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Abstract

We consider, in the setting of p and n large, sample covariance matrices
whose population counterparts follow a spiked population model, i.e., with
the exception of the first (largest) few, all the population eigenvalues are
equal. We study the asymptotic distribution of the partial maximum like-
lihood ratio statistic and use it to test for the dimension of the population
spike subspace. Furthermore, we extend this to the ultra-high-dimensional
case, i.e., p > n. A thorough study of the power of the test gives a correction
that allows us to test for the dimension of the population spike subspace even
for values of the limit of p/n close to 1, a setting where other approaches have
proved to be deficient.

Keywords: Sample covariance matrix, spiked population model,
high-dimensional statistics, principal component analysis, random matrix
theory

1. Introduction

In many applications involving high-dimensional data, a few of the di-
mensions contain most of the relevant information. Identifying how many
dimensions should be kept in the analysis is of paramount importance in
representing and modeling data efficiently. Even though this issue has at-
tracted much attention from practitioners as well as researchers, there is still
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no clear consensus on how to proceed in a systematic way. Among practition-
ers, a popular approach amounts to checking how many of the transformed
variables explain a large part of the variance in the data and little (if any)
attention is paid to the nature of what is discarded. An exception to this
simplified approach is presented in [20], in which the authors compare the
bulk of the eigenvalues to the typical bulk found in random matrix theory.

Systems of this sort, in which a small number of variables contain all the
relevant information, appear in various fields. In an effort to understand these
type of systems, Johnstone [11] introduced the spiked population model. In
this model, all the population eigenvalues are equal to 1 except for a few fixed,
larger eigenvalues that carry the relevant information. The behavior of the
sample eigenvalues of the spiked population model in the high-dimensional
case has been thoroughly studied in the past decade; see, e.g., [2, 3, 19].
In a remarkable result, Baik et al. [3] proved that the asymptotic behavior
of the sample eigenvalues experiences a phase transition. If a population
eigenvalue from the spike is not big enough, its value cannot be recovered
from the samples: the estimated eigenvalue gets pulled towards the bulk,
the noisy section of the matrix. On the other hand, if the spike population
eigenvalue is bigger than a certain threshold, its value can be recovered from
the limit of the estimates, which are, however, biased.

The same question about how many components should be kept was long
ago answered in the traditional p fixed, n growing paradigm (here p indicates
the dimension of the data X and n indicates the sample size). One of the most
common tests assumes that the data follow a normal distribution and uses
the maximum likelihood ratio statistics LRTd = Ld/Lp, where Ld indicates
the maximum likelihood under the null hypothesis (that d components should
be kept) while Lp is the maximum likelihood under the full model [15]. This
maximum likelihood ratio test is used sequentially, starting with d = 0 and
estimating d as the first hypothesized value that is not rejected. In the fixed
p and n growing paradigm, under the null hypothesis, ln(LRTd) has a known
asymptotic distribution—a fact used by Bartlett [4] and by Lawley [13] to
build the rejection region of the test. Another common approach, which
has the advantage of requiring no subjective judgments, is based on the
application of information theoretic criteria. Wax and Kailath [26] presented
an estimator in this direction using the minimum description length (MDL)
principle [21, 22]. In both cases, sequential testing or information criteria,
a crucial ingredient is the knowledge of the asymptotic distribution of the
maximum likelihood ratio statistic under the null hypothesis.
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In the high-dimensional case, the dimensionality of the data can be rel-
atively large compared to the sample size and traditional statistical theory
cannot be easily adapted. Under the assumption that there exist q0 < p < n
fixed components, Kritchman and Nadler [12] considered the MDL estimator
developed in [26]. They show that MDL fails to detect the signal at low
signal-to-noise ratios and hence underestimates the signal at small sample
sizes; they then present a new estimator that improves the detection rate.
Nevertheless, they only prove the consistency of their estimator under the
scenario in which p is fixed and n→∞.

One of the contributions of our paper is the study of the asymptotic
distribution of the partial maximum likelihood ratio statistic for the case in
which p, n → ∞, p/n → y ∈ (0, 1). This allows us to present a sequential
test to determine the dimension of the population spike subspace. Also,
as a bonus, it paves the way to correct the penalty term in Wax–Kailath’s
MDL estimator of the true dimension and then prove its consistency in this
high-dimensional scenario.

We also address the problem for p > n. In some applications one can
find situations in which the number of variables exceeds the number of ob-
servations (y > 1). Suppose that we have multiple time series and, given a
window in time, we look for a small number of factors that contain most of
the relevant information. In principle, we could take a big window (large n)
to estimate the covariance matrix. Financial time series, for example, change
frequently (they could even be non-stationary) leading us to believe that big-
ger time windows do not help in the understanding of the current structure.
To attack a situation of this sort we would need to develop a similar test for
the case p ≥ n, p/n→ y ∈ [1,∞). In this case the maximum likelihood ratio
statistic is not defined; see [7]. However, we motivate a new definition by
switching the rows and columns in the data matrix. We find its asymptotic
distribution and extend the definition and consistency of the MDL criteria
to this case. It should be noted that the case d = 0 was already done by
Srivastava [23].

This paper is organized as follows: Section 2 presents the asymptotic dis-
tribution of the maximum likelihood ratio statistic which is used in Section 3
to define the sequential test. Section 4 illustrates the results using simulated
scenarios. The power of the test is found in Section 5. Finally, Section 6
builds on the analysis from Section 5 to improve on the way to estimate the
true dimension in a consistent way and Section 7 concludes. All proofs are
relegated to the Appendix.
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The following notation and definitions will be used in our exposition.
For positive integers m and n, Rm×n stands for the class of all matrices of
dimension m × n. For a square matrix A, |A| indicates its determinant.
We will use the operator vec : Rm×n → Rmn which vectorizes an arbitrary
matrix by stacking its columns. Let A ⊗ B denote the Kronecker product
of matrices A and B. We will use S ∼ Wp(m,Σ) to denote that S follows a
Wishart distribution with m degrees of freedom and scale matrix Σ, i.e., S =
X>X where X ∈ Rm×p has independent rows following a normal distribution
with mean 0 and covariance matrix Σ. We write χ2(f) for the chi-square
distribution with f degrees of freedom. The multivariate Gamma function is
defined as Γp(x) = πp(p−1)/4

∏p
j=1 Γ{x− 1/2(j − x)} for a complex number x

with Re(x) > 1/2(p − 1), where Γ(x) is the ordinary Gamma function; see
p. 62 of [15].

2. Asymptotic distribution of the maximum likelihood ratio statis-
tic for partial sphericity

For X ∼ N (µ,Σ), with X ∈ Rp, the sphericity test is given by

H0 : Σ = σ2Ip vs. Ha : Σ 6= σ2Ip (1)

with unknown σ. The maximum likelihood ratio test statistic to test the null
hypothesis (1) was first derived by Mauchly [14] as the power n/2 of

LRT0 = |Σ̂|{ tr(Σ̂)/p}−p, (2)

where Σ̂ is the sample covariance matrix of the data X1, . . . ,Xn, defined
as
∑n

i=1(Xi − X̄)(Xi − X̄)>/(n − 1). Gleser [7] shows that the maximum
likelihood ratio statistic exists only when p ≤ n − 1 and that the test with
the rejection region {LRT0 ≤ cα} (where cα is chosen so that the test has a
significance level of α) is unbiased. The choice of cα follows from the classical
asymptotic result [see 15, Theorem 8.3.7] to the effect that under H0 with p
fixed

−(n− 1)ρ ln(LRT0) χ2(f)

as n→∞, where  denotes convergence in distribution. Here

ρ = 1− 2p2 + p+ 2

6(n− 1)p
and f =

1

2
(p− 1)(p+ 2).
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The quantity ρ = ρn → 1 is a correction term to improve the convergence
rate when the sample is finite. For the high-dimensional case (p, n big) it was
proved in [10] that the probability of wrongly rejecting the null hypothesis
goes to 1 as p increases and therefore the classical test can fail completely.
To overcome this problem, in their Theorem 1 they found the asymptotic
distribution of (2) under the null hypothesis H0 when p as well as n grow in
such a way that p < n− 1 and p/n→ y ∈ (0, 1]. Based on these results they
find a rejection region for the test that has asymptotic significance level α
for a given α.

If the null hypothesis is not rejected, we conclude that Σ is a constant
times the identity or, equivalently, in terms of principal components, that no
reduction in dimension can be achieved by transforming to principal com-
ponents with lower dimension. If this null hypothesis is rejected, it is still
possible, for example, for the p− 1 smallest eigenvalues to be equal. In this
case, if their common value is small compared to the largest eigenvalue, most
of the variation in the sample is explained by just the first principal com-
ponent, giving a substantial reduction in dimension. Hence, it is reasonable
to consider the null hypothesis that the p − 1 smallest eigenvalues of Σ are
equal. If this is rejected, we can test whether the p−2 smallest eigenvalues are
equal, and so on. Then in practice we test sequentially the null hypotheses

Hd : λd+1 = · · · = λp, (3)

for all d ∈ {0, . . . , p− 2}, where λ1, . . . , λp are the eigenvalues of Σ. The null
hypothesis Hd is equivalent to having Σ = (Ψ,Ψ0)Λ(Ψ,Ψ0)

> = ΨΛdΨ
> +

σ2Ψ0Ψ
>
0 , where Λ = diag(λ1, s1. . ., λ1, . . . , λh, sh. . ., λh, σ

2, p−d. . ., σ2), Λd is the
truncated matrix obtained by deleting the last p − d rows and columns of
Λ, d = s1 + · · · + sh, λ1 > · · · > λh > σ2, Ψ = (Ψ1, . . . ,Ψh) ∈ Rp×d semi-
orthogonal with Ψi ∈ Rp×si and Ψ0 the semi-orthogonal complement of Ψ
of dimension p× (p−d). If Hd is true, we say that the population covariance
matrix Σ has d spike eigenvalues, or that the dimension of the spike subspace,
the span of the columns of Ψ, is d. As in the case of sphericity, this kind of
test was much studied in the multivariate literature for p fixed and n growing.
More specifically, the test called partial sphericity for the Hd hypothesis is
based on the statistic [see 15, Theorem 9.6.1]

LRTd =
λ̂d+1 × · · · × λ̂p(
1
p−d
∑p

i=d+1 λ̂i

)p−d , (4)
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where λ̂i are the eigenvalues (in decreasing order) of Σ̂ (the sample covariance
matrix). Let us remark that 0 < LRTd ≤ LRTd+1 ≤ 1, which is easy to

see from the fact that LRT
1/(p−d)
d is the ratio between the geometric and

arithmetic means. It is known that the maximum likelihood ratio test (4)
is well defined only when m = n − 1 ≥ p, as in the case of d = 0, and it
was proved by Lawley [13] (later improved by James [9]) that the asymptotic
distribution of (4) under Hd is

−ρ ln(LRTd) χ2
(p−d+2)(p−d−1)/2, (5)

as n increases with p fixed, where σ̂2 =
∑p

i=d+1 λ̂i/(p− d) and

ρ = m− d− 2(p− d)2 + (p− d) + 2

6(p− d)
+

d∑

i=1

σ̂2

(λ̂i − σ̂2)2
.

This asymptotic distribution makes it possible to define a test that has
asymptotic significance level α using the rejection region {LRTd < cα}. As
in the case of the sphericity test, the result is no longer true when p/m is
large.

Going back to the case H0 : d = 0, even when the maximum likelihood
ratio test is not well defined when p > m, it was pointed out in [23] that we

can still build a sphericity test. Namely, for p > m, under H0, W = mΣ̂ ∼
Wp(m,σ

2Ip) and therefore W = Y>Y with Y ∈ Rm×p independent normals

with mean 0 and variance σ2. Then W̃ = YY> ∼ Wm(p, σ2Im) with p > m,

and one can build the maximum likelihood ratio test for W̃ as was done for
W for the case p < m. Since the non-zero eigenvalues of W̃ and W coincide,
we get the maximum likelihood ratio test, under the null hypothesis H0, for
W̃ as

LRT0 =
λ̂1 × · · · × λ̂m(

1
m

∑m
i=1 λ̂i

)m .

Using [10, Theorem 1] we get the asymptotic distribution for LRT0, under
H0, with m and p exchanging their roles. As a consequence, a test with
asymptotic significance level α can be built. Let us note that in the case of
[23], the approximation is given in terms of a χ2 distribution, while in [10]
and here, a normal approximation is given.
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This gives the motivation to define the maximum likelihood ratio test for
partial sphericity, for the case of p > m+ d, as

LRTd =
λ̂d+1 × · · · × λ̂m(
1

m−d
∑m

i=d+1 λ̂i

)m−d .

In order to build a test that has asymptotic level α for the case of p and
m increasing under partial sphericity, and with p < m or p > m+ d, we first
need to find the asymptotic distribution of the LRTd in these cases. The
following proposition gives the asymptotic distribution when p,m grow to
infinity and p/m → y with y ∈ (0,∞). In the rest of paper we will assume
the condition Q0:

Condition Q0 : There exists q0 � min(p,m) independent of p and m such
that Hd defined in (3) is true for d ≤ q0.

Proposition 1. Let W = mΣ̂ ∼ Wp(m,Σ) and let us assume Condition
Q0. Under the null hypothesis that the true number of spikes is d fixed, i.e.,

Hd : λd+1 = · · · = λp,

the asymptotic distribution of LRTd (when m and p grow and p/m→ y > 0)
is given by

a) Case p < m:
lnLRTd − µm,p,d

σm,p,d
 N (0, 1),

where

µm,p,d = µ̃m,p+lnAm,p,d+lnBm,p,d, σ2
m,p,d = −2

{
p− d
m

+ ln
(

1− p

m

)}
,

with

µ̃m,p = −p− (m− p− 1/2) ln(1− p/m),

Am,p,d =
h∏

i=1

λsi
i

/ d∏

i=1

λ̂i,

Bm,p,d =

(
1 +

∑d
i=1 λ̂i −

∑h
i=1 siλi∑p

i=d+1 λ̂i

)p−d

.
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b) Case p > m+ d:

ln(LRTd)− µm,p,d
σm,p,d

 N (0, 1),

where
µm,p,d = µ̃∗m,p,d + lnB∗m,p,d + lnC∗m,p,d + lnD∗m,p,d

and

σ2
m,p,d = −2

{
m

p− d + ln

(
1− m

p− d

)}
,

with

µ̃∗m,p,d = −m− (p− d−m− 1/2) ln{1−m/(p− d)},

B∗m,p,d =

(
1 +

∑d
i=1 λ̂i −

∑h
i=1 siλi∑m

i=d+1 λ̂i

)m−d(
m− d
m

)m−d
,

C∗m,p,d =

{
σ2(p− d)

m

}d
,

D∗m,p,d =
h∏

i=1

(
1 +

λi
σ2

m

p− d−m− 1

)si/ d∏

i=1

λ̂i.

The proof of Proposition 1 can be found in Appendix A.

Remark 1. Proposition 1 contains the sphericity test studied by Jiang and
Yang [10] for m > p. Moreover, if p > m, under the hypothesis of sphericity
we get that the new maximum likelihood ratio test has the same asymptotic
distribution as in the case in [10], except that p and m change their roles.
This should not be a surprise, since W ∼ Wp(m,σ

2Ip) can be written as
W = σ2X>X with X ∈ Rm×p filled with independent standard normals.
From here, defining W̃ = σ2XX>, we get W̃ ∼ Wm(p, σ2Im). The non-zero

eigenvalues of W and W̃ are the same, and therefore the usual definition of
the likelihood ratio test for W̃ coincides with the definition of the maximum
likelihood ratio test for W. As a consequence, the asymptotic distribution
of the LRT for p > m under d = 0 follows from the result of [10], exchanging
the roles of m and p.

Remark 2. Let us note that µm,p,d is a random variable that depends on the

true values of σ2, λ1, . . . , λd and of the first d sample eigenvalues λ̂1, . . . , λ̂d
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of Σ̂. To be able to use the asymptotic distribution of Proposition 1 to
test for the dimension of the spike subspace, we need to replace the true
values by consistent estimators. The parameter σ2 can be replaced by its
consistent estimator σ̂2 =

∑p
i=d+1 λ̂i/(p− d). For λi it is well known that, in

the limit, the estimates of the spike eigenvalues experience a phase transition,
[3]. Indeed, if λ > σ2(1 +

√
y), then

λ̂→ λ

(
1 +

yσ2

λ− σ2

)
, (6)

whereas for eigenvalues λ which are in the range (σ2, σ2(1 +
√
y)], the limit

becomes σ2(1 +
√
y)2, making them invisible, i.e., indistinguishable from the

bulk since the sample eigenvalues corresponding to a fixed number of eigen-
values of the bulk go to the same σ2(1 +

√
y)2; see [2]. Therefore we cannot

directly replace λi by λ̂i in µm,p,d since, even if λi is greater than the thresh-

old σ2(1 +
√
y), the λ̂i are biased estimators of λi. We do know, however,

the bias of the estimator exactly from (6). Therefore we can substitute the
λi ≥ σ2(1 +

√
y) in the expression for µm,p,d using the equation suggested by

Eq. (6):

λ̂i = λi

(
1 +

p

m

σ̂2

λi − σ̂2

)

to get

λ̃i =
1

2

{
λ̂i + σ̂2 − σ̂2 p

m
+

√
−4λ̂iσ̂2 +

(
λ̂i + σ̂2 − σ̂2

p

m

)2
}
, (7)

a consistent estimator for λi. In the limit, the discriminant will be non-
negative if and only if λi ≥ σ2(1 +

√
y). Now, the sample version of the

discriminant can be negative when the true eigenvalue is close to the threshold
(or less than the threshold). In that case we will consider λ̃i = σ̂2(1+

√
p/m)

since that is the value of λ̃i for λ̂i that makes the discriminant be zero.
Replacing λi in µm,p,d by λ̃i and σ2 by σ̂2, we get a new approximation for
the asymptotic distribution, when all the spike eigenvalues are greater than
the threshold, that can be used for testing. On the other hand, if one or more
spike eigenvalues are less than the threshold, this new asymptotic distribution
will give a test with asymptotic level not greater than α. (See Lemma 1).

Summarizing, we have the following corollary.
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Corollary 1. Under the hypothesis of Proposition 1, if the spike eigenvalues
λ1, . . . , λd are all greater than the threshold σ2(1 +

√
y),

ln(LRTd)− µ̂m,p,d
σm,p,d

 N (0, 1),

where µ̂m,p,d is obtained from µm,p,d by replacing λi with λ̃i defined on (7)
nad σ2 with σ̂2.

3. Test to find the dimension d of the spike subspace

As we pointed out in Section 2, the test will be done sequentially as in the
usual case. We consider the null hypothesis that Σ = σ2Ip. If this is rejected,
we can test whether the min(p−1,m−1) smallest eigenvalues are equal, and
so on, i.e., we test sequentially the null hypotheses for each d ∈ {0, . . . , q0}
when Condition Q0 is true.

For the test to have significance level α, the rejection region will be the
set {LRTd < C} where C is chosen such that PrHd

(LRTd < C) = α and
where C depends on α and can depend on the sample. Using Corollary 1 we
can build the asymptotic test with rejection region

{
ln(LRTd)− µ̂m,p,d

σm,p,d
< zα

}
, (8)

where µ̂m,p,d was defined in Corollary 1, σm,p,d was defined in Proposition 1,
and zα is the α quantile of the normal distribution. This test will have asymp-
totic significance level α when all the true spike eigenvalues are greater than
σ2(1+

√
y). On the other hand, if one or more spike eigenvalues are less than

the threshold, the test with rejection region (8) will have significance level
not greater than α and therefore will be a conservative test. Summarizing,
we have the following lemma, whose proof is in Appendix B.

Lemma 1. The test for the hypothesis

Hd : λd+1 = · · · = λp vs. H1 : λd+2 = . . . = λp

with rejection region defined in (8) has significance level Φ(zα + L) with

L =





1√
−2{y+ln(1−y)}

∑
i∈J2

si

{
λi

σ2 − (1 +
√
y)− ln λi

σ2(1+
√
y)

}
when p < m,

1√
−2{1/y+ln(1−1/y)}

∑
i∈J2

si

{
λi

yσ2 − 1+
√
y

y
− ln σ2(y−1)+λi√

yσ2(
√
y+1)

}
when p > m+ d,
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where J1 = {i ≤ h : λi > σ2(1+
√
y)}, J2 = {i ≤ h : λi ∈ (σ2, σ2(1+

√
y)]}, Φ

is the cumulative distribution function of N (0, 1) and zα is its αth quantile.

Remark 3. Since L ≤ 0, without information about the population spike
eigenvalues, the test defined in Lemma 1 has asymptotic significance level
smaller than α. When all the spike eigenvalues are greater than the threshold,
L = 0 and the test will have asymptotic significance level α.

4. Simulations

4.1. Set of simulations to show the behavior of the asymptotic approximations

In this section we show the behavior of the asymptotic distribution given
in Proposition 1 as well as the asymptotic approximation distribution pre-
sented in Corollary 1 that we used for testing when the null hypothesis is
true. We do this for a variety of m, p as well as d. Let us recall that these two
distributions are asymptotically equivalent when all the spike eigenvalues are
greater than the threshold. In order to do this we have chosen the scenarios
used in [17]. They consider models with spike subspace dimensions d = 4 and
d = 5 and spike eigenvalues (7, 6, 5, 4) and (259.72, 17.97, 11.04, 7.88, 4.82),
respectively. In both cases σ2 is chosen to be 1. We note that in both of these
scenarios, all the spike eigenvalues are bigger than the threshold σ2 (1 +

√
y).

In all the simulations, we assume that as p and m grow, their ratio is constant
and therefore equal to its limit y.

In Figure 2 we show (red lines) the asymptotic distributions from Proposi-
tion 1 and (blue lines) the approximation distributions described in Section 3
for the above settings for p/m = .3 and p/m = .6 (i.e., for m > p). We can
see how the behavior of the asymptotic distributions improves as p and m
increase in both cases p/m = .3 and p/m = .6.

We have also run similar simulations for some cases in which p > m
(the results can be found in the supplementary material). The results are
essentially the same. The rates of convergence to the true distribution, how-
ever, slow down as p/m increases. Further simulation results reported in
the supplementary material show that the approximating distributions im-
prove when the spike eigenvalues are further away from the critical value,
σ2 (1 +

√
y), the exact and the asymptotic distributions becoming almost

indistinguishable.
An interesting point already noticed by Jiang and Yang [10] for the case

d = 0 is that the classical chi-square approximation (5) becomes poorer as p
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becomes large relative to m. An illustration is provided in the supplementary
material.

In addition to the those presented, we have run simulations using non-
normal distributions (Student’s, chi, and uniform) and obtained unsurprising
results. In the fat-tailed cases (Student’s with 4 degrees of freedom, for
example) the test has a slight tendency to overshoot, whereas in the non-fat-
tailed cases (uniform) the deviations in the results are on the undershooting
side.

4.2. Sequential test for the dimension of the spike subspace. Simulations

Several methods have been recently proposed using random matrix the-
ory for determining the number of factors for high-dimensional data. These
contributions come from different fields. Among others, we can cite [8] or [16]
in economics, and [12] in the array processing or chemometrics literature. A
review and an up to date method for the high-dimensional case is presented
by [17], based on recent results from the theory of random matrices [1, 5, 19].

As we did in the previous subsection, we consider the models they use
to check our results. In both, the ratios used by them are p/m = .3 and
p/m = .6. We present the results of our iterative procedure in Tables 1–4.
Tables 1–2 should be compared with their Tables 1–2 and Tables 3–4 to their
Table 3. In every case we run 1000 replications. In addition, the variance is
not assumed to be known and it is estimated as the average of the remainder
eigenvalues.

As we can see our method is very competitive when p/m = .3 but its
performance deteriorates for higher ratios. We have run the same scenarios
for lower values of p/m which, for the sake of space, we have included in the
supplementary material. Based on those we can confirm that this behav-
ior (performance getting worse as p/m increases) persists. The problem is
that even if the asymptotic distribution under the null hypothesis is almost
perfect, as we saw in Section 4.1, the sequential likelihood ratio test under-
estimates the dimension of the spike subspace. Nevertheless, the maximum
likelihood ratio test chooses, in close to 95% of the cases, either the true
dimension or a value that is lower than the true dimension.

Clearly, if we were to testHd : true dimension = d vs. Ha : true dimension >
d in all the cases, the maximum likelihood ratio test would not reject the null
hypothesis 95% of the cases, as expected. However, since the test is sequen-
tial, the problem is that it can get stuck in a dimension smaller than the true
one. As we will see in the next section, this is due to the fact that the power
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of the likelihood ratio test decreases when p/m grows to 1 (case p < m)
or decreases to 1 (case p > m), a phenomenon already seen by Jiang and
Yang [10] in their Table 1, for p < m and p/m growing to 1. To overcome
the problem of underestimating the dimension, we will present, in Section 6,
a potential solution based on a more detailed study of the behavior of the
maximum likelihood ratio statistic under the alternative hypothesis.

1 2 3 4 5 6 7 8 9
(30, 100) 0.000 0.000 0.000 0.007 0.981 0.010 0.002 0.000 0.000
(60, 200) 0.000 0.000 0.000 0.000 0.983 0.013 0.003 0.001 0.000
(120, 400) 0.000 0.000 0.000 0.000 0.981 0.016 0.003 0.000 0.000
(240, 800) 0.000 0.000 0.000 0.000 0.959 0.027 0.010 0.002 0.002

Table 1: Values of d picked for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true di-
mension = 5) and p/m = .3

1 2 3 4 5 6 7 8 9
(60, 100) 0.000 0.000 0.000 0.216 0.735 0.031 0.008 0.003 0.006
(120, 200) 0.000 0.000 0.000 0.184 0.762 0.033 0.012 0.004 0.003
(240, 400) 0.000 0.000 0.000 0.167 0.798 0.025 0.006 0.003 0.001
(480, 800) 0.000 0.000 0.000 0.126 0.841 0.022 0.007 0.003 0.001

Table 2: Values of d picked for spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true di-
mension = 5) and p/m = .6

1 2 3 4 5 6 7 8 9
(30, 100) 0.000 0.000 0.039 0.901 0.036 0.014 0.002 0.000 0.001
(60, 200) 0.000 0.000 0.014 0.932 0.041 0.009 0.004 0.000 0.000
(120, 400) 0.000 0.000 0.006 0.935 0.042 0.011 0.004 0.001 0.000
(240, 800) 0.000 0.000 0.006 0.949 0.035 0.009 0.001 0.000 0.000

Table 3: Values of d picked for spikes = (7, 6, 5, 4) (true dimension = 4) and
p/m = .3
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1 2 3 4 5 6 7 8 9
(60, 100) 0.000 0.018 0.482 0.452 0.028 0.011 0.004 0.003 0.001
(120, 200) 0.000 0.011 0.427 0.518 0.028 0.008 0.006 0.000 0.001
(240, 400) 0.000 0.002 0.368 0.583 0.027 0.012 0.007 0.001 0.000
(480, 800) 0.000 0.002 0.352 0.605 0.024 0.013 0.003 0.001 0.000

Table 4: Values of d picked for spikes = (7, 6, 5, 4) (true dimension = 4) and
p/m = .6

5. Asymptotic distribution of LRTd when the true dimension is d1

We have studied the asymptotic distribution of the statistic under the
null hypothesis. To go more deeply into the understanding of its behavior,
we would like to know the distribution of the statistic when we are not
considering the correct (true) number of spikes. Throughout this section
we will assume that the true number of spikes is d1 and the statistic under
consideration is LRTd where d is less than or greater than d1.

Proposition 2. Let us assume Condition Q0. The asymptotic distribution
as p/m→ y of the maximum likelihood ratio test LRTd when the true model
is spiked of dimension d1 6= d is given by

ln(LRTd)− µm,p,d,d1
σm,p,d1

 N (0, 1),

where

a) for p < m, µm,p,d,d1 is equal to µm,p,d1 plus





∑h1

i=h0+1 si(ln ki − ki + 1) when d < d1,

(d− d1)
{

(1 +
√
y)2 − ln(1 +

√
y)2 − 1

}
when d1 < d ≤ q0,

(9)

b) for p > m+ d1, µm,p,d,d1 is equal to µm,p,d1 plus





∑h1

i=h0+1 si (ln ki/y − ki/y + 1) when d < d1,

(d− d1)
{

(1+
√
y)2

y
− ln

(1+
√
y)2

y
− 1
}

when d1 < d ≤ q0.

(10)
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Anytime, µm,p,d1 is defined as in Proposition 1 but replacing d by d1, ki =
λi/σ

2{1 + yσ2/(λi − σ2)} if i ∈ J1,k and ki = (1 +
√
y)2 if i ∈ J2,k or when

λi = σ2 where for k = 0, 1, J1,k = {i ≤ hk : λi > σ2(1 +
√
y)}, J2,k = {i ≤

hk : λi ∈ (σ2, σ2(1 +
√
y)]}, and h0, h1 are such that d = s1 + · · · + sh0 and

d1 = s1 + · · ·+ sh1.

The proof can be found in Appendix C.

5.1. The power of the test

The next proposition gives the asymptotic power of the maximum likeli-
hood ratio test for the hypothesis Hd : the spike subspace has dimension d vs.
Ha : the spike subspace has dimension greater than d for the case that the
specific alternative hypothesis true model has a spike subspace of dimension
d1 > d and all the spike eigenvalues are greater than the threshold.

Proposition 3. Let us assume Condition Q0. The asymptotic power of
the maximum likelihood ratio test for the hypothesis Hd : spike subspace of
dimension d vs. Ha : spike subspace has dimension greater than d, for the case
that the specific alternative hypothesis true model has d1 ∈ (d, q0] spikes and
all the spike eigenvalues are greater than the threshold, is given as follows:

1. Case p < m

ψ(d1) = Φ

[∑h1

i=h0+1 si{ λi

σ2 − ln( λi

σ2 )− 1}+ zασm,p,d

σm,p,d1

]

2. Case p > m+ d1

ψ(d1) = Φ

[∑h1

i=h0+1 si{ λi

yσ2 − 1
y
− ln(1− 1

y
+ λi

yσ2 )}+ zασm,p,d

σm,p,d1

]

where Φ is the cumulative standard normal distribution and zα is the α quan-
tile of the standard normal.

The proof of this proposition can be found in Appendix D.
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1 2 3
(30, 100) 1.000 1.000 0.884
(60, 200) 1.000 1.000 0.978
(120, 400) 1.000 1.000 0.997
(240, 800) 1.000 1.000 0.996

Table 5: Probability of rejecting, spikes = (7, 6, 5, 4) (true dimension = 4) and
p/m = .3

1 2 3
(30, 100) 1.000 0.976 0.408
(60, 200) 1.000 0.996 0.543
(120, 400) 1.000 0.995 0.613
(240, 800) 1.000 0.998 0.595

Table 6: Probability of rejecting, spikes = (7, 6, 5, 4) (true dimension = 4) and
p/m = .6

1 2 3 4
(30, 100) 1.000 1.000 1.000 0.987
(60, 200) 1.000 1.000 1.000 1.000
(120, 400) 1.000 1.000 1.000 1.000
(240, 800) 1.000 1.000 1.000 1.000

Table 7: Probability of rejecting, spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true
dimension = 5) and p/m = .3
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1 2 3 4
(30, 100) 1.000 1.000 1.000 0.703
(60, 200) 1.000 1.000 1.000 0.784
(120, 400) 1.000 1.000 1.000 0.848
(240, 800) 1.000 1.000 1.000 0.872

Table 8: Probability of rejecting, spikes = (259.72, 17.97, 11.04, 7.88, 4.82) (true
dimension = 5) and p/m = .6

Let us note that for fixed y, as m and p grow, σm,p,d/σm,p,d1 → 1 when
p/m → y. Now, the bigger the eigenvalues λi with i ∈ {h0 + 1, . . . , h1}, the
bigger

∑h1

i=h0+1 si{λi/σ2− ln(λi/σ
2)−1} > 0 and

∑h1

i=h0+1 si[λi/(yσ
2)−1/y−

ln{1 − 1/y + λi/(yσ
2)}] > 0. As a consequence, larger values of λi imply a

greater power. Moreover λi → ∞ for i ∈ {h0 + 1, . . . , h1} implies that the
power goes to 1. On the other hand, for fixed λi with i ∈ {h0 + 1, . . . , h1}
and y → 1, we have that σm,p,d1 →∞, σm,p,d/σm,p,d1 → 1 and, therefore, the
power decreases to α as y → 1. For y → 0, σm,p,d1 → 0, σm,p,d/σm,p,d1 → 1
and in this case the power goes to 1.

Tables 5–8 show the probabilities of rejection for each of the values under
the true dimension for the two models considered in our simulation runs. We
see how, not surprisingly, the power decreases as p/m grows closer to 1.

In light of Proposition 3 and the explanation above, the results obtained
in Section 4.2 (and in the supplementary material) should not be surprising.
We saw that the maximum likelihood ratio test underestimates the true di-
mension of the spike subspace when the limit of p/m is close to 1. This is
confirmed by the behavior of the power of the test when y ≈ 1 . The con-
sequence of this is that the sequential test stops earlier than it is supposed
to. In spite of this, we do know the asymptotic behavior of the statistic as a
function of the null hypothesis (thanks to Proposition 2). We can then use
this knowledge to modify the statistic by penalizing the number of spikes
chosen.

Remark 4. Passemier and Yao [17] present a method to test for the di-
mension of the spike subspace that is based on eigenvalue spacings. Due to
the nature of the technique, dealing with multiple spike eigenvalues can be
tricky. In [18] they prove that due to the different speeds of convergence of
the spacings between the spike and the bulk eigenvalues, their method still
works for matrices with repeated eigenvalues, even if at a different, slower,
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rate of convergence. The maximum likelihood ratio does not run into these
problems since, as will become clear in the results from the next section, the
important quantity we look at is related to the value of the eigenvalue itself
and not to their spacings.

6. A penalized version of the maximum likelihood ratio test

As we mentioned in Section 2, the maximum likelihood ratio statistic
(4) is an increasing function of d. The same phenomenon was observed in
Proposition 2 for the asymptotic mean. But, also in Proposition 4, we have
seen that the growth rate of the asymptotic mean changes from d < d1

to d > d1. This will allow us to define a new consistent estimator of the
dimension of the spike subspace via information criteria, as was done in [26]
for the fixed-p case.

Proposition 4. Suppose that the spike subspace of the true model has dimen-
sion d1. Given µm,p,d,d1 defined in Proposition 2 and ε ≥ 0, we consider, for
ỹ = max(1, y), the function g(d) = µm,p,d,d1 − (d − d1)

[
h{σ2(1 +

√
y)}+ ε

]

with

h(λ) =
λ

ỹσ2

(
1 +

yσ2

λ− σ2

)
− ln

{
λ

ỹσ2

(
1 +

yσ2

λ− σ2

)}
− 1.

Let λ∗ > σ2(1+
√
y) be such that ε = h(λ∗)−h{σ2 (1+

√
y)}. Then, if all the

spike eigenvalues are greater than λ∗, we have that g has a global maximum
at d = d1.

The proof can be found in Appendix E.

Remark 5. First, h{σ2(1 +
√
y)} is only dependent on y. Second, for ε = 0,

the function g is increasing for d < d1 and constant for d ≥ d1. Moreover, if
all the eigenvalues in the spiked part are greater than σ2(1 +

√
y), then g is

strictly increasing for d ≤ d1.

Proposition 4 gives us a clear intuition of the behavior of the mean of
the distribution of the different statistics used in the sequential test. In the
population, if ε > 0 and all the spike eigenvalues are greater than λ∗, then
the mean of the maximum likelihood ratio test plus the penalty term has a

18



global maximum at d = d1. Inspired by Proposition 4, we will define a new
estimator for the dimension d̂ε. For ε ≥ 0 fixed, we define

d̂ε = min

[
arg max
0≤j≤q0

{
ln(LRTj)− j[h{σ2 (1 +

√
y)}+ ε]

}]
, (11)

where q0 is an upper bound for d. Note that if we knew what the true value
of the dimension of the spike subspace (d1) is, we could replace j by j−d1 in
the definition of d̂ε, leaving us with an expression that is very closely related
to the function g defined above. Clearly we cannot do that, since the point
of defining d̂ε is exactly to estimate the value of d1. For our purposes this is,
however, inconsequential.

Now, since the function h(λ) is strictly increasing, when λ > σ2 (1 +
√
y),

there exists a value λ∗ such that ε = h(λ∗)−h{σ2 (1+
√
y)}. The idea is that

this new estimator will miss the eigenvalues located between the threshold
and λ∗ but, with high probability, will pick up all the eigenvalues bigger than
λ∗ as m, p→∞. As a consequence of Proposition 4, we have

Proposition 5. Suppose that the true dimension of the spike subspace is d1.
If all the spike eigenvalues are greater than λ∗, then d̂ε defined in (11) is a
consistent estimator of d1 in the sense that

Pr(d̂ε = d1)→ 1 as p,m→∞, p

m
→ y > 0.

The proof can be found in Appendix F.

Remark 6. As was discussed above, the choice of ε will determine which
eigenvalues will be detected. The method will miss any eigenvalues λ which
are smaller than λ∗ where λ∗ satisfies ε = h(λ∗) − h{σ2 (1 +

√
y)}. There-

fore, the strategy for picking ε should be as follows: first pick a λ∗ slightly
bigger than σ2 (1 +

√
y), then define ε as the mentioned difference. As the

proposition shows, this method is consistent as long as we have chosen a λ∗

which sits to the left of the smallest of the eigenvalues which are bigger than
the threshold. Otherwise, if our chosen λ∗ turns out to be larger than some
of the relevant eigenvalues, those eigenvalues will not be picked up and the
dimension estimated will be smaller than d1.

6.1. Simulations and comparison with Kritchmaker–Nadler’s method

The procedure defined in (11) gives us another way to estimate the true
dimension of the spike subspace. To illustrate this estimator we have repli-
cated simulations for the examples already presented. Tables 9–12 show the
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results for the cases corresponding to Tables 1–4. It can be seen that the
performance is greatly improved. Using results from the theory of random
matrices pays off since they allow us to pick the penalty function in a mean-
ingful way. More results from this fact can be found in the supplementary
material.

1 2 3 4 5 6 7 8 9
(30, 100) 0.000 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.000
(60, 200) 0.000 0.000 0.000 0.000 0.999 0.001 0.000 0.000 0.000
(120, 400) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
(240, 800) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Table 9: Values of d picked via HD-MDL for spikes =
(259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = .3

1 2 3 4 5 6 7 8 9
(60, 100) 0.000 0.000 0.000 0.000 0.968 0.032 0.000 0.000 0.000
(120, 200) 0.000 0.000 0.000 0.000 0.993 0.007 0.000 0.000 0.000
(240, 400) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
(480, 800) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

Table 10: Values of d picked via HD-MDL for spikes =
(259.72, 17.97, 11.04, 7.88, 4.82) (true dimension = 5) and p/m = .6

1 2 3 4 5 6 7 8 9
(30, 100) 0.000 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.000
(60, 200) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(120, 400) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000
(240, 800) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 11: Values of d picked via HD-MDL for spikes = (7, 6, 5, 4) (true dimension
= 4) and p/m = .3
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1 2 3 4 5 6 7 8 9
(60, 100) 0.000 0.000 0.002 0.971 0.027 0.000 0.000 0.000 0.000
(120, 200) 0.000 0.000 0.000 0.995 0.005 0.000 0.000 0.000 0.000
(240, 400) 0.000 0.000 0.000 0.999 0.001 0.000 0.000 0.000 0.000
(480, 800) 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 12: Values of d picked via HD-MDL for spikes = (7, 6, 5, 4) (true dimension
= 4) and p/m = .6

In addition, we run the scenarios shown in Figures 7 and 8 in [12]. The
results are presented in Figure 1. In both cases we plot the probability
of misdirection when there is only one spike eigenvalue. The spike value
appears on the x axis. The new estimator defined is denoted by HD-MDL
(high-dimensional MDL). We see how a detailed analysis of the growth of
the maximum likelihood ratio statistics allows us to improve the detection
performance. One caveat of our approach, however, is that we have to choose
a value for ε. For large values of ε the estimator will miss eigenvalues that are
close to the threshold but will minimize the probability of missing larger ones.
On the other hand, very low values will increase, slightly, the probability of
missing larger eigenvalues (when p and m are not sufficiently large).
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Figure 1: Probabilities of misdetection in two cases.
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Figure 2: Simulation with σ2 = 1, p = 100, 200, 300, 400, for d = 4, (λ1, λ2, λ3, λ4) =
(7, 6, 5, 4), p/m = .3 in the first row, p/m = .6 in the second row, d = 5,
(λ1, λ2, λ3, λ4, λ5) = (259.72, 17.97, 11.04, 7.88, 4.82), p/m = .3 in the third row
and p/m = .6 in the fourth row. The red curve is the asymptotic distribution of
lnLRTd given in Proposition 1 and the blue curve the lower approximation given
in Corollary 1. 22



7. Conclusion

For the high-dimensional case (p < n and p, n → ∞) we study the
asymptotic distribution of the maximum likelihood ratio statistics for partial
sphericity in high-dimensional settings for the case of a spiked covariance
model as introduced by Johnstone [11]. In addition, we consider the ultra
high-dimensional case (p > n and p, n → ∞) and study the asymptotic dis-
tribution of the maximum likelihood ratio statistics where the roles of p and
n are reversed. Knowledge of these asymptotic distributions allows us to
develop a test to choose the dimension of the spike subspace that focuses
on the non-spiked portion of the covariance matrix. One nice feature of this
approach is that no knowledge of the variance of the non-spiked part is re-
quired. The study of the power of the maximum likelihood ratio test leads
us to refine the test, adding a penalty term to the likelihood. The idea of
a penalty term is connected to the elbow method used in cluster analysis to
choose the number of clusters [24] and, also, to the information theoretic
approaches such as AIC and MDL [26]. By studying the change of behavior
of the distribution of the maximum likelihood ratio statistic for values below
and over the true dimension of the spike subspace, we are able to modify it
and to prove that the resulting estimator is consistent.
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Appendix: Proofs

Through the proofs we will use the fact that in all spiked models with
spike subspace of dimension d, σ̂2 =

∑p
i=d+1 λ̂i/(p− d) converges almost

surely to σ2.

A. Proof of Proposition 1

We consider separately the cases p < m and p > m+ d,
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1. Case p < m. This case follows using the technique developed by Muir-
head [15] and the approximations given in [10]. For each i ∈ {0, . . . , h},
let us call Ψ̂i the sample version of Ψi ∈ Rp×si , where s0 = p− d. Re-
member that, under the null hypothesis Hd, the matrices Ψ1, . . . ,Ψh

correspond to the d spike eigenvalues of the covariance matrix Σ. We
have Σ̂ = (Ψ̂, Ψ̂0)Λ̂(Ψ̂, Ψ̂0)

> with Λ̂ = diag(λ̂1, . . . , λ̂p). It should be
noted that since m > p all the eigenvalues of the sample covariance
matrix are different and not 0 with probability 1. Now,

LRTd =
λ̂d+1 × · · · × λ̂p(
1
p−d
∑p

i=d+1 λ̂i

)p−d = LRT∗AΨ1 · · ·AΨh
AΨ0

with

LRT∗ =
|Σ̂|

{
tr(Ψ>1 Σ̂Ψ1)

s1

}s1
· · ·
{

tr(Ψ>h Σ̂Ψh)

sh

}sh
{

tr(Ψ>0 Σ̂Ψ0)

p−d

}p−d ,

AΨi
=

{
tr(Ψ>i Σ̂Ψi)

si

}si

|Ψ̂>i Σ̂Ψ̂i|
, i = 1, . . . , h, and

AΨ0 =

{
tr(Ψ>0 Σ̂Ψ0)

tr(Ψ̂>0 Σ̂Ψ̂0)

}p−d

.

Since σm,p,d 6→ 0, the pieces required to get the result are

ln(LRT∗)− µ̃m,p
σm,p,d

 N (0, 1), (12)

ln(Πh
i=1AΨi

)− ln(Am,p,d) → 0, (13)

ln(AΨ0)− ln(Bm,p,d) → 0. (14)

Proof of (12): To follow Muirhead’s proof we need to compute E(LRT t∗),
the moment generating function of ln(LRT∗), under the null hypothesis
for t in a neighborhood of 0. We find

LRT∗ =
|Σ̂|∏h

i=0{ tr(Ψ>i Σ̂Ψi/si)}si

=
|Σ̂||Σ−1|∏h

i=0{λ−1
i tr(Ψ>i Σ̂Ψi/si)}si

=
|Σ−1/2Σ̂Σ−1/2|∏h

i=0{ tr(Ψ>i Σ−1/2Σ̂Σ−1/2Ψi/si)}si
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Hence

E(LRT t∗) = E

[
|Σ−1/2Σ̂Σ−1/2|t∏h

i=0{ tr(Ψ>i Σ−1/2Σ̂Σ−1/2Ψi/si)}sit

]

= E

{
|A|t∏h

i=0( trAii/si)sit

}
,

where the expectation in the last expectation is taken with respect to
a matrix A = m Σ−1/2Σ̂Σ−1/2 ∼ Wp(m, Ip). Using Proposition 8.1 of

[6], Aii = m Ψ>i Σ−1/2Σ̂Σ−1/2Ψi ∼ Wsi
(m, Isi

) and are independent;
see Theorem 3.2.6 in [15]. As a consequence,

E(LRT t∗) =
1

2
mp
2 Γp(

m
2

)

∫ |A|t+m−p−1
2

Πh
i=0(

trAii

si
)sit

exp

(
−1

2
trA

)
dA

=
2

(m+2t)p
2 Γp(

m+2t
2

)

2
mp
2 Γp(

m
2

)
E





1

Πh
i=0

(
trAii

si

)sit




, (15)

where the expectation in the last expectation is taken with respect to
a matrix A ∼ Wp(m + 2t, Ip) and Aii ∼ Wsi

(m + 2t, Isi
) independent

using the definition of Wishart distribution with non-integer degrees of
freedom; see Section 3.2 in [15]. Now, E{( trAii/si)

−sit} is equal to

1

Γsi
(m+2t

2
)2

(m+2t)si
2

∫ (
trS

si

)−sit

|S|
m+2t−si−1

2 exp(−1

2
trS)dS

=
1

Γsi
(m+2t

2
)2

(m+2t)si
2

∫
|S|t

(
trS

si

)−sit

|S|
m−si−1

2 exp(−1

2
trS)dS

=
Γsi

(m
2

)2
msi
2

Γsi
(m+2t

2
)2

(m+2t)si
2

E

[{
|S|

( 1
si

trS)si

}t]
,

where the last expectation is considering S ∼ Wsi
(m, Isi

). Using Corol-
lary 8.3.6 of [15],

E

{(
trAii

si

)−sit
}

=
ssit
i Γ(1

2
sim)

2tsiΓ(1
2
sim+ sit)

.
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Consequently, replacing in (15),

E(LRT t∗) =
Γp(

m
2

+ t)

Γp(
m
2

)
(p− d)(p−d)t Γ{1

2
(p− d)m}

Γ{1
2
(p− d)m+ (p− d)t} (16)

Πh
i=1

ssit
i Γ(1

2
sim)

Γ(1
2
sim+ sit)

.

We now use Lemma 5.1 from [10], which is a consequence of Stir-
ling’s expansion for Gamma functions. We take b(x) = 2tx/m with
x = m(p− d)/2. Since b(x) = O(

√
x) = O(m) for t finite, − ln[Γ{m(p−

d)/2 + t(p− d)}/Γ{m(p− d)/2}] is equal to

−t(p− d) ln
{m

2
(p− d)

}
− t2(p− d)2 − t(p− d)

m(p− d)
+O(1/m)

= −t(p− d) ln
{m

2
(p− d)

}
− t2(p− d)

m
+O(1/m)

and taking b(x) = sit, for t finite and x = msi/2, b(x) = O(1),

− ln
Γ(m

2
si + sit)

Γ(m
2
si)

= −sit ln
(m

2
si

)
− s2

i t
2 − sit
msi

+O(1/m2)

= −sit ln
(m

2
si

)
+O(1/m).

Taking logarithms in (16) and using the above approximations plus
Lemma 5.4 from [10], we have for r2

m = − ln(1−p/m) and t = O(1/rm):

ln E(LRT t∗) = 2

{
−(p− d)

m
+ r2

m

}
t2

2
+

{
−p+ r2

m(m− p− 1

2
)

}
t+o(1),

which leads to (12).

Proof of (13): Since mΨ>i Σ̂Ψi ∼ Wsi
(m,λiIsi

), we have when m→∞
tr(Ψ>i Σ̂Ψi)/si → λi; seeTheorem 3.2.20 in [15]. Therefore,

h∑

i=1

ln(AΨi
)− ln(Am,p,d) =

h∑

i=1

si

{
ln

tr(Ψ>i Σ̂Ψi)

si
− lnλi

}
→ 0.
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Proof of (14): By definition of AΨ0 we need to compute

tr(Ψ>0 Σ̂Ψ0)

tr(Ψ̂>0 Σ̂Ψ̂0)
=

∑p
i=1 λ̂i − tr(Ψ>Σ̂Ψ)

tr(Ψ̂>0 Σ̂Ψ̂0)
.

Therefore,

ln (AΨ0/Bm,p,d) = (p− d) ln

{
1 +

1

p− d

∑h
i=1 siλi − tr(Ψ>Σ̂Ψ)

1
p−d(

∑p
i=1 λ̂i −

∑h
i=1 siλi)

}
,

and the proof of (14) follows if

a =

∑h
i=1 siλi − tr(Ψ>Σ̂Ψ)

1
p−d(

∑p
i=1 λ̂i −

∑h
i=1 siλi)

→ 0. (17)

In fact, it was proven above that the numerator goes to 0. On the other
hand, for the denominator we have

E

{
1

p− d

(
p∑

i=1

λ̂i −
h∑

i=1

siλi

)}
=σ2

var

{
1

p− d

(
p∑

i=1

λ̂i −
h∑

i=1

siλi

)}
=

2

m(p− d)2

{
h∑

i=1

siλ
2
i + σ4(p− d)

}
→ 0

from which (17) follows.

2. Case p > m + d. Since mΣ̂ ∼ Wp(m,Σ) then mΣ̂ = Z>Z with

Z ∈ Rm×p ∼ N (0, Im ⊗Σ) and mΣ̃ = ZZ> = Z(Ψ,Ψ0)(Ψ,Ψ0)
>Z> ∈

Rm×m with Z(Ψ,Ψ0) ∈ Rm×p and Z(Ψ,Ψ0) ∼ N (0, Im ⊗ Λ). As a
consequence,

mΣ̃ = ZΨΨ>Z + ZΨ0Ψ
>
0 Z.

Now, ZΨ ∈ Rm×d and ZΨ ∼ N (0, Im ⊗ Λd) and therefore ZΨ =

ZdΛ
1/2
d for some Zd ∼ N (0, Im ⊗ Id). Analogously, ZΨ0 = σZ̃ for

some Z̃ ∼ N (0, Im ⊗ Ip−d) and moreover Zd and Z̃ are independent.
Therefore,

Σ̃ =
1

m
ZdΛdZ

>
d +

σ2

m
Z̃Z̃>, (18)
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with Z̃Z̃> ∼ Wm(p− d, Im) independent of Zd ∼ N(0, Im ⊗ Id). Now,

|Σ̃| =

∣∣∣∣
σ2

m
Z̃Z̃>

∣∣∣∣
∣∣∣∣Id +

1

σ2
Λ1/2

d Z>d (Z̃Z̃>)−1ZdΛ
1/2

d

∣∣∣∣

Let us note that the eigenvalues of Σ̃ are the non-zeros eigenvalues of
Σ̂: λ̂1, . . . , λ̂m. Therefore,

LRTd =
|Σ̃|

(
1

m−d
∑m

i=d+1 λ̂i

)m−d
1

λ̂1 × · · · × λ̂d

=
|σ2

m
Z̃Z̃>||Id + 1

σ2 Λ
1/2
d Z>d (Z̃Z̃>)−1ZdΛ

1/2
d |(

1
m−d

∑m
i=d+1 λ̂i

)m−d
1

λ̂1 × · · · × λ̂d

=
|σ2Z̃Z̃>|{

1
m

tr(σ2Z̃Z̃>)
}m

{
1
m

tr(σ2 Z̃Z̃>
m

)
1

m−d
∑m

i=d+1 λ̂i

}m−d{
1

m
tr

(
σ2 Z̃Z̃>

m

)}d

|Id + 1
σ2 Λ

1/2
d Z>d (Z̃Z̃>)−1ZdΛ

1/2
d |

λ̂1 × · · · × λ̂d
= LRT ∗BCD,

where LRT ∗, B, C and D are the factors in exactly the same order
that in the third line of the previous equation. Since σm,p,d 6→ 0, the
pieces to get the result are

ln(LRT ∗)− µ̃∗m,p,d
σm,p,d

 N (0, 1), (19)

lnB − lnB∗m,p,d → 0, (20)

lnC − lnC∗m,p,d → 0, (21)

lnD − lnD∗m,p,d → 0. (22)

Proof of (19): By definition,

LRT ∗ =
|Z̃Z̃>|{

1
m

tr(Z̃Z̃>)
}m .
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Now, the result follows from [10] since Z̃Z̃> ∼ Wm(p− d, Im).

Proof of (20): By definition of B and (18),

B =

{
1 +

∑d
i=1 λ̂i − 1

m
tr
(
ZdΛdZ

>
d

)

tr(Ψ̂>0 Σ̂Ψ̂0)

}m−d(
m− d
m

)m−d

Then

ln
(
B/B∗m,p,d

)
= (m− d) ln

{
1 +

∑h
i=1 siλi − 1

m
tr
(
ZdΛdZ

>
d

)

tr(Σ̂)−∑h
i=1 siλi

}

and the proof of (20) follows if

a =

∑h
i=1 siλi − 1

m
tr
(
ZdΛdZ

>
d

)

1
m−d( trΣ̂−∑h

i=1 siλi)
→ 0. (23)

In fact, since ZT
dZd ∼ Wd(m, Id), E{ tr

(
ZdΛdZ

>
d /m

)
} =

∑h
i=1 siλi

and var{ tr
(
ZdΛdZ

>
d /m

)
} = 2

∑d
i=1 siλ

2
i /m = O(m−1). Therefore the

numerator goes to 0. On the other hand, the denominator goes to
yσ2 <∞ since trΣ̂/p→ σ2, from what follows (23).

Proof of (21): Since

E

{
tr( Z̃Z̃>

m
)

p− d

}
=

1

m(p− d)
tr{E(Z̃Z̃>)} =

σ2

m
tr(Im) = 1

and

var

{
tr( Z̃Z̃>

m
)

p− d

}
=

1

(p− d)2m2
var{ tr(Z̃Z̃>)}

=
2

m(p− d)
→ 0,

it follows that ln(C)− ln(C∗m,p,d)→ 0.

Proof of (22): By definition of D and D∗m,p,d it is enough to prove that

ln

∣∣∣∣Id +
1

σ2
Λ1/2

d Z>d (Z̃Z̃>)−1ZdΛ
1/2

d

∣∣∣∣−
h∑

i=1

si ln

(
1 +

λi
σ2

m

p− d−m− 1

)
→ 0.
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But this follows directly from the fact that since Zd and Z̃ are inde-
pendent and Z̃Z̃> ∼ Wm(p − d, Im) using the moments of the inverse
Wishart distribution [25],

E

{
Id +

1

σ2
Λ1/2

d Z>d (Z̃Z̃>)−1ZdΛ
1/2

d

}
= Id +

1

σ2

m

p− d−m− 1
Λd > 0,

and

var

[
vec

{
Id +

1

σ2
Λ1/2

d Z>d (Z̃Z̃>)−1ZdΛ
1/2

d

}]
→ 0.

To check the last statement, we use the variance decomposition formula,
the fact that

var
[
vec
{

Λ1/2

d Z>d (Z̃Z̃>)−1ZdΛ
1/2

d

}
|Zd

]
= Kvar{vec(Z̃Z̃>)−1}K>,

with K = (Λ1/2

d Z>d ⊗Λ1/2

d Z>d ) and the moments of the inverse Wishart
distribution [25]. The proof of (22) follows from the fact that the
determinant is a continuous function.

B. Proof of Lemma 1

The lemma follows if we prove that

µ̂m,p,d − µm,p,d
σm,p,d

→ L when p,m→∞ (24)

We will use repetitively that λ̃i → λi when λi ∈ J1 and λ̃i → σ2(1 +
√
y) for

λi ∈ J2. Let us consider the cases p < m and p > m+ d separately.

1. Case p < m. The difference between the term ln(Am,p,d) for µ̂m,p,d and
µm,p,d converges to

∑

i∈J2

si lnσ
2(1 +

√
y)−

∑

i∈J2

si lnλi. (25)

To compare the term ln(Bm,p,d) for µ̂m,p,d and µm,p,d, let us note before
that ln(Bm,p,d) from Proposition 1 is asymptotically equivalent to

B̃m,p,d = y
∑

i∈J1

si
λi

λi − σ2
+
∑

i∈J2

si(1 +
√
y)2 −

∑

i∈J2

si
λi
σ2
.
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In fact, since (p− d) ln{1 + ap,m/(p− d)} = a+ o(1) when p− d→∞
if a = lim ap,m is finite, it is enough to prove that

ln(Bm,p,d)− (p− d) ln

(
1 +

1

p− dB̃m,p,d

)
→ 0

as p and m go to infinity. But by definition of ln(Bm,p,d) and B̃m,p,d we
have

ln(Bm,p,d)− (p− d) ln

(
1 +

1

p− dB̃m,p,d

)
=

= (p− d) ln

(
1 +

∑d
i=1 λ̂i −

∑h
i=1 siλi∑p

i=d+1 λ̂i

)

−(p− d) ln

[
1 +

1

p− d

{
y
∑

i∈J1

si
λi

λi − σ2
+
∑

i∈J2

si(1 +
√
y)2 −

∑

i∈J2

si
λi
σ2

}]

= (p− d) ln

(
1 +

1

p− d H
)
.

The proof of the statement then follows if we prove that

H =
−
{
y
∑

i∈J1

siλi

λi−σ2 +
∑

i∈J2
si(1 +

√
y)2 −∑i∈J2

siλi

σ2

}
+

∑d
i=1 λ̂i−

∑h
i=1 siλi

1
p−d

∑p
i=d+1 λ̂i

1 + 1
p−d

{
y
∑

i∈J1

siλi

λi−σ2 +
∑

i∈J2
si(1 +

√
y)2 −∑i∈J2

si
λi

σ2

} → 0.

This can be seen through the fact that the numerator goes to 0 and the
denominator goes to 1 using again [2]. As a consequence, the difference

between the term B̃m,p,d for µ̂m,p,d and µm,p,d is in the terms involving
J2 and it converges to

−
∑

i∈J2

si(1 +
√
y) +

∑

i∈J2

si
λi
σ2
. (26)

Eqs. (25) and (26) give us (24) since σm,p,d →
√
−2{y + ln(1− y)}.

2. Case p > m+ d. In this case, in part b) of the Proposition 1 ln(B∗m,p,d)
can be replaced by

∑

i∈J1

si
λi

λi − σ2
+
∑

i∈J2

si
(1 +

√
y)2

y
−
∑

i∈J2

si
λi
yσ2

+ (m− d) ln

(
m− d
m

)
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and ln(D∗m,p,d) by

h∑

i=1

si ln

{
1 +

λi
σ2(y − 1)

}
−
∑

i∈J1

si ln

{
λi

(
1 + y

σ2

λi − σ2

)}
−
∑

i∈J2

siσ
2(1 +

√
y)2

with J1 and J2 as before. The proofs of these observations are com-
pletely analogous to the previous case. From this, and since the other
terms do not involve λi,

µ̂m,p,d − µm,p,d →
∑

i∈J2

si

{
λi
yσ2
− 1 +

√
y

y
− ln

σ2(y − 1) + λi
σ2
√
y(1 +

√
y)

}

and σm,p,d goes to
√
−2 {1/y + ln(1− 1/y)} <∞ when both p and m

tend to infinity.

C. Proof of Proposition 2

Calling r = min(m, p), we can write

LRTd = LRTd1λ̂d+1 × · · · × λ̂d1

(
1

r−d1
∑r

i=d1+1 λ̂i

)r−d1

(
1
r−d
∑r

i=d+1 λ̂i

)r−d when d < d1,(27)

LRTd = LRTd1
1

λ̂d1+1 × · · · × λ̂d

(
1

r−d1
∑r

i=d1+1 λ̂i

)r−d1

(
1
r−d
∑r

i=d+1 λ̂i

)r−d when d > d1.(28)

Using Proposition 1

ln(LRTd1)− µm,p,d1
σm,p,d1

 N (0, 1), (29)

and since for i ∈ J1,k, λ̂i → λi{1 + yσ2/(λi − σ2)} and for i ∈ J2,k, λ̂i →
σ2(1 +

√
y)2 when p,m→∞ and p/m→ y,

ln(λ̂d+1 · · · λ̂d1)−
∑h1

i=h0+1 si ln(σ2ki)→ 0, when d < d1, (30)

ln(λ̂d1+1 · · · λ̂d)− (d− d1) ln{σ2(1 +
√
y)2} → 0, when d1 < d ≤ q0, (31)
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where (31) follows from the fact that since d1 < d all the population eigen-
values λd1+1, . . . , λd are equal to σ2. Consequently, since d ≤ q0 fixed inde-
pendent on m and p, λ̂j → σ2(1+

√
y)2 as p,m grow to infinity and p/m→ y

for j = d1 + 1, . . . , d ≤ q0. On the other hand we have

(
1

r−d1
∑r

i=d1+1 λ̂i

)r−d1

(
1
r−d
∑r

i=d+1 λ̂i

)r−d = ABC, (32)

With

A =

(∑r
i=d1+1 λ̂i∑r
i=d+1 λ̂i

)r−d

→





exp(− 1
ỹ

∑h1

i=h0+1 siki) if d < d1, (33)

exp{ 1
ỹ
(d− d1)(1 +

√
y)2} if d < d1, (34)

B =

(
1

r − d1

r∑

i=d1+1

λ̂i

)d−d1

→
(
ỹσ2
)d−d1 , (35)

C =

(
r − d
r − d1

)r−d
→ exp(d1 − d), (36)

where ỹ = max(1, y), and to prove (33) and (34) we use the limit result
(1 + at/t)

t → exp{a} when at is such that at → a as t grows to infinity,
taking

at = −
(

d1∑

i=d+1

λ̂i

)
/

{
r∑

i=d+1

λ̂i/(r − d)

}

and

at =

(
d∑

i=d1+1

λ̂i

)
/

{
r∑

i=d+1

λ̂i/(r − d)

}
,

respectively. The result follows from (29)–(36) applied to (27) for the case
d < d1 and applied to (28) for the case d > d1.

D. Proof of Proposition 3

Since all the eigenvalues are greater that the threshold, is equivalent
(asymptotically) to use µ̂m,p,d or µm,p,d. Using Proposition 2 for d1 > d,
we get for Z ∼ N (0, 1),

33



• Case p < m:

Ψ(d1) = Pr{ln(LRTd) < µm,p,d + zασm,p,d|d = d1}

= Pr

(
Z <

µm,p,d − µm,p,d,d1 + zασm,p,d
σm,p,d1

)

= Pr

{
Z <

µm,p,d − µm,p,d1 +
∑h1

i=h0+1 si(ki − ln ki − 1) + zασm,p,d

σm,p,d1

}
.

• Case p > m+ d1:

Ψ(d1) = Pr{ln(LRTd) < µm,p,d + zασm,p,d|d = d1}

= Pr

(
Z <

µm,p,d − µm,p,d,d1 + zασm,p,d
σm,p,d1

)

= Pr

{
Z <

µm,p,d − µm,p,d1 +
∑h1

i=h0+1 si(
ki

y
− ln ki

y
− 1) + zασm,p,d

σm,p,d1

}
.

The result follows since µm,p,d − µm,p,d1 converges to

−
h1∑

i=h0+1

si

{
ln

(
λi
σ2

)
− λi
σ2

}
−

h1∑

i=h0+1

si(ki − ln ki) (37)

when p < m and to

−
h1∑

i=h0+1

si

{
ln

(
1− 1

y
+

λi
yσ2

)
− 1 +

1

y
− λi
yσ2

}
−

h1∑

i=h0+1

si

(
ki
y
− ln

ki
y

)

(38)
when p > m+ d1.

Now, from the proof of Lemma 1, for p < m, ln(Bm,p,d) is asymptotically

equivalent to
∑hk

i=1 si(ki − λi/σ2) from where (37) follows directly. Now for
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p > m+ d1 (38) follows from

µ̃∗m,p,d − µ̃∗m,p,d1 = (p−m)

{
ln

(
1− m

p− d1

)
− ln

(
1− m

p− d

)}

−(d1 +
1

2
) ln

(
1− m

p− d1

)

+(d+
1

2
) ln

(
1− m

p− d

)

∼ d− d1

y
+ (d− d1) ln(1−m/p),

ln(B∗m,p,d)− ln(B∗m,p,d1) ∼ −
h1∑

i=h0+1

si

(
ki
y
− λi
yσ2

)
− (d− d1),

ln(C∗m,p,d)− ln(C∗m,p,d1) ∼ (d− d1) ln(yσ2),

ln(D∗m,p,d)− ln(D∗m,p,d1) ∼ −
h1∑

i=h0+1

si

{
ln

(
1 +

λi
σ2

1

p/m− 1

)
− lnσ2ki

}
.

where ∼ means asymptotic equivalent.

E. Proof of Proposition 4.

Since λi > σ2(1 +
√
y) we get J2,1 = J2,0 = ∅. Using (9) and (10) we

have that for d ≥ d1, g(d) = µm,p,d1 − (d− d1)ε. Therefore g is a decreasing
function for d ≥ d1. Now, for d < d1, using again ỹ = max(1, y), the function
g(d) is given by

g(d) = µm,p,d1 +

h1∑

i=h0+1

si

(
ln
ki
ỹ
− ki
ỹ

+ 1

)

−(d− d1)

{
(1 +

√
y)2

ỹ
− ln

(1 +
√
y)2

ỹ
− 1 + ε

}

= µm,p,d1 −
h1∑

i=h0+1

si[h(λi)− h{σ2(1 +
√
y)} − ε].

Since λi > λ∗ > σ2(1 +
√
y) and h is a strictly increasing function, using

the definition of ε, h(λi) − h{σ2(1 +
√
y)} − ε > 0. Therefore for d ≤ d1

as d increase we are adding less negative terms and therefore g increases for
d < d1. This allows us to conclude.
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F. Proof of Proposition 5.

The proposition follows if we prove that for all δ > 0 there exist m0, pm0

such that for m > m0, p > pm0 and p/m close to y

Pr(∩q0d=0Ad) ≥ 1− δ
where

Ad = Ad(p,m, ε) =





{F (d, p,m, ε)− F (d− 1, p,m, ε) > 0} if 0 ≤ d ≤ d1,

{F (d, p,m, ε)− F (d− 1, p,m, ε) < 0} for d1 < d ≤ q0,

with F (d, p,m, ε) = ln(LTRd) − (d − d1)
[
h{σ2(1 +

√
y)}+ ε

]
. Let us call

r = min(m, p). We consider first d ≤ d1. From the definition of F (d, p,m, ε),

F (d, p,m, ε)− F (d− 1, p,m, ε) = ln

(
LRTd
LRTd−1

)
− h

{
σ2(1 +

√
y)
}
− ε.

We can now write

LRTd
LRTd−1

=
1

λ̂d

(
1

r − d+ 1

r∑

i=d+1

λ̂i

)
1

(1 + 1
r−d)r−d

(
1 +

λ̂d∑r
i=d+1 λ̂i

)r−d

.

Using again ỹ = min(1, y), we then deduce that

LRTd
LRTd−1

→ ỹσ2

λd

(
1 + yσ2

λd−σ2

) exp(−1) exp

{
λd
ỹσ2

(
1 +

yσ2

λd − σ2

)}
.

Therefore ln(LRTd/LRTd−1) → h(λd) and, since λd > λ∗, the monotonicity
of the function h implies that for large enough p,m (if d ≤ d1),

Pr {F (d, p,m)− F (d− 1, p,m) > 0} > 1− δ

q0
.

The case d > d1 is very similar. We only have to notice that, in this case,
ln(LRTd/LRTd−1)→ h{σ2 (1 +

√
y)}. So, for large enough p,m, we get

Pr{F (d, p,m)− F (d− 1, p,m) < 0} > 1− δ

q0
.

As a consequence Pr(∩q0d=1Ad) ≥ 1− δ and the result follows by noticing that
for ĝ(y) = ln(LRTd)− (d− d1){h(y) + ε},
∩q0d=1Ad ⊆ {ĝ(y) is increasing for d ≤ d1 and decreasing for d ≥ d1} .
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