
Accepted Manuscript

Title: A review of molecular genetic studies of neurocognitive
deficits in schizophrenia

Author: Gwyneth Zai Trevor W. Robbins Barbara J. Sahakian
James L. Kennedy

PII: S0149-7634(15)30319-5
DOI: http://dx.doi.org/doi:10.1016/j.neubiorev.2016.10.024
Reference: NBR 2642

To appear in:

Received date: 1-12-2015
Revised date: 17-10-2016
Accepted date: 27-10-2016

Please cite this article as: Zai, Gwyneth, Robbins, Trevor W., Sahakian,
Barbara J., Kennedy, James L., A review of molecular genetic studies of
neurocognitive deficits in schizophrenia.Neuroscience and Biobehavioral Reviews
http://dx.doi.org/10.1016/j.neubiorev.2016.10.024

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.neubiorev.2016.10.024
http://dx.doi.org/10.1016/j.neubiorev.2016.10.024


A Review of Molecular Genetic Studies of Neurocognitive 

Deficits in Schizophrenia 
 

Gwyneth Zai 1,2,3,4* gwyneth.zai@camh.ca , Trevor W. Robbins 3,5, Barbara J. Sahakian 3,4, James 

L. Kennedy 1,2 

 
1Neurogenetics Section, Centre for Addiction and Mental Health, Toronto, Canada 
2Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, 

Canada 
3MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, 

Cambridge, UK 
4Department of Psychiatry, University of Cambridge, Cambridge, UK 
5Department of Psychology, University of Cambridge, Cambridge, UK 

 
*Corresponding authors:  

Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada 

(Phone: 1-416-535-8501 ext. 30145; Fax: 1-416-979-4666 

 

Submitted to: Biological Psychiatry 

Word Count: 202 for abstract and 4000 for article body 

Number of Tables: 2 

Number of Figures: 1 

Supplementary Information: 1 supplementary table 

 

 

 

 

 



HIGHLIGHTS: 

 Schizophrenia patients present with impaired cognitive functions. 

 Evidence suggests strong genetic etiology for cognitive deficits in schizophrenia. 

 Neurotransmitter system genes showed effect on cognitive deficits in schizophrenia. 

 Limited evidence suggests the dopaminergic system genes with inconsistent findings. 

 Larger samples are required to examine genetic risk of cognition in schizophrenia. 

 

ABSTRACT (Word count = 170): 

Schizophrenia is a complex and debilitating illness with strong genetic loading.  In line 

with its heterogeneous symptomatology, evidence suggests genetic etiologies for the phenotypes 

in schizophrenia.  A search across endophenotypes has pointed towards consistent findings in its 

neurocognitive deficits.  Extensive literature has demonstrated impaired cognition including 

executive function, attention, and memory in schizophrenia patients when compared to healthy 

subjects.  This review 1) provides an overview of recent studies and 2) develops an up-to-date 

conceptualization of genetic variations influencing neurocognitive functions in schizophrenia 

patients.  Several neurotransmitter system genes have been examined given knowledge of their 

role in brain functions and their reported genetic associations with schizophrenia and cognition.  

Several genetic variations have emerged as having preliminary effects on neurocognitive deficits 

in schizophrenia.  These include genes in the neurotrophic, serotonin, cell adhesion, and sodium 

channel systems.  Limited evidence also suggests the dopaminergic system genes, with the most 

studied catechol-o-methytransferase (COMT) gene showing inconsistent findings.  Further 

investigations with larger samples and replications are required to elucidate genetic risk for 

cognitive deficits in schizophrenia. 
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INTRODUCTION 

Schizophrenia is a chronic and severe neuropsychiatric disorder with a lifetime prevalence 

of 0.4-1% in the general population (1, 2).  The core features of this disorder are characterized by 

three symptom domains including positive symptoms, negative symptoms, and cognitive deficits 

(1).  The identification of neurocognitive deficits in schizophrenia patients is important because 

cognitive impairment is associated with poor functional outcome (3).  Up to 98% of schizophrenia 

patients have a degree of neurocognitive impairment (4, 5).  Although antipsychotic medications 

reduce positive symptoms significantly, they have limited efficacy for remediating neurocognitive 

deficits and negative symptoms of schizophrenia (6, 7). 

Cognitive dysfunction has repeatedly been identified as one of the hallmark features of 

schizophrenia starting as early as 1950 by Bleuler (8) and recently in the past decade (3, 4, 9, 10).  

A systematic review reported global cognitive impairment and specifically worse verbal memory, 

executive function, and general IQ, in first-episode psychotic patients when compared to healthy 

controls (11).  Recent meta-analyses also detected significant deficits in working memory, 

attention/vigilance, verbal/visual learning and memory, executive functions (reasoning and 

problem solving), processing speed, social cognition, and psychomotor control (7, 12). 

Evidence has shown that schizophrenia and cognitive impairment have heritability ranging 

between 70-90% and 24-55% respectively (13, 14).  Schizophrenia is a complex and 



heterogeneous neuropsychiatric disorder with a polygenic architecture (15) and even following 

recent genome-wide association studies (GWAS) (16, 17), multiple small gene effects with only 

several replicable findings have been found to contribute to risk.  Therefore, the identification of 

endophenotypes, with an attempt to ascertain a more homogeneous phenotype for genetic studies, 

is important for elucidating the etiology of schizophrenia.  The search for endophenotypes is 

guided by their strong association with the illness, high heritability, and observable similar deficits 

in unaffected relatives (18).  Cognitive deficits are heritable and are core features of schizophrenia, 

thus they may be valuable endophenotypes for schizophrenia.  Twin studies (19-21) and two recent 

molecular genetic studies (22, 23) have reported significant genetic overlap between 

neurocognition and schizophrenia.  Additionally, neuropsychological studies have observed that 

unaffected relatives of schizophrenia patients performed significantly worse in estimated 

intelligence, immediate and delayed logical memory, immediate visual reproduction, and 

sustained attention, therefore implicating genetic loading within families (24-26).  Although 

research on the genetics of neurocognitive domains in schizophrenia has grown rapidly over the 

last decade in parallel with attempts to determine the genetic etiology of schizophrenia, the last 

review to have covered some genetic studies of cognitive endophenotypes in schizophrenia was 

published in 2008 (27).  Therefore, we now provide an up-to-date review of this important topic. 

 

Methods: 

We reviewed all molecular genetic studies of cognition in schizophrenia that were 

published in PubMed and/or MEDLINE until January 1, 2015.  Specific search terms used 

included: genetics, molecular genetics, schizophrenia, cognition, neurocognition, cognitive or 

neurocognitive or neuropsychological deficits or impairments or endophenotypes or traits.  Eighty-



two original studies were included in this review article.  A summary can be found on Table 1 

(Table S1 in Supplement 1 for full details). 

 

Results: 

Many genes have been reported to be associated with cognitive impairment in 

schizophrenia as shown in Table S1 in Supplement 1.  The next sections of this review will provide 

a comprehensive summary of these genetic findings organized according to important bio-

molecular systems (Figure 1). 

 

Dopaminergic System Genes: 

The dopaminergic system genes that have been investigated in neurocognitive deficits of 

schizophrenia include catechol-O-methyltransferase (COMT) (10, 28-47), dopamine transporter 

(DAT) (10, 28, 41, 47, 48), dopamine D1 receptor (DRD1) (10), dopamine D2 receptor (DRD2) 

(10, 43, 45), dopamine D3 receptor (DRD3) (10, 46, 48), dopamine D4 receptor (DRD4) (30), 

dopamine D5 receptor (DRD5) (49), dopamine beta-hydroxylase (DBH) (12, 46), vesicular 

monoamine transporter 2 (SLC18A2) (10, 46), ankyrin repeat and kinase domain containing 1 

(ANKK1) (10), and protein phosphatase 1, regulatory (inhibitor) subunit 1B (PPP1R1B) (10). 

The most extensively examined candidate gene in neurocognition of schizophrenia is 

COMT.  A reduction in dopaminergic neurotransmission in specific brain regions such as the 

anterior cingulated and the dorso-lateral prefrontal cortex has been postulated to alter cognition, 

specifically executive function and working memory, in schizophrenia (50).  A functional 

polymorphism within COMT, Val158Met, accounts for a four-fold variation in its enzymatic 

activity and dopamine catabolism in the prefrontal cortex, with Met as the low functioning allele 



(34).  Twenty three studies were found as defined by our search criteria (31).  Barnett et al. (31) 

performed a meta-analysis including 12 studies of the impact of COMT Val158Met on executive 

function and detected significant association between Val/Val and worse cognitive performance 

than Met/Met only in healthy controls but not in schizophrenia patients.  A recent study (43) 

similarly reported no association between this locus and theory of mind dysfunction in 

schizophrenia but detected worse performance in Met-carrier females in the combined 

schizophrenia and control sample.  However, a 94-multi-gene family study examining COMT, 

found associations with verbal learning, ‘false’ memory, and prepulse inhibition in schizophrenia 

patients (44).  Twamley et al. (51) also reported better learning, memory, and abstraction with the 

Met allele than Val, and when Green et al. (52) investigated cognitive function in schizophrenia 

patients with childhood trauma history, they detected significant links of the Val homozygotes 

with worse cognitive performance in the absence of childhood adversity, and better executive 

function with positive abuse history, suggesting a gene-environment interaction.  Overall, given 

the pleiotropic effects of most genes, it appears unlikely that changes in cognition in relation to 

COMT are specific to schizophrenia. 

Other dopamine-related genes, DAT, DRD1, DRD2, DRD3, DRD4, DRD5, DBH, 

SLC18A2, ANKK1, and PPP1R1B, have also been investigated in cognitive deficits of 

schizophrenia.  These genes were examined because of their prior association with schizophrenia, 

antipsychotic actions, and/or their involvement in dopamine neurotransmission.  Four studies 

involved DAT, one with rs6350 and three with the functional 3’ VNTR, but none reported 

association with cognitive measures in schizophrenia (28, 41, 47, 48).  Three studies investigated 

DRD2 markers in executive functioning (45) and theory of mind impairment (43) in schizophrenia 

(10) and all were negative.  Two significant and one negative studies of DRD3 have been 



published.  Firstly, Szekeres et al. (48) reported a significant association between the DRD3 

Ser9Gly low functioning (53) Ser/Ser genotype and fewer categories completed and more 

perseverative errors on the Wisconsin Card Sort Test (WCST) than Ser/Gly.  Secondly, a 94-multi-

gene study reported a significant association between DRD3 and emotional recognition (44).  

However, Bombin et al. (45) only detected significant associations of DRD3 in the combined first-

episode psychosis and healthy adolescents suggesting a lack of power.  One DRD5 study (49) 

reported a significant association between the presence of two copies of the 7 (148-bp) allele in 

the (CT/GT/GA)n microsatellite and lower word generation (visual voluntary attention) than one 

copy of the 7 allele in schizophrenia (P=0.018) and their relatives.  Kukshal et al. (46) reported no 

association between COMT, DRD3, DBH, and SLC18A2 with performance in the Trail Making 

Test.  For the DBH 19-bp deletion, Hui et al. (12) detected significantly poorer immediate memory 

with the carriers in schizophrenia patients but not in controls.  Several markers across DAT, DRD1, 

DRD3, and SLC18A2 were also found to be significantly associated with poorer cognitive 

functions in schizophrenia patients in a multi-gene study (10). 

Thus, dopamine-related genes may be implicated to a limited extent in the neurocognitive 

deficits in schizophrenia patients, especially in memory, attention and executive function.  

However, except for COMT, few studies have examined other dopamine-related genes and recent 

GWAS of cognitive performance in schizophrenia (22, 23, 54, 55) failed to implicate any 

dopamine-related genes, suggesting the existence of additional possible mechanisms and 

interactions in the genetic etiology of neurocognitive deficits in schizophrenia and the need for 

more systematic studies. 

 

Neurodevelopmental and Neuroplasticity Genes: 



 Genes related to neurodevelopment and neuroplasticity are obvious candidates for 

cognitive deficits in schizophrenia. 

The dystrobrevin binding proteint 1 (DTNBP1) gene encodes dysbindin, a key subunit of 

the biogenesis of lysosome-related organelles complex-1, which regulates protein trafficking and 

cell-surface expression of neurotransmitter receptors (56).  It has been shown to modulate 

prefrontal cortical activity via glutamatergic neurotransmission (57, 58).  Significant reduction of 

DTNBP1 in glutamatergic neuronal terminal fields in the hippocampus has been reported and 

Talbot et al. (57) postulated that glutamatergic dysconnectivity may contribute to cognitive 

impairment in schizophrenia.  Four studies examined the effect of this gene in cognitive deficits 

of schizophrenia.  Burdick et al. (59) first demonstrated an association between a schizophrenia 

risk haplotype of DTNBP1 (rs909706-rs1018381-rs2619522-rs760761-rs2619528-rs1011313), 

CTCTAC, and greater decline in IQ in 183 schizophrenia/schizoaffective disorder patients.  Baek 

et al. (60) later reported a significant association between DTNBP1 rs760761 and rs1018381 and 

the attention/vigilance domain when comparing schizophrenia patients to controls.  Another study 

(61) reported that the DTNBP1 rs2619539-rs3213207-rs2619538 C-A-T haplotype was associated 

with impaired spatial working memory performance.  However, one study (62) did not report any 

association between single tagging sequence variants and their relevant haplotypes across 

DTNBP1 and neurocognitive endophenotypes in schizophrenia after separating individuals into 

cognitive deficit and cognitive sparing groups. 

The disrupted in schizophrenia 1 (DISC1) gene is considered to be a central hub of cellular 

development and regulation given its importance in neurogenesis and neuroplasticity (63).  It has 

been previously shown to be associated with schizophrenia, initially from a large multiplex family 

although not specific to schizophrenia (64) and a recent European meta-analysis (65).  



Furthermore, the down-stream cascade of DISC1 and its interaction with phosphodiesterase-4B 

have been implicated in learning, memory, and mood (66).  Thus, DISC1 has become a candidate 

for the genetic study of neurocognitive dysfunctions in schizophrenia (67).  Five studies have been 

reported.  The first (68) reported an association between the DISC1/translin-associated factor X 

(TRAX) haplotype and impairments in short- and long-term memory and reduced gray matter 

density in the prefrontal cortex.  The second (69) reported an association between the DISC1-

HEP3 (rs751229-rs3738401) haplotype and poorer performance on short-term visual memory and 

attention.  The third demonstrated a significant finding between DISC1 rs821616 Ser/Ser genotype 

and reduced performance on WMS Logical Memory II subsection in schizophrenia patients in 

addition to a lower WCST category scores in the entire sample (schizophrenia, unaffected siblings, 

parents, and healthy controls) (70).  Burdick et al. (71) observed positive association between 

DISC1 rs2255340 genotype and rapid visual search and verbal working memory.  The last is a 

recently published multi-gene study (28) who reported a trend association between DISC1 

rs12133766 and deficient verbal fluency in schizophrenia males (P=0.049). 

Neurotrophic factors have been postulated to affect cognition given their roles in 

neuroplasticity and their interactive and modulatory effects on various neurotransmitter systems.  

The brain-derived neurotrophic factor (BDNF) gene has been examined due to its role in cell 

differentiation, survival, long-term potentiation, synaptic plasticity, learning, and memory (72-75).  

Its functional polymorphism, rs6265 (Val66Met), has been extensively investigated with prior 

significant associations in memory impairment (76) and schizophrenia (77).  Eight studies in 

addition to a multi-gene study and a meta-analysis including seven studies from our search were 

detected.  Egan et al. (78) detected a significant association between individuals with one or two 

Met allele(s) regardless of their disease status (schizophrenia patients, their healthy siblings, and 



healthy controls) and lower abilities to perform tasks of learning and memory.  Another study (79) 

reported that schizophrenia patients with the high-functioning Val/Val genotype of BDNF 

Val66Met had superior scores for both voluntary and involuntary attention tasks, in contrast to the 

serotonin 2A receptor gene (HTR2A T102C)T-Met combination, linked to inferior performance 

for voluntary attention but superior performance for involuntary attention.  Ho et al. (80) observed 

a significant association between the BDNF Met allele with poorer verbal memory performance in 

both schizophrenia patients and healthy volunteers, and visuospatial impairment in schizophrenia 

only.  Val carriers were found to be associated with better visuospatial and constructional 

performance in both schizophrenia and healthy subjects whereas only schizophrenic Met carriers 

had significantly greater attention impairment (81).  In another study, schizophrenic Met carriers 

showed higher percentage of WCST perseverative errors especially in males (82).  Although 

Rybakowski et al. (83), Ho et al. (84), and Chung et al. (85) reported no association between BDNF 

Val66Met and cognitive performance, Rybakowski et al. (80) demonstrated that Val/Val was 

significantly associated with higher correct responses on the N-back test.  A recent meta-analysis, 

which included 12 studies including Egan et al. (78), Ho et al. (80),  Rybakowski et al. (83), Ho et 

al. (84), Chung et al. (85), Lu et al. (82), and Zhang et al. (81) compared neurocognitive domain 

scores between Met carriers and Val homozygotes in 1890 schizophrenic patients and did not 

report any significant difference (86) and a recent multi-gene study also did not support a role of 

BDNF in schizophrenia patients with cognitive deficits (Nicodemus et al., 2013). 

Although three of the four studies above showed modest significant association between 

DTNBP1 variants and poor cognitive performance in schizophrenia patients, and five studies 

suggested some associations of DISC1 genetic variants in neurocognitive deficits in schizophrenia, 

the recent GWAS (23) support neither of these genes as being strongly related to schizophrenia.  



Furthermore, a recent meta-analysis did not support the involvement of BDNF Val66Met in 

psychotic patients with neurocognitive deficits.  Thus, the overall status of these genes in 

neurocognitive function in schizophrenia remains unresolved.  

 

Glutamatergic System Genes: 

 The glutamatergic neurotransmitter system has received much attention given its neuronal 

excitatory properties in network functions throughout the brain, especially in the cerebral cortex, 

its influence in psychotic and cognitive symptoms, as well as being a source of potential drug 

targets (87, 88).  In animal studies, the mGluR3 knockout mouse showed hyperactivity and 

impaired working memory (89, 90), and these cognitive deficits are consistent with those of 

schizophrenia patients (7, 11).  Reduction in glutamate levels has also been found in schizophrenia 

patients with impaired cognitive control functioning but not in healthy controls (87). 

 Effects of glutamatergic modulatory drugs such as mGluR2/3 agonists (i.e. metabotropic 

glutamate receptor group II agonists), have been investigated in animal models of schizophrenia 

(91, 92).  Other drugs that regulate activation or inhibition of the N-methyl-D-aspartate (NMDA) 

receptor including the glycine transporter-1 inhibitors (93) and NMDA receptor antagonist (94) 

have also been investigated for their potential role in the treatment of cognitive impairment in 

schizophrenia.  These medications have had mixed results in early clinical trials in schizophrenia 

but more recently, a mGluR2/3 agonist has shown promising results in the treatment of early 

psychosis (95), possibly with relatively good efficacy for cognition, in particular, working memory 

(96). 

 Of the glutamatergic system genes, only three have been studied: the glutamate receptor, 

ionotropic, N-methyl-D-aspartate, subunit 2B (GRIN2B) (28, 97), GRIN2A (97), and glutamate 



receptor, metabotropic 3 (GRM3) (97).  Jablensky et al. (97) reported a significant association 

between the GRIN2B rs220599 T allele with poorer immediate and delayed recall on the Rey 

Auditory Verbal Learning Test; however, Nicodemus et al. (28) did not detect any positive 

findings with this gene in cognitive deficits of schizophrenia.  Jablensky et al. (97) also observed 

enhanced cognitive performance with the GRM3 rs2189814 C allele but not with GRIN2A. 

 Very few studies of glutamate system genes have examined neurocognitive impairments 

in schizophrenia, although new medications targeting the glutamatergic system have shown 

possibly promising results in the treatment of cognitive deficits in schizophrenia and in reducing 

psychosis.  The use of genetic tools to subdivide groups of patients in trials of new glutamatergic 

drugs may help to identify patients, whose cognition will show greater improvement, thus pointing 

to more personalized treatment options. 

 

Serotonergic System Genes: 

The serotonergic system interacts with many neurotransmitter systems and serotonin plays 

a important role in the regulation of morphogenesis in CNS development, neuronal proliferation, 

migration, differentiation, and cognition (98-100).  In term of gene expression, the frontal cortex 

and anterior cingulate cortex have approximately 10-fold higher mRNA expression of the 

serotonin 2A receptor (HTR2A) than hippocampus or caudate and putamen according to the 

Genetic Tissue Expression database (GTEx: http://www.gtexportal.org). 

Five studies have examined the HTR2A T102C polymorphism (28, 79, 101-103) with three 

significant associations.  As mentioned above, Alfimova et al. (104) reported a significant 

association between the T allele and more time for performing the test in addition to the T-(BDNF 

Val66Met)Met combination and lower scores for voluntary attention and higher scores for 



involuntary attention.  Uçok et al. (103) reported significant associations between the high 

expression (105) T allele with a lower hit rate in Continuous Performance Task (CPT) and the T/C 

genotype with more commission errors on CPT and fewer correct responses on WCST.  Alfimova 

et al. (101) reported a significant association between the T/T homozygotes and lower verbal 

fluency in male schizophrenia patients only and not the entire sample, including controls.  

Although Chen et al. (102) did not detect a significant association between the HTR2A T102C 

polymorphism and cognitive deficits in schizophrenia patients.  The authors observed a trend 

between T/C genotype and better verbal fluency and less motor co-ordination soft neurological 

signs.  Nicodemus et al. (28) however did not demonstrate any role of this genetic variation in 

cognitive deficits in schizophrenia. 

Besides HTR2A, one study of the serotonin 1A receptor (HTR1A) (106) and three studies 

of the serotonin transporter (5HTT, also known as SLC6A4) (107) have been conducted.  Bosia et 

al. (106) reported schizophrenia patients with the low-expression (108) CC genotype of HTR1A -

1019C/G polymorphism performed better on Theory of Mind tasks.  Bosia et al. (107) reported a 

significant association between the HTTLPR polymorphism and executive function and sustained 

attention, specifically the high activity long allele with better executive performance and with 

poorer attention, but two additional studies were negative (45, 47). 

 

Genome-Wide Association Studies (GWAS): 

To date, five GWAS have been published recently (see Table S1 in Supplement 1 for full 

details).  The first GWAS was published in 2012 and written in Chinese (109).  Xiang et al. (109) 

identified five risk genes, which were associated with memory deficits.  The second GWAS 

examining genetic influence of neurocognitive traits in schizophrenia found the strongest genetic 



enrichments for performance in a colour-interference Stroop test and sets associated with the rate 

of learning (23).  The third GWAS (22) reported significant genetic overlap between general 

cognitive ability and risk for schizophrenia, implicating similar pathophysiological processes 

between the two.  Although schizophrenia patients had lower general cognitive ability than healthy 

controls, the authors did not detect genome-wide significance.  In the meta-analysis (22), they 

observed significant association between MAD1 mitotic arrest deficient-like 1 (MAD1L1) and 

cyclin M2 (CNNM2) and lower general cognitive ability.  Additionally, the LSM1 homologue, U6 

small nuclear RNA associated (LSM1) and the neurogranin (protein kinase C substrate, RC3) 

(NRGN) schizophrenia risk alleles were associated with higher cognitive ability in schizophrenia 

patients (22).  Through the recent PGC schizophrenia GWAS, Hargreaves et al. (54) detected an 

increased polygenic risk score for the cell adhesion molecule pathway with poorer performance 

on memory and attentional tasks.  The strongest signal was detected within the human leukocyte 

antigen system, HLA-DQA1 rs9272105 marker, which was associated with attentional control 

only.  The latest GWAS (55) showed genome-wide significant associations between cognitive 

ability in schizophrenia and polymorphisms in the sodium channel, voltage-gated, type II, alpha 

subunit (SCN2A) gene. 

  

Genetics of Normal Cognition, Alzheimer’s Disease, and Other Cognitive Disorders: 

 General intelligence may in fact play a role in cognitive deficits of schizophrenia patients.  

Therefore, we included a brief summary of the genetics of general intelligence in healthy 

individuals and patients with cognitive disorders in order to determine whether there are distinct 

genetic risks that differentiate between healthy individuals, patients with cognitive disorders, and 

schizophrenia patients with cognitive deficits. 



A GWAS of general intelligence has not yielded genome-wide significance in 3,511 

healthy adults (110); however, using a gene-based approach, Davies et al. (110) detected a 

genome-wide significant association with the forming-binding protein 1-like (FNBP1L) gene but 

it was not replicated in an independent sample from the same study.  The apolipoprotein E (APOE) 

gene was found to be associated with cognition in older individuals, suggesting a genetic overlap 

with Alzheimer’s disease (111).  A recent review article on GWAS in Alzheimer’s disease 

identified several major pathways, including amyloid, immune system, inflammation, lipid 

transport and metabolism, synaptic functioning, and endocytosis (112).  Similarly in a recent 

review of the genetics of recessive cognitive disorders, significant associations have been found 

in genes that are involved in synaptic function, basic cellular processes including DNA 

transcription, translation, and degradation, mRNA splicing, energy metabolism, and fatty-acid 

synthesis and turnover (113, 114). 

There are genetic overlaps between general intelligence in healthy individuals, cognitive 

disorders, and cognitive deficits in schizophrenia (Table 2).  Interestingly, energy metabolism 

appears to be a common genetic pathway that affects cognition regardless of disease status.  

Nonetheless, many genes have been detected in specific disorders but replication studies are 

required to further expand on these reports and to differentiate disease-specific genetic markers.  

 

Treatment Implications: 

 Pharmacotherapy of schizophrenia has only shed light in the treatment of positive, but not 

cognitive or negative symptoms.  No known treatment has provided significant improvement in 

these latter symptoms to date.  Since cognitive and negative symptoms are associated with poor 

functional outcome, the development of new pharmacological strategies is crucial for reducing 



disease-related disability.  Recent studies of cognitive enhancers and immunomodulatory drugs 

have reported promising effects on cognition in schizophrenia (115, 116); however, replications 

are warranted to provide support for clinical application.  Thus, the search for genetic vulnerability 

in cognition and eventual discovery of a biomarker will enable researchers to identify new drug 

targets, which will hopefully lead to the improvement of cognitive deficits in schizophrenia 

patients. 

 

Discussion: 

This is the first comprehensive attempt to review all molecular genetic studies of cognitive 

impairments in schizophrenia to date.  Neurocognitive deficits are one of the key symptom 

dimensions of schizophrenia.  The study of cognition in schizophrenia is a strong and important 

unmet need for new drug targets since cognitive deficits are often the most difficult to treat. 

Although 82 publications were qualified according to our search criteria, a considerable 

expansion of current work will be required to further identify risk loci for cognitive dysfunction in 

schizophrenia.  Multiple genetic variants have been examined in different cognitive domains in 

schizophrenia but there have been few replication studies to date.  The most examined candidate 

genes include COMT, DISC1, HTR2A, and BDNF, which all provided inconsistent findings, often 

associated with different aspects of cognitive dysfunction in schizophrenia. 

Evidence has suggested overlapping genetic etiology between neurocognition and 

schizophrenia (21).  Although the number of molecular genetic studies is growing, these studies 

use traditional clinical and convenient neuropsychological test measures, which are often 

insensitive, non-specific, and neurally ill-defined.  The hope is for a more homogeneous 

phenotype; however, current studies often use the label of cognitive impairment loosely in 



schizophrenia.  Many of these studies focused on genes that were previously implicated in 

schizophrenia and very few of them have investigated interactions between genetic variations 

across different genes.  Calcium and sodium channels have emerged in recent schizophrenia 

genetic association studies as well as the most recent GWAS examining cognitive impairment in 

schizophrenia.  These will hopefully lead researchers to search for an underlying common 

mechanism that may partly explain the etiology of schizophrenia and its related cognitive deficits.  

Advances in bioinformatics are allowing researchers to analyze large datasets despite the relatively 

low prevalence of schizophrenia and multiple common loci explaining only small fractions of the 

genetic variance.  Linking functional implication to identified genetic markers (e.g., expression 

via GTEx) and testing these functional hypotheses may prove to advance our understanding of the 

etiology of neurocognitive dysfunction in schizophrenia. 

The complexities of both schizophrenia and cognition provide additional challenges 

including the potential role of illness epiphenomena and illness-specific mechanisms of cognitive 

impairment.  Furthermore, one of the two twin studies that have examined the genetic influences 

in schizophrenia and cognition detected limited genetic overlap between the two (117).  Suggestive 

of the lack of overlap can be observed in two schizophrenia risk alleles counter-intuitively being 

associated with better cognitive performance (22).  Common genetic markers affecting cognitive 

performance in schizophrenia may not have been detected at present given the complex 

interactions of genetic, environmental, and random influences that affect individuals across their 

developmental stages and lifespan.  Investigating interactions between other endophenotypes of 

schizophrenia that may be related to cognitive functions, such as neuroimaging findings, are 

potentially crucial for linking genetics to brain structure and function.  Larger sample sizes with 

definition of homogeneous subgroups may aid in the identification of specific and shared genetic 



markers that influence schizophrenia and cognition.  Moreover, there are numerous different facets 

of neurocognition and many different methods for testing these cognitive domains; thus, 

development of a broad battery of systematic and well-standardized cognitive tasks that are 

reliable, easy to interpret, and comparable based on modern cognitive neuroscience approaches 

will be required in order to derive more definitive conclusions.  Significant associations with 

performance on a single test of a particular function such as working memory or attention will 

ideally be supported by more than one test measure.  The behavioural specificity of such effects 

will also need to be carefully assessed.  One major, though controversial, hypothesis relating to 

intellectual deficits in schizophrenia is that it may be driven by the general factor, g, from 

conventional IQ tests (118, 119).  The relationship of specific, or general, aspects of cognition to 

identified neural system dysfunction is also required so that neurocognitive phenotypes and 

endophenotypes can be accurately delineated. 

Further research is warranted to target known hypotheses and mechanisms of cognitive 

deficits in schizophrenia, which may in turn contribute to the development of preventative 

measures and new drug targets.  Cognitive deficits in schizophrenia are associated with poor 

functional outcome and therefore, the identification of biomarkers to predict different outcomes 

may influence treatment options including the intensity, duration, choice of medication, and type 

of therapy such as brain stimulation.  Genetic markers related to electrophysiology and/or 

neuroplasticity such as BDNF may attract interest and attention in treatment utilizing brain 

stimulation techniques.   New advances in differentiating cognitive deficits, impairment in social 

cognition, and negative symptoms of schizophrenia, including motivational and emotional 

measures, may further delineate different subgroups within the current schizophrenia population.  



Genetic biomarkers may aid in the identification of these subgroups, which may in turn translate 

into clinical utility via personalized medicine. 
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Figure 1. Candidate gene studies according to their biomolecular systems.  Dopaminergic 
system genes have been examined the most in genetic studies of cognition in schizophrenia 
given the important role of dopamine in the etiology of schizophrenia and cognition.  
Neurodevelopmental genes are amongst the second most commonly studied candidate, 
followed by serotonergic and glutamatergic system genes.  Although the glutamate hypothesis 
in schizophrenia has sparked new insight into the mechanism of schizophrenia, only 4% of 
studies have examined genes related to glutamatergic system. 
 
 
 
 
 
 
Table 1. Molecular genetic studies of cognitive deficits in schizophrenia (for full details, please 
refer to Table S1 in Supplement 1).* 

Gene N 
Candidate Gene 
Studies Significant 

Cognitive Domains 
Positive Negative Multi-gene GWAS 

COMT 23 12 11 2 - Executive function, theory of mind, reaction time, processing speed, attention, IQ, spatial working 
memory, attentional flexibility and planning 

DAT/SLC6A3 4 0 4 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, work
memory, reasoning and problem solving, set shifting, and verbal comprehension 

DRD1 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

DRD2 2 0 2 1 - - 

DRD3 3 1 2 1 - 
Perseveration 
- Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

DRD4 1 1 0 - - Working memory, verbal fluency 
DRD5 1 1 0 - - Visual voluntary attention 

DBH 2 1 1 - - Immediate memory 

SLC18A2 1 0 1 - - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

ANKK1 - - - 1 - - 
PPP1R1B - - - 1 - - 

DISC1 5 5 0 2 - Verbal fluency, verbal working memory, short- and long-term memory, short-term visual memory, 
visual search, attention 

DTNBP1 4 3 1 1 - Attention/vigilance domain, spatial working memory, IQ 

BDNF 8 5 

4 (one of 
which is 
a meta-
analysis) 

1 - 
Voluntary and involuntary attention, verbal memory, visuospatial skills, working memory 
- Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

NRG1 2 2 0 2 - Processing speed, visuomotor speed, attention, long-term episodic memory, short-term memory

NRG3 2 2 0 - - Visuomotor speed, processing speed, mental flexibililty, executive function, sustained attention
NRN1 1 1 0 - - General intellectual ability 
SNAP-25 1 1 0 - - Verbal memory, attention, executive function 

PRODH 1 0 1 1 - - 
P2RX7 - - - 1 - - 
NPY - - - 1 - - 
NQO1 - - - 1 - - 
GST-1 - - - 1 - - 

GST-2 - - - 1 - - 

5HTT 2 1 1 1 - Executive function, attention 



Gene N 
Candidate Gene 
Studies Significant 

Cognitive Domains 
Positive Negative Multi-gene GWAS 

HTR1A 1 1 0 1 - Theory of mind 

HTR2A 5 3 2 2 - Voluntary and involuntary attention, executive function, verbal fluency 

NET 2 0 2 - - - 
QKI 1 0 1 - - - 

MAG 1 1 0 - - Processing speed, visuomotor speed, attention 
CNP 1 0 1 - - - 
OLIG2 1 0 1 - - - 
ERBB4 1 0 1 1 - Verbal learning, abstraction, visuospatial memory 
GRIN2A 1 0 1 - - - 

GRIN2B 2 1 1 1 - Immediate and delayed recall (verbal memory) 

GRM1 - - - 1 - Attention, verbal learning, abstraction, visuospatial memory, spatial processing 

GRM3 1 1 0 1 - Enhanced performance 
SLC1A2 - - - 1 - Attention, abstraction, spatial memory 

DAOA 1 1 0 1 1 Verbal memory 

GAD1 - - - 1 - - 
CACNA1C 2 1 1 - - Logical memory 
SCN2A - - - - 1 Cognitive ability 

LYRM4 1 1 0 - - Verbal memory 

FARS1 1 1 0 - - Verbal memory 
ATP2C2 1 0 1 - - - 

ANK3 2 2 0 - - Working memory, verbal memory, attention 
TCF4 1 1 0 - - Reasoning, problem-solving, attention-related tasks 
CNNM2 1 0 1 - - Social cognition 
CSMD1 1 1 0 - 1 General cognitive ability,  memory cognition 
STH 2 2 0 - - Executive function 

ACT 1 0 1 - - - 
DCDC2 1 0 1 - - - 
DYX1C1 1 0 1 - - - 
KIAA0319 1 1 0 - - Verbal learning and recall 
NAGPA 1 0 1 - - - 

ZNF804A 4 3 1 - - Verbal learning and recall, verbal and spatial working memory, verbal episodic memory, visual 
memory 

CLSTN2 1 0 1 - - - 

WWC1 2 0 2 - - - 
ATRNL1 1 0 1 - - - 
C20orf196 1 0 1 - - - 
CRTC3 1 0 1 - - - 
DIP2C 1 0 1 - - - 

NFKBIL1 1 0 1 - - - 
PDE1C 1 0 1 - - - 
PKNOX1 1 0 1 - - - 
SPATA7 1 0 1 - - - 

ADCY8 2 0 2 - - - 
CAMK2G 2 0 2 - - - 
PRKACG 1 0 1 - - - 
PRKCA 1 1 0 - - Verbal memory 
HEY1 - - - - 1 Working memory 



Gene N 
Candidate Gene 
Studies Significant 

Cognitive Domains 
Positive Negative Multi-gene GWAS 

MAD1L1 - - - - 1 Cognitive ability 

LSM1 - - - - 1 Cognitive ability 
CAM - - - - 1 Memory, attention 
HLA-DQA1 - - - - 1 Attention 
RASGRF2 - - - - 1 Memory cognition 
PLCG2 - - - - 1 Memory cognition 

LMO1 - - - - 1 Memory cognition 
PRKG1 - - - - 1 Memory cognition 
EPO 1 1 0 - - Processing speed, short-term memory, and tasks requiring distinct fine motor component 
EPOR 1 1 0 - - Processing speed, short-term memory, and tasks requiring distinct fine motor component 

RGS4 1 1 - 1 - Face and verbal memory speed 
PIP5K2A - - - 1 - - 
AKT1 - - - 1 - - 
LRRTM1 - - - 1 - - 

FGF2 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

FGFR1 - - - 1 - - 
GPM6A - - - 1 - - 

GABRA6 - - - 1 - - 
NOS1 1 1 - 1 - General cognitive ability, verbal and spatial working memory 
RGS2 - - - 1 - - 
ROBO1 - - - 1 - - 
CHRM3 - - - 1 - - 

TBX1 - - - 1 - - 
ADRA2C - - - 1 - - 

FKBP5 - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

DNMT3B - - - 1 - - Speed of information processing, attention/vigilance, verbal learning and memory, working 
memory, reasoning and problem solving, set shifting, and verbal comprehension 

CNR1 - - - 1 - - 

MTHFR 1 1 - 1 - IQ, spatial working memory, attentional flexibility and planning 
MTR - - - 1 - - 
MTRR - - - 1 - - 
EHMT1 - - - 1 - - 
EHMT2 - - - 1 - - 

PRDM2 - - - 1 - - 
* This table did not include the genome-wide association study by Fernandes et al., 2013 (82) because no specific genes were 
identified. 
 
Abbreviations for genes: serotonin transporter (5HTT), alpha-1-antichymotrypsin (ACT, also known as serine proteinase inhibitor 
3 [SERPINA3]), adenylate cyclase (ADCY8), adrenoceptor alpha 2C (ADRA2C), v-akt murine thymoma viral oncogene homolog 
1 (AKT1), ankyrin 3 (ANK3), ankyrin repeat and kinase domain containing 1 (ANKK1), ATPase, Ca++ transporting, type 2C, 
member 2 (ATP2C2), attractin-like 1 (ATRNL1), brain-derived neurotrophic factor (BDNF), chromosome 20 open reading frame 
196 (C20orf196), calcium channel, voltage-dependent, L type, alpha 1C (CACNA1C), cell adhesion molecules (CAM), 
calcium/calmodulin-dependent protein kinase II gamma (CAMK2G), cholinergic receptor, muscarinic 3 (CHRM3), calsyntenin 2 
(CLSTN2), cyclin M2 (CNNM2), 2’,3’-cyclic nucleotide 3’-phosphodiesterase (CNP), cannabinoid receptor 1 (brain) (CNR1), 
catechol-O-methyltransferase (COMT), CREB regulated transcription coactivator 3 (CRTC3), CUB and Sushi multiple domains 
1 (CSMD1), D-amino acid oxidase activator (DAOA), dopamine transporter (DAT, also known as SLC6A3), dopamine beta-
hydroxylase (DBH), doublecortin domain containing 2 (DCDC2), DIP2 disco-interacting protein 2 homolog C (Drosophila) 
(DIP2C), disrupted in schizophrenia 1 (DISC1), DNA (cytosine-5)-methyltransferase 3 beta (DNMT3B), dopamine D1 receptor 
(DRD1), dopamine D2 receptor (DRD2), dopamine D3 receptor (DRD3), dopamine D4 receptor (DRD4), dopamine D5 receptor 
(DRD5), dystrobrevin binding protein 1 (DTNBP1), dyslexia susceptibility 1 candidate 1 (DYX1C1), euchromatic histone-lysine 
N-methyltransferase 1 (EHMT1), euchromatic histone-lysine N-methyltransferase 2 (EHMT2), erythropoietin (EPO), 
erythropoietin receptor (EPOR), v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ERBB4), phenylalanyl-tRNA 
synthetase 2, mitochondrial (FARS2), fibroblast growth factor 2 (basic) (FGF2), fibroblast growth factor receptor 1 (FGFR1), 
FK506 binding protein 5 (FKBP5), gamma-aminobutyric acid (GABA) A receptor, alpha 6 (GABRA6), glutamate decarboxylase 1 
(brain, 67kDa) (GAD1), glycoprotein M6A (GPM6A), glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2A (GRIN2A), 
glutamate receptor, ionotropic, N-methyl-D-aspartate, subunit 2B (GRIN2B), glutamate receptor, metabotropic, 3 (GRM3), 



glutathione S-transferase-1 (GST-1), glutathione S-transferase (GST-2), hairy/enhancer-of-split related with YRPW motif 1 
(HEY1) , human leukocyte antigen (HLA), serotonin 1A receptor (HTR1A), serotonin 2A receptor (HTR2A), LIM domain only 1 
(LMO1), leucine rich repeat transmembrane neuronal 1 (LRRTM1), LSM1 homolog, U6 small nuclear RNA associated (LSM1), 
MAD1 mitotic arrest deficient-like 1 (MAD1L1), myelin-associated glycoprotein (MAG), MicroRNA 137 (MIRN137), mitochondrial 
pyruvate carrier 2 (MPC2), methylenetetrahydrofolate reductase (NAD(P)H) (MTHFR), 5-methyltetrahydrofolate-homocysteine 
methyltransferase (MTR), 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), N-acetylglucosamine-1-
phosphodiester alpha-N-acetylglucosaminidase (NAGPA), norepinephrine transporter (NET, also known as SLC6A2), nuclear 
factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 (NFKBIL1), nitric oxide synthase 1 (neuronal) (NOS1), 
neuropeptide Y (NPY), NAD(P)H dehydogenase, quinone 1 (NQO1), neuregulin 1 (NRG1), neuregulin 3 (NRG3), neurogranin 
(protein kinase C substrate, RC3) (NRGN), neuritin 1 (NRN1), 5’-nucleotidase, cytosolic II (NT5C2), oligodendrocyte lineage 
transcription factor 2 (OLIG2), purinergic receptor P2X, ligand-gated ion channel, 7 (P2RX7), prostate-specific transcript (non-
protein coding) (PCGEM1), phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A), PBX/knotted 1 homeobox 1 
(PKNOX1), phospholipase C, gamma 2 (PLCG2), protein phosphatise 1, regulator (inhibitor) subunit 1B (PPP1R1B), PR domain 
containing 2, with ZNF domain (PRDM2), protein kinase, cAMP-dependent, catalytic, gamma (PRKACG), protein kinase C, alpha 
(PRKCA), protein kinase, cGMP-dependent, type 1 (PRKG1),  proline dehydrogenase (oxidase) 1 (PRODH), quaking (QKI), Ras-
specific guanine nucleotide-releasing factor 2 (RASGRF2), regulator of G-protein signalling 2, 24kDa (RGS2), regulator of G-
protein signalling 4 (RGS4), roundabout, axon guidance receptor, homolog 1 (Drosophila) (ROBO1), sodium channel, voltage-
gated, type II, alpha subunit (SCN2A), serologically defined colon cancer antigen 8 (SDCCAG8), vesicular monoamine transporter 
2 (SLC18A2), zinc finger, spermatogenesis associated 7 (SPATA7), saitohin (STH), synaptosomal-associated protein 25 (SNAP-
25), T-box 1 (TBX1), transcription factor 4 (TCF4), translin-associated factor X (TRAX), SWIM-type containing 6 (ZSWIM6). 
 
 
 
 
 



Table 2. Molecular genetic studies of cognition across healthy to disease spectrum.* 

 
System Gene Schizophrenia 

Cognition 
Schizophrenia 
Disease Risk Healthy Dementia Cognitive Domains References 

Dopamine COMT +/- +/- +/-9 +/- Executive function, theory of mind, reaction time, 
processing speed, attention 

(120-139, 141
144, 202-204) 

DAT/SLC6A3 +/- +/- +/-9 +/- 

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(120, 126, 142, 
145, 179, 205, 
206) 

DRD1 +  -9  

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(142) 

DRD2 - +/- +/-9 - - (121, 141,142, 
204, 207-210) 

DRD3 +/- +/- +/-1,9 - 

Perseveration 
- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(139, 141,142, 
145) 

DRD4 + +/- + +/- Working memory, verbal fluency (124, 179, 204) 
DRD5 + +/- -2  Visual voluntary attention (146) 

DBH +/- +/- - + Immediate memory (139, 147,211, 
212) 

SLC18A2 +/- +/- -1  

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(139) 

ANKK1 - +/- -9  - (142) 
PPP1R1B - +/- +/-9  - (142, 213) 

Neuro DISC1 + +/- +/-9  
Verbal fluency, verbal working memory, short- and 
long-term memory, short-term visual memory, 
visual search, attention 

(120, 136, 142, 
148-151) 

DTNBP1 +/- +/- +/-9  Attention/vigilance domain, spatial working 
memory, IQ (142, 152-155) 

BDNF +/- +/- +/-9 +/- 

Voluntary and involuntary attention, verbal 
memory, visuospatial skills, working memory 
- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(120, 142, 156
164, 204) 

NRG1 + +/- -3,9 + Processing speed, visuomotor speed, attention, 
long-term episodic memory, short-term memory 

(136, 142, 165, 
166) 

NRG3 + +/-  + Visuomotor speed, processing speed, mental 
flexibililty, executive function, sustained attention (167, 168, 214) 

NRN1 + +/- -3  General intellectual ability (169) 
SNAP-25 + +/- +1 + Verbal memory, attention, executive function (170, 215) 
PRODH - +/- +/-9  - (142, 171, 216) 
P2RX7 - - -9 - - (142, 217) 
NPY - +/- -9 - - (142) 

NQO1 - - -9 +/- - (142) 
GST-1 -  -9  - (142) 
GST-2 -  -9  - (142) 

Serotonin 5HTT/SLC6A4 +/- +/- + +/- Executive function, attention (136, 140, 172, 
218) 

HTR1A + +/-   Theory of mind (136, 173) 

HTR2A +/- +/- -9 +4/- Voluntary and involuntary attention, executive 
function, verbal fluency 

(120, 136, 142, 
156, 174-176, 
202) 

NET/SLC6A2 - -   - (125, 126) 

Oligodendrocyte QKI - - -5 + - (165, 219) 

MAG + +/- +5  Processing speed, visuomotor speed, attention (165) 
CNP - +/- -5  - (165) 
OLIG2 - +/- +5 +4/- - (165, 220) 



ERBB4 - +/- +5 + Verbal learning, abstraction, visuospatial memory (136, 139, 165) 

Glutamate GRIN2A - +/- +  - (177) 
GRIN2B +/- +/- + +/- Immediate and delayed recall (verbal memory) (120, 136, 177) 

GRM1 + +   Attention, verbal learning, abstraction, visuospatial 
memory, spatial processing (136, 140, 205) 

GRM3 + +/- +/-9  Enhanced performance (142, 177, 206) 
SLC1A2 + +/-   Attention, abstraction, spatial memory (136) 
DAOA + +/- +6/-9 +4 Verbal memory (142, 178, 179) 
GAD1 - +/- -9  - (142) 

Ion channel CACNA1C +/- + -3 + Logical memory (120, 180, 207, 
208) 

SCN2A +  -2  Cognitive ability (g) (181, 209) 
Energy 
metabolism LYRM4 +    Verbal memory (182) 

FARS1 +    Verbal memory (182) 

ATP2C2 -    - (120) 

Others ANK3 + +/- +/-3 +/- Working memory, verbal memory, attention (183, 210, 211, 
221) 

TCF4 + +/- +7  Reasoning, problem-solving, attention-related 
tasks (184, 185) 

CNNM2 - + -  Social cognition (186, 222) 

CSMD1 + + +  General cognitive ability,  memory cognition (187, 188, 223, 
224) 

STH + -  +/- Executive function (144, 189) 
ACT - -  + - (190, 225) 

DCDC2 - -   - (120) 
DYX1C1 -    - (120) 
KIAA0319 +    Verbal learning and recall (120) 
NAGPA -    - (120) 

ZNF804A +/- +/- +/-  
Verbal learning and recall, verbal and spatial 
working memory, verbal episodic memory, visual 
memory 

(120, 191-193, 
226-229) 

CLSTN2 -  +/-  - (120, 230, 231) 

WWC1 - + +/- +/- - (120, 194, 232
235) 

ATRNL1 -    - (120) 
C20orf196 -    - (120) 
CRTC3 -    - (120) 
DIP2C -    - (120) 
NFKBIL1 - -   - (120) 

PDE1C -    - (120) 
PKNOX1 -    - (120) 
SPATA7 -    - (120) 
ADCY8 -    - (120, 177) 
CAMK2G -   - - (120, 177) 

PRKACG -    - (177) 
PRKCA + +/- +  Verbal memory (177, 236) 
HEY1 +    Working memory (195) 
MAD1L1 + +   Cognitive ability (196, 237) 
LSM1 + +/-   Cognitive ability (196, 238, 239) 

CAM +    Memory, attention (197) 

 HLA-DQA1 + -  +/- (A2) Attention (197, 240-242) 
RASGRF2 +    Memory cognition (188) 
PLCG2 +    Memory cognition (188) 
LMO1 +    Memory cognition (188) 

PRKG1 + -  +/- Memory cognition (188, 243, 244) 

EPO +    Processing speed, short-term memory, and tasks 
requiring distinct fine motor component (198) 



EPOR +    Processing speed, short-term memory, and tasks 
requiring distinct fine motor component (198) 

RGS4 +/-1 +/- +1/-9 - - (142, 199, 245) 
PIP5K2A - +/- -9  - (142) 

AKT1 - +/- -9  - (142) 
LRRTM1 - + -9  - (142, 246) 

FGF2 + - -2/-9  

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(142) 

FGFR1 -  -9  - (142) 

GPM6A - + -9  - (142, 247) 
GABRA6 - +/- -9  - (142) 

NOS1 +/- +/- +/-2,9 +/- General cognitive ability, verbal and spatial working 
memory (142, 200) 

RGS2 - + -9  - (142, 248) 
ROBO1 -  -9  - (142) 
CHRM3 -  -9  - (142) 
TBX1 - +/- -9  - (142) 

ADRA2C -  -9  - (142, 249) 

FKBP5 + - -9  

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(142) 

DNMT3B + + -9 +/- 

- Speed of information processing, 
attention/vigilance, verbal learning and memory, 
working memory, reasoning and problem solving, 
set shifting, and verbal comprehension 

(142, 250, 251) 

CNR1 - +/- -9  - (142, 252) 

MTHFR +/- +/- -9 +/- - (142, 143, 252
256) 

MTR - + -9 +/- - (142, 253) 

MTRR - - -9  - (142, 253, 257, 
258) 

EHMT1 -  -9  - (142) 
EHMT2 - - -9  - (142) 
PRDM2 -  -9  - (142) 

* The list of genes in this table has been cross-referenced with the genetic databases in 
schizophrenia www.alzgene.org (100) and Alzheimer’s disease www.szgene.org (101) and 
updated with references from PubMed for schizophrenia risk genes, dementia risk genes, and 
genes affecting normal cognition. 
“+” indicates previous significant association(s), “-” indicates prior negative association(s), 
and “+/-” indicates previous positive and negative associations. 
1 This study reported a significant association between SNP(s) across this gene and cognitive 
function(s) in the combined psychosis and healthy control sample. 
2 This study detected a significant association between SNP(s) across this gene only in 
schizophrenia patients and their unaffected relatives but not in healthy controls. 
3 This study found significant association between SNP(s) across this gene only in 
schizophrenia patients but not in healthy controls. 
4 This study found significant association between this gene and psychosis in patients with 
Alzheimer’s disease. 
5 This study reported significant associations for MAG in schizophrenia patients and healthy 
controls but in different cognitive domains and for OLIG2 and ERBB4 in only healthy controls; 
QKI and CNP were not significant in either sample. 
6 This study found significant association between DAOA and cognitive function regardless of 
disease status (psychosis patients and healthy controls). 



7 This study found significant association between TCF4 and cognitive function in 
schizophrenia patients and healthy controls but opposite alleles associated with cognitive better 
performance. 
8 This study with two independent samples found significant associations between NOS1 and 
cognitive function in Irish controls but not in Irish schizophrenia patients, and German 
schizophrenia patients but not controls. 
9 This study found significant association between SNP(s) across this gene only in 
schizophrenia patients but not in their unaffected relatives or healthy controls. 
 

 


