

fX(X) =
1

|Σ|K/2|Θ|N/2
h
(X − µ)′Σ−1(X − µ)Θ−1

 ,

whereµ : N×K , Σ : N×N, Θ : K ×K , andΣ positive definite (Σ > 0), Θ > 0. The function h : ℜ → [0, ∞) is termed the
generator function, and is such that


∞

0 uNK−1h(u2)du < ∞. In this case, we shall use the notation X ∼ EN×K (µ, Σ, Θ, h).
This class of matrix-variate distributions possessing determinantal kernels defines a number of new densities, including
the Gaussian, Contaminated Gaussian, Pearson type II and type VI, Kotz-type, Jensen-logistic, Power exponential, and Bessel
distributions, among others; they have tails that are heavy or light, and/or distributions with greater or smaller degree of
kurtosis than theGaussianmodel. A list of classical versions, in termsof traceswhich canbe replacedby thenewdistributions
in terms of determinants, can be seen in [8,11].

There are several approaches to statistical shape theory. In this section, we focus on the configuration or affine shape. Let
us consider the following definition from [10]: two figures X : N × K and X1 : N × K have the same configuration, or affine
shape, if X1 = XE + 1Ne′, for some translation e : K × 1 and non-singular matrix E : K × K .

Statistical shape theory compares shapes of objects in the presence of randomness, and so under the assumption that a
figure X, comprising N landmarks in K dimensions, follows a determinantal elliptical distribution X ∼ EN×K (µX, ΣX, Θ, h),
it is of natural interest to remove translation, scaling, and uniform shear fromX, resulting in the determinantal configuration
density of this random figure.

To obtain non-isotropic densities, thematrix transformations proposed by Díaz-García and Caro-Lopera [7] are followed,
i.e., we assume that

X ∼ EN×K (µX, ΣX, Θ, h). (17)

If Θ1/2 is the positive definite square root of the matrix Θ, i.e., Θ = (Θ1/2)2, with Θ1/2
: K × K , and noting that

XΘ−1X′
= X(Θ1/2Θ1/2)−1X′

= XΘ−1/2(XΘ−1/2)′ = ZZ′,

where

Z = XΘ−1/2,
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we then have

Z ∼ EN×K (µZ, ΣX, IK , h)

with µZ = µXΘ−1/2; see [11, p. 20].
The standard starting point in shape theory is thus achieved, where the original landmark matrix is replaced by Z =

XΘ−1/2. Thus, the usual procedure is subsequently pursued by removing from Z, translation, scale, and uniform shear in
order to obtain the configuration of Z (or X) via the affine decomposition (see [2] in the case of kernels in terms of traces).

Thus, the determinantal configuration coordinates are constructed in the three steps indicated in the expression

LXΘ−1/2
= LZ = Y = UE. (18)

The matrix U : (N − 1) × K contains configuration coordinates of X : N × K . Let Y1 : K × K be non-singular and Y2 : q× K ,
with q = N − K − 1 ≥ 1, such that Y = (Y′

1 | Y′

2)
′. Define also U = (I | V′)′, then V = Y2Y−1

1 and E = Y1, where
L : (N − 1) × N is a Helmert sub-matrix.

The following theorem presents the result for the central case.

Theorem 8. Let Y ∼ EN−1×K (0, Σ, I, h), where Σ : N −1×N −1 is a positive definite matrix, 0 is a N −1×K matrix of zeros,
I is a K × K identity matrix, and G : K × K is an arbitrary positive definite matrix. Then, the central determinantal configuration
density is given by

|G|
(q+K)/2ΓK

N−1
2


ΓK
 K+1

2


π−K2/2|Σ|

K
2 ΓK

 K
2


ΓK
N+K

2

 ∞
t=0

h(t) (0)
t!


K

i=1
(2 + K − i)!

2KK !
2
K−1
i=1

K
j=i+1

(−i + j)


t N−1

2


tKN+K

2


tK

CtK (GU′Σ−1U).

Proof. The density of Y is given by

1

|Σ|
K
2
h

|Y′Σ−1Y|


. (19)

Let (F1/2)2 = F > 0 and 0 < F < G for an arbitrary positive definite K × K matrix G. If H ∈ O(K) and E = F1/2H, then for
Y = UF1/2H, we have

(dY) = 2−K
|F|(q−1)/2(dV)(dF)(H′dH), (20)

where q = N − K − 1 (see [2]). If Y = UF1/2H is factorized, then the joint density of U, F and H is

2−K
|F|(q−1)/2

|Σ|
K
2

h

|FU′Σ−1U|


(H′dH)(dF)(dV). (21)

Assuming now that h admits a Taylor expansion, the joint density of U, F and H can be expressed as

2−K
|F|(q−1)/2

|Σ|
K
2

∞
t=0

h(t) (0)
t!

|FU′Σ−1U|
t(H′dH)(dF)(dV).

Now, recall that

(dH) =
1

Vol[O(K)]
(H′dH) =

1
2KπK2/2

ΓK


K
2

 (H′dH), (22)

and so integration with respect to H gives the joint density of F and U as

πK2/2
|F|(q−1)/2

|Σ|
K
2 ΓK

 K
2

 ∞
t=0

h(t) (0)
t!

|FU′Σ−1U|
t(dF)(dV). (23)

Upon using (7), the joint density of F and U finally takes on the form

πK2/2
|F|(q−1)/2

|Σ|
K
2 ΓK

 K
2

 ∞
t=0

h(t) (0)
t!


K

i=1
(2 + K − i)!

2KK !
2
K−1
i=1

K
j=i+1

(−i + j)


t

CtK (FU′Σ−1U)(dF)(dV).
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Let 0 < F < G for an arbitrary positive definite k × k matrix G and define W = G−1/2FG−1/2, so that (dF) = |G|
(K+1)/2(dW)

and 0 < W < IK .
Then, the joint density function ofW and U (given G) has the form

πK2/2
|G|

(q+K)/2
|W|

(q−1)/2

|Σ|
K
2 ΓK

 K
2

 ∞
t=0

h(t) (0)
t!


K

i=1
(2 + K − i)!

2KK !
2
K−1
i=1

K
j=i+1

(−i + j)


t

CtK (WG1/2U′Σ−1UG1/2)(dW)(dV).

Thus, integration over 0 < W < IK gives the central determinantal configuration density as

πK2/2
|G|

(q+K)/2

|Σ|
K
2 ΓK

 K
2

 ∞
t=0

h(t) (0)
t!


K

i=1
(2 + K − i)!

2KK !
2
K−1
i=1

K
j=i+1

(−i + j)


t 

0<W<IK
|W|

(q−1)/2CtK (WG1/2U′Σ−1UG1/2)(dW)(dV)

from which the required result follows by using the result of Muirhead (1982, p. 254). �

Recall that the classical central configuration density (in terms of traces) is invariant under the elliptical family [2], but
the preceding determinantal central configuration density is not invariant, and this can shed some additional insight and
information, which is not apparent in the case of traces.
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