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Abstract

Testing high-dimensional means has many applications in scientific research. For instance, it is of great interest to
test whether there is a difference of gene expressions between control and treatment groups in genetic studies. This
can be formulated as a two-sample mean testing problem. However, the Hotelling 7 test statistic for the two-sample
mean problem is no longer well defined due to singularity of the sample covariance matrix when the sample size is
less than the dimension of data. Over the last two decades, the high-dimensional mean testing problem has received
considerable attentions in the literature. This paper provides a selective overview of existing testing procedures in the
literature. We focus on the motivation of the testing procedures, the insights into how to construct the test statistics
and the connections, and comparisons of different methods.
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1. Introduction

With the rapid development of modern data collection and processing technologies, a vast amount of data with
large dimensional features become increasingly popular and have been involved in many scientific areas such as
biology, medicine, finance, and social science, calling for an advancement of classical methods to handle the high-
dimensionality. In recent years, considerable attention has been devoted to variable selection and feature screening
([17] and references therein). Statistical inference for high-dimensional means has been a very active research topic
in the literature because of its important applications, such as those in genetic studies. For instance, many biological
processes involve regulation of multiple genes, and such research suffers from low power for detecting important
genetic markers and poor reproducibility if it focuses on the analysis of individual genes [47]. In other cases, genes
are often analyzed in their functional groups to reduce the complexity of analysis [25]. Accordingly, the analysis
of gene sets/pathways, which are groups of genes sharing common biological functions, chromosomal locations, or
regulations, has become increasingly important in modern biological research. In many important applications, the
problem of evaluating whether a group of genes are differentially expressed from another group can be formulated as
a problem of testing two-sample means.

Hotelling’s 7 test [23] perhaps is the most well-known test on means in the multivariate analysis when the sample
is from multivariate normal distributions. To implement the Hotelling T? test, the sample size n should be greater than
the dimension p of data. Motivated by real-world applications, Dempster [13, 14] proposed tests for a two-sample
normal mean problem when n < p. Lauter [27] proposed exact ¢ and F tests for normal mean problems based on
left-spherical distribution theory [12] to improve the power of the Hotelling 72 when n < p. See more detailed
discussions in Section 2. Bai and Saranadasa [2] employed random matrix theory to prove that the power of T? test
can be adversely affected even with p < n. Since the seminal work [2], testing hypotheses on high-dimensional mean
has become a very active topic.
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This paper aims to provide a selective overview of research on testing high-dimensional mean problem. We will
focus on the two-sample mean problem. Since the Hotelling T2 test involves inverse of a sample covariance matrix
and is not well defined when the inverse does not exist, Bai and Saranadasa [2] proposed a test statistic based on the
L,-distance between the sample mean and the population mean, and has inspired many follow-up works including,
but not limited to, [9, 10, 40, 41, 48, 55]. We review these methods in Section 3. Multiple comparison has been used
to construct tests for high-dimensional means by considering tests for means of individual variables. This leads to
Lo.-type tests, which have been shown to be more powerful than the L,-distance based tests in the presence of a few
large sparse signals [4, 52]. We review works on this topic in Section 4. Since the L,-distance based tests may be more
powerful than the L..-type tests in the presence of dense signals, i.e., many small signals. These tests cannot dominate
each other. Adaptive tests are L,-distance based tests with y being selected by data-driven methods. In other words,
the adaptive tests essentially aim to achieve high power against various kinds of alternatives by adapting test statistics
based on p-values calculated from statistics of different orders [22, 51]. These tests are reviewed in Section 5. The
L,-distance based tests, Lo.-type tests, and the adaptive tests do not take into account the correlation among variables.
To utilize the correlation information in testing the high-dimensional means, researchers have considered projecting
the high-dimensional samples to a low-dimensional space and then applying the classical Hotelling T2 test on the
projected data. Lopes et al. [34] constructed a random projection test, followed by Thulin [43] and Srivastava et al.
[42] with permutation-based computation methods to handle multiple projections. Huang [24] derived the theoretical
optimal direction with which the projection test possesses the best power under alternatives, and further proposed a
sample-splitting strategy to construct an exact ¢ test. Li and Li [30] and Liu et al. [33] further studied how to implement
the projection test using the optimal projection direction in practice. Section 6 provides a comprehensive review of
these projection tests. We provide a numerical simulation comparison among these tests for the high-dimensional
two-sample mean problem in Section 7, followed by discussions in Section 8.

2. The Hotelling 77 and related tests

Suppose that x;, i € {I,...,N}, is an independent and identically distributed sample from N,(u, X), the p-
dimensional normal distribution with mean g and covariance matrix X. Of interest is to test

Hy : p = po versus Hy : pu # po,

where p is a known constant. This test is referred to as the one-sample normal mean problem in the literature. The
most well-known test for this hypothesis is the Hotelling T2 test [23]. Let ¥ and S be the sample mean and sample
covariance matrix, respectively. Based on the likelihood ratio criterion, one may derive the Hotelling 7

T? = N(& — p1o)"S ™ (% — po).

The properties of T2 have been well studied. See, for example, Chapter 5 of [1].

It has been observed that when the dimension p is close to the sample size N, T2 has low power [2, 27]. In
particular, when N < p, S is not invertible, and T2 is not well defined. A natural question is how to construct
an exact test when N < p with fixed and finite N and p. Let X = (xy,...,x,)", which follows a matrix normal
Nyxp(Ayu', Iy ® X), where 1y is an N-dimensional column vector with all elements being one, Iy is an N x N
identity matrix, and ® denotes the Kronecker product.

Dempster [13, 14] dealt with the singularity issue of S by using an orthogonal transformation on data. Let B be
an orthogonal matrix with the first row 1)/ VN, and let ¥ = BX. Denote v/ as the i-th row of Y. Using the property
of matrix normal distribution, it follows that y; are independent, y; ~ N,( \/N,u,E), and y; ~ N,(0,X),i € {2,...,N}.
The test proposed in [13, 14] for the one-sample mean problem corresponds to

= lly: — poll®
S IyilP /(N = 1)
Under Hy, |ly|* is a quadratic form of N,(0,X). Dempster [13, 14] suggested approximating ||y;|[> by a scaled chi-

square distribution and estimating its scale parameter and degrees of freedom by fitting the first two moment equations.
Thus, under Hy, Tp approximately follows a F-distribution.
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Liuter [27] proposed a novel idea to construct 72 by using the property of left-spherical distributions [12]. Without
loss of generality, assume that gy = 0. Then X follows Ny, (0, Iy ® X), and therefore X follows a left-spherical
distribution. That is, for any orthogonal N X N matrix I', X and I'X have the same distribution. Using the invariance
property of left-spherical distributions, Liuter [27] proposed projecting the data along the direction D(X" X), a p X d
matrix that depends on X only through X7 X, and using the Hotelling T2 based on XD(XTX) rather than X. The
authors showed that the resulting 7?2 still follows the Hotelling 72 distribution with the dimension p replaced by
d. Thus, the resulting T2 test is still an exact test for the one-sample mean problem. Frick [19] pointed out power
insufficiency for the two special cases of Liuter’s tests, one attains the highest power in the situation where all variables
have nearly the same relative deviation and the same correlation to each other and the others works well when the
covariance has a one-factor structure.

Chen et al. [8] proposed the regularized Hotelling T2 test, referred to as the RHT test, by replacing 7! in the
definition of T2 by (S + AI)™!, a ridge-type estimate of the £~!, where I is the identity matrix and A is a ridge tuning
parameter. The authors further developed the theory of the RHT test and derived its limiting null distribution. Based
on Chen et al. [8], Li et al. [31] further proposed a data-driven procedure to select the regularization parameter A, and
also proposed an adaptive test which combines the RHT statistics corresponding to a set of regularization parameters.
Note that the RHT test can be viewed as an improvement of the BS and SD tests which are reviewed in Section 3 by
incorporating the correlation between variables into the test to improve power. Similarly, the projection tests to be
introduced in Section 6 give us an effective way to utilize the correlation information to improve power.

The Hotelling T? test has been further used for testing two-sample mean problems. Let x;;, j € {1,...,N;}, be a
random sample from N,(y;, X) fori = 1 and 2, and N = N + N», the total sample size. The two-sample mean problem
is to test

Hy : py = pp versus Hy @y # po. (1)

Let x; be the sample mean of x;;’s, and
12
S=—E L) Rk
py (xij = X)(x;; — %)

which is the pooled sample covariance matrix, where n = N + N — 2.
The one-sample T2 test can be naturally extended to the two-sample mean problem (1):

NiN» ro,. o
T2 = - %) \(® - %), 2
N +N2(x1 X2) 87 (% —X%2) 2
which is well defined for an invertible S. Furthermore under the null hypothesis,
n—p+1
TTZ ~ Fp,n+l—p-

As seen, the one-sample and two-sample mean problems essentially can be handled in the same strategy. Thus,
we will focus on the two-sample mean problem, partly because the two-sample mean problem has many direct appli-
cations in high-dimensional genetic data analysis and other fields.

As analyzed in [2], the Hotelling 72 test has low power when § is near singular. Of course, S is singular when
p > n, and the Hotelling T2 test is not well defined. To address the challenges, various tests for the one-sample and
two-sample problems have been developed. In the following sections, we introduce the main testing procedures for the
high-dimensional two-sample mean problem without normality assumption. As natural extensions of the multivariate
normal distribution, independent component model and elliptical distributions are the two distribution classes mainly
assumed in the literature of testing two-sample means.

Definition 1. A random vector x follows an independent component model (ICM) if x can be represented as x =
I'z + u, where I is a p X m matrix for some m > p such that I'TT = X, and z = (zy,...,2,)" is an m-dimensional
random vector with independent and identically distributed elements z;’s with E(z;) = 0, E(z?) =1 and E(z‘}) < oo,

Definition 2. (Elliptical Distribution) A random vector x follows an elliptically contoured distribution if its character-
istic function E{exp(ix " #)} is of the form exp(it " u)¢(¢ " Xt) for some function ¢(-). When g = 0 and £ = I, x follows
a spherical distribution.



Both ICM and elliptical distributions are natural extensions of a multivariate normal distribution, which is the only
distribution belonging to both ICM and elliptical distributions.

3. L,-type tests

Consider the two-sample mean problem without normality assumption. Let x;;, j € {1,..., N}, i € {1,2}, be a ran-
dom sample from a population with mean y; and covariance matrix X. For N; large enough, ¥; asymptotically follows
N,(ui,X), and %, — ¥, asymptotically follows N,(u; — po, (N + N;1)E). Then the T2 defined in (2) asymptotically
follows a Xﬁ when p is fixed and finite. When p > n, S becomes singular. Thus, the Hotelling 72 test cannot be used
in the high-dimensional setting. Intuitively, a test statistic based on ||%; — %,|/%, an estimate of ||z, — ][>, may be used
for testing the two-sample mean problem. We refer to such tests as L,-type tests since they are based on the L,-norm
of the difference of the two sample means.

Since E||%; — % = (Ny s Ny Dtr(Z), Bai and Saranadasa [2] first considered the following test statistic for the
two-sample problem in (1) as

T, = (& = %) (%1 = X2) = (N~ + N7 Hus.

Under the null hypothesis, E(T,) = 0 and Var(T,,) = 0'%] = 2(N;™" + Ny )1 + 1HrZ? under the normality

assumption, and Var(T,,) = o7, {1 + o(1)} under ICM.

Under the ICM assumption, y, = p/n — y € (0,1), asn — oo, and N;/N — « > 0. Bai and Saranadasa [2]
showed that under the null hypothesis in (1), as n — oo,

Tll

VVar(T,)

Using large-dimensional random matrix theory, Bai and Saranadasa [2] showed that when y € (0, 1), the plug-in
estimator of o7 , i.e., substituting trE* by tr§?, is not a consistent estimator of Var(T,) if Amax(E) = o(trL?), where
Amax(Z) stands for the largest eigenvalue of X. They further showed that [n?/{(n + 2)(n — )}][trS? — (trS)?/n] is an
unbiased and ratio-consistent estimator of trx2, and proposed a test, referred to as the BS test, for the two-sample
mean problem:

~ N(O, 1).

G ) - ) - B - uS

Tgs

2(n+1).
201582 — (trS)2 /)

Under some conditions, Bai and Saranadasa [2] derived the asymptotic power of the BS test as

nk(1 = )||luy — Ilzllz}
- 0,
V2trx?

where &, is the 100(1 —a)-th percentile of the standard normal distribution for a given significance level @. The authors
further proved that the BS test may be more powerful than the Hotelling T2 test when p/n is close to one. They also
noted that the BS test has the same asymptotic power with the test proposed in [13, 14]. Notice that under the null
hypothesis, the asymptotic distribution of the BS test and several L,-type tests to be introduced are approximated using
normal distributions. Instead of a normal approximation, Zhang et al. [55] proposed to use the Welch-Satterthwaite
(W-S) y?-approximation [37, 50] to achieve adaptivity of the null distribution. Zhang et al. [55] further conducted a
thorough analysis on theoretical properties and empirical analysis of the W-S y?-approximation and concluded that
the W-S y2-approximation is at least comparable to and can be more accurate than the normal approximation under
certain scenarios.

The Hotelling T2 test is affine invariant. That is, the two-sample Hotelling 77 test is invariant under a linear
transformation y;; = Ax;; + b for a nonsingular constant square matrix A and a constant vector b. The BS test does
not possess this property. Indeed, the BS test is not invariant under y; jx = axx;j +by for k € {1,..., p}, where x;j is the
k-th element of x;;. One way to deal with this issue is to scale each variable by dividing its sample standard deviation.

Pes(u — pp) — @ {—fa +



Denote Dg = diag(S), the diagonalized matrix of S, and consider (¥; — xz)TDgl(ic] — %) instead of ||®; — %2|.
Srivastava and Du [41] proposed a test, referred to as the SD test, with the test statistic defined as

NiN>
Ni+N»

(X — %) DS (%) — %) - 5

{2(tR? - p2/n)cp,)?

Tsp =

il

where ¢, , is an adjustment coefficient to improve convergence, and it should satisfy that c¢,, — 1 in probability as

(n, p) > oo. The authors suggested using c,,,, = 1 + p~>/*trR*, where R = D;%SD;% is the sample correlation.

We denote R to be the corresponding correlation matrix of the covariance matrix X, and 2;,.x(R) to be the largest
eigenvalue of R. It is assumed that n = O(p®) with 1/2 < £ < 1, Nj/N — x € (0,1), 0 < lim,,_, p‘ltrRk < 00,
ke{l,...,4}, and lim,_,c Amax(R)/ 4/p = 0. Srivastava and Du [41] showed that Tsp ~ N(0, 1) under Hy, and further
derived its asymptotic power function as

— TD—l _
ﬁSD(ﬂl_/-lz)—‘I){—.fd+ NNy — o) Dy (i ”2)}—>0,

N1 + N2 1lztr.RZ

asn,p — oo.

Srivastava and Du [41] further compared the power function with that of the BS test and showed that the SD
test may enjoy higher power than the BS test when the diagonal elements of X are not the same and some regularity
conditions are satisfied.

Gregory et al. [21] proposed the generalized component test (referred to as GCT), which is a centered and scaled
version of the statistic that takes the form of the mean of the squared two-sample ¢-statistics with unpooled variance
over all p components. The choices of centering quantity relate to the dimension and the formulation of scaling
quantity rests on the assumption that the dependence among components is autocovarying and diminishing as com-
ponents are further apart. Chakraborty and Chaudhuri [6] noted that the size of GCT is larger than the nominal level
under the autoregressive model as well as spherical ¢ distribution for all values of p, which can be corrected using
permutation-based critical values.

Chen and Qin [10] first noted that some strong moment conditions in [2] are due to the terms Z?’:’ | xizji_,, ie€f{l,2},

in the expansion of ||, — %,||”>. However, these two terms are not useful in the sample mean testing problem. Chen
and Qin [10] proposed the following test, referred to as the CQ test, with the test statistic that does not involve these
two unnecessary terms:

Ny N>

N; N,
1 . 1 . 2 .
Teo = g = 1)2"“"“’ A 1)2"2""2’ B NINzZ Zx“xz’"
i#j i#j i=1 j=1

Chen and Qin [10] considered the two-sample mean problem with unequal covariance matrix. Specifically, let
x;j,j € {L,...,N;}, be arandom sample from a population with mean y; and covariance matrix X;. Chen and Qin [10]
derived the mean and the asymptotic variance of Tcq. Under the null hypothesis, E(Tcq) = 0, and

tr(X9) +

Var(Tcq) — { tr(Z3) + itr():]):z)} - 0.

2 2
NN, = 1) No(N> - 1) NN,

Chen and Qin [10] established the asymptotic normality of Tcq under the null and the local alternative hypothesis,
and further derived the asymptotic power of their test under certain regularity conditions. Note that Tcq is the same
as that of the test proposed by [2], but Chen and Qin [10] studied the asymptotic properties of Tcq and derived its
asymptotic power under more general setting and weaker technical conditions than those given in [2].

Wang et al. [48] extended the CQ test to a nonparametric test, referred to as the WPL test, for high-dimensional
one-sample mean problem Hj : g = 0. The WPL test shares the same form of the CQ test for the one-sample
mean problem with x; replaced by its spatial sign x;/||x;]|. Under elliptical distribution assumption on the population
and some other regularity conditions, Wang et al. [48] further studied the asymptotic properties of their proposed
nonparametric test, and demonstrated that the nonparametric test can be more powerful than the CQ test when the
sample is from heavy-tailed elliptical distributions. Li et al. [32] illustrated that classical spatial-sign-based procedures

5



for a low-dimensional population are not robust for high-dimensional settings, and may lead to an inflated Type I
error rate. Li et al. [32] further developed a correction to make the sign-based tests applicable for high-dimensional
data, and proved that the corrected test statistic is asymptotically normal under elliptical distributions. Chakraborty
and Chaudhuri [6] examined the CQ test and WPL test closely under the p-mixing and randomly scaled p-mixing
assumptions. The two cover some commonly seen models, e.g., spherical Gaussian distributions is a special case
of p-mixing models and multivariate spherical ¢ distribution is a special case of randomly scaled p-mixing models.
Chakraborty and Chaudhuri [6] concluded that the power of CQ test and WPL test tend to be the same as p — oo
regardless of sample size given appropriate mixing conditions and some regularity conditions; in addition, the WPL
test can be asymptotically more powerful than the CQ test under a stronger correlation and both p,n — oco. Other
nonparametric tests including, but not limited to, [3, 18, 26, 46] have also been developed for the two-sample mean
problem.

Chen et al. [9] noted that the non-signal components only inflate the variance of Tcq without any contribution
to the power of the test when alternatives are sparse. As such, Chen et al. [9] proposed a hard thresholding method,
referred to as the CLZ test, to remove the components with no signal before carrying out the Tq test. Although the
actual statistic used by [9] is of a similar nature as T, we represent the test statistic proposed in [9] similar to Tgs for
notation simplicity. Let )_((lk) and f(;k) are k-th elements of ¥; and X, respectively, and S |y and S are the sample
variance for the k-th component in the first and second sample, respectively. Then,

P g0 _ gy 20 L by
Tcrz(s) = Z %y 2) 131 &, 2) > A,(8) ¢,
| S 1k /N1 + S 2.0 /N2 S1u/N1 + S 2.4/ N2

where I{-} is an indicator function, 2,(s) = 2slog p, s € (0, 1), and the form of 4,(s) is based on the large deviation
results [36]. Chen et al. [9] further established the asymptotic normality of T¢yz(s) under certain regularity conditions
and derived the asymptotic power of T¢rz(s) under local alternatives.

One has to determine s to implement T¢yz(s). However, the optimal choice of the threshold s depends on the
difference between the true population means, which is unknown in general. If all of the signals in population mean
difference are strong enough, the threshold s can be chosen very close to one to remove all the components with
no signal while preserving all the components with signals. However, if some signals are weak, s has to be chosen
according to the strength of the weak signals, which is usually unknown in practice. To deal with this issue, Chen
et al. [9] proposed to choose the most significant test statistic among possible choices of threshold values as their final
test statistic:

Tcriz = max {Terz(s) = frg (.0 T Tas(9)0 »
s€(0,1-n)

where 77 is a parameter with a small positive value, and fi7. (5.0 and 67, (5.0 are estimates of the mean and standard
deviation of T¢rz(s) under the null hypothesis derived in [9]. Chen et al. [9] further derived the asymptotic null
distribution for Ty 7 using the theory of extreme value distributions. Although the asymptotic null distribution can be
derived using the extreme value theory, Chen et al. [9] found that the convergence rate of T¢rz is slow. As a result,
Chen et al. [9] proposed to use the bootstrap method to calculate the p-value of their test. Zhong et al. [56] developed
a new test for high-dimensional means under sparsity, as an alternative to higher criticism (HC), which was introduced
to determine whether there are any nonzero signals in the settings in which there is only a small fraction of significant
signals against a predominantly null background. A comprehensive review on the basics of HC in both the testing and
feature selection settings is given in Donoho and Jin [15].

4. L -type tests
Note that the two-sample mean problem is equivalent to testing simultaneously the following hypotheses:
Hoy @ g = pog versus Hyy @y # pok,
for k € {1,..., p}. For each k, we may construct a z-test for each one-dimensional two-sample mean problem:
_ X — Xop
- VS 1 ik/Ny + S 244/ N> ,
6
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where the notation is the same as that in Section 3. Under mild conditions, z; asymptotically follows a normal
distribution. Cai et al. [4] proposed a Lo -type test, referred to as the CLX test, with the test statistic accounting for
sparse alternatives, ) )

X1 — Xl
max )
I<k<p S 14k /N1 + S 24/ N2

Teix =

which equals [lule withu = (z7,...,2)7.

Using the extreme value theory and under some regularity conditions, Cai et al. [4] derived the asymptotic null
distribution of T¢px and proposed an asymptotic test accordingly. The idea behind the construction of the Le.-type
statistic Tcpx is to pick up the strongest signals in the difference of means while ignoring other signals. Thus it
will have advantages over the L,-type testing methods when the signals are sparse, which has been shown in various
simulation studies [2, 10, 41]. Chang et al. [7] advocated a data-driven approach to obtain critical values using
Monte Carlo simulations based on the facts that convergence rate to the extreme value distribution for maximum-type
statistics is usually slow and that the strong structural assumptions on the covariance matrices may be difficult to
justify in applications. Chang et al. [7] also proposed a screening step to reduce the dimension and enhance power.

Xue and Yao [52] proposed a distribution and correlation-free two-sample mean test built upon a Le.-type test,
referred to as the XY test, with the test statistic defined as

Txy = VNillx1 — %2|lco,

which only depends on the infinity norm of the sample mean difference. Xue and Yao [52] further derived theoretical
properties of Txy based on a high-dimensional central limit theorem, and provided a data-driven critical value which
can be easily computed via a multiplier bootstrap method. Notably, the result of [52] does not require samples to be
independently and identically distributed and allows two samples to have highly unequal sizes. From the definition of
Txy, it is not invariant under scale transformation. In practice, one may have to scale it by using the trick of the SD
test.

5. Adaptive tests

L-type tests like [2, 10] and L.-type tests like [4, 52] present two extremes — the L,-type tests use all the informa-
tion in all the dimensions, while the L..-type tests use only the dimension with the strongest signal as evidence against
the null hypothesis. Typically, the L,-type tests are powerful against dense alternatives, where the difference of two
population means has a large proportion of non-zero elements; while the Le.-type tests are powerful against sparse
alternatives, where the mean difference only has a small proportion of non-zero elements. In practice, it is unknown
whether the alternative is dense or sparse. To deal with this issue, adaptive tests have been proposed to achieve high
power against various kinds of alternatives simultaneously.

Xu et al. [51] developed an adaptive testing procedure, referred to as the XLWP test, which is powerful against
both the sparse and dense alternatives or alternatives in-between in the high-dimensional setting. They incorporated
the idea of L,-type tests and L-type tests and proposed a family of sum-of-powers tests with a power index y as
follows.

p
Txiwp(y) = Z X1k — Xl
=1

for 1 <y < oo and

Toiwp(00) = max X1k — Xl
Isksp 81 /N1 + So/N2

Note that Txpwp(y) coincides with Tgg if vy = 2 and T x if ¥ = co. Xu et al. [51] demonstrated that there are settings
in which Txpwp(y) with some y between 2 and oo is more powerful than Tgs and T¢rx. Furthermore, Xu et al. [51]
proposed an adaptive test to combine various sum-of-powers tests with different y’s as follows.

Txiwe = min P Txrwe(y)»
=G



where G is a candidate set of y and Pr,,(y) is the p-value calculated from Tx;wp(y). Note that since Txpwp is the
minimum of some p-values, it is no longer a genuine p-value. In order to perform the proposed adaptive test, Xu et al.
[51] derived the asymptotic null and alternative distributions for Txywp under certain regularity conditions. Also note
that to use the test Txp wp, G needs to be pre-specified. Xu et al. [51] suggested using G = {1,2,...,6, oo}, and more
details can be found in [51].

He et al. [22] proposed an adaptive testing procedure which combines p-values computed from U-statistics of
different orders. While He et al. [22] focused on a general framework of high-dimensional testing, their test can also
be applied in the high-dimensional mean testing problem. For the two-sample mean testing problem, define

Tuxwre(a) = Zp] Za: (j)% Z ﬁ X1k, j ﬁ X2, j» 3)

J=1 =0 (ko )eAlt =1 m=1

N
(815eeesSac)EAG 2

for 1 < a < oo, where PY = N!/(N — a)! is the arrangement number, AY = {(ay,...,a.): | <a; # -+ # a. < N}is
the set of arrangements and x;;; is the j-th element of x;;. He et al. [22] noted that Txwp(a) is an unbiased U-statistic
estimator for Zf ((u1j — p2p), and also defined Tuxwp(oo) to be the same with Txpwp(co). Similar to Txpwe(y),
Tuxwp(2) is powerful against dense alternatives, Tyxwp(co) is powerful against sparse alternatives, and Tuxwp(a)
with an appropriate a can be powerful for alternatives in-between.

He et al. [22] derived the asymptotic null distribution for Tyxwp(a) with a finite integer a and @ = co, and they
further showed that Tyxwp(a) asymptotically follows a normal distribution for a finite integer a and an extreme value
distribution for a = co under certain regularity conditions. From the property of U-statistics, He et al. [22] showed that
Tuxwp(a) with different a’s are asymptotically independent with each other. Similar to [51], He et al. [22] proposed
to use an adaptive test to combine p-values from statistics of different orders as

Tuxwp = min Pry ()
acA

where Pr,,.(a) 1S the p-value calculated from Tyxwp(a) and A is some set of candidate a’s. Given the asymptotic
independence among Tyxwp(a) with different a’s, He et al. [22] derived the asymptotic p-value for Tyxwp as 1 —
(1 = Tuxwp)"Y, where |A| is the size of the candidate set A. For implementation, the candidate set A needs to be
pre-specified. He et al. [22] proposed to use A = {1,2,...,6,c0}. Note that [51] and [22] are quite similar in the
setting of the mean testing problem. A main difference is that He et al. [22] derived better theoretical properties such
as asymptotic independence between testing statistics of different orders by using U-statistics instead of V-statistics
as in [51]. However, the U-statistics in (3) is hard to compute directly when « is large. To solve this problem, He
et al. [22] also proposed a calculation scheme which can calculate (3) with time complexity O(p*(N; + N>)) instead of
0(p2(N 1 +N>)%) as in the naive calculation approach. He et al. [22] also discussed other p-value combination methods
such as Fisher’s method beyond the minimum p-value combination method.

6. Projection tests

Test statistics introduced in Sections 3, 4, and 5 do not utilize correlation among the variables and therefore do
not require an estimation of £~!, which may result in loss of power. Projection tests have been considered to achieve
higher power by taking into account correlation. Earlier work on projection tests such as [27] target exact tests with
finite p and n. The exact tests proposed in [27] were further extended to linear multivariate tests on mean structures
of matrix normal distribution in [28] with a correction in [29].

Lopes et al. [34] proposed a random projection test, referred to as the LIJW test, that projects the sample to a
randomly generated lower dimensional space such that the classical Hotelling T test can be applied. Specifically,
the LIW test is processed under the normality assumption when p > n/2. Let P] be a k X p projection matrix
with independent and identically distributed N(0, 1) entries, where k is suggested to take [n/2], where [a] is the
largest integer less than a. The projected samples {P] x1y,..., P} x1y,} and {P]Xs1,..., P]Xay,} can be considered
as independent and identically distributed samples from N(P] u;, P XPy) and N(P] u>, P/ EP}), respectively. The
Hotelling 7 test can be processed by testing the two projected samples with

Hy: Pl = Plus versus Hy : Pluy # Pl .
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Suppose that (1, — o) "E" 1y — o) = o(1) and N;/(N; + No) — « € (0, 1), Lopes et al. [34] showed that under all
sequences of projections P, the asymptotic power function of the LIW test satisfies, as n — oo,

Bl — ), Z, PL} = =&, + «(1 — ) \n/2A%} — 0,

where A? = (uy — o) " Pe(PEP) ™ Pl (11 — o).

The seemingly intuitive idea of the random projection test is motivated from the consideration that the test is
designed to reduce the dimension to prevent accumulation of variance from the high-dimensional variables and mean-
while not to bring the distance too close so that it is harder to distinguish. Thulin [43] proposed a modification of the
LJW test, allowing the test statistics to be invariant under linear transformations of the marginal distributions. Multi-
ple random projections are conducted and the test statistic averages the individual random projection Hotelling tests,
whose power is then calculated by permutation. Thulin [43] demonstrated that its test offers a higher power when the
variables are dependent. On a similar note, Srivastava et al. [42] proposed a test using multiple random projections
with the test statistic averaging over the individual random projection Hotelling test p-values. These tests are referred
to as the random projection (RP) tests.

A key question to projection tests is whether there exists an optimal projection so that the resulting projection test
is the most powerful. To address this question, Huang [24] formulated this issue as follows. For k < p, let A be a
p X k nonzero constant matrix with rank k. Based on the projected sample y;; = ATx;;, the two-sample Hotelling 7
test for Hoy : AT (u; — o) = 0 can be written as

NN, . _ _ e _
T; = A %) AATSA) AT (%, - %),

provided that ATSA is invertible. Under the normality assumption,

N1+N2—k—1

2
o Ty ~ Fi N iNy—k-15

under Hy, which implies Hy4 holds. Huang [24] proved that Tj reaches its best power atk = 1 and A = (g — o).
Denote the optimal projection by @ = £~ !(u; — u»). As a result, Hys becomes Hy, : (1 — t2) "2~ (u; — p2). Suppose
that X is positive definite, then Hy, is equivalent to Hy : y; = f.

The estimation of the optimal projection a is challenging since it involves the estimation of £~!. To construct an
exact projection test, Huang [24] proposed a sample-splitting strategy to estimate @ where the data are partitioned into
a subset for estimation and a subset for conducting the test. Let X(ll) - J'c(zl) and SV be the sample mean difference
and pooled sample covariance matrix obtained from the subset for estimation, respectively. Since S is not invertible

when p > n, Huang [24] proposed to estimate a by
-1
a= (s + Dgo) " (#0 - 2),

where Dy = diag(S'") and A is a ridge tuning parameter. Thus, the projection test with the optimal direction, referred
to as the OP test, is
NOND . o
Top = ——— (¥ -27) a(a’sPa) a" (x - D),
e ) e (e )

2)

where J'r(l - xgz) and §@ are the sample mean difference and pooled sample covariance matrix obtained from the

subset for conducting the tests, and N fz) and Néz) are the sample sizes for the two samples in this subset. The authors
also demonstrated that under the local alternative

1 1
H m—pp=0—+—,
1:H1— M2 NN,
where § is a constant vector, the asymptotic power of the OP test is no less than those of BS, DS, and CQ test under
certain conditions.



Li and Li [30] investigated the projection tests for the linear hypothesis testing problem in linear models with

high-dimensional responses, which includes the high-dimensional mean testing problem as a special case. In the
setting of the two-sample mean problem, the test proposed by [30], referred to as the LL test, can be seen as a multiple
data-splitting extension of [24] to solve the power loss problem of a single data splitting. Li and Li [30] derived the
asymptotic normality of their test statistic under certain regularity conditions and proposed to use bootstrap methods
to carry out the test. Li and Li [30] further showed that their test has similar asymptotic power with those of Tgs and
Tcq in the presence of low correlation among variables, and that their test can be much more powerful than some
existing tests in the presence of high correlation.
In the construction of Té p» @ ridge-type estimator is used to estimate the optimal projection direction. However,
the ridge type estimator is not consistent in high-dimensional settings in general. To deal with the problem of optimal
projection direction estimation, Liu et al. [33] proposed to use nonconvex regularized quadratic programming to
estimate the optimal projection direction. Although Liu et al. [33] mainly focused on the one-sample mean testing
problem, we can easily modify it for the two-sample high-dimensional mean testing problem. Denote w* = X! (u; —
M2), the optimal projection direction to be estimated. Note that w* is the solution to the following optimization problem
w* = argmin,, [%WTZW - (u — yz)Tw]. Liu et al. [33] considered the following optimization problem to estimate the
optimal projection direction

1w -
W = argmin,, szZw —(X —%) w4+ Z Pawpls 4
=1
wherew = (wy,..., wp)T, 3 = Sis the pooled sample covariance matrix, and P,(w) is a penalty function with a tuning

parameter A to promote the sparseness of the estimator. Commonly used penalty functions include the Lasso [44],
the SCAD [16], the MCP [53], and others [17]. Liu et al. [33] further established that any stationary point w of the
problem (4) is a good estimator for optimal projection direction w* under some regularity conditions.

To reduce the power loss from the data splitting, Liu et al. [33] further proposed a multiple-splitting projection test

which repeats the single projection procedure m times, obtaining p-values py, k € {1, ..., m} for some fixed integer m.
Liu et al. [33] noted that these p-values are exchangeable in distribution. That is, (p1, ..., pm) 4 (Pry»---»Pn,) for any
permutation 7 on {1, ..., m}. They further proposed a p-value combination method which utilizes the exchangeability

of the p-values. More specifically, let Z; = @~ '(p;), k € {1,....,m}. Under the null hypothesis, Z, i € {1,...,m} are
exchangeable standard normal random variables. Denote p to be the correlation between Z; and Z; , 1 <i < j < m,
and let p be some consistent estimator of p, Liu et al. [33] established that M; = Z/ /{1 + (m — 1)p}/m follows an
asymptotic standard normal distribution under the null hypothesis. However, the asymptotic distribution needs m to
be large enough. Liu et al. [33] further proposed a critical value calculation method to control the finite-sample Type
I error. Also, Liu et al. [33] proposed to choose m € [30, 60] for a trade-off between testing power and computational
cost.

7. Numerical comparisons

In this section, we conduct intensive simulation to compare the performance of the tests introduced in the previous
sections using R version 3.4.3. All simulations results are based on 5,000 independent replicates. In our simulations,
we set the dimension p = 1000, n; = ny = n and the significance level 0.05.

We consider two types of alternatives: the sparse alternative where gy = 0 and g, = c(1],,0,-10)" and dense
local alternative where p; and 1, are generated from N, (0, (/) m)I,). The sparse alternative is designed to challenge
the L,-type tests, while the dense local alternative is to challenge the L.-type tests. We set ¢ = 0, and 0.5 and 1 to
examine the Type I error rate, and the power of the tests, respectively.

We consider two covariance structures: (1) compound symmetry (CS) with Xy = (1 — p)I,, + plplT, where I, is
the p x p identity matrix; and (2) autoregressive (AR) correlation with X, = (o~/), both with p = 0.5 for a moderate
correlation and 0.8 for a high correlation. Denote Q@ = X! with (i, j)-element w; ;. Then for the CS correlation
structure, w;; is a constant for i # j; for the AR correlation structure, w;; = 0 for |i — j| > 2. The correlation among the
variables is not utilized in the tests introduced in Sections 3, 4, and 5. Thus, the CS correlation structure is designed
to challenge these tests, which may take advantage of the AR correlation structure whose inverse is very close to the
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identity matrix. The projection tests introduced in Section 6 may take advantage of the CS correlation structure since
the correlation is taken into account.

We generate data from two multivariate distributions, multivariate normal and multivariate ¢ with degrees of free-
dom 6. A multivariate normal distribution belongs to the class of [CM, while a multivariate ¢ distribution is a special
case of elliptical distributions. Using these two distributions enables us to examine how sensitive the performance of
the tests is to the ICM assumption, and how the limiting null distributions are related to the ICM assumption.

In our simulations, we directly use the R package highmean version 3.0 to implement several tests, including [2]
(aBS, eBS), [51] (aXLWP, eXLWP), [4] (aCLX, eCLX), [10] (aCQ, eCQ), [9] (aCLZ, eCLZ), and [41] (aSD, eSD).
Here “a-” and “e-” represent asymptotic-based and permutation-based tests, respectively. The permutation parameter
is set to 200 for permutation-based tests in the R package. For random projection tests, we conduct an asymptotic-
based test with a single projection (aRP1) following [34], and a permutation-based test with a single projection (eRP1)
and 30 projections (eRP30) following [43] and the codes provided in its supplementary material. Both permutation
parameters are set to 100 for eRP30. We use the R package ARHT version 0.1.0 to implement [31] (ARHT). We also
include [13] (DEM), [22] (HXWP), [27] (LAU), [24] (OP), [30] (LL), and [52] (XY) in this numerical comparison.

Due to the limited space, we present and discuss the results with (n, p) = (40,0.5). Results for (n, p) = (40,0.8),
(100, 0.5) and (100, 0.8) are given in the supplementary material of this paper. It can be seen from the figures presented
in the supplement that the overall patterns for (n,p) = (40,0.8),(100,0.5) and (100,0.8) are similar to those for
(n,p) = (40,0.5).

Fig. 1 depicts the Type I error and power for multivariate normal data. From Fig. 1 (a) and (b), it can be seen
that all tests retain the Type I error rate 0.05 very well except for aCLX and aCLZ. The aCLZ test inflates the Type
I error rate for both correlation structures significantly, while the aCLX test inflates the Type I error rate only for the
AR correlation structure. Fortunately, both eCLX and eCLZ retain the Type I error rate well. Thus, we should use the
power of eCLX and eCLZ rather than that of aCLX and aCLZ for the power comparison.

Fig. 1(c) depicts the power for the AR correlation structure and dense local alternative, and implies that LL,
eBS, eCQ, eSD tests have the highest power, followed by the adaptive tests and ARHT. The L.-type tests, and both
RP1 (aRP1 & eRP1) tests have low power. Fig. 1(d) depicts the power for CS correlation structure and dense local
alternative, and indicates that the ARHT test, LL test, OP test, and eRP30 test have the highest power. For a larger
signal with ¢ = 1, the XY test and eCLX perform quite well, and the adaptive tests introduced in Section 5 have
reasonable power. The L,-type tests have the lowest power. This is expected since the L,-tests ignore the correlation.

The power for the AR correlation structure and sparse constant alternative is depicted in Fig. 1(e), from which it
can be seen that the adaptive tests perform the best, the Ly,-type tests perform well. The eBS, eCQ and eSD tests and
the LL test perform similarly. The ARHT, OP, aRP1, eRP1, and eRP30 tests have the lowest power.

The power for the CS correlation structure and sparse constant alternative is depicted in Fig. 1(f), from which we
can see that the LL and eRP30 tests perform the best, and followed by the XY test and ARHT test. The eCLX test
and the adaptive tests have good performance too. The L,-type tests, the aRP1, and eRP1 tests have the lowest power.

The Type I error and power for the multivariate 7 distributions are depicted in Fig. 2, from which we can see that
in addition to the aCLZ and aCLX tests, the aXLWP test cannot retain the Type I error rate, and the DEM, aBS, aCQ,
aSD, and ARHT tests have much more conservative Type I error rates, when data are generated from the multivariate
¢ distribution with an AR correlation structure. As the result, it can be seen from Fig. 2 (c) and (e) that these tests
have much lower powers for multivariate ¢ distributions than for multivariate normal distributions. We also observe a
conservative Type I error rate for ARHT under a CS correlation structure. The patterns of the Type I error and power
of tests other than the DEM, aBS, aCQ and aSD tests are similar to those in Fig. 1.

In summary, there is no single test dominating all the other tests in all settings. The performance of the tests is
related to the type of alternatives, correlation structures, and the population from which the data are generated. In
general, we would recommend the LL and eXLWP tests since their performance is very good in all different settings.

Fig. 3 depicts the computing time for each test. The computing time may vary under settings. From Fig. 3, HXWP
is the most costly one, followed by LL and eRP30.

8. Conclusions and discussion

This paper presents a selective overview on testing two sample means of high dimensional data along with their
motivations and properties. We classify these tests into several categories: the Hotelling T2 related tests, L,-type
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Fig. 1: Simulation results under the multivariate normal distribution with different values of ¢, the strength of signals. The null hypothesis
corresponds to ¢ = 0. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectively.
The top, middle, and bottom panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternative,
respectively. Results are based on 5,000 replications. Tests DEM [13], LAU [27] and ARHT [31] are introduced in Section 2. Tests BS (aBS and
eBS, [2]), CQ (aCQ and eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [9]) can be found in Section 3. Tests CLX (aCLX and
eCLX) [4] and XY [52] are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [24],

LL [30], eRP (eRP1, eRP30,[43]) are given in Section 6.
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Fig. 2: Simulation results under the multivariate ¢ distribution with different values of ¢, the strength of signals. The null hypothesis corresponds to
¢ = 0. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation structure, respectively. The top, middle,
and bottom panels are for the Type I error, power for a dense local alternative, and power for a sparse constant alternative, respectively. Results are
based on 5,000 replications. Tests DEM [13], LAU [27] and ARHT [31] are introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and
eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [9]) can be found in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52]
are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP, [51]) are introduced in Section 5. Tests OP [24], LL [30], eRP (eRP1,
eRP30,[43]) are given in Section 6.
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Fig. 3: Computation time (second) per replicate. The left and right panels are for the autoregressive (AR) and compound symmetric (CS) correlation
structure, respectively. The upper and lower panels are for the multivariate normal and t distributions with different values of ¢, the strength of
signals, respectively. The null hypothesis corresponds to ¢ = 0. Results are based on 5,000 replications. Tests DEM [13], LAU [27] and ARHT
[31] are introduced in Section 2. Tests BS (aBS and eBS, [2]), CQ (aCQ and eCQ, [10]), SD (aSD and eSD, [41]) and CLZ (aCLZ and eCLZ, [9])
can be found in Section 3. Tests CLX (aCLX and eCLX) [4] and XY [52] are defined in Section 4, tests HXWP [22] and XLWP (aXLWP, eXLWP,
[51]) are introduced in Section 5. Tests OP [24], LL [30], eRP (eRP1, eRP30,[43]) are given in Section 6.

tests, Leo-type tests, adaptive-type tests, and projection tests. We conduct a comprehensive numerical comparison to
demonstrate the strength and weakness of these tests. In general, the permutation-based test can retain the Type I
error rate better than their asymptotic counterparts. As expected, there is no test which dominates all other tests in
all scenarios. In general, we would recommend the LL and eXLWP tests since their performance is very good in all
different settings.

There are many works on testing high-dimensional means. It is impossible to include all of them in a review article.
For instance, this paper does not review tests for one-sample mean problem and two-sample mean problem based on
empirical likelihood [11, 49]. In addition, this paper does not include tests that are developed more specifically for
data with special structures, such as compositional data [5] or genetic data incorporating pathway topology [25].

We conclude this paper by outlining a few future research directions. It has been common to impose sparsity in
the high-dimensional data modeling. For two-sample mean problems, it is reasonable to assume that many variables
have the same means. That is, many elements in p; — g, are 0. This implies that the vector g; — p, is sparse. How to
construct a test that utilizes the sparsity to achieve better power would be an interesting topic for future research.

The challenge of testing high-dimensional means comes from the singularity of the sample covariance matrix
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or the estimation of the precision matrix high-dimensional data, i.e, the inverse of high-dimensional covariance
matrix. There are some interesting works on estimation of the precision matrix of high-dimensional data such as
high-dimensional Gaussian graphical models. How to incorporate the recent advances on high-dimensional precision
matrix estimation to construct a high-dimensional mean test with better power and controlled Type I error is another
interesting topic for future research.

Statistical inference for regression coefficient vectors in high-dimensional linear and generalized linear models
have been a very active research topic. See, e.g., Zhang and Zhang [54], Van de Geer et al. [20], Ning and Liu [35],
Tibshirani et al. [45], Shi et al. [38] and Shi et al. [39]. Extending the techniques developed in the context of testing
high-dimensional means to testing linear hypothesis in high-dimensional regression models is also a great topic for
future research.

Acknowledgments

The authors thank the Editor-in-Chief and the Executive editor for their comments and suggestions. All authors
made equal contributions to this paper and are listed in the alphabetic order. This research was supported by National
Science Foundation Grants DMS 1820702, DMS 1953196 and DMS 2015539.

References

[1] T. W. Anderson, An Introduction to Multivariate Statistical Analysis (3rd Edition), Wiley, New York, 2003.
[2] Z.Bai, H. Saranadasa, Effect of high dimension: by an example of a two sample problem, Statistica Sinica (1996) 311-329.
[3] M. Biswas, A. K. Ghosh, A nonparametric two-sample test applicable to high dimensional data, Journal of Multivariate Analysis 123 (2014)
160-171.
[4] T. Cai, W. Liu, Y. Xia, Two-sample test of high dimensional means under dependence, Journal of the Royal Statistical Society: Series B
(Methodological) 76 (2014) 349-372.
[5] Y. Cao, W. Lin, H. Li, Two-sample tests of high-dimensional means for compositional data, Biometrika 105 (2018) 115-132.
[6] A. Chakraborty, P. Chaudhuri, Tests for high-dimensional data based on means, spatial signs and spatial ranks, The Annals of Statistics 45
(2017) 771-799.
[7] J. Chang, C. Zheng, W.-X. Zhou, W. Zhou, Simulation-based hypothesis testing of high dimensional means under covariance heterogeneity,
Biometrics 73 (2017) 1300-1310.
[8] L.S. Chen, D. Paul, R. L. Prentice, P. Wang, A regularized Hotelling’s T2 test for pathway analysis in proteomic studies, Journal of the
American Statistical Association 106 (2011) 1345-1360.
[9] S.X. Chen, J. Li, P--S. Zhong, Two-sample and ANOVA tests for high dimensional means, Annals of Statistics 47 (2019) 1443-1474.
[10] S.X. Chen, Y.-L. Qin, A two-sample test for high-dimensional data with applications to gene-set testing, The Annals of Statistics 38 (2010)
808-835.
[11] X. Cui, R. Li, G. Yang, W. Zhou, Empirical likelihood test for large dimensional mean vector, Biometrika (2020) 591 — 607.
[12] A.P. Dawid, Spherical matrix distributions and multivariate model, J. R. Statist. Soc. Ser. B 39 (1977) 254-261.
[13] A.P. Dempster, A high dimensional two sample significance test, The Annals of Mathematical Statistics (1958) 995-1010.
[14] A.P. Dempster, A significance test for the separation of two highly multivariate small samples, Biometrics 16 (1960) 41-50.
[15] D. Donoho, J. Jin, Higher criticism for large-scale inference, especially for rare and weak effects, Statistical Science 30 (2015) 1-25.
[16] J.Fan, R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association
96 (2001) 1348-1360.
[17] J.Fan, R. Li, C.-H. Zhang, H. Zou, Statistical foundations of data science, Chapman and Hall/CRC, 2020.
[18] L. Feng, C. Zou, Z. Wang, Multivariate-sign-based high-dimensional tests for the two-sample location problem, Journal of the American
Statistical Association 111 (2016) 721-735.
[19] H. Frick, On the power behaviour of lduter’s exact multivariate one-sided tests, Biometrical journal 38 (1996) 405-414.
[20] S. Van de Geer, P. Biithlmann, Y. Ritov, R. Dezeure, et al., On asymptotically optimal confidence regions and tests for high-dimensional
models, The Annals of Statistics 42 (2014) 1166-1202.
[21] K. B. Gregory, R.J. Carroll, V. Baladandayuthapani, S. N. Lahiri, A two-sample test for equality of means in high dimension, Journal of the
American Statistical Association 110 (2015) 837-849.
[22] Y. He, G. Xu, C. Wu, W. Pan, Asymptotically independent U-statistics in high-dimensional testing, The Annals of Statistics 49 (2021)
154-181.
[23] H. Hotelling, The generalization of student’s ratio, Annals of Mathematical Statistics 2 (1931) 360-378.
[24] Y. Huang, Projection Test for High-Dimensional Mean Vectors with Optimal Direction, Ph.D. dissertation, The Pennsylvania State University
at University Park, 2015.
[25] P. Khatri, M. Sirota, A. J. Butte, Ten years of pathway analysis: current approaches and outstanding challenges, PLoS Computational Biology
8 (2012) e1002375.
[26] I. Kim, S. Balakrishnan, L. Wasserman, Robust multivariate nonparametric tests via projection averaging, The Annals of Statistics 48 (2020)
3417-3441.
[27] J. Léuter, Exact t and F tests for analyzing studies with multiple endpoints, Biometrics 52 (1996) 964-970.

15



[28]
[29]
(30]
[31]
[32]

(33]
[34]

[35]
(36]

(37]
(38]

(39]
[40]
[41]
[42]
(43]
[44]
[45]

[46]
[47]

[48]

(49]
[50]
(51]
[52]
[53]
(54]

[55]

[56]

J. Lauter, E. Glimm, S. Kropf, Multivariate tests based on left-spherically distributed linear scores, The Annals of Statistics 26 (1998) 1972—
1988.

J. Lauter, E. Glimm, S. Kropf, Correction: Multivariate tests based on left-spherically distributed linear scores, The Annals of Statistics 27
(1999) 1441-1441.

C. Li, R. Li, Linear hypothesis testing in linear models with high dimensional responses, Journal of the American Statistical Association
(2021) 1-13.

H.Li, A. Aue, D. Paul, J. Peng, P. Wang, An adaptable generalization of Hotelling’s T2 test in high dimension, Annals of Statistics 48 (2020)
1815-1847.

Y. Li, Z. Wang, C. Zou, A simpler spatial-sign-based two-sample test for high-dimensional data, Journal of Multivariate Analysis 149 (2016)
192-198.

W. Liu, X. Yu, R. Li, Multiple-splitting projection test for high-dimensional mean vectors, Submitted (2021).

M. Lopes, L. Jacob, M. J. Wainwright, A more powerful two-sample test in high dimensions using random projection, in: Advances in Neural
Information Processing Systems, Longer version: arXiv preprint arXiv:1108.2401, 2011, pp. 1206-1214.

Y. Ning, H. Liu, A general theory of hypothesis tests and confidence regions for sparse high dimensional models, The Annals of Statistics 45
(2017) 158-195.

V. V. Petrov, Limit Theorems of Probability Theory: Sequences of Independent Random Variables, Oxford Science Publications, Clarendon
Press, Oxford, 1995.

F. E. Satterthwaite, An approximate distribution of estimates of variance components, Biometrics Bulletin 2 (1946) 110-114.

C. Shi, R. Song, Z. Chen, R. Li, Linear hypothesis testing for high dimensional generalized linear models, Annals of statistics 47 (2019)
2671-2703.

C. Shi, R. Song, W. Lu, R. Li, Statistical inference for high-dimensional models via recursive online-score estimation, Journal of American
Statistical Association In press (2021).

M. S. Srivastava, A test for the mean vector with fewer observations than the dimension under non-normality, Journal of Multivariate Analysis
100 (2009) 518-532.

M. S. Srivastava, M. Du, A test for the mean vector with fewer observations than the dimension, Journal of Multivariate Analysis 99 (2008)
386-402.

R. Srivastava, P. Li, D. Ruppert, Raptt: An exact two-sample test in high dimensions using random projections, Journal of Computational and
Graphical Statistics 25 (2016) 954-970.

M. Thulin, A high-dimensional two-sample test for the mean using random subspaces, Computational Statistics & Data Analysis 74 (2014)
26-38.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological) (1996)
267-288.

R. J. Tibshirani, J. Taylor, R. Lockhart, R. Tibshirani, Exact post-selection inference for sequential regression procedures, Journal of the
American Statistical Association 111 (2016) 600-620.

S.-I. Tsukada, High dimensional two-sample test based on the inter-point distance, Computational Statistics 34 (2019) 599-615.

G. B. Van der Voet, T. I. Todorov, J. A. Centeno, W. Jonas, J. Ives, E. G. Mullick, Metals and health: a clinical toxicological perspective on
tungsten and review of the literature, Military Medicine 172 (2007) 1002-1005.

L. Wang, B. Peng, R. Li, A high-dimensional nonparametric multivariate test for mean vector, Journal of American Statistical Association
110 (2015) 1658-1669.

R. Wang, L. Peng, Y. Qi, Jackknife empirical likelihood test for equality of two high dimensional means, Statistica Sinica (2013) 667-690.
B. L. Welch, The generalization of student’s” problem when several different population variances are involved, Biometrika 34 (1947) 28-35.
G. Xu, L. Lin, P. Wei, W. Pan, An adaptive two-sample test for high-dimensional means, Biometrika 103 (2016) 609-624.

K. Xue, F. Yao, Distribution and correlation-free two-sample test of high-dimensional means, Annals of Statistics 48 (2020) 1304—1328.
C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics (2010) 894-942.

C.-H. Zhang, S. S. Zhang, Confidence intervals for low dimensional parameters in high dimensional linear models, Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 76 (2014) 217-242.

J.-T. Zhang, J. Guo, B. Zhou, M.-Y. Cheng, A simple two-sample test in high dimensions based on />-norm, Journal of the American Statistical
Association 115 (2020) 1011-1027.

P.-S. Zhong, S. X. Chen, M. Xu, Tests alternative to higher criticism for high-dimensional means under sparsity and column-wise dependence,
The Annals of Statistics 41 (2013) 2820-2851.

16



Journal Pre-proof

Autor Statement

The authors are listed in alphabetic order, and all authors have equally contributed to this work. All
authors have made contributions to each sections.



	An overview of tests on high-dimensional means

