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high-dimensional means has many applications in scientific research. For instance, it is of great interest
ether there is a difference of gene expressions between control and treatment groups in genetic studies. Th
formulated as a two-sample mean testing problem. However, the Hotelling T 2 test statistic for the two-samp
roblem is no longer well defined due to singularity of the sample covariance matrix when the sample size
n the dimension of data. Over the last two decades, the high-dimensional mean testing problem has receiv
rable attentions in the literature. This paper provides a selective overview of existing testing procedures in t
re. We focus on the motivation of the testing procedures, the insights into how to construct the test statist
connections, and comparisons of different methods.

ds: Hotelling’s T 2 test, multiple comparison, projection test, regularization method
SC: 62H15, 62F03

oduction

h the rapid development of modern data collection and processing technologies, a vast amount of data w
imensional features become increasingly popular and have been involved in many scientific areas such
, medicine, finance, and social science, calling for an advancement of classical methods to handle the hig
ionality. In recent years, considerable attention has been devoted to variable selection and feature screeni
d references therein). Statistical inference for high-dimensional means has been a very active research top
terature because of its important applications, such as those in genetic studies. For instance, many biologic
es involve regulation of multiple genes, and such research suffers from low power for detecting importa
markers and poor reproducibility if it focuses on the analysis of individual genes [47]. In other cases, gen
n analyzed in their functional groups to reduce the complexity of analysis [25]. Accordingly, the analy
sets/pathways, which are groups of genes sharing common biological functions, chromosomal locations,

ons, has become increasingly important in modern biological research. In many important applications, t
of evaluating whether a group of genes are differentially expressed from another group can be formulated

m of testing two-sample means.
elling’s T 2 test [23] perhaps is the most well-known test on means in the multivariate analysis when the samp
multivariate normal distributions. To implement the Hotelling T 2 test, the sample size n should be greater th
ension p of data. Motivated by real-world applications, Dempster [13, 14] proposed tests for a two-samp
mean problem when n < p. Läuter [27] proposed exact t and F tests for normal mean problems based
erical distribution theory [12] to improve the power of the Hotelling T 2 when n < p. See more detail
ions in Section 2. Bai and Saranadasa [2] employed random matrix theory to prove that the power of T 2 t
adversely affected even with p < n. Since the seminal work [2], testing hypotheses on high-dimensional me
ome a very active topic.
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s paper aims to provide a selective overview of research on testing high-dimensional mean problem. We w
n the two-sample mean problem. Since the Hotelling T 2 test involves inverse of a sample covariance mat
ot well defined when the inverse does not exist, Bai and Saranadasa [2] proposed a test statistic based on t
nce between the sample mean and the population mean, and has inspired many follow-up works includin
limited to, [9, 10, 40, 41, 48, 55]. We review these methods in Section 3. Multiple comparison has been us
truct tests for high-dimensional means by considering tests for means of individual variables. This leads
e tests, which have been shown to be more powerful than the L2-distance based tests in the presence of a f
arse signals [4, 52]. We review works on this topic in Section 4. Since the L2-distance based tests may be mo
l than the L∞-type tests in the presence of dense signals, i.e., many small signals. These tests cannot domina

her. Adaptive tests are Lγ-distance based tests with γ being selected by data-driven methods. In other wor
ptive tests essentially aim to achieve high power against various kinds of alternatives by adapting test statist
n p-values calculated from statistics of different orders [22, 51]. These tests are reviewed in Section 5. T
nce based tests, L∞-type tests, and the adaptive tests do not take into account the correlation among variabl

ze the correlation information in testing the high-dimensional means, researchers have considered projecti
h-dimensional samples to a low-dimensional space and then applying the classical Hotelling T 2 test on t
d data. Lopes et al. [34] constructed a random projection test, followed by Thulin [43] and Srivastava et

th permutation-based computation methods to handle multiple projections. Huang [24] derived the theoretic
direction with which the projection test possesses the best power under alternatives, and further proposed

-splitting strategy to construct an exact t test. Li and Li [30] and Liu et al. [33] further studied how to impleme
jection test using the optimal projection direction in practice. Section 6 provides a comprehensive review
rojection tests. We provide a numerical simulation comparison among these tests for the high-dimension

ple mean problem in Section 7, followed by discussions in Section 8.

Hotelling T2 and related tests

pose that xi, i ∈ {1, . . . ,N}, is an independent and identically distributed sample from Np(µ,Σ), the
ional normal distribution with mean µ and covariance matrix Σ. Of interest is to test

H0 : µ = µ0 versus H1 : µ , µ0,

0 is a known constant. This test is referred to as the one-sample normal mean problem in the literature. T
ell-known test for this hypothesis is the Hotelling T 2 test [23]. Let x̄ and S be the sample mean and samp
nce matrix, respectively. Based on the likelihood ratio criterion, one may derive the Hotelling T 2:

T 2 = N(x̄ − µ0)>S−1(x̄ − µ0).

perties of T 2 have been well studied. See, for example, Chapter 5 of [1].
as been observed that when the dimension p is close to the sample size N, T 2 has low power [2, 27].
ar, when N ≤ p, S is not invertible, and T 2 is not well defined. A natural question is how to constru
t test when N ≤ p with fixed and finite N and p. Let X = (x1, . . . , xn)>, which follows a matrix norm
Nµ
>, IN ⊗ Σ), where 1N is an N-dimensional column vector with all elements being one, IN is an N ×

matrix, and ⊗ denotes the Kronecker product.
pster [13, 14] dealt with the singularity issue of S by using an orthogonal transformation on data. Let B
gonal matrix with the first row 1N/

√
N, and let Y = BX. Denote y>i as the i-th row of Y. Using the prope

ix normal distribution, it follows that yi are independent, y1 ∼ Np(
√

Nµ,Σ), and yi ∼ Np(0,Σ), i ∈ {2, . . . ,N
t proposed in [13, 14] for the one-sample mean problem corresponds to

TD =
‖y1 − µ0‖2∑N

i=2 ‖yi‖2/(N − 1)
.

H0, ‖yi‖2 is a quadratic form of Np(0,Σ). Dempster [13, 14] suggested approximating ‖yi‖2 by a scaled c
istribution and estimating its scale parameter and degrees of freedom by fitting the first two moment equatio

nder H0, TD approximately follows a F-distribution.
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ter [27] proposed a novel idea to construct T 2 by using the property of left-spherical distributions [12]. Witho
generality, assume that µ0 = 0. Then X follows NN×p(0, IN ⊗ Σ), and therefore X follows a left-spheric
tion. That is, for any orthogonal N × N matrix Γ, X and ΓX have the same distribution. Using the invarian
y of left-spherical distributions, Läuter [27] proposed projecting the data along the direction D(X>X), a p ×
that depends on X only through X>X, and using the Hotelling T 2 based on X D(X>X) rather than X. T
showed that the resulting T 2 still follows the Hotelling T 2 distribution with the dimension p replaced

s, the resulting T 2 test is still an exact test for the one-sample mean problem. Frick [19] pointed out pow
iency for the two special cases of Läuter’s tests, one attains the highest power in the situation where all variab
arly the same relative deviation and the same correlation to each other and the others works well when t
nce has a one-factor structure.
n et al. [8] proposed the regularized Hotelling T 2 test, referred to as the RHT test, by replacing S−1 in t

on of T 2 by (S + λI)−1, a ridge-type estimate of the Σ−1, where I is the identity matrix and λ is a ridge tuni
ter. The authors further developed the theory of the RHT test and derived its limiting null distribution. Bas
n et al. [8], Li et al. [31] further proposed a data-driven procedure to select the regularization parameter λ, a
posed an adaptive test which combines the RHT statistics corresponding to a set of regularization paramete
at the RHT test can be viewed as an improvement of the BS and SD tests which are reviewed in Section 3
rating the correlation between variables into the test to improve power. Similarly, the projection tests to
ced in Section 6 give us an effective way to utilize the correlation information to improve power.
Hotelling T 2 test has been further used for testing two-sample mean problems. Let xi j, j ∈ {1, . . . ,Ni}, be
sample from Np(µi,Σ) for i = 1 and 2, and N = N1 + N2, the total sample size. The two-sample mean proble
t

H0 : µ1 = µ2 versus H1 : µ1 , µ2. (

e the sample mean of xi j’s, and

S =
1
n

2∑

i=1

Ni∑

j=1

(xi j − x̄i)(xi j − x̄i)>,

s the pooled sample covariance matrix, where n = N1 + N2 − 2.
one-sample T 2 test can be naturally extended to the two-sample mean problem (1):

T 2 =
N1N2

N1 + N2
(x̄1 − x̄2)>S−1(x̄1 − x̄2), (

s well defined for an invertible S. Furthermore under the null hypothesis,

n − p + 1
np

T 2 ∼ Fp,n+1−p.

seen, the one-sample and two-sample mean problems essentially can be handled in the same strategy. Th
focus on the two-sample mean problem, partly because the two-sample mean problem has many direct app
in high-dimensional genetic data analysis and other fields.
analyzed in [2], the Hotelling T 2 test has low power when S is near singular. Of course, S is singular wh
and the Hotelling T 2 test is not well defined. To address the challenges, various tests for the one-sample a

ple problems have been developed. In the following sections, we introduce the main testing procedures for t
mensional two-sample mean problem without normality assumption. As natural extensions of the multivaria
distribution, independent component model and elliptical distributions are the two distribution classes main
d in the literature of testing two-sample means.

ion 1. A random vector x follows an independent component model (ICM) if x can be represented as x
where Γ is a p × m matrix for some m ≥ p such that ΓΓ> = Σ, and z = (z1, . . . , zm)> is an m-dimension
vector with independent and identically distributed elements z j’s with E(z j) = 0, E(z2

j ) = 1 and E(z4
j ) < ∞.

ion 2. (Elliptical Distribution) A random vector x follows an elliptically contoured distribution if its charact
ction E{exp(ix> t)} is of the form exp(it>µ)φ(t>Σt) for some function φ(·). When µ = 0 and Σ = I, x follo

ical distribution.
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h ICM and elliptical distributions are natural extensions of a multivariate normal distribution, which is the on
tion belonging to both ICM and elliptical distributions.

ype tests

sider the two-sample mean problem without normality assumption. Let xi j, j ∈ {1, . . . ,Ni}, i ∈ {1, 2}, be a ra
mple from a population with mean µi and covariance matrix Σ. For Ni large enough, x̄i asymptotically follo

), and x̄1 − x̄2 asymptotically follows Np(µ1 − µ2, (N−1
1 + N−1

2 )Σ). Then the T 2 defined in (2) asymptotica
a χ2

p when p is fixed and finite. When p > n, S becomes singular. Thus, the Hotelling T 2 test cannot be us
igh-dimensional setting. Intuitively, a test statistic based on ‖x̄1 − x̄2‖2, an estimate of ‖µ1 − µ2‖2, may be us
ng the two-sample mean problem. We refer to such tests as L2-type tests since they are based on the L2-no
ifference of the two sample means.
ce E‖x̄1 − x̄2‖2 = (N−1

1 + N−1
2 )tr(Σ), Bai and Saranadasa [2] first considered the following test statistic for t

ple problem in (1) as
Tn = (x̄1 − x̄2)>(x̄1 − x̄2) − (N1

−1 + N2
−1)trS.

er the null hypothesis, E(Tn) = 0 and Var(Tn) = σ2
Tn

= 2(N1
−1 + N2

−1)2(1 + 1
n )trΣ2 under the normal

tion, and Var(Tn) = σ2
Tn
{1 + o(1)} under ICM.

er the ICM assumption, yn = p/n → y ∈ (0, 1), as n → ∞, and N1/N → κ > 0. Bai and Saranadasa [
that under the null hypothesis in (1), as n→ ∞,

Tn√
Var(Tn)

∼ N(0, 1).

arge-dimensional random matrix theory, Bai and Saranadasa [2] showed that when y ∈ (0, 1), the plug
or of σ2

Tn
, i.e., substituting trΣ2 by trS2, is not a consistent estimator of Var(Tn) if λmax(Σ) = o(trΣ2), whe

stands for the largest eigenvalue of Σ. They further showed that [n2/{(n + 2)(n − 1)}][trS2 − (trS)2/n] is
d and ratio-consistent estimator of trΣ2, and proposed a test, referred to as the BS test, for the two-samp
roblem:

TBS =
( 1

N1
+ 1

N2
)−1(x̄1 − x̄2)>(x̄1 − x̄2) − trS

√
2(n+1)n

(n+2)(n−1) {trS2 − (trS)2/n}
.

ome conditions, Bai and Saranadasa [2] derived the asymptotic power of the BS test as

βBS(µ1 − µ2) − Φ

{
−ξα +

nκ(1 − κ)||µ1 − µ2||2√
2trΣ2

}
→ 0,

α is the 100(1−α)-th percentile of the standard normal distribution for a given significance level α. The autho
proved that the BS test may be more powerful than the Hotelling T 2 test when p/n is close to one. They al
at the BS test has the same asymptotic power with the test proposed in [13, 14]. Notice that under the n
sis, the asymptotic distribution of the BS test and several L2-type tests to be introduced are approximated usi
distributions. Instead of a normal approximation, Zhang et al. [55] proposed to use the Welch-Satterthwa
2-approximation [37, 50] to achieve adaptivity of the null distribution. Zhang et al. [55] further conducted
h analysis on theoretical properties and empirical analysis of the W-S χ2-approximation and concluded th
χ2-approximation is at least comparable to and can be more accurate than the normal approximation und

scenarios.
Hotelling T 2 test is affine invariant. That is, the two-sample Hotelling T 2 test is invariant under a line

mation yi j = Axi j + b for a nonsingular constant square matrix A and a constant vector b. The BS test do
sess this property. Indeed, the BS test is not invariant under yi jk = ak xi jk +bk for k ∈ {1, . . . , p}, where xi jk is t
ment of xi j. One way to deal with this issue is to scale each variable by dividing its sample standard deviatio
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DS = diag(S), the diagonalized matrix of S, and consider (x̄1 − x̄2)>D−1
S (x̄1 − x̄2) instead of ‖x̄1 − x̄2

va and Du [41] proposed a test, referred to as the SD test, with the test statistic defined as

TSD =

N1N2
N1+N2

(x̄1 − x̄2)>D−1
S (x̄1 − x̄2) − np

n−2

{2(trR2 − p2/n)cp,n} 1
2

,

p,n is an adjustment coefficient to improve convergence, and it should satisfy that cp,n → 1 in probability

∞. The authors suggested using cp,n = 1 + p−3/2trR2, where R = D−
1
2

S SD−
1
2

S is the sample correlation.
denote R to be the corresponding correlation matrix of the covariance matrix Σ, and λmax(R) to be the larg
lue of R. It is assumed that n = O(pζ) with 1/2 < ζ ≤ 1, N1/N → κ ∈ (0, 1), 0 < limp→∞ p−1trRk <
. . , 4}, and limp→∞ λmax(R)/

√
p = 0. Srivastava and Du [41] showed that TSD ∼ N(0, 1) under H0, and furth

its asymptotic power function as

βSD(µ1 − µ2) − Φ

−ξα +
N1N2

N1 + N2

(µ1 − µ2)>D−1
Σ

(µ1 − µ2)
√

2trR2

→ 0,

→ ∞.
astava and Du [41] further compared the power function with that of the BS test and showed that the S
y enjoy higher power than the BS test when the diagonal elements of Σ are not the same and some regular
ns are satisfied.

gory et al. [21] proposed the generalized component test (referred to as GCT), which is a centered and scal
of the statistic that takes the form of the mean of the squared two-sample t-statistics with unpooled varian

l p components. The choices of centering quantity relate to the dimension and the formulation of scali
rests on the assumption that the dependence among components is autocovarying and diminishing as co
are further apart. Chakraborty and Chaudhuri [6] noted that the size of GCT is larger than the nominal lev

he autoregressive model as well as spherical t distribution for all values of p, which can be corrected usi
ation-based critical values.
n and Qin [10] first noted that some strong moment conditions in [2] are due to the terms

∑Ni
j=1 x>i jxi j, i ∈ {1,

xpansion of ‖x̄1 − x̄2‖2. However, these two terms are not useful in the sample mean testing problem. Ch
[10] proposed the following test, referred to as the CQ test, with the test statistic that does not involve the
ecessary terms:

TCQ =
1

N1(N1 − 1)

N1∑

i, j

x>1ix1 j +
1

N2(N2 − 1)

N2∑

i, j

x>2ix2 j − 2
N1N2

N1∑

i=1

N2∑

j=1

x>1ix2 j.

n and Qin [10] considered the two-sample mean problem with unequal covariance matrix. Specifically,
{1, . . . ,Ni}, be a random sample from a population with mean µi and covariance matrix Σi. Chen and Qin [1
the mean and the asymptotic variance of TCQ. Under the null hypothesis, E(TCQ) = 0, and

Var(TCQ) −
{

2
N1(N1 − 1)

tr(Σ2
1) +

2
N2(N2 − 1)

tr(Σ2
2) +

4
N1N2

tr(Σ1Σ2)
}
→ 0.

nd Qin [10] established the asymptotic normality of TCQ under the null and the local alternative hypothes
ther derived the asymptotic power of their test under certain regularity conditions. Note that TCQ is the sam
of the test proposed by [2], but Chen and Qin [10] studied the asymptotic properties of TCQ and derived
otic power under more general setting and weaker technical conditions than those given in [2].
g et al. [48] extended the CQ test to a nonparametric test, referred to as the WPL test, for high-dimension
ple mean problem H0 : µ = 0. The WPL test shares the same form of the CQ test for the one-samp

roblem with xi replaced by its spatial sign xi/‖xi‖. Under elliptical distribution assumption on the populati
e other regularity conditions, Wang et al. [48] further studied the asymptotic properties of their propos
metric test, and demonstrated that the nonparametric test can be more powerful than the CQ test when t
is from heavy-tailed elliptical distributions. Li et al. [32] illustrated that classical spatial-sign-based procedur
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w-dimensional population are not robust for high-dimensional settings, and may lead to an inflated Typ
te. Li et al. [32] further developed a correction to make the sign-based tests applicable for high-dimension
d proved that the corrected test statistic is asymptotically normal under elliptical distributions. Chakrabo
audhuri [6] examined the CQ test and WPL test closely under the ρ-mixing and randomly scaled ρ-mixi
tions. The two cover some commonly seen models, e.g., spherical Gaussian distributions is a special ca
xing models and multivariate spherical t distribution is a special case of randomly scaled ρ-mixing mode
borty and Chaudhuri [6] concluded that the power of CQ test and WPL test tend to be the same as p →
ss of sample size given appropriate mixing conditions and some regularity conditions; in addition, the WP
be asymptotically more powerful than the CQ test under a stronger correlation and both p, n → ∞. Oth
metric tests including, but not limited to, [3, 18, 26, 46] have also been developed for the two-sample me
.
n et al. [9] noted that the non-signal components only inflate the variance of TCQ without any contributi
ower of the test when alternatives are sparse. As such, Chen et al. [9] proposed a hard thresholding metho
to as the CLZ test, to remove the components with no signal before carrying out the TCQ test. Although t

tatistic used by [9] is of a similar nature as TCQ, we represent the test statistic proposed in [9] similar to TBS f
simplicity. Let X̄(k)

1 and X̄(k)
2 are k-th elements of x̄1 and x̄2, respectively, and S 1,kk and S 2,kk are the samp

e for the k-th component in the first and second sample, respectively. Then,

TCLZ(s) =

p∑

k=1


(X̄(k)

1 − X̄(k)
2 )2

S 1,kk/N1 + S 2,kk/N2
− 1

 I


(X̄(k)

1 − X̄(k)
2 )2

S 1,kk/N1 + S 2,kk/N2
> λp(s)

 ,

{·} is an indicator function, λp(s) = 2s log p, s ∈ (0, 1), and the form of λp(s) is based on the large deviati
[36]. Chen et al. [9] further established the asymptotic normality of TCLZ(s) under certain regularity conditio
ived the asymptotic power of TCLZ(s) under local alternatives.

has to determine s to implement TCLZ(s). However, the optimal choice of the threshold s depends on t
ce between the true population means, which is unknown in general. If all of the signals in population me
ce are strong enough, the threshold s can be chosen very close to one to remove all the components w
al while preserving all the components with signals. However, if some signals are weak, s has to be chos
ng to the strength of the weak signals, which is usually unknown in practice. To deal with this issue, Ch
] proposed to choose the most significant test statistic among possible choices of threshold values as their fin
istic:

TCLZ = max
s∈(0,1−η)

{TCLZ(s) − µ̂TCLZ(s),0}/σ̂TCLZ(s),0 ,

is a parameter with a small positive value, and µ̂TCLZ(s),0 and σ̂TCLZ(s),0 are estimates of the mean and standa
n of TCLZ(s) under the null hypothesis derived in [9]. Chen et al. [9] further derived the asymptotic n
tion for TCLZ using the theory of extreme value distributions. Although the asymptotic null distribution can
using the extreme value theory, Chen et al. [9] found that the convergence rate of TCLZ is slow. As a resu
al. [9] proposed to use the bootstrap method to calculate the p-value of their test. Zhong et al. [56] develop
st for high-dimensional means under sparsity, as an alternative to higher criticism (HC), which was introduc
mine whether there are any nonzero signals in the settings in which there is only a small fraction of significa
against a predominantly null background. A comprehensive review on the basics of HC in both the testing a
selection settings is given in Donoho and Jin [15].

type tests

e that the two-sample mean problem is equivalent to testing simultaneously the following hypotheses:

H0k : µ1k = µ2k versus H1k : µ1k , µ2k,

{1, . . . , p}. For each k, we may construct a z-test for each one-dimensional two-sample mean problem:

zk =
X̄1k − X̄2k√

S 1,kk/N1 + S 2,kk/N2
,
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the notation is the same as that in Section 3. Under mild conditions, zk asymptotically follows a norm
tion. Cai et al. [4] proposed a L∞-type test, referred to as the CLX test, with the test statistic accounting f
lternatives,

TCLX = max
1≤k≤p

|X̄1k − X̄2k |2
S 1,kk/N1 + S 2,kk/N2

,

quals ‖u‖∞ with u = (z2
1, . . . , z

2
p)>.

ng the extreme value theory and under some regularity conditions, Cai et al. [4] derived the asymptotic n
tion of TCLX and proposed an asymptotic test accordingly. The idea behind the construction of the L∞-ty
TCLX is to pick up the strongest signals in the difference of means while ignoring other signals. Thus
e advantages over the L2-type testing methods when the signals are sparse, which has been shown in vario

ion studies [2, 10, 41]. Chang et al. [7] advocated a data-driven approach to obtain critical values usi
Carlo simulations based on the facts that convergence rate to the extreme value distribution for maximum-ty
s is usually slow and that the strong structural assumptions on the covariance matrices may be difficult
n applications. Chang et al. [7] also proposed a screening step to reduce the dimension and enhance power.
and Yao [52] proposed a distribution and correlation-free two-sample mean test built upon a L∞-type te
to as the XY test, with the test statistic defined as

TXY =
√

N1‖x̄1 − x̄2‖∞,

nly depends on the infinity norm of the sample mean difference. Xue and Yao [52] further derived theoretic
ies of TXY based on a high-dimensional central limit theorem, and provided a data-driven critical value whi
easily computed via a multiplier bootstrap method. Notably, the result of [52] does not require samples to
dently and identically distributed and allows two samples to have highly unequal sizes. From the definition
is not invariant under scale transformation. In practice, one may have to scale it by using the trick of the S

ptive tests

ype tests like [2, 10] and L∞-type tests like [4, 52] present two extremes – the L2-type tests use all the inform
ll the dimensions, while the L∞-type tests use only the dimension with the strongest signal as evidence again
hypothesis. Typically, the L2-type tests are powerful against dense alternatives, where the difference of tw

ion means has a large proportion of non-zero elements; while the L∞-type tests are powerful against spar
ives, where the mean difference only has a small proportion of non-zero elements. In practice, it is unknow
r the alternative is dense or sparse. To deal with this issue, adaptive tests have been proposed to achieve hi
gainst various kinds of alternatives simultaneously.
et al. [51] developed an adaptive testing procedure, referred to as the XLWP test, which is powerful again
e sparse and dense alternatives or alternatives in-between in the high-dimensional setting. They incorporat

of L2-type tests and L∞-type tests and proposed a family of sum-of-powers tests with a power index γ
.

TXLWP(γ) =

p∑

k=1

|X̄1k − X̄2k |γ,

γ < ∞ and

TXLWP(∞) = max
1≤k≤p

|X̄1k − X̄2k |2
S 1,kk/N1 + S 2,kk/N2

.

at TXLWP(γ) coincides with TBS if γ = 2 and TCLX if γ = ∞. Xu et al. [51] demonstrated that there are settin
h TXLWP(γ) with some γ between 2 and ∞ is more powerful than TBS and TCLX. Furthermore, Xu et al. [5
d an adaptive test to combine various sum-of-powers tests with different γ’s as follows.

TXLWP = min
γ∈G

PTXLWP(γ),
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is a candidate set of γ and PTXLWP(γ) is the p-value calculated from TXLWP(γ). Note that since TXLWP is t
m of some p-values, it is no longer a genuine p-value. In order to perform the proposed adaptive test, Xu et

rived the asymptotic null and alternative distributions for TXLWP under certain regularity conditions. Also no
se the test TXLWP, G needs to be pre-specified. Xu et al. [51] suggested using G = {1, 2, . . . , 6,∞}, and mo

can be found in [51].
et al. [22] proposed an adaptive testing procedure which combines p-values computed from U-statistics
t orders. While He et al. [22] focused on a general framework of high-dimensional testing, their test can al
ied in the high-dimensional mean testing problem. For the two-sample mean testing problem, define

THXWP(a) =

p∑

j=1

a∑

c=0

(
a
c

)
(−1)(a−c)

PN1
c PN2

a−c

∑

(k1,...,kc)∈AN1
c

(s1,...,sa−c)∈AN2
a−c

c∏

t=1

x1kt j

a−c∏

m=1

x2sm j, (

a < ∞, where PN
a = N!/(N − a)! is the arrangement number, AN

c = {(a1, . . . , ac) : 1 ≤ a1 , · · · , ac ≤ N}
f arrangements and xik j is the j-th element of xik. He et al. [22] noted that THXWP(a) is an unbiased U-statis

or for
∑p

j=1(µ1 j − µ2 j)a, and also defined THXWP(∞) to be the same with TXLWP(∞). Similar to TXLWP(
2) is powerful against dense alternatives, THXWP(∞) is powerful against sparse alternatives, and THXWP(
appropriate a can be powerful for alternatives in-between.
et al. [22] derived the asymptotic null distribution for THXWP(a) with a finite integer a and a = ∞, and th
showed that THXWP(a) asymptotically follows a normal distribution for a finite integer a and an extreme val
tion for a = ∞ under certain regularity conditions. From the property of U-statistics, He et al. [22] showed th
a) with different a’s are asymptotically independent with each other. Similar to [51], He et al. [22] propos
n adaptive test to combine p-values from statistics of different orders as

THXWP = min
a∈A

PTHXWP(a),

THXWP(a) is the p-value calculated from THXWP(a) and A is some set of candidate a’s. Given the asympto
dence among THXWP(a) with different a’s, He et al. [22] derived the asymptotic p-value for THXWP as 1
XWP)|A|, where |A| is the size of the candidate set A. For implementation, the candidate set A needs to
cified. He et al. [22] proposed to use A = {1, 2, . . . , 6,∞}. Note that [51] and [22] are quite similar in t
of the mean testing problem. A main difference is that He et al. [22] derived better theoretical properties su
ptotic independence between testing statistics of different orders by using U-statistics instead of V-statist
1]. However, the U-statistics in (3) is hard to compute directly when a is large. To solve this problem, H
2] also proposed a calculation scheme which can calculate (3) with time complexity O(p2(N1 + N2)) instead
1 + N2)a) as in the naive calculation approach. He et al. [22] also discussed other p-value combination metho
Fisher’s method beyond the minimum p-value combination method.

ection tests

t statistics introduced in Sections 3, 4, and 5 do not utilize correlation among the variables and therefore
ire an estimation of Σ−1, which may result in loss of power. Projection tests have been considered to achie

power by taking into account correlation. Earlier work on projection tests such as [27] target exact tests w
and n. The exact tests proposed in [27] were further extended to linear multivariate tests on mean structur

ix normal distribution in [28] with a correction in [29].
es et al. [34] proposed a random projection test, referred to as the LJW test, that projects the sample to
ly generated lower dimensional space such that the classical Hotelling T 2 test can be applied. Specifical

test is processed under the normality assumption when p ≥ n/2. Let P>k be a k × p projection mat
dependent and identically distributed N(0, 1) entries, where k is suggested to take [n/2], where [a] is t
integer less than a. The projected samples {P>k x11, . . . , P>k x1N1 } and {P>k x21, . . . , P>k x2N2 } can be consider
pendent and identically distributed samples from N(P>k µ1, P>k ΣPk) and N(P>k µ2, P>k ΣPk), respectively. T
g T 2 test can be processed by testing the two projected samples with

Hp0 : P>k µ1 = P>k µ2 versus Hp1 : P>k µ1 , P>k µ2.
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e that (µ1 − µ2)>Σ−1(µ1 − µ2) = o(1) and N1/(N1 + N2) → κ ∈ (0, 1), Lopes et al. [34] showed that under
es of projections P>k , the asymptotic power function of the LJW test satisfies, as n→ ∞,

β{(µ1 − µ2),Σ, P>k } − Φ{−ξα + κ(1 − κ)
√

n/2∆2
k} → 0,

2
k = (µ1 − µ2)>Pk(P>k ΣPk)−1 P>k (µ1 − µ2).
seemingly intuitive idea of the random projection test is motivated from the consideration that the test

d to reduce the dimension to prevent accumulation of variance from the high-dimensional variables and mea
ot to bring the distance too close so that it is harder to distinguish. Thulin [43] proposed a modification of t
st, allowing the test statistics to be invariant under linear transformations of the marginal distributions. Mul
om projections are conducted and the test statistic averages the individual random projection Hotelling tes
ower is then calculated by permutation. Thulin [43] demonstrated that its test offers a higher power when t
s are dependent. On a similar note, Srivastava et al. [42] proposed a test using multiple random projectio
test statistic averaging over the individual random projection Hotelling test p-values. These tests are referr

e random projection (RP) tests.
ey question to projection tests is whether there exists an optimal projection so that the resulting projection t
ost powerful. To address this question, Huang [24] formulated this issue as follows. For k � p, let A be

onzero constant matrix with rank k. Based on the projected sample yi j = A>xi j, the two-sample Hotelling
H0A : A>(µ1 − µ2) = 0 can be written as

T 2
A =

N1N2

N1 + N2
(x̄1 − x̄2)>A(A>SA)−1 A>(x̄1 − x̄2),

d that A>SA is invertible. Under the normality assumption,

N1 + N2 − k − 1
kn

T 2
A ∼ Fk,N1+N2−k−1,

0, which implies H0A holds. Huang [24] proved that T 2
A reaches its best power at k = 1 and A = Σ−1(µ1 − µ

the optimal projection by a = Σ−1(µ1 − µ2). As a result, H0A becomes H0a : (µ1 − µ2)>Σ−1(µ1 − µ2). Suppo
s positive definite, then H0a is equivalent to H0 : µ1 = µ2.
estimation of the optimal projection a is challenging since it involves the estimation of Σ−1. To construct
ojection test, Huang [24] proposed a sample-splitting strategy to estimate a where the data are partitioned in
t for estimation and a subset for conducting the test. Let x̄(1)

1 − x̄(1)
2 and S(1) be the sample mean differen

led sample covariance matrix obtained from the subset for estimation, respectively. Since S(1) is not invertib
> n, Huang [24] proposed to estimate a by

â =
(
S(1) + λDS(1)

)−1 (
x̄(1)

1 − x̄(1)
2

)
,

S(1) = diag(S(1)) and λ is a ridge tuning parameter. Thus, the projection test with the optimal direction, referr
e OP test, is

T 2
OP =

N(2)
1 N(2)

2

N(2)
1 + N(2)

2

(
x̄(2)

1 − x̄(2)
2

)>
â
(
â>S(2) â

)−1
â>

(
x̄(2)

1 − x̄(2)
2

)
,

x̄(2)
1 − x̄(2)

2 and S(2) are the sample mean difference and pooled sample covariance matrix obtained from t
or conducting the tests, and N(2)

1 and N(2)
2 are the sample sizes for the two samples in this subset. The autho

onstrated that under the local alternative

H1 : µ1 − µ2 = δ

√
1

N1
+

1
N2
,

is a constant vector, the asymptotic power of the OP test is no less than those of BS, DS, and CQ test und
conditions.
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nd Li [30] investigated the projection tests for the linear hypothesis testing problem in linear models w
mensional responses, which includes the high-dimensional mean testing problem as a special case. In t
of the two-sample mean problem, the test proposed by [30], referred to as the LL test, can be seen as a multip
litting extension of [24] to solve the power loss problem of a single data splitting. Li and Li [30] derived t
otic normality of their test statistic under certain regularity conditions and proposed to use bootstrap metho
out the test. Li and Li [30] further showed that their test has similar asymptotic power with those of TBS a

the presence of low correlation among variables, and that their test can be much more powerful than som
tests in the presence of high correlation.

he construction of T 2
OP, a ridge-type estimator is used to estimate the optimal projection direction. Howev

e type estimator is not consistent in high-dimensional settings in general. To deal with the problem of optim
on direction estimation, Liu et al. [33] proposed to use nonconvex regularized quadratic programming
e the optimal projection direction. Although Liu et al. [33] mainly focused on the one-sample mean testi
, we can easily modify it for the two-sample high-dimensional mean testing problem. Denote w∗ = Σ−1(µ1
optimal projection direction to be estimated. Note that w∗ is the solution to the following optimization proble
gminw

[
1
2 w>Σw − (µ1 − µ2)>w

]
. Liu et al. [33] considered the following optimization problem to estimate t

projection direction

ŵ = argminw


1
2

w>Σ̂w − (x̄1 − x̄2)>w +

p∑

j=1

Pλ(w j)

 , (

= (w1, . . . ,wp)>, Σ̂ = S is the pooled sample covariance matrix, and Pλ(w) is a penalty function with a tuni
ter λ to promote the sparseness of the estimator. Commonly used penalty functions include the Lasso [4

D [16], the MCP [53], and others [17]. Liu et al. [33] further established that any stationary point ŵ of t
(4) is a good estimator for optimal projection direction w∗ under some regularity conditions.

educe the power loss from the data splitting, Liu et al. [33] further proposed a multiple-splitting projection t
epeats the single projection procedure m times, obtaining p-values pk, k ∈ {1, . . . ,m} for some fixed integer
l. [33] noted that these p-values are exchangeable in distribution. That is, (p1, . . . , pm) d

= (pπ1 , . . . , pπm ) for a
ation π on {1, . . . ,m}. They further proposed a p-value combination method which utilizes the exchangeabil
-values. More specifically, let Zk = Φ−1(pk), k ∈ {1, . . . ,m}. Under the null hypothesis, Zk, i ∈ {1, . . . ,m} a
eable standard normal random variables. Denote ρ to be the correlation between Zi and Z j , 1 ≤ i < j ≤
ρ̂ be some consistent estimator of ρ, Liu et al. [33] established that Mρ̂ = Z̄/

√{1 + (m − 1)ρ̂}/m follows
otic standard normal distribution under the null hypothesis. However, the asymptotic distribution needs m

enough. Liu et al. [33] further proposed a critical value calculation method to control the finite-sample Ty
Also, Liu et al. [33] proposed to choose m ∈ [30, 60] for a trade-off between testing power and computation

erical comparisons

his section, we conduct intensive simulation to compare the performance of the tests introduced in the previo
s using R version 3.4.3. All simulations results are based on 5,000 independent replicates. In our simulatio
he dimension p = 1000, n1 = n2 = n and the significance level 0.05.
consider two types of alternatives: the sparse alternative where µ1 = 0 and µ2 = c(1>10, 0p−10)> and den
ternative where µ1 and µ2 are generated from Np(0, (c2/n)Ip). The sparse alternative is designed to challen
type tests, while the dense local alternative is to challenge the L∞-type tests. We set c = 0, and 0.5 and 1
e the Type I error rate, and the power of the tests, respectively.
consider two covariance structures: (1) compound symmetry (CS) with Σ1 = (1 − ρ)Ip + ρ1p1>p , where Ip

p identity matrix; and (2) autoregressive (AR) correlation with Σ2 = (ρ|i− j|), both with ρ = 0.5 for a modera
ion and 0.8 for a high correlation. Denote Ω = Σ−1 with (i, j)-element ωi j. Then for the CS correlati
e, ωi j is a constant for i , j; for the AR correlation structure, ωi j = 0 for |i− j| ≥ 2. The correlation among t
s is not utilized in the tests introduced in Sections 3, 4, and 5. Thus, the CS correlation structure is design
enge these tests, which may take advantage of the AR correlation structure whose inverse is very close to t
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matrix. The projection tests introduced in Section 6 may take advantage of the CS correlation structure sin
elation is taken into account.
generate data from two multivariate distributions, multivariate normal and multivariate t with degrees of fre
A multivariate normal distribution belongs to the class of ICM, while a multivariate t distribution is a spec
elliptical distributions. Using these two distributions enables us to examine how sensitive the performance
s is to the ICM assumption, and how the limiting null distributions are related to the ICM assumption.
ur simulations, we directly use the R package highmean version 3.0 to implement several tests, including [
BS), [51] (aXLWP, eXLWP), [4] (aCLX, eCLX), [10] (aCQ, eCQ), [9] (aCLZ, eCLZ), and [41] (aSD, eSD
-” and “e-” represent asymptotic-based and permutation-based tests, respectively. The permutation parame
200 for permutation-based tests in the R package. For random projection tests, we conduct an asymptot

st with a single projection (aRP1) following [34], and a permutation-based test with a single projection (eRP
projections (eRP30) following [43] and the codes provided in its supplementary material. Both permutati
ters are set to 100 for eRP30. We use the R package ARHT version 0.1.0 to implement [31] (ARHT). We al
[13] (DEM), [22] (HXWP), [27] (LAU), [24] (OP), [30] (LL), and [52] (XY) in this numerical comparison
to the limited space, we present and discuss the results with (n, ρ) = (40, 0.5). Results for (n, ρ) = (40, 0.

5) and (100, 0.8) are given in the supplementary material of this paper. It can be seen from the figures present
upplement that the overall patterns for (n, ρ) = (40, 0.8), (100, 0.5) and (100, 0.8) are similar to those f
(40, 0.5).

. 1 depicts the Type I error and power for multivariate normal data. From Fig. 1 (a) and (b), it can be se
tests retain the Type I error rate 0.05 very well except for aCLX and aCLZ. The aCLZ test inflates the Ty
ate for both correlation structures significantly, while the aCLX test inflates the Type I error rate only for t
relation structure. Fortunately, both eCLX and eCLZ retain the Type I error rate well. Thus, we should use t
f eCLX and eCLZ rather than that of aCLX and aCLZ for the power comparison.

. 1(c) depicts the power for the AR correlation structure and dense local alternative, and implies that L
Q, eSD tests have the highest power, followed by the adaptive tests and ARHT. The L∞-type tests, and bo
P1 & eRP1) tests have low power. Fig. 1(d) depicts the power for CS correlation structure and dense loc

ive, and indicates that the ARHT test, LL test, OP test, and eRP30 test have the highest power. For a larg
ith c = 1, the XY test and eCLX perform quite well, and the adaptive tests introduced in Section 5 ha

ble power. The L2-type tests have the lowest power. This is expected since the L2-tests ignore the correlatio
power for the AR correlation structure and sparse constant alternative is depicted in Fig. 1(e), from which

seen that the adaptive tests perform the best, the L∞-type tests perform well. The eBS, eCQ and eSD tests a
test perform similarly. The ARHT, OP, aRP1, eRP1, and eRP30 tests have the lowest power.
power for the CS correlation structure and sparse constant alternative is depicted in Fig. 1(f), from which w
that the LL and eRP30 tests perform the best, and followed by the XY test and ARHT test. The eCLX t
adaptive tests have good performance too. The L2-type tests, the aRP1, and eRP1 tests have the lowest pow
Type I error and power for the multivariate t distributions are depicted in Fig. 2, from which we can see th

ion to the aCLZ and aCLX tests, the aXLWP test cannot retain the Type I error rate, and the DEM, aBS, aC
d ARHT tests have much more conservative Type I error rates, when data are generated from the multivaria
ution with an AR correlation structure. As the result, it can be seen from Fig. 2 (c) and (e) that these te

uch lower powers for multivariate t distributions than for multivariate normal distributions. We also observe
ative Type I error rate for ARHT under a CS correlation structure. The patterns of the Type I error and pow
other than the DEM, aBS, aCQ and aSD tests are similar to those in Fig. 1.
ummary, there is no single test dominating all the other tests in all settings. The performance of the tests
to the type of alternatives, correlation structures, and the population from which the data are generated.
, we would recommend the LL and eXLWP tests since their performance is very good in all different setting
. 3 depicts the computing time for each test. The computing time may vary under settings. From Fig. 3, HXW
ost costly one, followed by LL and eRP30.

clusions and discussion

s paper presents a selective overview on testing two sample means of high dimensional data along with th
ions and properties. We classify these tests into several categories: the Hotelling T 2 related tests, L2-ty
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(f)

imulation results under the multivariate normal distribution with different values of c, the strength of signals. The null hypothe
ds to c = 0. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectiv
middle, and bottom panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternati

ely. Results are based on 5,000 replications. Tests DEM [13], LAU [27] and ARHT [31] are introduced in Section 2. Tests BS (aBS a
, CQ (aCQ and eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [9]) can be found in Section 3. Tests CLX (aCLX a
] and XY [52] are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [2
eRP (eRP1, eRP30,[43]) are given in Section 6.
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(f)

imulation results under the multivariate t distribution with different values of c, the strength of signals. The null hypothesis correspond
e left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectively. The top, midd
m panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternative, respectively. Results
5,000 replications. Tests DEM [13], LAU [27] and ARHT [31] are introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ a
]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [9]) can be found in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [
d in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [24], LL [30], eRP (eR
3]) are given in Section 6.

13

Jo
ur

na
l P

re
-p

ro
of



Fig. 3: C ion
structure, of
signals, r HT
[31] are i 9])
can be fo P,
[51]) are

tests, L to
demons e I
error ra in
all scen all
differen

The le.
For inst on
empiric or
data wi

We in
the high les
have th to
constru

The rix

Journal Pre-proof
0

100

200

300

400

500

600

D
EM

aBS
aC

Q
aSD
aC

LZ
eBS
eC

Q
eSD
eC

LZ
AR

H
T

aC
LX

eC
LX

XY
H

XW
P

aXLW
P

eXLW
P

LAU
LL O

P
aR

P1
eR

P1
eR

P30

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
d)

c = 0 c = 0.5 c = 1

(a)

0

100

200

300

400

500

600

D
EM

aBS
aC

Q
aSD
aC

LZ
eBS
eC

Q
eSD
eC

LZ
AR

H
T

aC
LX

eC
LX

XY
H

XW
P

aXLW
P

eXLW
P

LAU
LL O

P
aR

P1
eR

P1
eR

P30

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
d)

c = 0 c = 0.5 c = 1

(b)

0

100

200

300

400

500

600

D
EM

aBS
aC

Q
aSD
aC

LZ
eBS
eC

Q
eSD
eC

LZ
AR

H
T

aC
LX

eC
LX

XY
H

XW
P

aXLW
P

eXLW
P

LAU
LL O

P
aR

P1
eR

P1
eR

P30

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
d)

c = 0 c = 0.5 c = 1

(c)

0

100

200

300

400

500

600

D
EM

aBS
aC

Q
aSD
aC

LZ
eBS
eC

Q
eSD
eC

LZ
AR

H
T

aC
LX

eC
LX

XY
H

XW
P

aXLW
P

eXLW
P

LAU
LL O

P
aR

P1
eR

P1
eR

P30

C
om

pu
ta

tio
n 

tim
e 

(s
ec

on
d)

c = 0 c = 0.5 c = 1

(d)

omputation time (second) per replicate. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlat
respectively. The upper and lower panels are for the multivariate normal and t distributions with different values of c, the strength

espectively. The null hypothesis corresponds to c = 0. Results are based on 5,000 replications. Tests DEM [13], LAU [27] and AR
ntroduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [
und in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52] are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLW
introduced in Section 5. Tests OP [24], LL [30], eRP (eRP1, eRP30,[43]) are given in Section 6.

∞-type tests, adaptive-type tests, and projection tests. We conduct a comprehensive numerical comparison
trate the strength and weakness of these tests. In general, the permutation-based test can retain the Typ
te better than their asymptotic counterparts. As expected, there is no test which dominates all other tests
arios. In general, we would recommend the LL and eXLWP tests since their performance is very good in
t settings.
re are many works on testing high-dimensional means. It is impossible to include all of them in a review artic
ance, this paper does not review tests for one-sample mean problem and two-sample mean problem based
al likelihood [11, 49]. In addition, this paper does not include tests that are developed more specifically f
th special structures, such as compositional data [5] or genetic data incorporating pathway topology [25].
conclude this paper by outlining a few future research directions. It has been common to impose sparsity
-dimensional data modeling. For two-sample mean problems, it is reasonable to assume that many variab

e same means. That is, many elements in µ1 − µ2 are 0. This implies that the vector µ1 − µ2 is sparse. How
ct a test that utilizes the sparsity to achieve better power would be an interesting topic for future research.
challenge of testing high-dimensional means comes from the singularity of the sample covariance mat
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