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a b s t r a c t

In various frameworks, to assess the joint distribution of a k-dimensional random vector
X = (X1, . . . , Xk), one selects some putative conditional distributions Q1, . . . ,Qk. Each Qi
is regarded as a possible (or putative) conditional distribution for Xi given (X1, . . . , Xi−1,
Xi+1, . . . , Xk). The Qi are compatible if there is a joint distribution P for X with conditionals
Q1, . . . ,Qk. Three types of compatibility results are given in this paper. First, the Xi are as-
sumed to take values in compact subsets ofR. Second, theQi are supposed to have densities
with respect to reference measures. Third, a stronger form of compatibility is investigated.
The law P with conditionals Q1, . . . ,Qk is requested to belong to some given class P0 of
distributions. Two choices for P0 are considered, that is, P0 = {exchangeable laws} and
P0 = {laws with identical univariate marginals}.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let I be a countable index set and, for each i ∈ I , let Xi be a real random variable. Denote by P the set of all probability
distributions for the process

X = (Xi : i ∈ I).

Also, for each P ∈ P and H ⊂ I (with H ≠ ∅ and H ≠ I), denote by PH the conditional distribution of

(Xi : i ∈ H) given (Xi : i ∈ I \ H) under P.

PH is determined by P (up to P-null sets). In fact, to get PH , the obvious strategy is to first select P ∈ P and then calculate
PH . Sometimes, however, this procedure is reverted. Let H be a class of subsets of I (all different from ∅ and I). One first
selects a collection {QH : H ∈ H} of putative conditional distributions, and then looks for some P ∈ P inducing the QH as
conditional distributions, in the sense that

QH = PH , a.s. with respect to P, for all H ∈ H . (1)

But such a P can fail to exist. Accordingly, a set {QH : H ∈ H} of putative conditional distributions is said to be compatible,
or consistent, if there exists P ∈ P satisfying condition (1). (See Section 2 for formal definitions.)
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An obvious version of the previous definition is the following. Fix P0 ⊂ P . For instance, P0 could be the set of those
P ∈ P which make X exchangeable, or else which are absolutely continuous with respect to some reference measure. A
natural question is whether there is P ∈ P0 with given conditional distributions {QH : H ∈ H}. Thus, a set {QH : H ∈ H} of
putative conditional distributions is P0-compatible if condition (1) holds for some P ∈ P0.

To better frame the problem, we next give three examples where compatibility issues arise.

Example 1 (Gibbs Measures). Think of I as a lattice and of Xi as the spin at site i ∈ I . The equilibrium distribution of a finite
system of statistical physics is generally believed to be the Boltzmann–Gibbs distribution. Thus, when I is finite, one can let

P(dx) = a exp


−b


H⊂I

UH(x)


λ(dx)

where a, b > 0 are constants and λ is a suitable reference measure. Roughly speaking, UH(x) quantifies the energy contri-
bution of the subsystem (Xi : i ∈ H) at point x. This simple scheme breaks down when I is countably infinite. However, for
each finiteH ⊂ I , the Boltzmann–Gibbs distribution can still be attached to (Xi : i ∈ H) conditionally on (Xi : i ∈ I \H). If QH
denotes such Boltzmann–Gibbs distribution, we thus obtain a family {QH : H finite} of putative conditional distributions.
But a law P ∈ P having the QH as conditional distributions can fail to exist. So, it is crucial to decide whether {QH : H finite}
is compatible. See [10].

Example 2 (Gibbs Sampling, Multiple Imputation, Markov Random Fields). Let I = {1, . . . , k} and Hi = {i}. For the Gibbs
sampler to apply, one needs

PHi(·) = P

Xi ∈ · | X1, . . . , Xi−1, Xi+1, . . . , Xk


for all i ∈ I . Usually, the PHi are obtained from a given P ∈ P . But sometimes P is not assessed. Rather, one selects a collection
{QHi : i ∈ I} of putative conditional distributions and use QHi in the place of PHi . Formally, this procedure makes sense only
if {QHi : i ∈ I} is compatible. Essentially the same situation occurs in missing data imputation and spatial data modeling.
Again, P is not explicitly assessed and X = (X1, . . . , Xk) is modeled by some collection {QHi : i ∈ I} of putative conditional
distributions. As a (remarkable) particular case, in Markov random fields, each QHi depends only on (Xj : j ∈ Ni), where Ni
denotes the set of neighbors of i. See [5,6,11,13,16,15] and references therein.

We point out that Gibbs sampling, multiple imputation and spatial data modeling are different statistical issues, but they
share the structure of the putative conditional distributions {QHi : i ∈ I}. From the point of view of compatibility, hence,
they can be unified.

Example 3 (Bayesian Inference). Let X = (X1, . . . , Xn, . . . , Xm). Think of Y = (X1, . . . , Xn) as the data and ofΘ = (Xn+1, . . . ,
Xm) as a random parameter. As usual, a prior is a marginal distribution forΘ , a statistical model a conditional distribution for
Y givenΘ , and a posterior a conditional distribution forΘ given Y . The statistical model, say QY , is supposed to be assigned.
Then, the standard Bayes scheme is to select a prior µ, to obtain the joint distribution of (Y ,Θ), and to calculate (or to
approximate) the posterior. To assessµ is typically very arduous. Sometimes, it may be convenient to avoid the choice ofµ
and to assign directly a putative conditional distribution QΘ , to be viewed as the posterior.

The alternative Bayes scheme sketched above is not unusual. Suppose QΘ is the formal posterior of an improper prior, or
it is obtained by some empirical Bayes method, or else it is a fiducial distribution. In all these cases, QΘ is assessed without
explicitly selecting any (proper) prior. Such a QΘ may look reasonable or not (there are indeed different opinions). But a
basic question is whether QΘ is the actual posterior of QY and some (proper) prior µ, or equivalently, whether QY and QΘ
are compatible.

Compatibility results, if usable, have significant practical implications. In fact, in frameworks such as Examples 1 and
2 (Example 3 is a little more problematic), the statistical procedures based on {QH : H ∈ H} request compatibility. If
{QH : H ∈ H} fails to be compatible, such procedures are questionable, or perhaps they do not make sense at all. In any
case, a preliminary test of compatibility is fundamental.

Example 1 has been largely investigated (see e.g. [10]) while Example 3 reduces to Example 2 with k = 2 by taking X1
and X2 as random vectors of suitable dimensions. Thus, in this paper, we focus on the framework of Example 2.

In the sequel, we let

I = {1, . . . , k} and X = (X1, . . . , Xk)

for some k ≥ 2. We also let Hi = {i} and we write

Qi = Q{i} for i = 1, . . . , k.

Accordingly, Qi is to be regarded as the (putative) conditional distribution of Xi given (X1, . . . , Xi−1, Xi+1, . . . , Xk).
Three different types of compatibility results are provided. Most of them hold for arbitrary k, even if they take a nicer

form for small k.
In Section 3, each Xi (or each Xi but one) takes values in a compact subset of the real line. Then, necessary and sufficient

conditions for compatibility are obtained as a consequence of a general result in [3].



192 P. Berti et al. / Journal of Multivariate Analysis 125 (2014) 190–203

In Section 4, as in most real problems, Q1, . . . ,Qk have densities with respect to reference measures. Under this assump-
tion, compatibility is characterized in Theorem 10. Such a result improves and extends to any k awell known criterionwhich
holds for k = 2. In particular, no positivity assumption on the conditional densities is requested. See [2,1,5,8,12–14,17]. See
also Example 9 and the remarks after Theorem 10.

In Section 5, P0-compatibility is investigated under two different choices for P0. We let P0 = E and P0 = I where
E = {P ∈ P : X exchangeable under P} and
I = {P ∈ P : X1, . . . , Xk identically distributed under P}.

Note that E ⊂ I. Among other things it is shown that, if Q1 = · · · = Qk and Q1 meets a certain invariance condition, then
Q1, . . . ,Qk are E-compatible if and only if they are compatible (Theorem 12). Moreover, if k = 2 and X1, X2 take values in
a countable set X, a necessary and sufficient condition for I-compatibility is provided (Theorem 17). The latter condition
becomes quite simple and practically useful when X is finite. In this case, if the (finitely many) values of Q1 and Q2 are
uploaded into a computer, one obtains an on-line, definitive answer on whether Q1 and Q2 are I-compatible or not.

Finally, some examples are given, mainly in Section 5. Suppose that, according to Qi, the conditional distribution of Xi
given (X1, . . . , Xi−1, Xi+1, . . . , Xk) is

N

α

j≠i

Xj

k − 1
, 1

 for some α ∈ R and all i = 1, . . . , k.

Then, those values of α which make Q1, . . . ,Qk compatible can be exactly determined. If k = 3, for instance, it turns out
that Q1,Q2,Q3 are compatible if and only if α ∈ (−2, 1). In addition, Q1,Q2,Q3 are actually E-compatible for α ∈ (−2, 1).
As another example, suppose k = 2 and Q1 is the kernel corresponding to the symmetric random walk on the integers.
According to Q1, thus, X1 takes values j − 1 and j + 1 with equal probability 1/2 conditionally on X2 = j. Then, there is no
putative conditional distribution Q2 which is I-compatible with such Q1.

2. Notation and basic definitions

Since we are only concernedwith distributions (both conditional and unconditional) the Xi can be taken to be coordinate
random variables. Thus, for each i, we fix a Borel set Ωi ⊂ R to be regarded as the collection of ‘‘admissible’’ values for Xi

(possibly,Ωi = R). We defineΩ =
k

j=1Ωj and we take Xi to be the ith coordinate map onΩ . We define also

Yi = (X1, . . . , Xi−1, Xi+1, . . . , Xk) and Yi =


j≠i

Ωj.

The following notations will be used. If i ∈ I, x ∈ Ωi and y ∈ Yi, then (x, y) denotes that pointω ∈ Ω such that Xi(ω) = x
and Yi(ω) = y. For any topological space S, we letB(S) be the Borel σ -field on S. Ifµ and ν aremeasures on the same σ -field,
µ ≪ ν means that µ(A) = 0 whenever A is measurable and ν(A) = 0, and µ ∼ ν stands for µ ≪ ν and ν ≪ µ.

A probability distribution for X = (X1, . . . , Xk) is a probability measure on B(Ω). Let P denote the set of all such
probability measures. Fix P ∈ P and i ∈ I . The conditional distribution of Xi given Yi, under P , is a function Pi of the pair
(y, A), where y ∈ Yi and A ∈ B(Ωi), satisfying
(i) A → Pi(y, A) is a probability measure for fixed y;
(ii) y → Pi(y, A) is a Borel measurable function for fixed A;
(iii) EP {IB(Yi) Pi(Yi, A)} = P(Xi ∈ A, Yi ∈ B) for A ∈ B(Ωi) and B ∈ B(Yi).

Such a Pi is P-essentially unique. Clearly, Pi(y, A) should be regarded as the conditional probability of {Xi ∈ A} given that
Yi = y under P .

A putative conditional distribution, or a kernel, is a function Qi with the same domain as Pi, satisfying conditions (i)–(ii)
but not necessarily (iii). In the sequel,

Q1, . . . ,Qk are given kernels.
We say that Q1, . . . ,Qk are compatible if there is P ∈ P such that

Qi(y, ·) = Pi(y, ·)

for all i ∈ I and P-almost all y ∈ Yi. In addition, given P0 ⊂ P , we say that Q1, . . . ,Qk are P0-compatible if such a condition
holds for some P ∈ P0.

3. Compactly supported distributions

3.1. Two compatibility results

Some general compatibility criterions have been obtained in [3]. While quite abstract, such criterions simplify when
adapted to the framework of this paper. All results in this section are actually proved by applying Theorem 6 of [3] to the
present setting.
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Let L be a set of real bounded Borel functions onΩ . We assume that L is both a linear space and a determining class. By
a determining class we mean that, given any P ∈ P and Q ∈ P ,

EP(U) = EQ (U) for all U ∈ L ⇐⇒ P = Q .
For instance, L could be the set of real bounded continuous functions onΩ .

To state our first result, we let

E

U | Yi = y


=


Ωi

U(x, y)Qi(y, dx) for all U ∈ L, i ∈ I and y ∈ Yi.

Theorem 4. Suppose that, for all U ∈ L and i ∈ I ,

Ωi is compact and y → E

U | Yi = y


is a continuous function.

Then, Q1, . . . ,Qk are compatible if and only if

sup
ω∈Ω

k
i=2


E

Ui | Yi = Yi(ω)


− E


Ui | Y1 = Y1(ω)


≥ 0 (2)

for all U2, . . . ,Uk ∈ L.
Proof. In the notation of [3], define B = B(Ω) and Ai = σ(Yi). Also, for each ω ∈ Ω and i ∈ I , take µi(ω) to be the only
probability on B such that

µi(ω)

Xi ∈ A, Yi ∈ B


= IB


Yi(ω)


Qi

Yi(ω), A


whenever A ∈ B(Ωi) and B ∈ B(Yi). Then, for each bounded Borel function U : Ω → R, one obtains

Ω

U(v) µi(ω)(dv) =


Ωi

U(x, Yi(ω))Qi

Yi(ω), dx


= E


U | Yi = Yi(ω)


.

Next, let H be the linear space generated by all functions

ω → E

U | Yi = Yi(ω)


− E


U | Y1 = Y1(ω)


for U ∈ L and i = 2, . . . , k. Since L is a linear space, each h ∈ H can be written as

h(ω) =

k
i=2


E

Ui | Yi = Yi(ω)


− E


Ui | Y1 = Y1(ω)


(3)

for suitable U2, . . . ,Uk ∈ L. Thus, under (2), compatibility of Q1, . . . ,Qk follows from Theorem 6-(a) of [3]. This proves the
‘‘if’’ part. Conversely, suppose Q1, . . . ,Qk are compatible. Take U2, . . . ,Uk ∈ L and define h according to (3). By compatibil-
ity, there is P ∈ P such that E


Ui | Yi = Yi(·)


and E


Ui | Y1 = Y1(·)


are both conditional expectations under P for all i. It

follows that

sup
ω∈Ω

h(ω) ≥ EP(h) =

k
i=2

EP

E

Ui | Yi = Yi(·)


− E


Ui | Y1 = Y1(·)


=

k
i=2


EP(Ui)− EP(Ui)


= 0.

Hence, condition (2) holds. �

Under the assumptions of Theorem 4, the sup in condition (2) is attained. Thus, condition (2) is equivalent to: for all
U2, . . . ,Uk ∈ L, there is ω ∈ Ω such that

k
i=2

E

Ui | Yi = Yi(ω)


≥

k
i=2

E

Ui | Y1 = Y1(ω)


.

For instance, let k = 2 and let (x, y) denote a point ofΩ1 ×Ω2 = Ω . Since Y2 = X1 and Y1 = X2, condition (2) reduces to
for each U ∈ L, there is (x, y) ∈ Ω such that E


U | X1 = x


≥ E


U | X2 = y


.

Similarly, if k = 3 and (x, y, z) denotes a point ofΩ1 ×Ω2 ×Ω3 = Ω , condition (2) can be written as
for all U, V ∈ L, there is (x, y, z) ∈ Ω such that
E

U | X1 = x, X3 = z


+ E


V | X1 = x, X2 = y


≥ E


U + V | X2 = y, X3 = z


.

For Theorem4 to apply, eachΩi has to be compact. This is certainly a strong restriction,which rules out various interesting
applications. However, the compactness assumption can be weakened at the price of replacing (2) with a more involved
condition. We give an explicit statement for k = 2 only.
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Theorem 5. Suppose k = 2,Ω1 is compact, and

x → E

U | X1 = x


and x →


Ω2

E

U | X2 = y


Q2(x, dy)

are continuous functions onΩ1 for all U ∈ L. Then, Q1 and Q2 are compatible if and only if

sup
x∈Ω1


E

U | X1 = x


−


Ω2

E

U | X2 = y


Q2(x, dy)


≥ 0

for all U ∈ L.
Proof. We just give a sketch of the proof. The ‘‘only if’’ part can be proved as in Theorem 4. As to the ‘‘if’’ part, in the notation
of [3], take j = 2 and φ = Y2 = X1. Define also Ai, µi and B as in the proof of Theorem 4. Now, proceed as in such a proof
but apply Theorem 6-(b) of [3] instead of Theorem 6-(a). �

3.2. Examples

The possible applications of Theorems 4 and 5 depend on the choice of L. We just give two examples for k = 2. Recall
that Y1 = X2 and Y2 = X1 when k = 2.

Example 6 (Putative Conditional Moments). SupposeΩ1 andΩ2 are compact and

x → E

X j
2 | X1 = x


and y → E


X j
1 | X2 = y


are continuous functions for all j ≥ 1. Here, X j

2 and X j
1 are the jth powers of X2 and X1. Then, L can be taken to be the class

of polynomials onΩ . Practically, this amounts to testing compatibility of Q1 and Q2 via conditional moments. Let

U(x, y) =


0≤r,s≤n

c(r, s) xr ys

where (x, y) ∈ Ω, n ≥ 1 and the c(r, s) are real coefficients. Define

h(x, y) = E

U | X1 = x


− E


U | X2 = y


=


0≤r,s≤n

c(r, s)

xr E


X s
2 | X1 = x


− ys E


X r
1 | X2 = y


.

By Theorem 4, Q1 and Q2 are compatible if and only if sup h ≥ 0 for every n ≥ 1 and every choice of the constants c(r, s).

Example 7 (Discrete Random Variables). Suppose Ω1 is finite and Ω2 countably infinite. Let I(a, b) denote the indicator of
the point (a, b) ∈ Ω . Take L to be the class of all functions U onΩ of the type

U =


a∈Ω1


b∈B

c(a, b) I(a, b)

where B ⊂ Ω2 is a finite subset and the c(a, b) are real constants. Writing Qi(r, s) instead of Qi(r, {s}), one obtains

h(x) := E

U | X1 = x


−


Ω2

E

U | X2 = y


Q2(x, dy)

=


b∈B

c(x, b)Q2(x, b)−


a∈Ω1


b∈B

c(a, b)Q1(b, a)Q2(x, b)

for all x ∈ Ω1. By Theorem 5, Q1 and Q2 are compatible if and only if max h ≥ 0 for all finite B ⊂ Ω2 and all choices of the
constants c(a, b). Suppose now thatΩ1 andΩ2 are both finite. Then, L can be taken as above with B = Ω2 and Theorem 5
can be replaced by Theorem 4. Define in fact

h(x, y) = E

U | X1 = x


− E


U | X2 = y


=


b∈Ω2

c(x, b)Q2(x, b)−


a∈Ω1

c(a, y)Q1(y, a)

for all (x, y) ∈ Ω . By Theorem 4, Q1 and Q2 are compatible if and only if max h ≥ 0 for all choices of the constants c(a, b).

One drawback of Theorem 4 is that condition (2) is to be checked for infinitely many choices of elements of L. For
instance, in Example 7 withΩ1 andΩ2 finite, one has to verify whether max h ≥ 0 for every choice of the constants c(a, b).
This fact reduces the practical scope of Theorem4. The same is true for Theorem5. However, Theorems 4 and 5 are of possible
theoretical interest. Furthermore, since they give necessary and sufficient conditions, they can be useful to quickly prove
non compatibility. As a trivial example, supposeΩ1 = Ω2 = {1, 2, 3} and

Q1 =

1/2 ∗ ∗

2/3 ∗ ∗

2/5 1/5 2/5


, Q2 =

1/7 2/7 4/7
∗ ∗ 1/3
∗ ∗ 1/4


.
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Such Q1 and Q2 are not compatible, whatever the ∗ are specified. This can be seen by restricting to c(a, b) ∈ {0, 1} for all
a, b ∈ {1, 2, 3}. For instance, one obtains h(x, y) < 0 for all x, y ∈ {1, 2, 3} in case c(1, 1) = c(1, 2) = c(2, 3) = c(3, 3) = 1
and c(a, b) = 0 otherwise.

4. The dominated case

In Theorems 4 and 5, Q1, . . . ,Qk are arbitrary kernels. In almost all applications, however, each Qi has a density with
respect to some reference measure λi. In this case, simpler results are available.

For each i ∈ I , let λi denote a σ -finite measure on B(Ωi). For instance, someΩi could be countable with λi the counting
measure and some otherΩj could be an interval with λj the Lebesgue measure. In this section, it is assumed that

Qi(y, A) =


A
fi(x | y) λi(dx) (4)

for all i ∈ I, y ∈ Yi and A ∈ B(Ωi). Here, fi is a putative conditional density, that is, (x, y) → fi(x | y) is a non-negative Borel
function onΩ satisfying

Ωi

fi(x | y) λi(dx) = 1 for each y ∈ Yi.

Under (4), we will say indifferently that f1, . . . , fk are compatible or that Q1, . . . ,Qk are compatible.
We first report a well known result which holds for k = 2; see e.g. [2,1] and references therein. Let

λ = λ1 × · · · × λk

denote the product measure on B(Ω).

Theorem 8. Suppose k = 2 and condition (4) holds. Then, f1 and f2 are compatible if and only if there are two Borel functions
u : Ω1 → [0,∞) and v : Ω2 → [0,∞) such that

f1(x | y) = f2(y | x) u(x) v(y),
λ-a.e. on the set {(x, y) : u(x) > 0, v(y) > 0},

and 
Ω

I{v>0}(y) f2(y | x) u(x) λ(dx, dy) =


Ω1

u dλ1 =


{v>0}

1/v dλ2 = 1. (5)

Our next goal is extending Theorem 8 from k = 2 to an arbitrary k ≥ 2. Before doing this, however, a remark is in order.
To our knowledge, no version of Theorem 8 includes condition (5). But some form of (5) is necessary to characterize

compatibility. In fact, some of the existing versions of Theorem 8, as they stand, can give rise to misunderstandings.

Example 9. According to Theorems 3.1 and 4.1 of [2] and Theorem 1 of [1], f1 and f2 are compatible if and only if

{f1 > 0} = {f2 > 0} = N (say) and
f1(x | y)
f2(y | x)

= u(x) v(y) for (x, y) ∈ N

for some u, v such that

Ω1

u dλ1 < ∞. Actually, such conditions suffice for compatibility of f1 and f2, but they are not
necessary (even if they are asked λ-a.e. only). For instance, takeΩ1 = Ω2 = [0, 1], λ1 = λ2 = Lebesgue measure, and

f1(x | y) = I[0, 1/2)(y)+ 2 IS(x, y),
f2(y | x) = I[0, 1/2)(x)+ 2 IS(x, y),

where S = [1/2, 1] × [1/2, 1]. Let f be the uniform density on S, that is, f (x, y) = 4 IS(x, y). Then, f1 and f2 are compatible,
for they agree on S with the conditional densities induced by f . Nevertheless,

λ

f1 = 0, f2 > 0


= λ


f1 > 0, f2 = 0


= 1/4.

In the next result, λ∗

i denotes the product measure

λ∗

i = λ1 × · · · × λi−1 × λi+1 × · · · × λk

on B(Yi). Recall that, according to Section 2, Xi is the ith coordinate map on Ω =
k

j=1Ωj and Yi = (X1, . . . , Xi−1,

Xi+1, . . . , Xk).

Theorem 10. Suppose condition (4) holds. Then, f1, . . . , fk are compatible if and only if there are Borel functions

ui : Yi → [0,∞), i ∈ I,
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such that, for each i < k,

fi(Xi | Yi) = fk(Xk | Yk) ui(Yi) uk(Yk), (6)
λ-a.e. on the set {ui(Yi) > 0, uk(Yk) > 0},

and 
Ω

I{ui>0}(Yi) fk(Xk | Yk) uk(Yk) dλ =


Yk

uk dλ∗

k =


{ui>0}

1/ui dλ∗

i = 1. (7)

Moreover:

(a) If f1, . . . , fk are compatible and P ∈ P has conditional distributions Q1, . . . ,Qk, then P ≪ λ. If, in addition, fi > 0 for all
i ∈ I , then P ∼ λ.

(b) If conditions (6)–(7) hold for some u1, . . . , uk, then f = fk(Xk | Yk) uk(Yk) is a density with respect to λ and f1, . . . , fk are the
conditional densities induced by f .

The proof of Theorem 10 is postponed to a final Appendix while some examples are given in Section 5. Here, we make a
few brief remarks.

For k = 2, Theorem 10 implies Theorem 8 (with u = u2 and v = u1). For k = 3, if (x, y, z) denotes a point of
Ω1 ×Ω2 ×Ω3 = Ω , condition (6) can be written as

f1(x | y, z) = f3(z | x, y) u1(y, z) u3(x, y) if u1(y, z) > 0 and u3(x, y) > 0,
f2(y | x, z) = f3(z | x, y) u2(x, z) u3(x, y) if u2(x, z) > 0 and u3(x, y) > 0,

for λ-almost all (x, y, z). Similarly, for condition (7). In general, to investigate compatibility of f1, . . . , fk, one has to handle
2 (k − 1) constraints. Such constraints reduce to k − 1 provided fi > 0 for all i ∈ I and


Yk

uk dλ∗

k = 1. In fact, the following
result is available.

Corollary 11. Suppose condition (4) holds with fi > 0 for all i ∈ I . Then, f1, . . . , fk are compatible if and only if there are strictly
positive Borel functions u1, . . . , uk satisfying condition (6) as well as


Yk

uk dλ∗

k = 1.

Proof. Suppose f1, . . . , fk are compatible. Since fi > 0 for all i ∈ I , points (a)–(b) of Theorem 10 imply ui(Yi) > 0, λ-a.e., for
all i ∈ I . Thus, u1, . . . , uk can be taken to be strictly positive. Conversely, if ui > 0 for all i ∈ I , condition (7) follows from
condition (6) and


Yk

uk dλ∗

k = 1. �

Theorem 10 is inspired to Theorem 8, which in turn underlies most results in compatibility theory. Furthermore, at least
for low values of k, Theorem 10 is useful in real problems. Despite these facts, no explicit version of Theorem 10 has been
stated so far. To our knowledge, the existing results focus on particular cases only and/or request some positivity condition
on f1, . . . , fk. See [2,1,5,8,12–14,17].

A last note is that Theorem 10 provides information on P0-compatibility as well. This is apparent if P0 = {P ∈ P : P ≪

λ} or P0 = {P ∈ P : P ∼ λ}, but Theorem 10 may be instrumental also for P0 = {P ∈ P : X exchangeable under P}; see
Section 5.1.

5. P0-compatibility

In this section, P0-compatibility is investigated under two different choices for P0. We let

Ω1 = · · · = Ωk = X for some X ∈ B(R).

As a consequence,Ω = Xk and Yi = Xk−1 for all i ∈ I .

5.1. Exchangeability

For each n ≥ 1, letΠn denote the set of all permutations of Xn, that is, those mappings π : Xn
→ Xn of the form

π(x1, . . . , xn) = (xπ1 , . . . , xπn) for all (x1, . . . , xn) ∈ Xn,

where (π1, . . . , πn) is a fixed permutation of (1, . . . , n). The random vector X = (X1, . . . , Xk) is exchangeable if X is
distributed as π(X) for all π ∈ Πk. Let

E = {P ∈ P : X exchangeable under P}.

Exchangeability plays a role in various frameworks where compatibility issues arise. In Bayesian statistics, observations
are usually i.i.d. conditionally on some random parameter, so that they are actually exchangeable. Or else, in some problems
of spatial statistics, the joint distribution of the random variables associated to the sites is invariant under permutations of
the sites; see e.g. [7,9]. Accordingly, in this subsection, we let P0 = E and we investigate E-compatibility.
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If Q1, . . . ,Qk are the conditional distributions of some P ∈ E , there is an invariant kernel Q such that Q1 = · · · = Qk =

Q , P-a.s. Here, invariance of Q means that

Q

π(y), ·


= Q (y, ·) for all y ∈ Xk−1 and π ∈ Πk−1. (8)

Thus, it makes sense to assume

Q1 = · · · = Qk = Q (9)

for some kernel Q satisfying (8). But conditions (8)–(9) are not enough, even for compatibility alone. As an example, take
k = 2,X = R and Q1 = Q2 = Q , where Q (y, ·) = N(y, 1) for all y ∈ R. Then, conditions (8)–(9) are trivially true but Q1
and Q2 fail to be compatible; see forthcoming Example 15.

Based on the previous remarks, a natural question is whether Q1, . . . ,Qk are E-compatible provided they are compatible
and conditions (8)–(9) hold. For some time, we conjectured a negative answer. Instead, the answer is yes.

Theorem 12. Suppose conditions (8)–(9) hold. Then, Q1, . . . ,Qk are E-compatible if and only if they are compatible.

Proof. Suppose Q1, . . . ,Qk are compatible and fix P ∈ P with conditionals Q1, . . . ,Qk. It suffices to prove that, for all i ∈ I
and π ∈ Πk,

Q is a version of the conditional distribution of Xi given Yi under P ◦ π−1. (10)

In fact, suppose (10) holds and define

P∗
=

1
k!


π∈Πk

P ◦ π−1.

By definition, P∗
∈ E . Fix i ∈ I . For each π ∈ Πk, let

µ∗(·) = P∗(Yi ∈ ·) and µπ (·) = P ◦ π−1Yi ∈ ·


be the marginal distributions of Yi under P∗ and P ◦ π−1. By (10),
B
Q (y, A) µ∗(dy) =

1
k!


π∈Πk


B
Q (y, A) µπ (dy)

=
1
k!


π∈Πk

P ◦ π−1Xi ∈ A, Yi ∈ B


= P∗

Xi ∈ A, Yi ∈ B


for all A ∈ B(X) and B ∈ B(Xk−1). Hence, Q is a version of the conditional distribution of Xi given Yi under P∗.

It remains to prove condition (10). Since P ◦ π−1 is the distribution of π(X) under P , it suffices to show that, for all i ∈ I
and ψ ∈ Πk−1,

Q is a version of the conditional distribution of Xi given ψ(Yi) under P.

Fix i ∈ I, ψ ∈ Πk−1, and define

µ(·) = P

ψ(Yi) ∈ ·


and ν(·) = P


Yi ∈ ·


to be the marginal distributions of ψ(Yi) and Yi under P . Then,

µ ◦ ψ(B) = µ

ψ(B)


= P


ψ(Yi) ∈ ψ(B)


= P


Yi ∈ B


= ν(B)

for all B ∈ B(Xk−1). Thus, µ ◦ ψ = ν. Together with (8), this fact implies
B
Q (y, A) µ(dy) =


B
Q

ψ−1(y), A


µ(dy) =


ψ−1(B)

Q (y, A) µ ◦ ψ(dy)

=


ψ−1(B)

Q (y, A) ν(dy) = P

Xi ∈ A, Yi ∈ ψ−1(B)


= P


Xi ∈ A, ψ(Yi) ∈ B


for all A ∈ B(X) and B ∈ B(Xk−1). Hence, Q is a version of the conditional distribution of Xi given ψ(Yi) under P . This
concludes the proof. �

In view of Theorem 12, E-compatibility reduces to compatibility as far as conditions (8)–(9) are satisfied. In turn, inmany
real problems, compatibility can be tested via Theorem 10. This provides a usable strategy for checking E-compatibility.
Moreover, under some conditions, Theorem 12 gives a necessary condition for compatibility as well.
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Corollary 13. Suppose condition (4) holds with

f1 = · · · = fk and λ1 = · · · = λk.

Suppose also that

f1 > 0 and f1

· | π(y)


= f1(· | y) for all y ∈ Xk−1 and π ∈ Πk−1.

Then, f1, . . . , fk are compatible if and only if they are E-compatible, if and only if there is a strictly positive Borel function g on Xk

such that

g = g ◦ π for all π ∈ Πk, g is a density with respect to λ,

f1(x | y) =
g(x, y)

X
g(u, y) λ1(du)

for λ-almost all (x, y) ∈ Xk.

Proof. Since conditions (8)–(9) hold, it suffices to see that f1 can be represented as asserted whenever f1, . . . , fk are com-
patible. Suppose f1, . . . , fk are compatible. Then, f1, . . . , fk are actually E-compatible. Fix P ∈ E with conditional densities
f1, . . . , fk. Since f1 > 0, Theorem 10-(a) yields P ∼ λ. Let g be a density of P with respect to λ. Since P ∼ λ, P ∈ E , and
λ = λk1 is invariant under permutations, up to modifying g on a λ-null set, it can be assumed g > 0 and g = g ◦ π for all
π ∈ Πk. Further, f1(x | y) =


X
g(u, y) λ1(du)

−1
g(x, y) for λ-almost all (x, y) ∈ Xk. �

To exploit Corollary 13, the following remark is useful.

Remark 14. Let λ1 = · · · = λk and let ϕ and h be real Borel functions on Xk and Xk−1, respectively. If ϕ = ϕ ◦ π for all
π ∈ Πk and

h(y) = ϕ(x, y) for λ-almost all (x, y) ∈ Xk,

then h is constant, λk−1
1 -a.e. We omit the proof of this fact.

Example 15 (Normal Distributions Depending on the Sample Mean). Let X = R and

Q1(y, ·) = · · · = Qk(y, ·) = N

α y , 1)

where α ∈ R, y = (y1, . . . , yk−1) ∈ Rk−1 and y = (1/(k − 1))
k−1

i=1 yi. We aim to identify those values of α which make
Q1, . . . ,Qk compatible. Let fi = f1 and λi = λ1 for all i ∈ I , where f1 is a normal density with mean α y and unit variance
while λ1 is Lebesgue measure. We first assume k = 2. Write

f1(x | y) = (2π)−1/2 exp

−(1/2)(x − α y)2


=
ϕ(x, y)
h(y)

where

ϕ(x, y) = (2π)−1/2 exp

−(1/2)(x2 + y2)+ α x y


, h(y) = exp


(1/2) y2(α2

− 1)

.

If |α| < 1, then 0 <


R h(y) dy < ∞. Letting

g(x, y) =
ϕ(x, y)
R h(y) dy

,

Corollary 13 implies that Q1 and Q2 are compatible. Next, suppose |α| ≥ 1. If Q1 and Q2 are compatible, Corollary 13 yields
R g(u, y) du

h(y)
=

g(x, y)
ϕ(x, y)

for a suitable density function g and λ-almost all (x, y) ∈ R2. Since the right-hand member is invariant under permutations
of (x, y)while the left-hand member depends on y only, Remark 14 implies


R g(u, y) du = c h(y) for some constant c > 0

and λ1-almost all y. But since |α| ≥ 1, one obtains
R2

g dλ =


R


R
g(u, y) du dy =


R
c exp


(1/2) y2(α2

− 1)

dy = ∞,

contrary to the assumption that g is a density with respect to λ. To sum up, Q1 and Q2 are compatible if and only if |α| < 1.
The previous argument actually works for any k. In fact, f1 can be factorized as

f1(x | y) = (2π)−1/2 exp

−(1/2)(x − α y)2


=
ϕ(x, y)
h(y)

where ϕ is invariant under permutations of (x, y) ∈ Rk and h depends on y ∈ Rk−1 only. Then, Q1, . . . ,Qk are compatible
exactly for those values of α such that


Rk−1 h(y) dy < ∞. For k = 3, for instance, Q1,Q2,Q3 are compatible if and only if

4 − α2 > |2α + α2
|, that is, α ∈ (−2, 1).
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A last note is in order before leaving this Subsection. For k = 2, condition (8) is trivially true. Furthermore, ifQ1 = Q2 = Q ,
compatibility of Q1 and Q2 amounts to reversibility of the kernel Q . We recall that, for k = 2 andΩ1 = Ω2 = X, a kernel Q
is reversible if there is a probability measure µ on B(X) such that

A
Q (x, B) µ(dx) =


B
Q (x, A) µ(dx) for all A, B ∈ B(X). (11)

The conditional distributions of an (exchangeable) law P ∈ E are actually reversible; see e.g. Theorem 3.2 of [4].

Theorem 16. Suppose k = 2 and Q1 = Q2 = Q for some kernel Q . Then, Q1 and Q2 are compatible if and only if they are
E-compatible, if and only if Q is a reversible kernel.

Proof. By Theorem 12, it suffices to prove that Q1 and Q2 are E-compatible if and only if Q is reversible. Suppose Q is
reversible. Fix a probability measure µ on B(X) satisfying (11) and define

P(A) =


X


X

IA(x, y)Q (x, dy) µ(dx) for A ∈ B(X2).

Since Q is reversible,

P

X1 ∈ A, X2 ∈ B


=


A
Q (x, B) µ(dx) =


B
Q (x, A) µ(dx) = P


X1 ∈ B, X2 ∈ A


for all A, B ∈ B(X). Hence, P ∈ E . Also, Q is a conditional distribution, under P , for X1 given X2 as well as for X2 given X1.
Conversely, suppose Q1 and Q2 are E-compatible. Letting µ(·) = P(X1 ∈ ·), where P ∈ E has conditionals Q1 and Q2, it is
straightforward to see that Q meets condition (11). �

5.2. Identical marginal distributions

If X is exchangeable, Xi is distributed as X1 for all i ∈ I , but not conversely. In a number of frameworks, when modeling
the joint distribution P of X via a set of putative conditional distributions, one is actually looking for some P which makes
X1, . . . , Xk identically distributed. Thus, it makes sense to study I-compatibility, where

I = {P ∈ P : X1, . . . , Xk identically distributed under P}.

If only Q1, . . . ,Qk are assigned, as in this paper, to investigate I-compatibility for k > 2 looks quite difficult (to us). But
for k = 2 and X countable, a useful result can be obtained.

Let k = 2. By adapting the proof of Theorem 16, it is not hard to prove that Q1 and Q2 are I-compatible if and only if there
is a probability measure µ on B(X) such that

A
Q2(x, B) µ(dx) =


B
Q1(x, A) µ(dx) for all A, B ∈ B(X).

In fact, under such condition, there is P ∈ I satisfying: (i) P has conditionals Q1 and Q2; (ii) both X1 and X2 have marginal
distribution µ under P .

Suppose that X is countable and Q is a kernel on X. As usual, we will write Q (a, b) instead of Q (a, {b}) whenever
a, b ∈ X. We also need the following (well known) definition. Given a, b ∈ X, a path connecting a and b is a finite sequence
x0, x1, . . . , xn ∈ X such that x0 = a, xn = b and Q (xi−1, xi) > 0 for all i. Also, Q is irreducible if any pair of points in X are
connected by a path.

We are now able to state our last result.

Theorem 17. Suppose k = 2,X countable and Q1 irreducible. Fix a ∈ X. Then, Q1 and Q2 are I-compatible if and only if

n
i=1

Q1(xi−1, xi) =

n
i=1

Q2(xi, xi−1) (12)

whenever x0, x1, . . . , xn ∈ X and xn = x0,

Q1(x, y) > 0 ⇐⇒ Q2(y, x) > 0 (13)

for all x, y ∈ X, and
x∈X

n
i=1

Q1

bxi−1, b

x
i


Q2

bxi , b

x
i−1

 < ∞ (14)

whenever bx0, . . . , b
x
n is a path connecting a and x. (Hence, bx0 = a, bxn = x and Q1


bxi−1, b

x
i


> 0 for all i).

The proof of Theorem 17 is deferred to the Appendix.
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Theorem 17 notably simplifies in some special cases. Firstly, if there is a point a ∈ X such that Q1(a, x) > 0 for all x ∈ X,
one can take n = 1, bx0 = a and bx1 = x in condition (14). Thus, such condition reduces to

x∈X

Q1(a, x)
Q2(x, a)

< ∞.

More importantly, condition (14) can be dropped at all when X is finite.

Corollary 18. If k = 2,X is finite and Q1 irreducible, then Q1 and Q2 are I-compatible if and only if conditions (12)–(13) hold.

Corollary 18 provides a simple and effective criterion for I-compatibility. Condition (13), in fact, is trivially seen to be
true or false. Suppose it is true. Then, to check (12), one can restrict to those sequences x0, x1, . . . , xn ∈ X such that xn = x0
and Q1(xi−1, xi) > 0 for all i. Moreover, as it is easily verified by induction, it can be assumed xi ≠ xj for all 0 ≤ i < j < n.
Thus, when X is finite and Q1 irreducible, I-compatibility can be tested via a finite number of straightforward conditions. If
the values of Q1 and Q2 are uploaded into a computer, one obtains an on-line, definitive answer on whether Q1 and Q2 are
I-compatible or not.

To be concrete, we give a numerical example.

Example 19. With X = {1, 2, 3, 4}, let

Q1 =

1/10 0 3/10 3/5
0 2/11 4/11 5/11

4/15 1/5 8/15 0
1/4 3/10 0 9/20

 and Q2 =

1/10 0 2/5 1/2
0 2/11 3/11 6/11

1/5 4/15 8/15 0
3/10 1/4 0 9/20

 .
Such Q1 and Q2 are I-compatible, and this can be proved as follows. First note that Q1 is irreducible and condition (13) is
trivially true. By Corollary 18, thus, it suffices to check condition (12). Let x0, x1, . . . , xn ∈ X be such that

xn = x0, xi ≠ xj for 0 ≤ i < j < n,
n

i=1

Q1(xi−1, xi) > 0. (15)

To fix ideas, let x0 = 1. It must be 1 ≤ n ≤ 4. Since Q1(1, 1) = Q2(1, 1), condition (12) holds for n = 1 and x0 = 1. For
n = 3, no path satisfies (15) and x0 = 1. For n = 2 and n = 4, the paths satisfying (15) and x0 = 1 are

x0 = 1, x1 = 3, x2 = 1; x0 = 1, x1 = 4, x2 = 1;
x0 = 1, x1 = 3, x2 = 2, x3 = 4, x4 = 1; x0 = 1, x1 = 4, x2 = 2, x3 = 3, x4 = 1.

All such paths meet condition (12). Similarly, (12) is immediately seen to be true for x0 > 1. Therefore, Q1 and Q2 are
I-compatible.

We finally give an example with an infinite state space X.

Example 20 (RandomWalk on the Integers). LetX = Z be the integers and letQ be the kernel of the symmetric randomwalk
on Z, that is, Q (x, y) = 1/2 if y ∈ {x − 1, x + 1} and Q (x, y) = 0 if y ∉ {x − 1, x + 1}. A first (obvious) question is whether
Q is compatible with itself. More precisely, letting Q1 = Q2 = Q , the question is whether Q1 and Q2 are compatible. Since Q
is clearly not reversible, the answer is no because of Theorem 16. The second possible question is the following. Let Q1 = Q .
Is there a kernel Q2 on Z such that Q1 and Q2 are I-compatible? Fix a kernel Q2. Since Q1 = Q is irreducible, Theorem 17
applies. Thus, if Q1 and Q2 are I-compatible, condition (13) implies Q2(x, y) > 0 if y ∈ {x − 1, x + 1} and Q2(x, y) = 0 if
y ∉ {x − 1, x + 1}. Let α(x) = Q2(x, x + 1). For each x ∈ Z, condition (12) yields

1/4 = Q1(x, x + 1)Q1(x + 1, x) = Q2(x + 1, x)Q2(x, x + 1) = {1 − α(x + 1)}α(x).

Therefore,

α(x + 1) = 1 −
1

4α(x)
. (16)

To fix ideas, suppose α(0) ≥ 1/2. Then, condition (16) implies α(x) ≥ 1/2 for all x ≥ 1, so that

Q1(0, 1)Q1(1, 2) · · ·Q1(x − 1, x)
Q2(1, 0)Q2(2, 1) · · ·Q2(x, x − 1)

=
(1/2)x

(1 − α(1))(1 − α(2)) · · · (1 − α(x))
≥ 1

for all x ≥ 1. Hence, condition (14) fails (just let a = 0, n = x and bxi = i). Similarly, condition (14) fails if α(0) < 1/2. By
Theorem 17, thus, no kernel Q2 is I-compatible with Q1 = Q .

Appendix

We have to prove Theorems 10 and 17. We begin with point (a) of Theorem 10.
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Lemma 21. Suppose (4) holds and P ∈ P has conditional distributions Q1, . . . ,Qk. Then P ≪ λ, and P ∼ λ if fi > 0 for all
i ∈ I .

Proof. We first prove P ≪ λ. Let µ(·) = P

Yk ∈ ·


be the marginal distribution of Yk under P . Fix A ∈ B(Ω) such that

λ(A) = 0 and define

Ay = {x ∈ Ωk : (x, y) ∈ A} for y ∈ Yk and B = {y ∈ Yk : λk(Ay) = 0}.

Since 
Yk

λk(Ay) λ
∗

k(dy) =


Yk


Ωk

IA(x, y) λk(dx) λ∗

k(dy) = λ(A) = 0,

then λ∗

k(B
c) = 0. Thus, if µ ≪ λ∗

k , condition (4) yields

P(A) =


Yk

Qk(y, Ay) µ(dy) =


B
Qk(y, Ay) µ(dy) = 0.

Therefore, to get P ≪ λ, it suffices to show that µ ≪ λ∗

k . Let µ1 be the marginal distribution of X1 under P . If A ∈ B(Ω1)
and λ1(A) = 0, condition (4) implies

µ1(A) = P(X1 ∈ A) = EP

Q1(Y1, A)


= 0.

Hence, µ1 ≪ λ1. Next, let µ1,2 be the marginal distribution of (X1, X2) under P . For µ1-almost all x ∈ Ω1, one obtains

P

X2 ∈ A | X1 = x


= EP


Q2

(x, X3, . . . , Xk), A


| X1 = x


for each A ∈ B(Ω2).

Hence, for µ1-almost all x ∈ Ω1,

P

X2 ∈ A | X1 = x


= 0 provided A ∈ B(Ω2) and λ2(A) = 0.

Sinceµ1 ≪ λ1, the above condition impliesµ1,2 ≪ λ1×λ2. Proceeding in thisway, one finally obtainsµ ≪ λ1×· · ·×λk−1 =

λ∗

k . This proves P ≪ λ. Next, suppose fi > 0 for all i ∈ I . Then Qi(y, A) > 0, for all i ∈ I and y ∈ Yi, provided A ∈ B(Ωi) and
λi(A) > 0. Based on this fact, P ∼ λ can be proved exactly as above. �

Proof of Theorem 10. Point (a) has been proved in Lemma 21. Recall also that
Ωi

fi(x | y) λi(dx) = 1 for all i ∈ I and y ∈ Yi.

Suppose f1, . . . , fk are compatible and fix P ∈ P with conditional distributions Q1, . . . ,Qk. By point (a), P has a density
f with respect to λ. Let

φi(y) =


Ωi

f (x, y) λi(dx), y ∈ Yi,

be the marginal of f with respect to λ∗

i . Define also

ui = I{0<φi<∞} (1/φi) for i < k, uk = I{φk<∞} φk,

and note that

{0 < φi < ∞} = {ui > 0} and λ∗

i (φi = ∞) = 0 for all i ∈ I.

Let Hi = {ui(Yi) > 0}. Given i < k, since f1, . . . , fk are the conditional densities induced by f , one trivially obtains

fi(Xi | Yi) =
f

φi(Yi)
=

f
φk(Yk)

ui(Yi) φk(Yk) = fk(Xk | Yk) ui(Yi) uk(Yk),

λ-a.e. on the set Hi ∩ Hk. Further, since f = fk(Xk | Yk) uk(Yk), λ-a.e.,
Yk

uk dλ∗

k =


Yk

φk dλ∗

k = 1,


{ui>0}
1/ui dλ∗

i =


Yi

φi dλ∗

i = 1,
Ω

IHi fk(Xk | Yk) uk(Yk) dλ =


Ω

IHi f dλ = P

0 < φi(Yi) < ∞


= 1.

Therefore, conditions (6)–(7) hold. Conversely, suppose (6)–(7) hold for some functions u1, . . . , uk. Define again Hi =

{ui(Yi) > 0}. By (7),
Ω

fk(Xk | Yk) uk(Yk) dλ =


Yk


Ωk

fk(x | y) λk(dx) uk(y) λ∗

k(dy) =


Yk

uk dλ∗

k = 1.



202 P. Berti et al. / Journal of Multivariate Analysis 125 (2014) 190–203

Thus, f := fk(Xk | Yk) uk(Yk) is a density with respect to λ. By definition, f = 0 on Hc
k . If i < k, condition (7) yields

Hc
i

f dλ = 1 −


Hi

f dλ = 1 − 1 = 0.

Hence f = 0, λ-a.e., on ∪
k
i=1 H

c
i . By (6), it follows that

f = f IHi IHk =
fi(Xi | Yi)

ui(Yi)
IHi IHk , λ-a.e. for all i < k.

Moreover,
Hc
k

IHi

fi(Xi | Yi)

ui(Yi)
dλ =


Ω

IHi

fi(Xi | Yi)

ui(Yi)
dλ−


Hk

IHi

fi(Xi | Yi)

ui(Yi)
dλ

=


{ui>0}


Ωi

fi(x | y) λi(dx)
1

ui(y)
λ∗

i (dy)−


Ω

f dλ

=


{ui>0}

1/ui dλ∗

i − 1 = 0.

Thus,

f =
fi(Xi | Yi)

ui(Yi)
IHi , λ-a.e. for all i < k. (17)

Next, define the marginal φi of f as above. Then, it suffices to prove that

f
φi(Yi)

= fi(Xi | Yi), λ-a.e. on the set {0 < φi(Yi) < ∞}, for all i ∈ I.

Since φk = uk, such condition holds for i = k. If i < k, condition (17) yields

φi(Yi) =


Ωi

fi(x | Yi)

ui(Yi)
IHi λi(dx) =

IHi

ui(Yi)
.

Thus, {0 < φi(Yi) < ∞} = Hi, and condition (17) implies f /φi(Yi) = fi(Xi | Yi), λ-a.e. on Hi. Since point (b) is obvious, this
concludes the proof. �

We finally turn to Theorem 17.

Proof of Theorem 17. Assume conditions (12)–(14). Let x0, x1, . . . , xr and y0, y1, . . . , ys be any two paths connecting a and
x. Take a further path z0, z1, . . . , zt connecting x and a. On noting that x0 = y0 = zt = a and xr = ys = z0 = x, condition
(12) yields

r
i=1

Q1(xi−1, xi)
t

i=1

Q1(zi−1, zi)
s

i=1

Q2(yi, yi−1) =

r
i=1

Q2(xi, xi−1)

t
i=1

Q2(zi, zi−1)

s
i=1

Q2(yi, yi−1)

=

r
i=1

Q2(xi, xi−1)

t
i=1

Q1(zi−1, zi)
s

i=1

Q1(yi−1, yi).

By condition (13) and the definition of path, all factors are strictly positive. Hence,
r

i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

=

s
i=1

Q1(yi−1, yi)
Q2(yi, yi−1)

.

Next, define

ν{x} =

r
i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

.

By what already proved, the definition of ν{x} does not depend on the path connecting a and x. Hence, ν is a (well defined)
measure on the power set of X, and ν(X) =


x∈X ν{x} < ∞ because of (14). Define µ = ν/ν(X). To conclude the proof

of the ‘‘if’’ part, it suffices to see that

µ{x}Q1(x, y) = µ{y}Q2(y, x) for all x, y ∈ X. (18)
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In view of (13), to check condition (18) it can be assumed Q1(x, y) > 0. In this case, the very definition of µ yields

µ{x}
Q1(x, y)
Q2(y, x)

= µ{y}.

Conversely, suppose Q1 and Q2 are I-compatible. Take a probability µ satisfying condition (18). Summing over x ∈ X, one
obtains

µ{y} =


x∈X

µ{y}Q2(y, x) =


x∈X

µ{x}Q1(x, y) for all y ∈ X.

Thus, µ is an invariant probability for the irreducible kernel Q1, and this fact implies µ{x} > 0 for all x ∈ X. Therefore,
condition (13) follows from (18) and µ{x} > 0 for all x ∈ X. Next, let x0, x1, . . . , xn ∈ X with xn = x0. If Q1(xi−1, xi) = 0
for some i, condition (13) yields

n
i=1

Q1(xi−1, xi) = 0 =

n
i=1

Q2(xi, xi−1).

If Q1(xi−1, xi) > 0 for all i, one obtains
n

i=1

Q1(xi−1, xi)
Q2(xi, xi−1)

=

n
i=1

µ{xi}
µ{xi−1}

=
µ{xn}
µ{x0}

=
µ{x0}
µ{x0}

= 1.

Thus, condition (12) holds. Finally, as to (14), it suffices to note that
x∈X

n
i=1

Q1

bxi−1, b

x
i


Q2

bxi , b

x
i−1

 =


x∈X

n
i=1

µ{bxi }
µ{bxi−1}

=


x∈X

µ{x}
µ{a}

=
1
µ{a}

whenever bx0, . . . , b
x
n is a path connecting a and x. �
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