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a  b  s  t  r  a  c  t

Categorization  is essential  for survival,  and  it is  a widely  studied  cognitive  adaptation  in  humans  and
animals.  An  influential  neuroscience  perspective  differentiates  in  humans  an  explicit,  rule-based  catego-
rization  system  from  an  implicit  system  that  slowly  associates  response  outputs  to  different  regions  of
perceptual  space.  This  perspective  is  being  extended  to  study  categorization  in other  vertebrate  species,
using  category  tasks  that  have  a one-dimensional,  rule-based  solution  or  a two-dimensional,  information-
integration  solution.  Humans,  macaques,  and  capuchin  monkeys  strongly  dimensionalize  perceptual
stimuli  and  learn  rule-based  tasks  more  quickly.  In sharp  contrast,  pigeons  learn  these  two  tasks  equally
mplicit/explicit cognition
rimate cognition
omparative cognition

quickly. Pigeons  represent  a  cognitive  system  in  which  the  commitment  to  dimensional  analysis  and
category  rules  was  not  strongly  made.  Their  results  may  reveal  the  character  of  the  ancestral  vertebrate
categorization  system  from  which  that  of primates  emerged.  The  primate  results  establish  continuity  with
human cognition,  suggesting  that  nonhuman  primates  share  aspects  of  humans’  capacity  for  explicit  cog-
nition.  The  emergence  of  dimensional  analysis  and  rule learning  could  have  been  an  important  step  in

primates’  cognitive  evolution.

©  2012  Elsevier  Ltd.  All  rights  reserved.
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. Introduction: multiple systems for categorization

Learning and using psychological or behavioral equivalence
lasses—categories—is an essential cognitive function. For this rea-
on, categorization is a sharp focus of human and animal research
humans—e.g., Ashby and Maddox, 2011; Brooks, 1978; Knowlton
nd Squire, 1993; Medin and Schaffer, 1978; Murphy, 2003;
osofsky, 1987; Smith and Minda, 1998; animals—e.g., Herrnstein
t al., 1976; Jitsumori, 1994; Lazareva and Wasserman, 2010; Lea
nd Wills, 2008; Pearce, 1994; Smith et al., 2008; Thompson and
den, 2000; Vauclair, 2002).

Categorization might even be important enough to receive mul-
iple expressions within the cognitive system. For example, when
rganisms must identify their mate or their own-group members,
ategorization should have a particularizing emphasis. Research
as shown that something like individuated exemplar memory
ometimes underlies categorization (e.g., Nosofsky, 1987; Medin
nd Schwanenflugel, 1981; Smith and Minda, 1998). In contrast,
hen organisms must respond equivalently to whole classes of

bjects (e.g., a prey species), categorization should have a generaliz-
ng emphasis. Research has also shown that something like general
ules or abstractions sometimes underlies categorization (Ashby
nd Maddox, 2005; Aydin and Pearce, 1994; Jitsumori, 1996; Homa
t al., 1981; Knowlton and Squire, 1993; Smith et al., 2008; Reber
t al., 1998; Reed, 1972; von Fersen and Lea, 1990; White et al.,
993).

Moreover, research has begun to document the tradeoffs among
ifferent representational systems in categorization. For example,
ifferent processes control categorization early and late in learning
Cook and Smith, 2006; Reed, 1978; Smith et al., 2010b; Wasserman
t al., 1988), when categories have small or large exemplar-set sizes
Blair and Homa, 2003; Homa et al., 1981; Katz et al., 2002; Minda
nd Smith, 2001; Wright and Katz, 2006), when categories are
oherent or incoherent perceptually (Blair and Homa, 2003; Smith
t al., 1997), and when the categorization rule is easy or difficult to
erbalize (Ashby and Maddox, 2005).

Consequently, a multiple-systems theoretical perspective has
ecome an important part of the human categorization litera-

ure (Ashby and Ell, 2001; Ashby et al., 1998; Ashby and Valentin,
005; Cook and Smith, 2006; Erickson and Kruschke, 1998; Homa
t al., 1981; Minda and Smith, 2001; Rosseel, 2002; Smith and
inda, 1998), based on the idea that organisms have multiple
categorization utilities that learn different statistical aspects of
the environment. The multiple-systems perspective has profoundly
enriched the human categorization literature.

Little is known of the phylogenetic roots of humans’ multiple-
system capacity for category learning—its evolutionary origins, its
phylogenetic breadth and depth, and its cognitive affordances that
differentiate human cognition from that of other species. Introduc-
ing these issues to readers is the overarching goal of our article. By
doing so, we hope to foster a dialog among cognitive, neuroscience,
and comparative researchers of category learning. We  believe it is
fruitful to compare humans’ and animals’ categorization compe-
tencies and limitations and to correlate these with the differential
development across species of the brain systems that serve cat-
egory learning. We  also believe it is a deficiency in these allied
disciplines that there continues to be so little cross-talk between
human and animal studies (Ashby and Maddox, 2005).

2. Implicit and explicit systems of categorization

In the multiple-systems literature, a core distinction is made
between implicit and explicit utilities serving categorization. The
implicit utility appreciates stimuli using broad, diffuse, attentional
processes that encompass multiple stimulus features in parallel. It
learns by slowly associating behavioral responses to whole (unan-
alyzed) stimulus configurations. Participants lack conscious access
to the reasons for their behavioral responses following implicit cat-
egory learning, and they cannot declare their solutions to category
problems to others.

The explicit utility appreciates stimuli using narrow, focused
attentional processes that single out individual stimulus features. It
learns by testing hypotheses about stimulus dimensions that might
be relevant to the category problem. It relies on working memory
and executive attention to test and replace hypotheses. It provides
conscious access to and declarative reports of its solutions to cat-
egory problems. Many have granted explicit rules an important
role in human categorization (Ahn and Medin, 1992; Ashby and Ell,
2001; Erickson and Kruschke, 1998; Feldman, 2000; Medin et al.,
1987; Nosofsky et al., 1994; Regehr and Brooks, 1995; Shepard et al.,

1961).

Brooks (1978) first made the implicit–explicit distinction during
his debate with Reber (1967) about unconscious cognition. Brooks
found that unintentional category learning—fostered by incidental,
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Fig. 1. Illustrating rule-based and information-integration category structures. The
stimuli are sine-wave disks varying in bar spatial frequency and orientation. For each
task, three illustrative Category A and Category B stimuli are provided. In addition,
the  plus signs and open circles illustrate the distribution of an experiment’s stimuli
as  represented in an abstract space. The text specifies how these abstract values can
be  converted into physically realized stimuli. The pluses and circles, respectively,
are Category A and Category B exemplars. In the top panel, only variation in bar
frequency carries diagnostic category information, so optimal performance would
be  governed by a one-dimensional, bar-frequency rule (widely vs. narrowly spaced
J.D. Smith et al. / Neuroscience and Bi

ere exposure to category members—was nonanalytic and non-
eclarative. However, intentional category learning—fostered by
xplicit instructions to participants to learn the nature of the
ategories—was analytic and rule-based. Kemler Nelson (1984)
upported Brooks’s distinction using an elegant paradigm in which
ategories were learnable by either holistic, unanalyzed family
esemblance or by single-dimensional rules. Incidental learners
earned by overall family resemblance; deliberate learners learned
y dimensional rules. Love (2002) found that incidental learn-

ng conditions selectively impaired rule-based category learning.
aldron and Ashby (2001) showed that a cognitive load that

ompeted for working-memory resources selectively disrupted
ule-based category learning. Maddox and Ashby (2004) con-
ributed a seminal review in this area, in which they described many
f the implicit–explicit dissociations in humans’ category learn-
ng. In humans, the implicit–explicit framework is well established.
he framework extends to the domain of clinical psychology. For
xample, Smith et al. (1993) showed that depression spared multi-
imensional, family-resemblance category learning while severely
isrupting rule-based category learning. Depression saps the delib-
rate commitment of working-memory resources to rule-based
ategory-learning problems that depend upon them. The frame-
ork also extends to explain the strengths and weaknesses in

ategory learning of different neuropsychological patient popula-
ions (Ashby et al., 2003; Schnyer et al., 2009).

The implicit–explicit distinction also draws on research and the-
ry in cognitive development. Research using Garner’s (e.g., 1974)
lassification tasks showed that young children, impulsive chil-
ren, and children with mental retardation dimensionalize their
erceptual worlds less strongly than adults do. They appreciate
timuli more holistically. They group items more often based on
nanalyzed, multidimensional similarity, and less often by a single,
harply attended feature that all the stimuli share. Formally, they
reat separable dimensions (potentially decomposable by selective
ttention) as more integral or configural (not attentionally sepa-
ated). They produce a less dimensionalized, more holistic metric
f psychological similarity (Kemler, 1982a,b; Shepp et al., 1980;
mith and Kemler Nelson, 1984, 1988; Ward, 1983). The organiz-
ng theme in this literature was that those populations—lacking
he mature complement of rule-based and analytic-dimensional
ognitive utilities—were reliant on an implicit, immature mode of
onanalytic cognition. This theme has a strong resonance as one
onsiders across species the evolutionary emergence of analytic-
imensional systems of categorization.

Ashby, Maddox, and their colleagues placed the
mplicit–explicit distinction into a cognitive-neuroscience
ramework—the COVIS (Competition between Verbal and Implicit
ystems) theory of category learning (Ashby et al., 1998; Maddox
nd Ashby, 2004; Ashby and Waldron, 1999). COVIS describes
n implicit, nonanalytic categorization system that relies on the
triatum and is based on conditioning-like mechanisms—that is,
he reinforcement-mediated strengthening of dopamine-related
ynapses (Ashby et al., 2007). It describes an explicit, analytic
ategorization system that relies on the anterior cingulate gyrus,
he prefrontal cortex, the head of the caudate nucleus, and medial
emporal-lobe structures that also serve declarative memory. The
xplicit system seems to engage the same neural complex that
ffords the executive control of attention (Rossi et al., 2009). This
rticle explores the phylogenetic breadth and depth of this division
f labor between implicit and explicit systems of categorization.
. An illustrative methodology

We  describe evidence from four species that was produced over
any experiments in independent articles (Smith et al., 2010a,
bars). In the lower panel, both bar frequency and orientation carry useful but insuf-
ficient category information—information from both dimensions would have to be
integrated into category decisions.

2011a, 2012). Collectively, the results document the evolutionary
emergence of dimensional-analytic categorization within the line
of the primates.

The experiments used rule-based (RB) and information-
integration (II) category tasks, like those illustrated in Fig. 1. In the
top panel of Fig. 1, the vertical category boundary denotes that only
X-axis variation carries valid information about category member-
ship. The participant must discover this dimensional rule (Category

A: X < 50; Category B: X > 50) based on successive presentations of
single stimuli, with feedback given following each response. The
top panel is an example of an RB task because the category bound
can be discovered via logical reasoning and hypothesis testing and
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n analytic approach to the dimensional structure of the stimuli.
he informative stimulus dimension should be attended sharply
nd selectively. The non-informative stimulus dimension should be
ompletely ignored as it varies equivalently over its whole range
ithin both categories.

In contrast, in the II categorization task illustrated in Fig. 1’s
ower panel, the diagonal category boundary indicates that both
timulus dimensions carry partially valid category information.
he participant must learn the dimensional-integration principle
hat allows correct category assignment, once again based on the
resentation of single stimuli with feedback. Now one should not

gnore either dimension. Now attention must broaden to encom-
ass both aspects of each stimulus. Accuracy can be maximized
nly if information from both stimulus dimensions is integrated
nto the category decision. There is no simple rule by which to ver-
ally describe this category boundary. Nor is there any gain from
reating the stimulus dimensions separably and analytically. One
ould fare just as well in the II task by approaching stimuli holi-
tically and configurally and learning what behavioral response is
orrect for them.

In the data sets summarized here, the stimuli were sine-wave
ratings that varied on two dimensions: bar frequency (the spatial
requency of the disks’ internal black-white striping pattern) and
ar orientation (the tilt of the disks’ internal striping pattern). Cat-
gory exemplars were created using the randomization technique
eveloped by Ashby and Gott (1988).  Categories were defined by
ivariate normal distributions along the two stimulus dimensions,
ithin which each stimulus dimension ranged along a normalized

-to-100 scale. In the RB task (Fig. 1, top), Category A and B stimuli
ould have the same Dimension Y mean, but a contrasting Dimen-

ion X mean. A larger stimulus variance along dimension Y creates
he elliptical shapes of the categories’ exemplar clouds. The absence
f any XY covariance ensures that the exemplar clouds orient verti-
ally. In the II task, Category A and B stimuli would have contrasting
imension X and Dimension Y means. In this case, a substantial
ositive XY covariance would be used to ensure that the category
llipses slant up the major diagonal of the stimulus space.

Each stimulus was created by drawing a random sample (x,y)
rom the Category A or Category B distribution. This process was
epeated until the full set of Category A and Category B exemplars
ad been generated, with slight adjustments made to the exemplar
ets in the end so that their sample means and sample covariance
atched the desired population values for the two categories in

he task. In a typical experiment, there could be up to 300 exem-
lars in each category of each task. A few of these are illustrated in
ig. 1. Finally, a linear transformation was applied to each stimulus
oordinate-pair to map  its values from the original 0-to-100 scale to

 space representing actual values of spatial frequency (the number
f light-dark cycles per degree of visual angle) and orientation (the
ilt of the light–dark bands expressed in radians) used in the exper-
ment. For example, in Smith et al. (2010a), these mappings were:
patial frequency = 1.0 + x/30.0; orientation = y × pi/200 + pi/9.

It is important to note that RB and II tasks like those shown in
ig. 1 are matched for many important aspects of category struc-
ure, including category size, within-category exemplar similarity,
nd between-category exemplar separation. In a perceptual space
omposed of dimensions of about equal salience, the two  tasks are
lso matched for the a priori perceptual difficulty of the categoriza-
ion problem. In fact, the two category structures are essentially
dentical, except that one structure is rotated 45◦ through stimulus
pace. In a perceptual space composed of truly integral dimensions
e.g., the color dimensions of saturation and brightness, in which

ttentional processes cannot selectively target one dimension or
he other), the two category structures would be precisely identi-
al in every respect from the perspective of the perceiver, because
here would be no privileged dimensional axes, and thus neither
vioral Reviews 36 (2012) 2355–2369

category task would be unidimensional or rule-based. Thus, in
many senses, these two  tasks serve as mutual controls. They differ
only in the RB-II aspect that is crucial to the theoretical issues sur-
rounding implicit–explicit categorization and crucial to the present
cross-species comparisons.

The RB-II dissociative framework has the potential to make an
elegant contribution to research across species. By rotating the
dimensional axis of category tasks, from II to RB, one can ask
whether the cognitive systems of different species are dimension-
ally polarized. If so, then the dimensional task orientation—the RB
task—will admit strong and rapid learning, just as a polarizing filter
will strongly admit light when it finds the axis of the light’s polar-
ization. If the cognitive system of the species is not dimensionally
polarized, both II and RB tasks will be learned to the same level at
the same speed. This discovery can be made regarding any species
that can successfully perform in behavioral discrimination tasks.

4. Humans (Homo sapiens)

4.1. Method

Illustrating this dissociative methodology, Smith et al. (2010a)
gave sixty humans the two-dimensional RB and II category tasks
illustrated in Fig. 1. Participants were told that they should decide
whether each striped circle belonged to Category A or B. They were
motivated by the prospect of cash prizes to be awarded to those
who earned points most efficiently by classifying the disks cor-
rectly. Humans received the RB and II tasks in counterbalanced
order (RB-II or II-RB). Within each session, participants completed
600 trials that represented one random permutation of 300 Cat-
egory A and 300 Category B stimuli. Each trial consisted of one
disk presented in the center-top of a computer screen against a
gray background. The response icons (A and B) were located on the
screen’s lower-left and lower-right. Humans responded by pressing
keyboard keys, labeled and spatially positioned to correspond to the
A or B on the screen. Humans received points for correct responses.
They lost points for incorrect responses and incurred a 3-second
penalty delay. The screen included a scorecard that presented their
increasing (or decreasing) point total.

4.2. Accuracy-based results

Humans’ proportion correct by 10-trial block is shown in Fig. 2.
Clearly, humans learned the RB task more quickly and to higher lev-
els. They were .958 and .795 correct overall on the RB and II tasks,
respectively, an overall performance advantage of .163. Over their
last 100 trials, they showed an RB performance advantage of .140
(.968 vs. .828). This advantage characterized the terminal perfor-
mance levels within both RB-II and II-RB task orders. Nonetheless,
one sees that there is a period of stimulus acclimation and general
domain learning that characterizes performance in the first task
(RB or II) that an organism addresses. This acclimation period will
also appear in the results from other species.

4.3. Model-based results

Formal models provide another analytic approach for under-
standing humans’ categorization decision boundaries. For example,
we can fit a rule-based model to ascertain whether humans really
do create a vertical decision boundary in the RB task by attending
only to variation along the spatial-frequency dimension and sepa-

rating stimuli on that basis alone. The outcome of the modeling is
to specify the vertical line drawn through the stimulus space that
would best partition the participant’s Category A responses from
his or her Category B responses. One can also measure how accurate
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Fig. 2. Humans performing rule-based (RB) and information-integration (II) tasks.
(A)  Proportion of correct responses in each 10-trial block for 30 humans who  per-
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ormed 600 trials of an RB and II category task in that order. (B) Proportion of correct
esponses in each 10-trial block for 30 humans who performed 600 trials of an II
nd  RB category task in that order.

nd complete that best partition is—that is, how good an expla-
ation of the participant’s categorization performance the model
rovides. In effect, the modeling examines whether humans’ cate-
orization system in the RB task is truly dimensionally polarized.

A rule-based model fit best the RB performance of 57 of 60 par-
icipants, indicating that their decision boundaries were strictly
ertical. The three remaining humans were fit best by decision
ounds that were nearly vertical. Moreover, these three partici-
ants performed essentially as well (93.5% correct) as did the partic-

pants whose decision boundaries were modeled as strictly vertical
95.9% correct), confirming that the categorization strategies of
he two groups were essentially identical. Humans are strongly
imensionally polarized when facing RB tasks. They have a strong
endency to learn RB tasks by finding something close to the optimal
ecision bound that is aligned with the dimensional structure of the
timulus space and that essentially constitutes a unidimensional
ategory rule grounded by sharply selective attention.
We can also fit an information-integration model to ascertain
hether humans in the II task create a sloping decision boundary,

ndicating that they are successfully integrating stimulus informa-
ion over both dimensions. Here the outcome of the modeling is
vioral Reviews 36 (2012) 2355–2369 2359

to specify the line—of any slope and intercept—drawn through the
stimulus space that would best partition the participant’s Category
A responses from his or her Category B responses.

An information-integration model fit best the II performance
of 51 of 60 participants. This confirms that many humans can and
do—when necessary because the task’s structure makes rule-based
strategies insufficient and unworkable—adopt an information-
integration strategy by which they broaden out attention and
combine the partially valid category information offered by two
stimulus dimensions.

However, some participants’ data in the II task were still best fit
by the rule-based model, indicating that their best-fitting decision
bounds were strictly vertical and that their attention was allocated
exclusively toward one stimulus dimension. This strategy did not
serve these participants well. They performed much more poorly
than their peers (.695 correct vs. .815 correct). These participants
showed humans’ tendency to sometimes choose dimensionally
aligned, rule-based category-learning strategies even for tasks that
are not actually structured according to unidimensional category
rules. For interested readers, the Appendix gives more details on
typical model-fitting procedures in this area.

4.4. Summary

Thus, humans show distinct behavioral differences in learn-
ing RB and II category tasks (review in Ashby and Maddox, 2005).
They strongly dimensionalize these stimuli. They solve RB category
tasks quickly through explicit-reasoning and hypothesis-testing
processes. They declare verbally their solution. In contrast, they
learn II category tasks slowly. They integrate the dimensions poorly
and with difficulty because they perceive them so separably and
uncommensurately. They cannot verbally describe their II task
solutions.

These results raise many cross-species questions. Is the
multiple-system, implicit–explicit organization uniquely human?
Is the explicit system dependent on language and verbal rules,
or on symbolic-logical mental representations that could be lan-
guage independent and that might be possessed by animals as
well as humans? Are there brain regions or kinds of brain orga-
nization that are particularly well-organized for the rule-based
and hypothesis-testing processes of RB category learning? Does
this mean that some species—because they do not have that brain
organization—will not show the psychological privilege and pref-
erence toward RB tasks that humans clearly show? What was  the
phylogenetic origin of humans’ multiple category systems during
cognitive evolution? What is the phylogenetic depth of explicit,
rule-based categorization in particular? What does the phyloge-
netic map  of the multiple-systems organization look like, and what
is the phylogenetic breadth of explicit categorization in particular?
Is explicit categorization a human thing, an ape thing, a primate
thing, a mammal  thing, a vertebrate thing?

The matched and diagnostic RB and II tasks are well suited for
addressing these questions. These tasks allow the comparison of
rule-based and nonanalytic categorization within a carefully con-
trolled empirical framework. So now we  can go on to ask: if human
minds are dimensionally polarized, then what about the minds of
other species?

5. Rhesus macaques (Macaca mulatta)

5.1. Introduction
We chose rhesus macaques—an Old World monkey species—as
a test species to begin answering questions about the phylogenetic
breadth and depth of privileged dimensional categorization. We
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Fig. 3. Macaques performing rule-based (RB) and information-integration (II) tasks
A. Proportion of correct responses in each 100-trial block for three macaques who
performed 6,000 trials of an RB and II category task in that order. (B) Proportion of
360 J.D. Smith et al. / Neuroscience and Bi

pproached this investigation with some skepticism. Macaques’
apacity for explicit cognitive processing is not a salient feature of
heir overall cognitive adaptation. They have proportionally smaller
rontal cortices (Semendeferi et al., 2002). They are compromised
elative to humans on frontal tasks that offer response compe-
ition or require response inhibition (Stroop tasks, flanker tasks,
tc.—Roberts, 1996; Washburn, 1994). Therefore, it was  a reason-
ble hypothesis that they might have only a rudimentary explicit
ategory-learning system.

Supporting this hypothesis, Smith et al. (2011b) gave macaques
ule-based XOR (exclusive-or) category problems. (In an XOR task,
ategory A stimuli have either none or both of the two critical
ttributes; Category B stimuli have exactly one of the two  criti-
al attributes.) Macaques learned these tasks very slowly, accruing
undreds of errors as they reached terminal performance levels
f only about .750. Now it is true that the XOR task requires the
erivation of a two-dimensional rule that is more complex than
he one-dimensional rules explored within the RB-II theoretical
ramework. However, Smith et al. (2004) showed that macaques
earned even one-dimensional RB categories relatively slowly, over
undreds of trials, and with none of the sudden realizations and
ualitative performance improvements that humans show upon
iscovering the category rule. Thus, it remained an open ques-
ion whether macaques would bring to RB category tasks some
reference or privilege toward dimensional-analytic categoriza-
ion. Remember: if they do not, the RB and II tasks will be learned
qually well and equally quickly, because the tasks are perfectly
atched on every aspect of category structure and difficulty, unless

he organism can apply dimensional attention and rule-based cat-
gorization to the RB task.

.2. Method

Smith et al. (2010a) gave six macaques RB and II tasks like those
hat have been described. The macaques performed these tasks
n counterbalanced order (RB-II; II-RB). They had been trained to
espond to computer-graphic stimuli by manipulating a joystick
hat controlled a cursor. They were tested in their home cages at the
anguage Research Center of Georgia State University, with ad lib.
ccess to the test apparatus, working or resting as they chose during
ong sessions. They were neither food deprived nor weight reduced
or the purposes of testing and they had continuous access to water.

Each trial began with a black square presented in the same posi-
ion as the to-be-categorized stimulus. Animals moved the cursor
o touch the square as a trial-start response, indicating their readi-
ess to perform. The black square released to the disk and the two
esponse icons were illuminated. The macaques received a food
ellet for correct responses. They received a 20 s, trial-less timeout
eriod for incorrect responses. Stimuli were presented in random
ermutations of the 300 Category A and 300 Category B stimuli
vailable for a task.

.3. Accuracy-based results

Macaques’ proportion correct by 100-trial block is shown in
ig. 3. In comparing the performance of macaques (Fig. 3) and
umans (Fig. 2), remember the 10-fold difference in trial-block

ength and in total trials on task. Like humans, macaques clearly
earned the RB task more quickly and to higher levels than the II
ask. They were .838 and .711 correct overall on the RB and II tasks,
espectively, an overall performance advantage of .127. Over their
ast 1,000 trials, they showed an RB performance advantage of .126

.906 vs. .780). This advantage characterized the terminal perfor-

ance levels within both RB-II and II-RB task orders. In Fig. 3A, the
B advantage was .084 over the last 1,000 trials, even though when
hey performed the RB task first the macaques were dealing with
correct responses in each 100-trial block for three macaques who performed 6,000
trials of an II and RB category task in that order.

all of their general domain learning with the stimulus set. Despite
that early period of acclimation to the stimuli, macaques improved
to a very high, advantaged performance level late in the RB task. In
Fig. 3B, the RB advantage over the last 1,000 trials was .168.

The macaques’ sharp preference for dimensionally focused tasks
also revealed itself early in performance. Macaques were .915 cor-
rect on their first 1,000 trials when they completed the RB task
as the second of two tasks. They were .654 in the first 1,000 tri-
als when they completed the II task as the second of two  tasks—a
.261 performance disadvantage. Their appreciation of the RB task’s
dimensional structure in their second task was essentially instanta-
neous, demonstrating in another way  the privilege of dimensional
analysis within their category-learning system.

Indeed, Fig. 3 expresses this privilege in many ways. In Fig. 3A,
the RB1 task—terminally performed at very high levels—was
replaced by the II2 task. Performance fell off drastically, and never
recovered, giving every indication that the II task did not fit com-
fortably these macaques’ category-learning systems. In Fig. 3B, the

II1 task—performed terminally at low levels—was replaced by the
RB2 task. Performance improved instantaneously and immediately
rose to very high levels, to levels essentially as high as our macaques
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ver show, giving every indication that the RB task fit very comfort-
bly with these macaques’ category-learning systems.

.4. Model-based results

This psychological privilege was also revealed through modeling
nalyses. We  fit the rule-based and information-integration mod-
ls to each macaque’s data from their last 1,000-trial block. The
ule-based model fit best the RB performance of 4 of 6 subjects.
wo macaques were best fit by an information-integration model,
ndicating that their best-fitting decision bounds were not strictly
ertical. However, those bounds were nearly vertical. In actual-
ty, all 6 macaques showed sharply focused selective attention and
imensional learning in the RB task.

This analytic strategy was clearly reflected within the II task as
ell. One macaque in the II task was best fit by a rule-based model,

ndicating that his best-fitting decision bound was rule-based and
hat his attention was allocated exclusively to one dimension. Three
ther macaques adopted decision boundaries that were essen-
ially rule-based, though their data were fit slightly better by the
nformation-integration model because their boundaries were not
recisely vertical. Thus, the majority of the macaques showed a
trong dimensional focus even in the II task that did nothing to
ncourage that strategy and that even punished that strategy by
educing the rate of correct responses and the ongoing rate of rein-
orcement. Macaques’ category-learning system is dimensionally
olarized similarly to humans’ category-learning system, though
ne must bear in mind that macaques’ system does not learn cate-
ories nearly as rapidly.

.5. Summary

Macaques also showed distinctive behavioral differences in
earning RB and II category tasks. They strongly dimensionalized
he stimuli. They learned RB tasks faster and to higher termi-
al performance levels. In contrast, they learned II tasks slowly
o lower levels, and, even here, they showed some tendency to
dopt rule-based strategies that were highly non-optimal. These
esults suggest answers to several of the cross-species questions
aised earlier. For example, it clearly is not the case that language
s a necessary condition for the psychological privilege toward
ules and dimensional analysis to emerge. In early formulations of
ultiple-system theories, from Shepard et al. (1961) to Ashby et al.

1998),  theorists closely linked explicit categorization and category
ules with verbal hypotheses and descriptions. The macaque results
how that this link is not essential. There must be other ways for
imensional hypotheses to be represented in mind or expressed in
ognition, perhaps as non-verbal, propositional proto-rules, or cor-
ical loops of sustained activity, and so forth. However, humans use
ules with great agility, and they learn RB tasks much faster than
acaques. So, it is still possible that language and verbal hypothe-

es are an adaptive vehicle for holding rule-based hypotheses and
or referring to them during categorization. Language may  be able
o crystallize the rule-based processes of categorization and accel-
rate category learning in that way. Of course the results also show
hat the privilege toward dimensional analysis and category rules
s not a uniquely human thing. It extends beyond humans, at least
o some extent to other species in the order Primates. This implies

hat rule-based categorization had some earlier evolutionary ori-
in than with the hominids, and it raises the questions of when that
imensionally analytic system of categorization emerged, and why

t was adaptive.
vioral Reviews 36 (2012) 2355–2369 2361

6. Capuchin monkeys (Cebus apella)

6.1. Introduction

Macaques are Old World Primates—anthropoid, cattarrhine pri-
mates that in a sense represent or lie on the main sequence of
primate-ape-hominid evolution. In addition, macaques are noto-
riously flexible, adaptive, opportunistic, and successful primates.
They have the widest geographic range of any nonhuman primate.
They occupy diverse ecologies. They are full-spectrum omnivores.
For these reasons, macaques cannot by themselves support the
inference that dimensionally analytic categorization is broadly
privileged within the primate order.

Therefore, Smith et al. (2012) extended the survey of the
primates in this domain by testing a New World primate—the
capuchin monkey (Cebus apella). The New World (Platyrrhine)
primates separated from the Old World primates about 40 mil-
lion years ago. They represent another major branch of the
primate family tree. They provide a second crucial data point
in determining whether primates generally respond to dimen-
sional, rule-based category tasks with preference and psychological
privilege.

Capuchins themselves are adaptive and flexible learners in
many tasks—to the point that some refer to them as the poor-
person’s chimpanzee. They are especially noted for their use of
tools in the laboratory and in the wild, and for their general
problem-solving abilities (D’Amato and Colombo, 1989; Evans and
Westergaard, 2006; Flemming, 2011; Judge et al., 2005; Kennedy
and Fragaszy, 2008; McGonigle et al., 2003; Wright and Katz,
2006). On the other hand, recent research from several indepen-
dent laboratories has suggested that capuchins lack a capacity
for metacognition, a capacity likely to be allied to executive
attention and explicit cognition (Basile et al., 2008; Beran and
Smith, 2011; Beran et al., 2009; Paukner et al., 2006). There-
fore, for capuchins, too, it was a reasonable hypothesis that
they might have only a rudimentary explicit category-learning
system.

6.2. Method

Smith et al. (2012) gave four capuchins RB and II tasks in coun-
terbalanced order (RB-II or II-RB). The capuchins had been trained
to respond to computer-graphic stimuli by manipulating a joystick
that controlled a cursor (Evans et al., 2008). They were tested under
the conditions that have already been described for the macaques.

Each trial began with a black square presented in the same posi-
tion as the to-be-categorized stimulus. Capuchins moved the cursor
to touch the square as a trial-start response, indicating their readi-
ness to perform. The black square released to the disk and the two
response icons were illuminated. The capuchins received a food
pellet for correct responses. They received a 20 s, trial-less timeout
period for incorrect responses. Stimuli were presented in random
permutations of the 300 Category A and 300 Category B stimuli
available for a task.

In early testing, we  found that capuchins strongly benefited
from a method based on correction trials. By this method, time-
out periods for errors were followed by correction trials in which
the monkeys were presented the same stimulus from the pre-
vious trial, but their responses were not followed by reward or
penalty. Correct responses for correction trials were followed by
the next regular trial. Incorrect responses for correction trials

were followed by a repetition of the correction trial. Only exper-
imental trials (not correction trials) were analyzed. Given the
smaller number of animals tested, we  present results for each
individual.
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.3. Results: Logan (RB-II)

Fig. 4A shows the results from Logan’s RB and II tasks. Logan,
espite needing to acclimate to the new stimulus domain, showed

 strong RB acquisition. Over his last 2,000 RB trials, Logan was
914 correct. In contrast, over the last 2,000 II trials, Logan was .808
orrect, a .106 performance disadvantage.

Logan’s performance was modeled as described above. He
laced his RB decision boundary optimally, choosing the vertical
oundary that best differentiated the Category A and B stimu-

us classes. However, his II decision boundary was  distinctively
on-optimal. Logan kept a nearly vertical decision boundary. He
ontinued to pursue a dimensionalized task strategy to the detri-
ent of his II performance. This confirms in another way the

alience that dimensional foci have for capuchin monkeys during
ategorization.

To rule out the uninteresting hypothesis that one salient dimen-
ion controlled Logan’s perception, we gave him a third task, the
B task with a horizontal optimal decision boundary, so that now,
he orientation of the bars in the disks were solely relevant. The
lliptical stimulus ellipses in Fig. 1A, if rotated 90◦ counterclock-
ise about the center of the stimulus space, would then illustrate

he horizontal RB task. Now, Logan showed a flexible shift in his
ttention to emphasize the orientation dimension. Over his last
,000 trials, he performed at 92.9%. Moreover, he now placed his
B decision boundary optimally—horizontally—through the stim-

lus space. Thus, Logan easily and flexibly moved his decisional
oundary into the next dimensional polarity. What he did not
ccomplish well was to place his decisional boundary into a diago-
al, information-integration polarity. All his results are consistent
 tasks A–D. Proportion of correct responses in each trial block for four capuchin
ance in RB and II tasks.

with the preference and psychological privilege that capuchin
monkeys bring selectively to RB tasks.

6.4. Lily (RB-II)

Fig. 4B shows the results from Lily’s RB and II tasks. Despite
needing to acclimate herself to the stimulus domain, she showed a
strong RB acquisition, with performance levels that soon rose above
85%. Over her last trials in the RB task, Lily was  .854 correct. In con-
trast, over her last II trials, she was  .782 correct, a .072 performance
disadvantage compared to the RB task.

Lily’s modeling results were nearly identical to those of Logan.
She placed her RB decision boundary optimally, using essentially
the vertical decision boundary that best differentiated the Category
A and B stimulus classes. She was definitely not decisionally optimal
in her II task. Like Logan, she kept her decision boundary much too
vertical to the detriment of her II performance.

6.5. Liam (II-RB)

Fig. 4C shows the results from Liam’s II and RB tasks. The II task
was Liam’s first acquisition. His II acquisition was  very weak. Over
the last 2,000 trials in the II task, Liam was  .629 correct. In sharp
contrast, Liam’s appreciation of his second, RB task appeared to be
almost immediate, and he learned to high levels by the RB task’s
end. Over the last 2,000 trials in the RB task, Liam was .894 correct,

a .265 performance advantage compared to the II task.

Liam’s performance was modeled using the procedures already
described. Liam placed his II decision bound vertically, confirming
that he performed the task as a rule-based task even though it
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as not so constituted. This vertical decision boundary illustrates
gain the psychological privilege with which capuchin monkeys
pply rule-based frameworks to category tasks. Eventually this
ear-vertical decision boundary came to serve Liam well, when he
ransitioned into his second, RB task.

.6. Nala (II-RB)

Nala was the weakest learner of the four capuchins. Fig. 4D
hows her II and RB results. The II task was Nala’s first acquisition.
er II acquisition was extremely weak. Over the last 2,000 trials

n the II task, Nala was .528 correct. In contrast, Nala did progress
ith her RB acquisition. Over the last 2,000 RB trials, she was .686

orrect, a .158 performance advantage compared to the II task.
Nala’s performance was modeled using the procedures already

escribed. Because Nala learned nothing in her II (first) acquisi-
ion, no decision boundary could be estimated. In her RB (second)
cquisition, Nala did place her decision boundary vertically, appro-
riately to the structure of that task. Even though Nala was not the
trongest performer, for her, too, the RB task was more psycholog-
cally approachable.

We  gave Nala a second opportunity to master the II category
tructure. In her third task, the Category A and Category B stim-
lus ellipses straddled the minor diagonal of the stimulus space
nd there was an optimal decisional boundary extending from 10
’clock down to 4 o’clock in the stimulus space. The elliptical stim-
lus ellipses in Fig. 1B, if rotated 90◦ counterclockwise about the
enter of the stimulus space, would then illustrate this negatively
orrelated or minor-diagonal II task. She performed generally above
hance in this task, and at .705 correct over her last 2,000 tri-
ls. However, modeling revealed that she set a vertical decision
oundary, treating the task as rule-based even though it was not
o constituted. That Nala failed her first II task, succeeded with her
B task, and construed her second II task dimensionally all reflect
he general conclusion that capuchin monkeys, like humans and
hesus macaques, approach RB tasks with psychological privilege
nd greater learning potential, and sometimes apply RB strategies
ven when these are not optimal or warranted.

.7. Summary

All in all, capuchin monkeys appeared to be somewhat less sharp
nd sensitive learners than macaques, who in turn were less sharp
nd sensitive learners than humans. Nonetheless, capuchins also
earned RB tasks faster and to higher terminal performance levels.
n contrast, they learned II tasks slowly to lower levels, and, even
ere, they showed some tendency to adopt rule-based strategies
hat were highly non-optimal. These results suggest that the ten-
ency to approach RB category tasks with psychological preference
nd privilege extends broadly across the taxonomic tree of the pri-
ates, and perhaps therefore far back temporally into the earlier

tages of the evolution of the primates, or perhaps beyond.

. Pigeons (Columba livia)

.1. Introduction

At this point, one might suppose that the privilege of dimen-
ional categorization is distributed widely or even universally
cross vertebrate species. One wonders if there might be some-
hing inherent to the processing of sensory signals that forces a
referential psychological response to one-dimensional category

egularities. This would be an important theoretical conclusion
ere it true, because it could suggest the universality of dimen-

ional separability, stimulus analysis, and category rules. Thus, this
ossibility should be evaluated as broadly as possible. An important
vioral Reviews 36 (2012) 2355–2369 2363

strength of the RB-II dissociative technique is that it can be broadly
applied to any vertebrate species that is capable of participating in
structured experimental testing.

Accordingly, laboratories in New Zealand (NZ-Canterbury) and
the United States (USA-Tufts) did evaluate this theoretical possibil-
ity by giving pigeons II and RB category tasks instantiated using the
same sine-wave gratings varying in bar frequency and tilt. Upon
discovering this convergence across laboratories, the independent
investigations were combined (Smith et al., 2011a).

7.2. Method

Naïve pigeons (6-NZ; 11-USA), maintained at 80–85% of
free–feeding weight, were tested in a two-alternative sym-
bolic matching-to-sample choice procedure using touchscreen-
equipped LCD monitors. To-be-categorized stimuli were presented
through a window in each chamber’s front panel. These stimuli
were circular sine-wave gratings varying in bar spatial frequency
and orientation as already described. Choice stimuli were located
to each side of the stimulus. These choice stimuli were illuminated
following observing responses to the to-be-categorized stimu-
lus. Response assignments were counterbalanced across birds and
tasks. A single response to the correct or incorrect choice pro-
duced food reinforcement or a timeout, respectively, followed by
an inter-trial interval. A central food hopper in the front panel
delivered the grain reinforcements for correct choices. White noise
masked external sounds. Daily sessions contained approximately
equal numbers of samples from each category that were selected
randomly from the available pool. Training continued until each
bird’s performance reached criterion with 4 non-consecutive ses-
sions ≥ .800 correct (NZ) or with 6 non-consecutive sessions ≥ .850
(USA).

Though structured similarly, the NZ-USA projects had many
small procedural differences from one another (e.g., size of stimuli,
number of stimuli per category, length of intertrial interval, and so
forth; details in Table 1 of Smith et al., 2011a). These procedural
differences resulted from the independent planning and execut-
ing of the separate projects. The strongly converging results that
were obtained—despite these differences—underscore the robust-
ness of the results and strengthen the theoretical conclusion that
the pigeon data recommend.

7.3. Accuracy-based results

Three NZ pigeons and six USA pigeons received the RB task. Two
NZ pigeons experienced RB learning difficulty and one of these birds
failed to learn. These results already suggest the non-privileged
status of RB tasks for pigeons. On average, and excluding the RB
non-learner, pigeons reached criterion in the RB task after 33.2 ses-
sions. Three NZ pigeons and five USA pigeons received the II task. On
average, pigeons reached criterion in the II task after 32.9 sessions.
Even excluding the one RB non-learner, there was no RB advantage
in the speed of learning.

Over all sessions, RB birds and II birds were .661 and .682 cor-
rect, respectively, again with the RB non-learner excluded. Over
their last 10 sessions, RB birds and II birds were .829 and .820 cor-
rect, respectively, again with the RB non-learner excluded. There
is no evidence of an RB performance advantage in these compar-
isons. Of course excluding the RB non-learner makes these analyses
conservative.

Fig. 5A shows performance by session from the onset of learn-
ing for the eight RB-learning pigeons and the eight II-learning

pigeons. There is no evidence of an RB performance advantage
in these forward learning curves. A problem with these curves is
that the pigeons were removed from the task upon reaching crite-
rion, leaving the weaker performing birds to be graphed alone in
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Fig. 5. Pigeons performing rule-based (RB) and information-integration (II) tasks
A.  Proportion of correct responses in each session from the onset of learning for-
ward for 8 RB-learning pigeons (filled-square symbols) and 8 II-learning pigeons
(open-triangle symbols). (B) Proportion of correct responses in each session from
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be coincidental. Notice, too, that this hypothesis shares with the
he  criterial block backward for 8 RB-learning pigeons and 8 II-learning pigeons.

ater sessions. This creates some waviness in the forward learning
urves. Accordingly, Fig. 5B shows the performance of the birds by
ession backward from the criterial block. These backward-learning
urves align better the main acquisition epochs of the birds. (The RB
on-learner was excluded from both graphs in Fig. 5.) There is still
o evidence of an RB performance advantage in these backward

earning curves. To the contrary, there is a very close equivalence
etween II and RB performance leading up to the criterial block, as
hough the pigeons were performing two category tasks of just the
ame character and learnability.
This conclusion about pigeons’ categorization is not constrained
y statistical power. There were essentially no RB-II differences in

earning rates or levels, though relatively large numbers of birds
vioral Reviews 36 (2012) 2355–2369

were tested in two  independent experiments. There is no sugges-
tion that a larger sample of pigeons would have produced any
RB performance advantage, much less one the size seen in pri-
mates. In contrast, primates’ RB performance advantages are easily
identifiable, within small samples or even individual learners. The
conclusion about pigeons’ categorization is also not constrained
by particular methodological choices. There were many methodo-
logical differences between the NZ and USA procedures, yet nearly
identical results were obtained.

7.4. Model-based results

The accuracy-based results support one inference about the
decision strategies pigeons use. That is, one knows from the equiv-
alent RB and II performance levels and learning speeds that pigeons
do not bring a unitary rule-based system to these tasks. If they did,
they would perform well on the RB task that fits the rule-based sys-
tem but poorly on the II task that does not fit that system. This is
not what Smith et al. (2011a) observed.

Formal modeling underscores this conclusion. Berg and Grace
(2011) compared two- and one-dimensional models to individ-
ual pigeons’ II data from the New Zealand project described in
Smith et al. (2011a). The best-fitting decision bounds were diag-
onal in 11 of 12 cases when 900-trial II data sets were modeled.
These diagonal bounds accounted for 88% of the pigeons’ catego-
rization responses, showing that the pigeons used their decision
bounds efficiently. This diagonality also characterized the decision
bounds of the pigeons tested in the USA (Tufts) project described
in Smith et al. These diagonal bounds allowed pigeons to effec-
tively partition the Category A and B stimulus distributions and
reach terminal performance levels of about 90% correct (Fig. 5A
and B). Pigeons do not default to vertical or horizontal decision
bounds in performing II tasks. They perform adaptively according to
diagonal decision bounds that imply information integration across
dimensions.

These modeling results suggest a parsimonious alternative
hypothesis: that pigeons bring a unitary nonanalytic category-
learning system to II and RB tasks that is indifferent to the
orientation or polarization of the category task within the stim-
ulus space. The diagonal decision bounds confirm that pigeons
have a well-developed nonanalytic system for category learning.
However, this system would serve equally well the learning of II
and RB tasks. The mechanics of conditioning and association—by
which whole stimuli come to elicit adaptive behaviors—would not
be different in the two  tasks at all. Accordingly, this hypothesis
also explains the equality in the terminal levels of perfor-
mance for II and RB tasks and the equal speeds of learning. It
also explains what primates and humans have added to cat-
egorization to show the different II-RB data patterns they do
show.

An alternative hypothesis might be that pigeons have a strongly
developed nonanalytic categorization utility that serves the II
task, and an underdeveloped analytic categorization utility that
serves the RB task. Then, the equal speeds and levels of learn-
ing would arise because the analytic system was  underdeveloped
by just the right amount to produce the precise performance
equalities that we  observe. This hypothesis is unparsimonious
because it uses multiple systems unnecessarily to explain identi-
cal performance levels. It is implausible because the precise match
between nonanalytic robustness and dimensional weakness would
parsimonious hypothesis the crucial insight that pigeons are stri-
kingly less dimensionally analytic in category-learning than are the
nonhuman primates and humans.
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. General discussion

.1. Summary

The results reviewed here show the broad applicability of the
B-II task-dissociation framework. One can ask whether the cogni-
ive system of any species is dimensionally polarized by rotating
he dimensional axis of category tasks. If a cognitive system is
ot dimensionally polarized, II and RB tasks will be learned to
he same level, at the same speed, and in the same nonanalytic

anner. If dimensional polarization is present, a robust RB per-
ormance advantage will emerge, for then the RB task can receive
he psychological privilege of dimensional analysis and rule-based
ecisional strategies. This framework may  let comparative psychol-
gists trace the evolutionary emergence of dimensional attention
nd rule-based cognition.

Here, exploring the potential of this framework across several
pecies, humans, rhesus macaques, and capuchin monkeys partic-
pated in II and RB category tasks. All three species experienced

ore difficulty learning II tasks that required perceptual integra-
ion over two dimensions. Their learning in these tasks was slower
nd they reached lower terminal performance levels. In contrast,
ll three species appeared to dimensionalize the stimulus space,
ttended well to single dimensions, and learned RB category tasks
aster and to higher terminal performance levels. Their cognitive
ystems were dimensionally polarized.

Remarkably, pigeon minds appeared not to preferentially appre-
iate one-dimensional task solutions or to use what one might call
roto-rules. Pigeons showed no tendency to learn rules or to apply
imensional analysis in learning RB and II category tasks that served
s mutual controls for one another. In sharp contrast to humans and
roadly diverse primate species, pigeons showed complete indif-
erence to the task’s rotation in stimulus space, learning RB and
I tasks equally quickly to the same level. Their cognitive systems

ere not dimensionally polarized.

.2. Characterizing nonanalytic systems for categorization

Pigeons’ indifference to the task’s rotation in stimulus space is
ike humans’ indifference to task rotations within non-separable
timulus spaces that defeat the analytic processes of selective
ttention (Foard and Kemler Nelson, 1984; Smith and Kemler,
978). For example, with the color dimensions of saturation and
rightness, humans can detect stimulus differences and make
timulus comparisons, but they do not do so using dimensional
rameworks and attributions (Garner, 1974).

Pigeons’ data pattern is also similar to humans’ nonanalytic
ategory learning that is probably supported by humans’ implicit-
triatal procedural-learning system (Ashby et al., 1998; Ashby and
ll, 2001; Maddox and Ashby, 2004). That system would not be
ffected by whether the category task is dimensionally aligned or
ot, and learning would proceed equivalently either way, because
he gradual association of cortical inputs to behavioral outputs (i.e.,
ategorization responses) would occur through the same mecha-
ism and at the same rate in either case.

Pigeons’ performance is also consistent with a cognitive orga-
ization by which they gradually associate behavioral responses
o regions of perceptual space or to unanalyzed stimulus wholes,
hile withholding (or lacking the capacity for) stimulus analysis,

elective attention, and rule formation. This interpretation recalls
earce’s (1994) theory that some animals treat multi-dimensional
timuli as unitary, configural wholes. The nature of receptive fields

n the perceptual system suggests that Pearce’s suggestion about
onanalytic stimulus processing could be realized in the brain.
igher-order receptors could receive two-dimensional (spatial

requency-orientation) inputs, and could be adapted to maximally
vioral Reviews 36 (2012) 2355–2369 2365

respond to some optimal combination of values along the two
dimensions. Activation would degrade for less optimal stimulation,
but the second-order unit would not need to have any appreciation
of which dimensional input was  non-optimal and by how much. It
would only respond less actively to the non-optimal input. Pearce
et al. (2008) demonstrated a striking failure of selective attention to
dimensions by pigeons, leading them to question whether pigeons
possess central attention-allocation processes. Their findings and
interpretation converge strongly with the findings and interpreta-
tion in Smith et al. (2011a).

There might be inherent advantages to having a unitary
category-learning system based in the nonanalytic integration of
multiple dimensions. There could be a neural economy to a uni-
tary system that would suit nervous systems that are constrained
in size by the requirements for flight. Organisms could reduce
strategy competition during category learning that arises from
multiple systems engaging the same task, and avoid the adventi-
tious rules that humans sometimes pursue during category learning
(Jitsumori, 1993). A unitary, nonanalytic system might also be espe-
cially adept at learning complex or non-linear category-decision
boundaries that would defeat a dimensionally aligned, rule-based
system. And, if natural kinds and categories are often multidimen-
sionally organized, with instances presenting category-relevant
information along diverse and changing dimensions, then broad
or configural attention would be adaptive for leaving the organ-
ism open in parallel to information from many potential channels,
and adaptive for reducing the chance that attention would be
misdirected away from crucial information. Finally, we  point out
that for many behavioral purposes, the dimensional provenance of
signaling information does not matter. What matters is the resul-
tant behavior, and whether it is elicited by one-dimensional or
two-dimensional informational signals is beside the point of adap-
tation and survival.

All in all, one sees that there could be simplicity, parsimony,
breadth, and power in a categorization system that only ever did
one thing—associate behavioral responses to whole stimuli, with-
out analyzing them featurally, aligning them dimensionally, or
forming rules about them and their category membership. We
therefore suggest that pigeons’ category learning could illuminate
a phylogenetically ancient associative categorization system that
is widely distributed across the vertebrates and that pigeons, non-
human primates, and humans share.

8.3. The emergence of analytic systems for categorization

In contrast to pigeons, the three primate species accorded sub-
stantial psychological privilege to dimensional rules. Therefore, to
some extent, both capuchins and macaques demonstrated the use
of rule-based categorization processes that are deemed in humans
to be explicit, conscious, declarative, and reasoning/language-
based. The results from these two species represent an important
new continuity between primate and human cognition.

It is important to see that these results were not predetermined.
RB and II tasks are carefully matched to one another in every aspect
relating to the inherent perceptual difficulty of the categorization
problem and the maximum proportion correct achievable by an
ideal observer. The default expectation would be for equivalent
performance between RB and II tasks.

Remember also that category learning is sometimes managed
in humans (and probably in monkeys, too) by an implicit-striatal
system that uses a form of procedural learning. It is an important
point that this system could learn both RB and II tasks equally well.

In this case, one would also predict equal RB and II performance.
The implicit categorization system would not even know what rota-
tion of a task in stimulus space it was encountering at any point,
or whether that rotation was dimensionally aligned or not. Either
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ay, it would simply associate responses to regions of perceptual
pace, no matter how those category regions bisected the stimu-
us space. We  already have—in pigeons—a concrete example of a
ertebrate species that appears to have only a unitary system for
ategory learning that treats RB and II tasks equivalently. Pigeons
ctually demonstrate clearly that RB and II tasks are equally difficult
ntrinsically.

Another possibility is that macaques and capuchins might per-
eive multidimensional stimuli less separably and more integrally
han humans (Foard and Kemler Nelson, 1984; Garner, 1974;
arner and Felfoldy, 1970; Handel and Imai, 1972; Lockhead, 1972).
his would also leave the processes of categorization indifferent
o the rotation of the task in perceptual space and to the dimen-
ional alignment of the task’s axes. There is also a concrete model
or this—young human children sometimes perceive multidimen-
ional stimulus combinations more integrally than adult humans
o (Shepp and Swartz, 1976; Shepp et al., 1980; Smith and Kemler,
977, 1978; Smith and Kemler Nelson, 1984; Ward, 1983). Pearce’s
onfigural theory (Pearce, 1987, 1994) would also allow one to
redict equivalent RB and II performance. That theory supposes
hat multi-dimensional stimulus compounds in their entirety—that
s, not dimensionally analyzed—enter into associations with out-
omes and responses.

We have also pointed out the potential advantages that might
avor a unitary, nonanalytic categorization system. That system
ould grant the organism a cognitive economy, reduced strat-

gy competition, freedom from maladaptive rules and misplaced
ttentional foci, a facility with non-linear category boundaries, and

 facility with complexly varying aspects of family-resemblance-
ased natural categories.

For all the foregoing reasons, rhesus macaques and capuchin
onkeys—even humans—might have been found to possess a uni-

ary category-learning system that simply associated responses to
timuli, without overlaying axes, dimensions, and rules. But that is
ot what they show. They clearly have the overlay of axes, dimen-
ions, and rules. Why?

This question brings us to the precipice of a just-so story.
herefore, we simply point out that the emergence of an explicit,
nalytic categorization utility would also potentially offer distinct
dvantages. It would allow for economical, quickly learned, easy
o maintain, and easy-to-generalize category representations (i.e.,
ules). It would bring cognitive flexibility and attentional agility
rising from dimensional analysis and selective attention. Perhaps
ost important, it would open up the possibilities for cogni-

ive analysis, rules and inferences from that analysis, symbolic
epresentations of dimensional hypotheses, and eventually even
anguage.

The early emergence of this dimensionally analytic capability
ould have occurred—in fact, clearly did occur—in the absence of
he verbal coding for analyzed dimensions and rules. This is an
mportant theoretical point because there is an ongoing tendency
n cognitive neuroscience to conflate the dimensional-rule pole of
ognition with the verbal-declarative response modality. Nonethe-
ess, it is possible that there are important interactions between
xplicit category rules and verbal coding. Verbal coding could aug-
ent the privilege of explicit rules in cognition, by facilitating

heir formulation or evaluation, or by facilitating their maintenance
cross trials. Conversely, and this could be an important point about
ognitive evolution, the pre-existing privilege of unidimensional
ttention and category rules could have generally promoted the
evelopment of the verbal coding and language communication of
hose rules. Therefore, the processing preference and privilege that

eveloped for dimensional analysis and category rules may  have
een a premier adaptation that fostered cognitive evolution in the
rimate-hominid lineage.
vioral Reviews 36 (2012) 2355–2369

8.4. Further directions

To date, the research on pigeons in this area is all there is
on the class Aves. Pigeons do demonstrate that the psychological
privilege accorded dimensional analysis and one-dimensional cate-
gory rules is not a vertebrate-wide cognitive adaptation. However,
we cannot claim that this privilege would be absent in all birds
or in all non-primate vertebrates. There are bird families such as
Corvidae (crows, jays, etc.) that are more cognitively sophisticated
than pigeons (Emery, 2006; Emery and Clayton, 2004; Mackintosh
et al., 1985; Wilson et al., 1985; Wimpenny et al., 2009). There are
marine-mammal species (dolphins, sea lions, etc.) that may  be cog-
nitively sophisticated though they lie outside the order Primates
(Reiss and Marino, 2001; Smith et al., 1995). So, it remains possible
that explicit, rule-based cognition could arise generally as the last
frost of intelligence that settles on the highest peaks of cognitive
sophistication, including primates, marine mammals, and corvids.
Research with these latter species would constructively augment
the base of knowledge in this area, providing critical tests of the
evolutionary breadth of explicit category learning.

If rule-based categorization is a primate invention, that would
have one set of implications for considering the cognitive evolution
of the primates. If rule-based categorization is a widely distributed,
ultimate achievement of intelligent mind or reflective cognition,
that would be interesting in a different way. Of course species
outside the primates would face potential constraints on building
systems for explicit, rule-based categorization because they would
not be able to use the same brain systems that primates do for that
building, and so the system might have to be organized in the brain
in some other way.

The existing research, though we  have sampled primate species
fairly broadly, also cannot support the inference that dimensional
polarization of categorization systems extends to all the primates,
so that it might be judged to be an original primate invention. This
would have to be concluded based on a fuller mapping of primate
species, especially including the prosimians. It would be equally
interesting no matter whether the prosimians showed the data pat-
tern of dimensional polarization or not. It would either tend to cast
back earlier our sense of the phylogenetic emergence of this capac-
ity, or else it would restrict that capacity to the higher primates,
just as other research has found important cognitive differences
separating the prosimians and the anthropoid primate suborder
(monkeys, apes, and humans—e.g., Rumbaugh & Pate, 1984).

Now, finally, we  come to nonhuman primates in relation to
humans. It is interesting to consider the elements of humans’ rule-
based categorization system that macaques and capuchins do or
do not share. The human system is analytic, dimensionalizing, ver-
bal, explicit, and conscious. The results show that macaques and
monkeys share with humans the analytic and dimensional frame-
work within which they grasped RB tasks with substantial privilege.
So far, so good. However, monkeys are not verbal as humans are.
They are using some form of dimensionally-analytic categorization
that is not verbally grounded. Beyond that, though, our results cer-
tainly do not force the conclusion that monkeys hold their rules
declaratively, fully explicitly, or in conscious awareness. Clearly,
more research should be forthcoming to explore these possibilities
and ground them empirically, by further dissociating explicit from
implicit category learning in nonhuman primates.

For example, because the explicit system represents category
information in working memory, it should be robust to delays in
the feedback signal. In fact, several studies have shown that II
category learning in humans is impaired if the feedback signal is

delayed for even a few seconds, whereas RB learning is unaffected
with delays as long as 10 s (Maddox et al., 2003; Maddox and Ing,
2005). Showing this dissociation in macaques or capuchins would
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rovide further evidence that explicit and implicit category-
earning systems in humans and monkeys are similar.

For another example, because rules need time and cognitive
esources to be evaluated and adjusted based on feedback, RB
earning but not II learning should be impaired if the amount of
ime to process the feedback signal is limited. This dissociation
as confirmed in humans by Maddox et al. (2004).  Showing this
issociation in nonhuman primates would suggest that they also
rocess deliberately and cognitively the feedback given on train-

ng trials. It might indicate that they, like humans, are engaged
n the hypothesis-testing and hypothesis-replacing processes that
re the crucial components of explicit, rule-based categorization.
n our view, the RB-II framework lays the groundwork for impor-
ant future lines of research on animals’ reflective minds and their
apacities for declarative cognition.

. Conclusion

The application of the RB-II dissociative framework across
pecies is an example of the synergy that can arise among cog-
itive psychology, neuroscience, and comparative psychology. It is
emarkable that this theoretical framework, born within human
ognitive psychology and cognitive neuroscience, appears sud-
enly poised to open new empirical windows on the minds of many
pecies. In return, those windows seem likely to illuminate the evo-
utionary roots and shoots of the stem categorization system from

hich that of humans and the primates emerged.
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ppendix A.

This appendix summarizes the models referred to in the test and
lso describes the model-fitting procedures. For more details, see
addox and Ashby (1993).
Rule-based model.  The rule-based model assumes that the par-

icipant sets a decision criterion on one stimulus dimension (either
ar frequency or orientation). The outcome of modeling is to spec-

fy the vertical or horizontal line drawn through the stimulus space
hat would best partition the participant’s Category A responses
rom his or her Category B responses. This model has two  parame-
ers: a criterion value on the relevant dimension and a perceptual
oise variance.

Information-integration model.  The information-integration
odel assumes that the participant sets a linear decision bound

hat can have any slope and intercept. The outcome of modeling is
o specify the line drawn through the stimulus space, of any slope
nd intercept, that would best partition the participant’s Category

 responses and Category B responses. This model had 3 param-
ters: the slope and intercept of the linear decision bound and a
erceptual noise variance.

Model selection. The procedures for selecting the best-fitting
odel were as follows. Parameters were estimated using the
ethod of maximum likelihood. That is, modeling evaluated which
odel would, with maximum likelihood, have created the distri-
ution within the stimulus space of Category A and Category B
esponses that the participant actually produced. Then the Bayesian
nformation Criterion (Schwarz, 1978) determined model selec-
ion: Bayesian Information Criterion = rln N − 2ln L, where r is the
vioral Reviews 36 (2012) 2355–2369 2367

number of free parameters, N is the sample size, and L is the likeli-
hood of the model given the data.
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