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A B S T R A C T

Objective: To compare the performance of categorical and continuous measures of patient knowledge in

the context of risk communication about breast cancer, in terms of statistical and clinical significance as

well as efficiency.

Methods: Twenty breast cancer patients provided estimates of 10-year mortality risk before and after

their oncology visit. The oncologist reviewed risk estimates from Adjuvant!, a well-validated and

commonly used prognostic model. Using the Adjuvant! estimates as a gold standard, we calculated how

accurate the patient estimates were before and after the visit. We used three novel continuous measures

of patient accuracy, the absolute bias, Brier, and Kullback–Leibler scores, and compared them to a

categorical measure in terms of sensitivity to intervention effects. We also calculated the sample size

required to replicate the primary study using the categorical and continuous measures, as a means of

comparing efficiency.

Results: In this sample, the Kullback–Leibler measure was most sensitive to the intervention effects

(p = 0.004), followed by Brier and absolute bias (both p = 0.011), and finally the categorical measure

(0.125). The sample size required to replicate the primary study was 18 for the Kullback–Leibler

measure, 23 for absolute bias and Brier, and 37 for the categorical measure.

Conclusions: The continuous measures led to more efficient sample sizes and to rejection of the null

hypothesis of no intervention effect. However, the difference in sensitivity of the continuous measures

was not statistically significant, and the performance of the categorical measure depends on the

researcher’s categorical cutoff for accuracy. Continuous measures of patient accuracy may be more

sensitive and efficient, while categorical measures may be more clinically relevant.

Practice implications: Researchers and others interested in assessing the accuracy of patient knowledge

should weigh the trade-offs between clinical relevance and statistical significance while designing or

evaluating risk communication studies.

� 2008 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Many researchers are currently using categorical measures to
evaluate whether educational interventions for patients, including
those focused on specific decisions known as decision aids, help
patients absorb and recall risk information. For example, a recent
Cochrane review of decision aids included five studies that
quantitatively assessed the accuracy of patient knowledge using
categorical measures. See Table 1 for a summary. The categorical
measures in these five studies assessed the number of patients
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whose risk estimates fell within a certain margin of error of a gold
standard estimate derived from outcome data.

Continuous measures are generally thought to be more
sensitive and powerful than categorical measures [1]. Yet none
of the studies included in the Cochrane review of decision aids used
continuous measures of patient accuracy, even though continuous
measures are available.

Several continuous measures of accuracy have been used in
diverse fields from education to weather forecasting [2]. A
continuous measure is a weighted or transformed difference
between the patient estimate and the gold standard, on a continuous
scale. Three continuous measures used to evaluate probabilistic
forecasts are: the absolute bias (absolute value of the difference or
bias between an estimate and a gold standard); the Brier score or
squared difference; and the Kullback–Leibler logarithmic score,
which is a logarithmic function of the estimate and the gold

mailto:jeff.belkora@ucsfmedctr.org
http://www.sciencedirect.com/science/journal/07383991
http://dx.doi.org/10.1016/j.pec.2008.11.012


Table 1
Properties of studies of quantitative patient risk estimates included in Cochrane Review of Decision Aidsa [14].

Study Health concern Sample

size

Intervention

comparison

Measure Gold standard Standard of

accuracyb

Dodin and Légaré [15] Hormone replacement

therapy

101 Decision aid versus

usual care

Lifetime probability of

heart disease, hip fracture,

and breast cancer

Data calculated from

Grady et al. [16]

Correct quartile

O’Connor et al. [17] Hormone replacement

therapy

165 Decision aid versus

usual care

Lifetime probability of

heart disease, hip fracture,

and breast cancer

Data calculated from

Grady et al. [16]

Correct quartile

Rostom et al. [18] Hormone replacement

therapy

51 Decision aid versus

usual care

Lifetime probability of heart

disease, hip fracture, and

breast cancer

Data calculated from

Grady et al. [16]

Within �15%

McBride et al. [19] Hormone replacement

therapy

539 Decision aid versus

usual care

Ten year probability of

breast cancer

Gail Model Probability

Risk Score [20]

Within �10%

Man-Son-Hing et al. [21] Antithrombotic therapy 287 Decision aid versus

usual care

Chance of stroke and bleeding Data from SPAF III

trial and [22]

Within 1–3%

a A decision aid is a presentation of printed or audio-visual material that educates patients about specific choices and their potential risks and benefits.
b None of these studies provided justification for the clinical relevance of the standard of accuracy that they used to evaluate patient estimates.
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standard. The Brier score was initially developed for use in weather
forecasting, but has been used for calibration of professional or
model-based probabilistic estimates, such as ICU mortality esti-
mates [2,3]. The Kullback–Leibler logarithmic measure is a measure
developed and used in information theory, but has been used in
imaging to identify disease such as breast cancer microcalcifications
[4,5]. However, we have found no studies of patient knowledge that
use these continuous measures. As a result, researchers in the field of
risk communication do not know the feasibility of using continuous
measures to measure accuracy of patient knowledge, nor do we
know the advantages or disadvantages of continuous measures
relative to the existing categorical measures.

We hypothesize that widely used categorical measures of
patient knowledge are potentially insensitive to clinically and
statistically significant changes, and may result in inappropriate
interpretations of study results, compared to potentially more
sensitive continuous measures. In addition, the categorical
measures may contribute to inflated sample sizes and therefore
inefficient use of resources.

We explored our hypotheses in a secondary analysis of
empirical data from a risk communication study. Our research
questions were: how sensitive and efficient were each of the
categorical and continuous measures; and were there significant
differences in sensitivity across these measures?

2. Methods

2.1. Study design

We conducted a secondary analysis of data originally collected
to establish the feasibility and efficacy of using a novel risk
communication aid during breast oncology consultations. The
study provides an appropriate and interesting dataset in which to
conduct a preliminary exploration of categorical and continuous
accuracy measures. The dataset is small enough to be included in
the first three columns of Table 2, along with key results, so that
readers can easily reproduce and verify calculations. The inter-
vention was designed to improve accuracy, as measured by a
categorical standard with clinical relevance, but the improvement
was not statistically significant (p = 0.125). This allowed us to
explore whether continuous measures would make a material
difference in hypothesis testing (i.e. achieve statistical signifi-
cance), and if so whether the continuous measures were as
clinically relevant as the categorical one. We now briefly describe
aspects of the primary study design that were relevant to the
secondary analysis. We provide a detailed description of the
primary study in another report [6].
2.2. Population, setting, and study site

The primary study took place at the breast care center in an
academic medical center in San Francisco. The center treats over
500 newly diagnosed breast cancer patients per year. The
population of new breast cancer patients at this center is mostly
White, college educated, affluent, and insured.

2.3. Subjects, recruitment, consent

Researchers recruited a convenience sample of 20 patients
consecutively referred for oncology consultations with either of
two senior oncologists. Patients were eligible to participate in the
study if they could speak and read English, if they had completed
surgery for stage I, II, or IIIa breast cancer, if they had not initiated
any form of adjuvant therapy, and if their medical charts included
tumor size, tumor grade, hormone receptor status, node status, and
age. Patients were not eligible to participate in the study if they had
metastatic disease, if they needed further surgery to complete
staging, or if they were unable to provide informed consent. The
institutional Committee on Human Research and the funding
agency’s Institutional Review Board approved the study protocol.
Patients were enrolled between October 2001 and February 2002.

2.4. Outcomes and instruments

Subjects filled out a brief survey asking them to estimate their
10-year mortality risk with and without adjuvant therapy, before
and after an educational presentation of gold standard estimates
by their oncologist. The pre- and post-visit surveys took the form:
‘‘The chance that I will die from my breast cancer within the next
10 years after having [therapy] is (circle one): [response].’’ The
response format was a list of potential responses ranging from 0%
to 100% in increments of 5%. Patients were prompted to respond for
local therapy (surgery and local radiation) and adjuvant therapy
(systemic chemotherapy or hormone therapy) scenarios. This
secondary analysis examined the accuracy of patient estimates as
to the risk of dying within 10 years after local therapy only, i.e. with
no adjuvant therapy. We focused our analysis on this topic because
local therapy prognosis is a baseline prognosis that patients should
understand before they consider adding therapy.

2.5. Intervention

The intervention consisted of an oncologist reviewing a
printout of the graphs from the Adjuvant! software program,
which presents estimates of the patient prognosis based on



Table 2
Patient and gold standard estimates of 10-year local therapy mortality risk, with categorical and continuous measures of accuracy. Highlighted numbers are undefined

boundary values for Kullback–Leibler. For Kullback–Leibler calculation, the boundary value 0 was replaced with the minimum (0.05) and the boundary value 1 with the

maximum (0.95) allowable response on the study survey. Note: Values in this table were log-transformed to make them normally distributed for t-tests and d-values

discussed in the text.
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patient-specific inputs consisting of age, tumor size and grade,
estrogen receptor status, node status, and number of comorbidities
[7]. Adjuvant! is a validated, widely used prognostic model [8,9].
Its estimates functioned as a gold standard for patient 10-year local
therapy mortality risk in this study. Oncologists presented several
estimates; our analysis focuses on local therapy only.

2.6. Data collection and management procedures

A research assistant transcribed the survey responses to an
Excel workbook, and entered the corresponding gold standard
estimates from Adjuvant! for comparison with patient estimates.

2.7. Measures of patient accuracy

2.7.1. Categorical

An indicator of whether each patient estimate was within �5%
of the gold standard. This was a binary variable with 1 indicating an
estimate within 5% and 0 indicating an estimate outside the 5%
threshold. The oncologists recruiting patients to the original study felt
that 5% was a clinically meaningful threshold for accuracy in this
patient population, and it corresponds to a conservative estimate for
the Adjuvant! model’s margin of error [8].

2.7.2. Continuous

� Absolute bias, defined as the magnitude of the difference
between the patient and Adjuvant! estimate.
� Brier score, defined as the square of the difference between the

patient and gold standard estimates.
� Kullback–Leibler divergence score, defined by

DKLðPjQÞ ¼
X

i

PðiÞ log
PðiÞ
QðiÞ

where P and Q represent the gold standard and patient estimates,
respectively. In this case the summation is over the two possible
outcomes, survival or death and P(2) = 1 � P(1), Q(2) = 1 � Q(1)
with P(1) and Q(1) representing the 10-year mortality estimates.
The Kullback–Leibler divergence score is undefined for estimates
of 0 or 1. We substituted 5% for 0 and 95% for 1 in the computation
of the Kullback–Leibler score, since these were the closest
allowable responses to 0 and 1 on the patient survey.

All four measures are used in information theory. A thorough
discussion of these and other measures can be found in Grunwald
and Dawid [10]. We selected these measures because they are easy
to compute and are widely used in information theory.

All of the continuous measures are lowest (zero) when the
patient estimate equals the gold standard and increase as the
patient estimate moves away from the gold standard. Since we
were interested in the measuring the effect of the oncologists’ risk
communication, we used the difference in these statistics, before

minus after scores, as a measure of the information gained by the
patient as a result of exposure to the oncologist presentation. For
the continuous measures, positive values in this difference were
associated with improvements in patient accuracy, since that
means the before score was bigger (worse) than the after score.

2.8. Analysis plan

The study questions were: ‘‘How sensitive and efficient were
each of the categorical and continuous measures; and were there
significant differences in sensitivity across these measures?’’.

We began by calculating the sensitivity and efficiency for each
measure. As a first measure of sensitivity, we tested the null
hypothesis of no change in patient accuracy after compared to
before the oncology visit to see if the measures detected a
statistically significant change. For the categorical measure,
because our data were paired we used McNemar’s test to compare
the number of patients that improved to within �5% versus the
number that started within but ended up outside that margin of error.
We ran additional scenarios to explore the effect on statistical
sensitivity, as measured by p-values, of relaxing our categorical
standard of accuracy from �5% to �10% and 15%.
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For the continuous measures, we applied the Shapiro–Wilks test
fornormality, transformed the distributionsas needed,and then used
a paired t-test to determine whether the observed differences were
statistically significant. Since it was possible that the risk presenta-
tion could have led to decreased patient accuracy, through patient
overload, both tests were two-sided at 5% level of significance.

As an index of sensitivity, we calculated the p-value for the
paired comparisons defined by the categorical and three con-
tinuous measures.

For each measure we then calculated the sample size needed to
have 90% power (at 5% significance level) to replicate the observed
effect in a separate, independent study. See Appendix 1 for sample
size calculation details. These calculations were performed using
Stata 10 [11] and provided a measure of the efficiency of each of the
categorical and continuous measures considered separately for
this sample of patients.

In order to statistically test whether the continuous measures
differed significantly in their sensitivity, we tested for differences in
standardized effect sizes, denoted d. We had to take into account that
our data consists of a single set of patient scores. The differences in
measures are due to different calculation methods rather than
different samples of scores. The measures are therefore correlated,
which complicates statistical comparisons. In particular, we could
not use standard meta-analytic techniques for testing the homo-
geneity of effect sizes across different samples [12]. Instead we used a
bootstrap method to calculate 95% confidence intervals for the
differences between d’s across the continuous measures [13].

Specifically, we wrote a bootstrap function in the statistical
programming language R to resample, with replacement, scores
from our 20 patients. For each bootstrap sample we calculated the
difference between the log-transformed Kullback–Leibler and
Brier estimated d’s (the d for the absolute bias is identical to that for
the Brier). This was repeated 1000 times and the 2.5 and 97.5
percentile values were used to estimate the 95% confidence
interval for the difference in d’s. A confidence interval spanning
zero would indicate no statistically significant difference in the
effect size across the continuous measures.

3. Results

3.1. How sensitive and efficient were each of the categorical and

continuous measures?

For the categorical measure, 5 of 20 patients were accurate
within �5% before, one of whom became inaccurate. Of the 15 that
Table 3
Summary statistics for categorical and continuous measures.

Categorical (N with

Observed sample size 20

p-Value 0.125

d

Required sample size (1) 38

Difference in d’s [95% confidence interval] as a

test of whether measures detect different effect sizes

Notes: (1) Sample size is for 90% power for one-sided replication of observed effects at
a Absolute bias and Brier are identical upon log transformation because (log(abs(x �
b Five imputed (closest) responses replaced five patient responses for which Kullbac

Table 4
Sensitivity of categorical measure to threshold.

Categorical threshold Within threshold before Within threshold

�5% 5 10

�10% 7 15

�15% 9 18
were inaccurate before the intervention, 6 improved to within �5%.
Therefore we applied McNemar’s test to the 7 who changed
(representing 35% of the sample of 20), of whom 6 (86% of the
patients who changed) improved to within�5% (p = 0.125). Using the
categorical measure, we failed to reject the null hypothesis of no
change in accuracy of patient knowledge.

Regarding the continuous measures, absolute bias was reduced
from an average of 0.199 to 0.089; the Brier score went from 0.080
to 0.019; and Kullback–Leibler divergence went from 0.249 to
0.049 based on resetting boundary values to 5% or 95%. However,
all three distributions were skewed in this sample so a
transformation was necessary in order to apply a paired t-test
to the differences.

Upon transforming to logarithms, the Brier score is equal to
twice the absolute bias score (log(abs(x � y)) = (1/2)log((x � y)2)).
All transformed measures passed the Shapiro–Wilks test for
normality. Thus, we used a paired t-statistic to test whether the
improvement in log-transformed units was statistically significant.
For the pilot data t = 2.84 for the absolute bias and the Brier and
t = 3.24 for the Kullback–Leibler Divergence, each statistic having
19 degrees of freedom.

The associated two-sided p-values for the continuous measures
were p = 0.011 for the absolute bias and Brier and p = 0.004 for the
Kullback–Leibler Divergence. See Table 3. Using any of the
continuous measures, we rejected the null hypothesis of no
change in accuracy of patient knowledge.

Regarding the efficiency of the continuous measures compared
to the categorical one, Table 3 also displays the sample sizes
required for 90% power to detect our observed effect sizes in an
independent sample. The sample size of 17 for Kullback–Leibler,
the most sensitive, powerful, and efficient measure, is less than
half of the sample size of 38 calculated for the categorical measure.
As we increased the categorical threshold for accuracy from within
5% to within 10% and 15%, we observed decreasing p-values, as
illustrated in Table 4. A categorical measure with a threshold of
15% led to an observed p-value (0.004) matching the most sensitive
continuous measure.

3.2. Were there significant differences in sensitivity across these

measures?

3.2.1. Confidence interval for difference in d’s

The bootstrap method gave a 95% confidence interval for the
difference, Kullback–Liebler minus Brier, d from �0.02 to 0.24. We
failed to reject the hypothesis of no difference in d’s.
in �5%) Absolute biasa Brier* Kullback–Leiblerb

20 20 20

0.011 0.011 0.004

0.63 0.63 0.72

22 22 17

[�0.02, 0.24]

the 5% level of significance. See Appendix 1 for calculation details.

y)) = (1/2)log((x � y)2)).

k–Leibler Divergence is undefined.

after Number changing Improvements p-Value

7 6 0.125

8 8 0.008

9 9 0.004
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4. Discussion and conclusion

4.1. Discussion

4.1.1. Analysis and interpretation

Any of the continuous measures led to rejection of the null
hypothesis of no change in accuracy of patient knowledge, while
the categorical measure did not. One implication is that the
intervention might have been retained for further investigation
using continuous measures, but discarded using categorical
measures. In addition, studies of this nature might be less than
half as costly or lengthy using continuous compared to categorical
measures.

For this sample, the Kullback–Leibler performed best compared
to the Brier, absolute bias, and a categorical measure with an
accuracy threshold of �5%. However, the effect sizes for the
continuous measures were too similar for us to rule out the role of
chance in creating an apparent advantage, in this sample, of the
Kullback–Leibler over the absolute bias and Brier measures. Likewise,
we cannot generalize about the performance of continuous measures
compared to the categorical measures beyond this sample, since at
other accuracy thresholds, the categorical measure might be more
sensitive and efficient.

However, our study does illuminates the possible trade-offs
between statistical significance and clinical relevance that can be
encountered in general cases. The performance of the continuous
and categorical measures must be weighed against their clinical
relevance, interpretability, and ease of use. For example, the
Kullback–Leibler Divergence was not only a sensitive and powerful
measure in our sample, but also was the least interpretable, and
hardest to use. It measures distance on a complex log scale; it is not
symmetric; and it is not defined for patient estimates of 0% or 100%.
On the other hand, the Kullback–Leibler Divergence has advanta-
geous information-theoretic properties. It penalizes inaccuracies
much more heavily if the gold standard probability is close to 0% or
100%, where an error of 5% may be more consequential than when
the gold standard estimate is close to 50%. For example, among
breast cancer patients, a patient at very low mortality risk after
surgery may not need chemotherapy, which would be recom-
mended for a higher risk patient. So a patient at very low mortality
risk who overestimates their risk may change their treatment
decision, whereas a patient at intermediate risk can be inaccurate
without it affecting the care plan.

We found absolute bias and Brier scores to have the advantage
of being much more familiar and intuitive than the Kullback–
Leibler Divergence. Absolute bias is simply the magnitude of the
difference between the patient and gold standard estimates. Brier
is the square of the difference. Because these scores are non-
negative, bounded by 0 and 1, and likely to be skewed, they will
often need to be log-transformed, which renders them identical.

Finally, while categorical measures of accuracy may be least
sensitive and powerful, they can be designed to be most clinically
relevant. Researchers, clinicians and patients may be able to
identify treatment thresholds, or points at which their preferences
for care change from one treatment to another. From these
treatment thresholds, researchers can derive appropriate stan-
dards for accuracy of patient estimates. For example, in breast
cancer, there is a treatment threshold where recommendations
change from local therapy only to chemotherapy. This threshold
will be dependent on patient biology and preferences. However, for
many early-stage patients the 10-year local therapy mortality risk
may be under 10%, and the absolute benefit of chemotherapy may
be under 5%. Our study team reasoned therefore that the maximum
margin of error for informed decision making for early-stage
patients should be �5%, which also corresponds to a conservative
margin of error for Adjuvant! estimates.
Researchers, clinicians, and patients can easily interpret the
meaning of study results when expressed in categorical terms. For
example, in our study, 5 patients estimated their risk within�5% of
the gold standard before their oncologist reviewed their risk, whereas
10 estimated their risk accurately after the intervention. One study
oncologist indicated that this was clinically unsatisfactory and that a
higher proportion, perhaps 80% or more of patients, should be within
�5% of the gold standard risk estimate. Conversely, the fact that the
average Brier score went from 0.080 before to 0.019 after the
intervention is more difficult to interpret.

These continuous and categorical measures have different
strengths that may be suited for different purposes: continuous
measures may be better for researchers determining if an
intervention has an effect, and categorical measures may be
better for determining the clinical significance of an interven-
tion. If researchers wish to use categorical measures, they
should determine the accuracy threshold a priori based on
clinical reasoning about treatment thresholds, as we did.
Otherwise, our results suggest that a categorical measure can
be configured post hoc to match the sensitivity of continuous
measures, but without providing the usual discrimination of the
categorical approach. In our analysis, an accuracy threshold of
�15% did match the best continuous measure in terms of statistical
sensitivity. However, a 15% margin of accuracy would lead to
situations where a patient with a 15% local therapy mortality risk
could estimate their risk as anywhere in the range from 0% to 30%
and be considered accurate. This is problematic since at the lower
end of the spectrum, adjuvant treatment would not be necessary,
while at the upper end, most oncologists would recommend it.
Researchers should choose categorical measures with thresholds
that are not so broad that they blur the lines among patients
with materially different risks and materially different treatment
benefits.

4.1.2. Limitations

Our study has strengths and limitations. Regarding strengths,
we used empirical data to explore the performance of four
candidate measures of patient understanding in the increasingly
important area of risk communication. As a secondary analysis, our
study extracted additional insight out of an existing dataset, which
conserved resources and leveraged the efforts of prior investigators
and the patients who participated in the original study. Our data
illustrate how a categorical measure that is clinically relevant may
not be statistically significant, while continuous measures that
may not be as clinically relevant are statistically significant. The
small size of the study allows us in this methodological paper to
present all the data and results of calculations for readers to verify
their understanding of the techniques presented.

As for limitations, we had not planned our comparison prior to
data collection as this was a secondary analysis. Therefore we did
not anticipate the issue of five patient responses at boundary
values (0% and 100%) for which the Kullback–Leibler Divergence
measure is undefined.

4.2. Conclusions

In this study, we found continuous measures to be more
powerful and resource-efficient than a categorical measure. The
categorical measure we examined was used with an accuracy
standard of �5%, which is relevant to breast cancer treatment
decision making. Categorical measures with appropriate standards of
accuracy may be worth using due to their clinical relevance, even if
they are less sensitive and powerful, and therefore more expensive to
use. Conversely, categorical measures with an overly broad standard
of accuracy may be insensitive to intervention effects, and also
clinically irrelevant.



1. For the categorical accuracy assessment:

2. For the log-transformed absolute bias and Brier scores the d

(average of differences divided by standard deviation of
differences) is 0.63.

3. For the Kulback–Leibler with d = 0.72.
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For continuous measures, in this study we also found tensions
between power and interpretability. The Kullback–Leibler mea-
sure was powerful, but more complex than the absolute bias or
Brier. Among continuous measures, we believe that the Brier offers
a good combination of ease of use and interpretability, statistical
power, and desirable information-theoretic properties.

Overall, we conclude that researchers and other interested
parties in the field of risk communication must strike a balance
between statistical significance and clinical relevance.

4.3. Practice implications

Our target audience includes researchers who are designing risk
communication studies; funders who are paying for such studies;
and patients, physicians, payers, and other stakeholders who may
be interpreting risk communication studies with an eye to
adopting or rejecting proposed interventions.

For researchers, the implications of this study are that
categorical measures of patient knowledge should be designed
with clinical treatment thresholds in mind, to assure that the
standards for evaluating a patient estimate are clinically relevant.
The maximum margin of error must be identified prior to studies,
otherwise researchers may be tempted to select an accuracy
threshold after data analysis that maximizes the statistical
significance but is less clinically relevant.

Funders or payers should be wary of adopting interventions
based on categorical measures with overly broad accuracy
thresholds, even if these were associated with statistically
significant effects. These interventions may not contribute to
clinically relevant improvements in patient knowledge.

Physicians and payers or policymakers may find it feasible to
establish categorical standards for patient knowledge such as ‘‘80%
of my patients should be able to identify their risk within 5% of the
Adjuvant! gold standard’’. They may wish to survey patients to
monitor and continuously improve patient education practices.

Patients should seek out physicians whose educational efforts
are proven to result in improved patient knowledge, as a path to
making informed treatment decisions.
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Appendix A. Sample size calculations

We calculated sample sizes using standard formulas for

normally distributed measurements using the function sampsi in
STATA version 10 [11]. For the categorical measure, the sample size

is that for testing the proportion of patients who improved their

accuracy with denominator equal to the number whose accuracy

changed. In our study, six patients improved their accuracies to

with �5% while one patient became inaccurate with respect to the

�5% criterion. Thus, six of seven (86%) improved. The sample size is

that required to test 86% improvement against a null hypothesis of

50% (chance) improvement. The calculated sample size then was

inflated to an enrollment size, by dividing by 35%, equal to the

percentage of patients whose accuracy changed.

Sample sizes were calculated for one-sided tests, since the data

from this pilot study indicated that changes in accuracy, as a result of

the intervention, would be in the positive direction. All tests are based

on paired responses so that, for sample size calculations, one-sample

tests are appropriate.

The following is a listing of the STATA commands to calculate

sample sizes:
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