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a b s t r a c t

The use of addictive drugs can have profound short- and long-term consequences on social behaviors.
Similarly, social experiences and the presence or absence of social attachments during early development
and throughout life can greatly influence drug intake and the susceptibility to drug abuse. The following
review details this reciprocal interaction, focusing on common drugs of abuse (e.g., psychostimulants,
opiates, alcohol and nicotine) and social behaviors (e.g., maternal, sexual, play, aggressive and bonding
behaviors). The neural mechanisms underlying this interaction are discussed, with a particular emphasis
on the involvement of the mesocorticolimbic dopamine system.
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. Introduction

The profound consequences of substance abuse on social behav-
ors are readily apparent when one considers the poor parenting
Hawley et al., 1995; Johnson et al., 2002), interpersonal aggres-
ive acts (Chermack et al., 2008; Langevin et al., 1982; Testa et
l., 2003), sexual risk behaviors (Inciardi, 1994; Lejuez et al., 2005)
nd marital instability (Kaestner, 1995) of compulsive drug users.
qually evident is the protective nature of social bonds, including
lose parent–child relationships (Kendler et al., 2000), healthy fam-
ly structures and nurturing peer groups (Bell et al., 2000; Ellickson
t al., 1999), on the vulnerability to substance abuse. Although
eciprocal interactions between drugs of abuse and social behaviors
ave been thoroughly documented in human and animal studies,
he neural mechanisms underlying these behavioral interactions
emain largely unknown.

While multiple neural systems undoubtedly underlie both
ocial- and drug-related behaviors, the mesocorticolimbic
opamine (DA) system is in a key position to mediate inter-
ctions between the two. This system consists of DA producing
ells that originate in the ventral tegmental area (VTA) of the
idbrain and project to various forebrain regions including the

ucleus accumbens (NAcc), medial prefrontal cortex (mPFC) and
mygdala. This highly conserved neural circuit is thought to play a
ritical role in the assignment of motivational value to biologically
elevant stimuli, resulting in the production of adaptive behaviors
Kelley and Berridge, 2002; Nesse and Berridge, 1997; Panksepp
t al., 2002), including species-specific social behaviors (e.g., pair
ond formation in monogamous species and maternal motivation

n mammals (Aragona et al., 2006; Curtis et al., 2006; Numan and
tolzenberg, 2009; Young et al., 2008a). Increasing experimental
vidence has led to the suggestion that drugs of abuse exert
heir powerful control over behavior by artificially activating and
ltimately altering this circuitry (Kelley and Berridge, 2002; Nesse
nd Berridge, 1997; Panksepp et al., 2002). Indeed, acute expo-
ure to all known drugs of abuse directly or indirectly activates
A neurotransmission in the NAcc and repeated drug exposure

esults in enduring alterations in mesocorticolimbic brain regions,
articularly the VTA and NAcc (Fig. 1) (Berke and Hyman, 2000;
enry et al., 1989; Henry and White, 1995; Hu et al., 2002; Nestler,
004, 2005; Pierce and Kalivas, 1997). These short- and long-term
hanges, in turn, modify animal behaviors (Robinson and Becker,
986), including those of a social nature.

In the following review, we will describe the interaction that
ccurs between drug use/abuse and social behaviors in humans and
nimals alike (Table 1). We will focus on the effects of drug intake on
aternal, sexual, play, aggressive and bonding behaviors. Our dis-

ussion will include the effects of psychostimulants (e.g., cocaine,
mphetamine (AMPH), and its derivatives methamphetamine and
ethlyenedioxy methamphetamine (MDMA)), opiates (e.g., heroin

nd morphine) and other commonly abused drugs, such as alcohol

nd nicotine. The role of mesocorticolimbic DA in each behavior
ill be described as will be evidence to suggest that drug-induced

lterations in this system may underlie the effects of drugs of
buse on behavior. Finally, we will discuss studies that have
nvestigated the impact of social experiences and the presence or
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

absence of strong social attachments on the vulnerability to drug
abuse.

2. Maternal behavior

2.1. Drug effects on maternal behavior

The display of maternal behavior after parturition is intrinsically
motivated and exceptionally stable across mammalian species, yet
a variety of studies have demonstrated that its integrity can be
compromised by drugs of abuse. In controlled human studies, the
deleterious effects of both psychostimulant and opiate addiction
on maternal behaviors have been thoroughly documented. Women
who abused either type of drug during pregnancy spent less time
interacting with their newborns (Gottwald and Thurman, 1994),
showed significantly less enthusiasm during mother–infant inter-
actions (Burns et al., 1997), and displayed higher levels of negative
parenting behaviors (Johnson et al., 2002) and less overall parental
involvement (Suchman and Luthar, 2000) than non-drug abusing
women. Additionally, mothers who continued drug use after par-
turition showed less maternal responsiveness than mothers who
remained drug free (Johnson et al., 2002; Schuler et al., 2000),
and demonstrated physical and emotional neglect toward their
children and a loss of interest in care-giving when under the influ-
ence (Hawley et al., 1995). These and other studies indicate the
profound negative consequences of drug abuse on maternal behav-
ior. However, confounding factors within these studies – including
socioeconomic status, preexisting psychopathologies and partici-
pant polydrug use – make it difficult to interpret the contribution of
a specific drug or temporal pattern of drug exposure to the observed
behavioral outcomes.

Nonhuman primate (Schiorring and Hecht, 1979) and rodent
models have been used to examine the effects of drug expo-
sure on maternal behavior under more controlled conditions. The
vast majority of these studies have used laboratory rats to docu-
ment the disruptive effects of opiate (Bridges and Grimm, 1982;
Grimm and Bridges, 1983; Mayer et al., 1985; Slamberova et al.,
2001), AMPH (Frankova, 1977; Piccirillo et al., 1980), metham-
phetamine (Slamberova et al., 2005a, 2005b), and cocaine (Febo
and Ferris, 2007; Johns et al., 1994; Kinsley et al., 1994; Vernotica
et al., 1996, 1999; Zimmerberg and Gray, 1992) exposure during
gestation and/or after parturition on proactive, motivated mater-
nal behaviors commonly displayed by this species, including pup
retrieval, pup licking/grooming and nest building behavior (Numan
and Stolzenberg, 2009). Here, we will review these studies, focus-
ing first on the short-, and then on the long-term effects of drug
exposure on these maternal behaviors in the postpartum rat (dam).

A variety of studies have indicated that drugs of abuse alter
maternal behaviors in rats shortly after administration. Dams
exposed to AMPH or cocaine during the postpartum period demon-
strated reduced pup licking, increased latencies to contact and

retrieve pups and/or reduced nest building behaviors when com-
pared to saline-injected controls (Frankova, 1977; Piccirillo et al.,
1980; Zimmerberg and Gray, 1992). Similarly, cocaine exposure
throughout gestation and during the postpartum period impaired
nest building behavior and decreased the percentage of females
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Table 1
Short- and long-term effects of drugs of abuse on social behaviors.

Behavior Drug type Short-term
effectsa

Short-term refs Long-term
effectsb

Long-term refs

Maternal behavior Psychostimulants ↓c (Frankova, 1977; Johns et al., 1994;
Kinsley et al., 1994; Piccirillo et al.,
1980; Schiorring and Hecht, 1979;
Vernotica et al., 1996; Zimmerberg
and Gray, 1992)

↓ (Burns et al., 1997; Gottwald and
Thurman, 1994; Hawley et al., 1995;
Johns et al., 1994, 1997; Johnson et
al., 2002; Schuler et al., 2000;
Slamberova et al., 2005b,a)

↑d (Febo and Ferris, 2007; Slamberova et
al., 2005a)

–e (Vernotica et al., 1996)
Opiates ↓ (Bridges and Grimm, 1982; Grimm

and Bridges, 1983; Mayer et al., 1985)
↓ (Bauman and Dougherty, 1983;

Schuler et al., 2000; Slamberova et al.,
2001; Suchman and Luthar, 2000)

Sexual behavior Psychostimulants ↓ (Bignami, 1966; Cagiano et al., 2008;
Dornan et al., 1991; El-Bassel et al.,
2003; Guarraci and Clark, 2003;
Guarraci et al., 2008; Pfaus et al.,
2009; Weatherby et al., 1992)

↑ (Agmo and Picker, 1990; El-Bassel et
al., 2003; Holder et al., in press; Kall,
1992; McElrath, 2005; Pfaus et al.,
2009)

↑ (Afonso et al., 2009; Fiorino and
Phillips, 1999a,b; Guarraci and Clark,
2003; Nocjar and Panksepp, 2002)

Opiates ↓ (De Leon and Wexler, 1973; El-Bassel
et al., 2003; Mintz et al., 1974)

↓ (Mintz et al., 1974)

↑ (El-Bassel et al., 2003; Mitchell and
Stewart, 1990)

↑ (De Leon and Wexler, 1973)

– (Pfaus et al., 2009)
Alcohol ↓ (Scott et al., 1994)

↑ (Ferraro and Kiefer, 2004)

Social play Psychostimulants ↓ (Beatty et al., 1984; Beatty et al.,
1982; Holloway and Thor, 1985;
Sutton and Raskin, 1986;
Vanderschuren et al., 2008)

↓ (Overstreet et al., 2000; Rodning et
al., 1989; Wood et al., 1994; Wood et
al., 1995)

Opiates ↓ (Rodning et al., 1989)
↑ (Normansell and Panksepp, 1990;

Vanderschuren et al., 1995)
↑ (Hol et al., 1996; Niesink et al., 1996)

Alcohol ↑ (Trezza et al., 2009)
Nicotine ↓ (Irvine et al., 1999; Thiel et al., 2009)

↑ (Irvine et al., 1999; Trezza et al., 2009)

Aggressive behavior Psychostimulants ↓ (Darmani et al., 1990; Tidey and
Miczek, 1992a)

↓ (Darmani et al., 1990; McMurray et
al., 2008; Melega et al., 2008)

↑ (Tidey and Miczek, 1992a) ↑ (Chermack et al., 2008; Darmani et al.,
1990; DeLeon et al., 2002a; Gobrogge
et al., 2009; Harrison et al., 2000a;
Jackson et al., 2005; Johns et al., 1994,
1997b; Knyshevski et al., 2005a,b;
Lubin et al., 2003; McMurray et al.,
2008; Melloni et al., 2001)

– (Darmani et al., 1990; Johns et al.,
1994)

– (McMurray et al., 2008)

Opiates ↓ (Kinsley and Bridges, 1986)
↑ (Rodriguez-Arias et al., 1997) ↑ (Ferrari and Baggio, 1982; Gianutsos

et al., 1976, 1974; Harris and
Aston-Jones, 1994; Nath et al., 2000;
Puri and Lal, 1973; Rodriguez-Arias et
al., 1999; Singh, 1975; Tidey and
Miczek, 1992b)

Alcohol ↓ (Berry, 1993; Miczek et al., 1998)
↑ (Berry, 1993; Chermack and Taylor,

1995; Hagelstam and Hakkanen,
2006; Madan et al., 2001; Miczek et
al., 1998; Spunt et al., 1998)

↑ (Chermack et al., 2008; Krsiak et al.,
1977; Mokuau, 2002; Walsh et al.,
2003)

– (Berry, 1993; Miczek et al., 1998) – (Haapasalo and Hamalainen, 1996)
Anabolic Steroids ↑ (DeLeon et al., 2002b; Harrison et al.,

2000b; Melloni et al., 1997; Melloni
and Ferris, 1996)

Gamma-hydroxybutyrate ↑ (Navarro et al., 2007)
↓ (Navarro et al., 2007)

Pair bonding Psychostimulants ↓ (Gobrogge et al., 2009; Liu et al.,
2010)

a Short-term effects refer to behavioral effects noted within 5 h of drug administration. Behavioral tests may have occurred after single or repeated drug administration.
b Long-term effects refer to behavioral effects noted at least 5 h after drug injection. Most of these studies were conducted after repeated drug administration.
c (↓) Decrease.
d (↑) Increase.
e (–) No effect.
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Fig. 1. Simplified cartoon illustrating the common effects of drugs of abuse on the
mesocorticolimbic dopamine (DA) system. (A) The mesocorticolimbic DA system
consists of DAergic cells in the ventral tegmental area (VTA) that project to various
forebrain regions including the nucleus accumbens (NAcc). In the basal state, a base-
line level of DA (black circles) is present in the synapse. (B) Though achieved through
diverse mechanisms, acute exposure to all known drugs of abuse increases DAergic
transmission in the NAcc (Di Chiara et al., 2004). Psychostimulants do so directly
by acting on DAergic terminals located in the NAcc (Amara and Kuhar, 1993; Floor
and Meng, 1996; Jones et al., 1998; Khoshbouei et al., 2003). Opiates do so indirectly
by inhibiting GABAergic interneurons in the VTA, resulting in the disinhibition of
VTA DA neurons (Devine et al., 1993; Gysling and Wang, 1983; Johnson and North,
1992; Kalivas et al., 1990; Matthews and German, 1984). Many mechanisms have
been proposed for alcohol, including the disinhibition of VTA DA neurons (Herz,
1997). Nicotine is thought to increase NAcc DA both directly and indirectly, through
stimulation of nicotinic cholinergic receptors on mesocorticolimbic DA neurons or
glutamatergic terminals that innervate mesocorticolimbic DA neurons, respectively
(Balfour, 2009; Wonnacott et al., 2005). Direct/indirect effects are symbolized by
solid/dotted lines. (C) After repeated exposure to most drugs of abuse, VTA neurons
decrease in size (Nestler, 2005; Sklair-Tavron et al., 1996). Repeated psychostimu-
lant or nicotine exposure induces dendritic outgrowth in NAcc neurons (Brown and
Kolb, 2001; McDonald et al., 2005; Robinson et al., 2001; Robinson and Kolb, 1997),
as pictured. However, repeated opiate exposure has the opposite effect (Robinson
et al., 2002; Robinson and Kolb, 1999). Several other effects have been noted after
repeated psychostimulant exposure, including decreased basal DA levels in the NAcc
and enhanced DA release induced by a stimulus (e.g., drug exposure or stressor)
(Pierce and Kalivas, 1997).
avioral Reviews 35 (2011) 498–515 501

that retrieved and grouped pups (Kinsley et al., 1994; Vernotica
et al., 1996). These effects may be brain region-specific, as cocaine
microinfusion directly into the medial preoptic area (MPOA) and
NAcc – two regions intricately involved in maternal behavior
(Numan and Stolzenberg, 2009) –but not into the caudate puta-
men (CP) or dorsal hippocampus, impaired pup retrieval (Vernotica
et al., 1999). It is important to note that in the studies described
above, maternal behaviors were tested shortly after injection (i.e.,
while drugs were still present in the bloodstream/brain). There-
fore, it is possible that the drugs effects on maternal behavior were
secondary to their effects on other behaviors, such as locomotor
activity and stereotypy (Kunko et al., 1998). Indeed, of the studies
that tested these alternate measures, almost all noted differences
in locomotor activity and/or stereotypy between drug- and saline-
treated groups (Frankova, 1977; Piccirillo et al., 1980; Vernotica
et al., 1996; Vernotica et al., 1999). However, an argument for the
direct action of drugs of abuse on maternal behavior is supported by
the temporal discordance between altered locomotor behavior and
impaired maternal behavior (i.e., maternal behaviors remained dis-
rupted after locomotor activity had returned to normal) (Vernotica
et al., 1999).

Significant disruptions in maternal behavior persist beyond the
acute phase of drug exposure. For example, pregnant rats treated
with cocaine or methamphetamine throughout gestation and then
withdrawn from drug treatment during the peripartum period con-
tacted and/or groomed pups less and displayed longer latencies to
build nests and/or to retrieve all pups to the nest than saline-treated
females when tested at various postpartum time points (Johns et
al., 1994, 1997b; Slamberova et al., 2005b). Additionally, repeated
morphine administration during pregnancy increased the latency
to retrieve pups and decreased licking and grooming behavior when
tested on postnatal days 12 or 23, respectively (Slamberova et al.,
2001). In contrast to these effects, maternal behavior was enhanced
when cocaine was administered before pregnancy and in a regi-
men sufficient to induce behavioral sensitization (i.e., exacerbation
of stereotypies or general locomotion upon repeated drug expo-
sure) (Febo and Ferris, 2007). In this study, virgin females were
given daily intraperitoneal (i.p.) injections of cocaine for 14 days,
a treatment paradigm that resulted in behavioral sensitization.
Thereafter, the females were housed with a sexually-experienced
male for 5 days and left undisturbed throughout gestation and
postpartum days 1–2. Maternal behavior testing on postpartum
days 3–4 revealed a shorter latency to retrieve all pups, indicat-
ing enhanced maternal behavior in cocaine-sensitized dams. It is
possible that the differential effect on motivated maternal behav-
iors described in these studies is due to the time of drug exposure
(i.e., before or during gestation). However, it is also possible that the
development of sensitization to cocaine, which was only noted in
the latter study, could have increased the motivation to seek a natu-
ral incentive, in this case pups (Febo and Ferris, 2007). This concept
of “cross-sensitization” will be discussed in more detail later.

The use of conditioned place preference paradigms may allow
for a more lucid interpretation of the effects of drugs of abuse on
maternal motivation. Based upon classical conditioning, a condi-
tioned place preference reflects a preference for an environmental
context (conditioned stimulus) that has been paired with a pri-
mary reinforcer (unconditioned stimulus), such as a drug (Bardo
and Bevins, 2000). Using this paradigm, cocaine has been shown
to be a potent reinforcer for postpartum female rats. When tested
during early or late postpartum phases, female rats readily form
conditioned place preferences to cocaine- but not saline-paired

environments (Seip et al., 2008). Importantly, pups are also pow-
erful reinforcers. Maternal females readily form conditioned place
preferences to pup-associated chambers (Wansaw et al., 2008) and
will bar-press multiple times or even cross an electrical grid to
gain access to pups (Lee et al., 1999). The reinforcing properties of
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Fig. 2. Dopamine receptors differentially regulate cAMP intracellular signaling and
cellular activity (Missale et al., 1998; Neve et al., 2004). D1-like receptors (D1R)
are associated with stimulatory G-proteins (G�s and G�olf) that when activated,
increase the activity of the membrane bound enzyme adenylyl cyclase (AC). Active
AC catalyzes the conversion of ATP to cAMP, which leads to the activation of protein
kinase A (PKA) and subsequent increases in gene expression (through the phos-
phorylation of transcription factors, such as cyclic AMP response element binding
protein (CREB)) and cellular activity (through the phosphorylation of membrane
bound depolarizing ion channels). D2-like receptors (D2R), instead, are coupled to
inhibitory G-proteins (G�i and G�o). When D2Rs are activated, the alpha subunit
02 K.A. Young et al. / Neuroscience and

ups and cocaine have recently been exploited to gain insight into
he effects of cocaine on maternal motivation. Using a dual-choice
onditioned place preference paradigm to simultaneously assess
up- and cocaine-motivated behaviors, it has been shown that
ocaine may impair maternal motivation and that this impairment
aries across the postpartum period (Mattson et al., 2001; Seip
nd Morrell, 2007). Specifically, early postpartum dams preferred a
up-associated chamber over a cocaine-associated chamber, while
id to late postpartum dams preferred the cocaine-associated

hamber. These results indicate that dams in the early postpartum
eriod have a high level of maternal motivation, as demonstrated
lsewhere (Wansaw et al., 2008), while mid to late postpartum
ams may be more susceptible to the reinforcing properties of
ocaine.

.2. Role of mesocorticolimbic DA

Direct investigation into the mechanisms underlying drug
mpairment of maternal behavior has been scarce. However, a
ariety of indirect evidence suggests that alterations in the meso-
orticolimbic DA system may be involved. This evidence stems from
ultiple studies detailing the involvement of mesocorticolimbic
A in maternal behaviors and a vast body of literature describ-

ng the short- and long-term alterations induced in this circuitry
y drugs of abuse. As the latter topic is beyond the scope of this
eview and has been summarized extensively elsewhere (Di Chiara,
995; Di Chiara et al., 2004; Hyman et al., 2006; Koob and Nestler,
997; Kuhar et al., 1991; Nestler, 2005; Pierce and Kalivas, 1997;
homas et al., 2008; White and Kalivas, 1998), we will focus first
n evidence suggesting the involvement of mesocorticolimbic DA
n maternal behavior. Then, we will review recent studies that have
egun to investigate drug-induced alterations in this DAergic cir-
uitry, specifically in maternal dams, which may interfere with
aternal behavior.
The mesocorticolimbic DA system is thought to be intricately

nvolved in a neural circuit that regulates motivated maternal
ehaviors (for a detailed review see (Numan and Stolzenberg,
009)). DA is released into the NAcc (Hansen et al., 1993) and
PFC (Febo and Ferris, 2007) when maternal rats interact with or

ick/groom pups (Champagne et al., 2004), and blockade of NAcc
A receptors (Keer and Stern, 1999) or lesion of the mPFC (Afonso
t al., 2007) disrupts licking/grooming behavior. Nest building is
ikely mediated by VTA activation, as lesion of the VTA results in
he construction of inferior nests by postpartum dams (Gaffori and
e Moal, 1979). Further, a variety of studies have indicated that the
TA, NAcc and mPFC are all important for the expression of normal
up retrieval. For example, using an electroencephalogram (EEG)
o measure real-time electrical activity during maternal behav-
or, it has been shown that activity is increased in the VTA and

PFC during pup retrieval (Hernandez-Gonzalez et al., 2005). Con-
equently, both VTA inactivation (Numan and Stolzenberg, 2009)
nd mPFC lesion (Afonso et al., 2007) disturb pup retrieval in post-
artum rats. This effect is likely mediated by dopaminergic activity

n these regions, as similar disruptive effects on pup retrieval were
oted after dopamine depletion in the VTA or NAcc (Hansen, 1994;
ansen et al., 1991). Taken together, these studies indicate that the
esocorticolimbic DA system plays an important role in the display

f maternal behavior.
While it is well-accepted that DA receptor activation, particu-

arly in the NAcc, is essential for the display of maternal behaviors
Keer and Stern, 1999), the contribution of specific receptor sub-

ypes remains controversial. There are two main families of DA
eceptors, D1-like receptors (D1R) and D2-like receptors (D2R),
hat differ in their effects on certain behaviors, their anatomical
istribution within the NAcc, and their effects on intracellular sig-
aling pathways (Box 1 ; Fig. 2) (Missale et al., 1998; Neve et al.,
of these G-proteins inhibits the activity of AC, leading to decreased cAMP produc-
tion, PKA activity, gene expression, and cellular activity. Solid lines ending in an
arrowhead indicate stimulatory effects, while dotted lines ending in a bar indicate
inhibitory effects.

2004; Sibley and Monsma, 1992). Recent investigation into the
relative importance of these receptor subtypes for maternal behav-
ior has yielded conflicting results. In one study, NAcc injection of
SCH23390, a D1R antagonist, but not eticlopride, a D2R antagonist,
at various postpartum time points disrupted normal pup retrieval
(Numan et al., 2005), suggesting a role for D1R, but not D2R, activa-
tion in this behavior. However, in another study, NAcc D2R blockade
disrupted pup retrieval, suggesting a role for D2R activation in
maternal behavior as well (Silva et al., 2003).

The significant involvement of mesocorticolimbic DA in mater-
nal behavior led researchers to hypothesize that the effects of
drugs of abuse on maternal behavior may be a consequence of
drug-induced alterations in DA neurotransmission (Vernotica et
al., 1996, 1999). Indeed, all known drugs of abuse directly or indi-
rectly activate mesocorticolimbic DAergic neurotransmission and
chronic drug use results in lasting adaptations in the VTA, NAcc
and mPFC (Koob, 1992; Nestler, 2005)—brain regions whose nor-
mal function, as described above, is essential for maternal behavior.
However, research directly investigating the neural substrates that
may underlie the drug-induced impairment of maternal behav-
ior has only just begun and to our knowledge, has focused almost
exclusively on cocaine.

Using functional magnetic resonance imaging (fMRI), a recent
study revealed that acute i.p. cocaine administration induced dif-
ferential patterns of brain activation between virgin females and
maternal lactating dams (Ferris et al., 2005). In virgins, cocaine
treatment activated mesocorticolimbic brain regions, inducing a
positive blood-oxygenation-level-dependent (BOLD) signal in the
NAcc and mPFC. This pattern of activation is very similar to that
noted in male rats (Luo et al., 2003) and other species (Breiter et
al., 1997) after cocaine administration, and to the pattern induced
by pups in lactating dams. In contrast, i.p. cocaine treatment in lac-

tating dams resulted in a noticeable absence of mPFC activation,
an anatomically altered activation within the NAcc, and a robust
negative BOLD signal change throughout the mesocorticolimbic
DA system (Ferris et al., 2005), indicating that exposure to cocaine
may interfere with the DAergic substrates in lactating dams that
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Box 1: The complexity of DA neurotransmission within the NAcc.
Five main subtypes of DA receptors have been classified to date, D1-, D2-, D3-, D4- and D5-receptors, and these subtypes are often

grouped into two main families, D1-like receptors (D1R), which include both the D1- and D5-receptor subtypes, and D2-like receptors
(D2R), which include the D2-, D3-, and D4-receptor subtypes (Missale et al., 1998; Neve et al., 2004). DA released in the NAcc may
bind to either D1Rs or D2Rs, as both receptor families are present in this brain region (Cooper et al., 2003), and a variety of studies
have demonstrated the importance of NAcc D1R activation, D2R activation, or concurrent activation of both receptor types in specific
behaviors. In many cases, D1R and D2R activation within the NAcc have opposite effects on behavior. This phenomenon has been
observed for both social (Aragona et al., 2003, 2006) and drug-related (Self et al., 1996) behaviors. DA receptor-specific effects on
behavior may be related to differences in the distribution of D1Rs and D2Rs within the NAcc and/or differences in the effects of D1R
and D2R activation on intracellular signaling pathways and cellular activation, as described below.

The vast majority of neurons in the NAcc are GABA-producing medium spiny neurons (MSNs) (Meredith, 1999). These neurons can
be divided into subpopulations that differ in their projection fields, their neurochemical phenotypes, and the type of DA receptor that
they express (Gerfen et al., 1990; Surmeier et al., 2007). D1Rs are primarily expressed on MSNs that project to midbrain regions, such
as the VTA, and produce the endogenous opioid dynorphin. D2Rs, instead, are primarily expressed on MSNs that project to the ventral
pallidum and subthalamic nucleus and produce the endogenous opioid enkephalin. However, it should be noted that some MSNs
co-express both receptor types (Lee et al., 2004). Additionally, D2Rs that function as autoreceptors are also present within the NAcc
and are located on DAergic terminals themselves (Khan et al., 1998). Due to the different projection fields of MSNs expressing D1Rs
and D2Rs, and the different roles of DA receptors within the NAcc (post-synaptic receptor vs. autoreceptor), activation of DA receptors
in this region leads to changes in distinct regions of the brain that may mediate different aspects of behavior.

Although activation of D1Rs and D2Rs leads to similar effects on some intracellular signaling pathways, it leads to differential
regulation of the cyclic adenosine 3′, 5′-monophosphate (cAMP) intracellular signaling pathway (Missale et al., 1998; Neve et al., 2004),
a pathway that is of particular interest to the current topic as it has been implicated in both social (Aragona and Wang, 2007) and drug-
related (Lynch and Taylor, 2005; Self et al., 1998) behaviors. D1Rs and D2Rs oppositely regulate the cAMP signaling cascade through the
alpha subunits of the G-proteins with which they interact (Fig. 2) (Missale et al., 1998; Neve et al., 2004). Briefly, activation of D1Rs—which
are coupled to stimulatory G-proteins (G�s and G�olf)—leads to the activation of adenylyl cyclase (AC), an increase in the production of
the second messenger cAMP, and an increase in protein kinase A (PKA) activation. Active PKA phosphorylates transcription factors and
depolarizing ion channels, leading to gene transcription and increased cellular activity, respectively. Instead, activation of D2Rs—which
are coupled to inhibitory G-proteins (G�i and G�o)—inhibits AC activation, cAMP production, PKA activity and its downstream effects.
Further, although D1Rs and D2Rs are traditionally thought to have independent effects on intracellular signaling pathways, as described
above, new evidence suggests that these receptors may interact with one another to mediate intracellular signaling. In cells in which
both D1Rs and D2Rs are expressed, these receptors can form heteromeric D1-D2 dopamine receptor signaling complexes that have
unique effects on intracellular signaling (Rashid et al., 2007). Taken together, the existence of multiple DA receptor subtypes, coupled
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with their differential neuroanatomical location within the NAcc
complexity of DA neurotransmission within the NAcc.

re essential for maternal behavior. In another study, the effect
f previous cocaine experience on patterns of pup-induced activa-
ion within the mesocorticolimbic DA system of lactating dams was
xamined. Females sensitized to cocaine before pregnancy showed
ignificantly less BOLD activation in the mPFC during pup inter-
ction than saline-treated dams (Febo and Ferris, 2007). Further,
aseline levels of DA in the mPFC – as measured by in vivo brain
icrodialysis – were lower in cocaine-sensitized dams than saline-

reated subjects, however pup-induced DA release in this region
as similar between groups (Febo and Ferris, 2007). Importantly,

hese differences in pup-induced neuronal activation and base-
ine DA levels were present nearly 30 days after the final cocaine
njection, suggesting that repeated drug exposure can result in
nduring changes within mesocorticolimbic brain regions impli-
ated in maternal behavior. While this evidence indicates that
lterations in mesocorticolimbic DA may indeed be involved, fur-
her investigation is needed to understand specific mechanisms by
hich drugs of abuse alter maternal behaviors.

. Sexual behavior

.1. Drug effects on sexual behavior

Controlled studies detailing the effects of drugs of abuse on
uman sexual behavior are rare. However, self-report studies note
hat drugs of abuse profoundly impact the sexual behavior of men
nd women. Prosexual effects, including increased sexual arousal

nd desire, enhanced performance and pleasure, and intensified
rgasms have been reported by AMPH, MDMA, cocaine and heroin
sers alike (El-Bassel et al., 2003; Kall, 1992; McElrath, 2005;
awson et al., 2002). Intriguingly, negative effects of these drugs are
lso commonly reported, including sexual dysfunction and a loss of
their differential effects on intracellular signaling highlight the

sexuality during periods of addiction (De Leon and Wexler, 1973;
El-Bassel et al., 2003; Mintz et al., 1974; Weatherby et al., 1992).
The directionality of this impact seems to depend on many fac-
tors including drug type, dose, gender, and intake history, baseline
levels of sexual activity and expectations of drug effects.

To systematically gain insight into the effects of specific drugs of
abuse on sexual behaviors, laboratory studies have employed the
rat as an animal model. As noted above, drugs of abuse alter both
appetitive (e.g., sexual arousal and desire), and consummatory (e.g.,
copulation proper), aspects of sexual behavior, and do so through
combined actions on central and peripheral systems. Here, we will
focus on drug-induced alterations in the appetitive (i.e., motivated)
aspects of sexual behavior, as a role for mesocorticolimbic DA in
sexual motivation has been well established (the reader is referred
elsewhere for a discussion of drug effects on consummatory sex-
ual behaviors (Pfaus et al., 2009)). In the male rat, female-directed
investigative behaviors (e.g., sniffing and grooming), latencies to
mount and intromit, postejaculatory intervals, proportion of males
to copulate and conditioned level changes made in search of a
female in a bi-level apparatus are often used as indices of sexual
motivation (Everitt, 1990; Mendelson and Pfaus, 1989). In female
rats instead, sexual motivation can be quantified by the occurrence
of proceptive or soliciting behaviors, including hopping, darting,
ear-wiggling and pacing of sexual stimulation (Erskine, 1989).

Studies in both male and female rats have indicated that sexual
motivation may be altered by drugs of abuse when delivered imme-
diately prior to behavioral testing. Psychostimulants, including

AMPH, MDMA and cocaine, produce dose-dependent decreases in
sexual motivation in sexually-experienced males. This decrease is
evidenced by a reduction of anticipatory level changes and propor-
tion of copulating males, as well as by an increase in postejaculatory
intervals following drug treatment (Bignami, 1966; Cagiano et
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l., 2008; Dornan et al., 1991; Pfaus et al., 2009). However, as
escribed in each study, these effects are largely due to competing

ocomotor activation and stereotypies induced by drug treatment.
n contrast, psychostimulant exposure enhances sexual motiva-
ion in sexually-naïve males. Indeed, AMPH treatment reduced

ount and intromission latencies in virgin males (Agmo and Picker,
990). In females, the effects of acute psychostimulant exposure
re equally complicated, as both increases and decreases in pro-
eptive and soliciting behaviors have been found depending on the
rug used and hormonal status of the animals (Guarraci and Clark,
003; Guarraci et al., 2008; Holder et al., 2010; Pfaus et al., 2009).
nconsistencies have been reported concerning the acute effects of
epressants on sexual motivation in male rats. For example, while

ncreases in anticipatory level changes have been noted after acute
dministration of alcohol (Ferraro and Kiefer, 2004), suggesting
facilitation of sexual motivation, similar doses delayed operant

esponding to gain access to a sexually receptive female (Scott et
l., 1994), indicating a decrease in sexual motivation. Further, acute
orphine injection significantly increased female-directed behav-

ors, including sniffing, grooming, pursuing and mounting in one
tudy (Mitchell and Stewart, 1990), but had no effect on these or
ther appetitive behaviors in another (Pfaus et al., 2009).

Consistency has been achieved, however, in the examination
f the effects of repeated psychostimulant exposure – particu-
arly treatment paradigms that result in behavioral sensitization

on sexual motivation in both male and female rats (Afonso et
l., 2009; Fiorino and Phillips, 1999a,b; Guarraci and Clark, 2003;
ocjar and Panksepp, 2002). Collectively, these studies have indi-
ated an enduring enhancement of sexual motivation following
he cessation of drug treatment. For example, in one study, male
ats were given a sensitizing regimen of AMPH injections (i.p.) and
ere tested for sexual behavior three weeks following the final
MPH administration (Fiorino and Phillips, 1999b). On the first

est day, AMPH-treated virgin males displayed significantly shorter
atencies to mount and intromit, yet displayed no changes in loco-

otor activity, indicating that AMPH treatment enhanced sexual
otivation per se. Accordingly, AMPH-treated rats also made sig-

ificantly more level changes in anticipation of a sexually receptive
emale than saline-treated rats on the final test day (Fiorino and
hillips, 1999b). Similar findings have been documented in females,
s repeated intermittent AMPH exposure increased the number of
olicitations, hops and darts displayed in the presence of a male
Afonso et al., 2009) and decreased the latency to return to a male
uring paced mating behaviors (Guarraci and Clark, 2003) for up
o three weeks following the cessation of drug treatment. Taken
ogether, these studies indicate that a sensitizing regimen of AMPH
xposure may result in an enduring “cross-sensitization” to sexual
ncentives.

.2. Role of mesocorticolimbic DA

We will focus on the concept of “cross-sensitization” to dis-
uss how alterations in mesocorticolimbic DA may underlie the
eliable enhancement of sexual motivation induced by repeated
xposure to psychostimulant drugs of abuse. The incentive sensi-
ization theory of addiction (Robinson and Berridge, 1993, 2008)
ostulates that repeated exposure to drugs of abuse (under certain
onditions) persistently alters the neural circuitry responsible for
ssigning salience to stimuli. These neuroadaptations result in the
ensitization of salience attributed to drug incentives, and thus a
athological motivation to seek drugs. Importantly, drug-induced

euroadaptations may also alter the incentive properties of natural
timuli, increasing the motivation for natural reinforcers, such as
ucrose (Avena and Hoebel, 2003), food (Bakshi and Kelley, 1994),
r in this case, a sexually receptive partner (Fiorino and Phillips,
999b; Guarraci and Clark, 2003).
avioral Reviews 35 (2011) 498–515

Studies on the neurobiology of sensitization have indicated that
mesocorticolimbic DAergic neurons undergo both pre- and post-
synaptic alterations following chronic drug exposure, as reviewed
in detail elsewhere (Pierce and Kalivas, 1997; White and Kalivas,
1998). For example, while acute exposure to psychostimulant drugs
of abuse increased extracellular DA levels in the NAcc (Di Chiara et
al., 1993; Hurd and Ungerstedt, 1989), this DA increase was signif-
icantly enhanced after repeated treatment with psychostimulants,
a result due to both increased activity of DA neurons and alter-
ations in DA axon terminals (for review, see Pierce and Kalivas,
1997). Additionally, changes in DA receptor activity have been
noted following repeated psychostimulant administration, includ-
ing a persistent enhancement of NAcc D1R sensitivity (Henry et al.,
1989; Henry and White, 1991, 1995; Simpson et al., 1995). Finally,
enduring structural modifications in NAcc and PFC neurons also
occur, including increased dendritic length, branching and density
of dendritic spines (Robinson et al., 2001; Robinson and Kolb, 1997).

Such psychostimulant-induced changes are of interest to this
discussion because the mesocorticolimbic DA system plays an inte-
gral role in sexual motivation. DA is released into the NAcc of male
and female rats upon the presentation of a sexually receptive part-
ner, prior to copulation (Becker et al., 2001a; Pfaus et al., 1990,
1995). Furthermore, in females, DA release is enhanced during the
pacing of sexual stimulation (Becker et al., 2001a; Mermelstein
and Becker, 1995). In males, NAcc DA depletion increased, while
the stimulation of NAcc DA release reduced, the latency to mount
and intromit, yet had no effect on the number of mounts and
intromissions (Everitt, 1990), indicating a direct action of NAcc
DA neurotransmission on sexual motivation. Multiple studies have
indicated the importance of DA receptor activation for sexual moti-
vation. The blockade of NAcc DA receptors via haloperidol reduced
the number of anticipatory level changes before introduction of a
female to a bi-level testing apparatus, indicating that activation of
DA receptors in the NAcc is involved in sexual motivation (Pfaus and
Phillips, 1991). Activation of D2Rs in the NAcc may be of particular
importance, as D2R blockade increased mount and intromission
latencies (Everitt, 1990), however additional receptor specific
manipulations in the NAcc are needed to verify a role for a particular
family of DA receptors in the appetitive aspects of sexual behav-
ior. Mesocorticolimbic DA has been further implicated in sexual
motivation as electrical stimulation of the VTA decreased mount,
intromission and ejaculation latencies in male rats (Eibergen and
Caggiula, 1973; Markowski and Hull, 1995), while VTA lesions
increased postejaculatory intervals (Brackett et al., 1986).

Given the critical role of mesocorticolimbic DA in appeti-
tive sexual responses (Everitt, 1990; Melis and Argiolas, 1995),
psychostimulant-induced changes associated with drug sensitiza-
tion could underlie the enhancement of sexual motivation. To our
knowledge however, only one study has directly investigated this
possibility (Fiorino and Phillips, 1999a). In this study, male rats
were given a sensitizing regimen of AMPH injections (i.p.) and
were tested three weeks later for sexual behavior. During behav-
ioral testing, microdialysis was performed in the NAcc to measure
DA efflux. No differences in basal extracellular levels of NAcc DA
between AMPH- and saline-treated rats were found. However, DA
release was significantly higher in AMPH-sensitized rats when
placed in proximity to a sexually receptive female. Additionally,
when allowed to interact with the female, AMPH-sensitized rats
had a greater increase in DA efflux during the first 10 min copu-
latory sample than saline-treated rats, and displayed significantly
shorter latencies to mount. These results indicate that enhanced

NAcc DA release in response to a sexual incentive may under-
lie increased sexual motivation in AMPH-sensitized rats (Fiorino
and Phillips, 1999a). Therefore, just as a priming drug injection
elicits elevated DA efflux in psychostimulant-sensitized animals
(Pierce and Kalivas, 1997), so does exposure to a sexually receptive
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emale, supporting the notion that a sensitizing regimen of drug
xposure may result in an enduring “cross-sensitization” to sexual
ncentives. Future investigations of mechanisms that may under-
ie this phenomenon are needed and could provide useful insight
nto treatments for sexual desire disorders in humans (Fiorino and
hillips, 1999b).

. Social play

.1. Drug effects on social play

Social play (also called rough and tumble play) between juvenile
ammals is thought to be fundamentally involved in the develop-
ent, practice and refinement of skills necessary for the normal

isplay of social behaviors in adulthood (Panksepp et al., 1984).
onsequently, the deprivation of play during juvenile development
esults in salient behavioral consequences, including altered affil-
ative, aggressive and sexual behaviors later in life (for review, see
Vanderschuren et al., 1997)). In the following section, we will dis-
uss how exposure to drugs of abuse, either acute exposure in
uveniles or repeated exposure during prenatal development, can
everely alter social play behaviors.

Social play in rats is characterized by a number of behavioral
cts including pinning, pouncing, nape attacks, boxing, wrestling
nd social grooming (Panksepp et al., 1984; Vanderschuren et al.,
997), all of which are severely disrupted following acute exposure
o a wide variety of drugs of abuse (with the notable exceptions
f morphine and ethanol). For example, peripheral injection of
ethylphenidate (MP), a psychostimulant drug that, like cocaine,

locks DA reuptake and elevates extracellular DA levels (Ferris
nd Tang, 1979), virtually eliminated play behaviors in young rats
Beatty et al., 1982; Vanderschuren et al., 2008). In experiments
here MP was given to just one member of a play dyad, MP-

reated animals did not pounce upon the saline-treated partner
lthough this partner attempted to solicit play, indicating that
P suppressed both the initiation of play and the responsive-

ess to play initiation (Vanderschuren et al., 2008). Importantly,
o alterations in locomotor activity were evident during this social
ncounter. Peripheral injection of AMPH significantly decreased the
uration of social play and the number of pins displayed during
lay, yet increased social investigation in multiple studies (Beatty
t al., 1984, 1982; Sutton and Raskin, 1986). Additionally, caf-
eine and nicotine also disrupted play behaviors (Holloway and
hor, 1985; Thiel et al., 2009). However, the acute effects of nico-
ine may be temporally mediated as nicotine decreased social play
hen given subcutaneously within 5 min of behavioral testing, and

ncreased social interactions 10 and 30 min after injection (Irvine
t al., 1999; Thiel et al., 2009; Trezza et al., 2009). In addition to
icotine, exposure to morphine (Normansell and Panksepp, 1990;
anderschuren et al., 1995a,b) and ethanol (Trezza et al., 2009) also
nhanced play between partners without altering anxiety-related,
ocial exploratory or locomotor behaviors.

Repeated exposure, particularly prenatal exposure, to drugs of
buse also results in alterations of juvenile social play behavior. In
umans, children who were prenatally exposed to either cocaine
r heroin demonstrated fewer spontaneous play events than non
rug-exposed controls and these play events were disorganized
nd non-thematic (Rodning et al., 1989). In rats, cocaine-exposed
ffspring pinned play partners less (Wood et al., 1994) and elicited
ess play solicitation from conspecifics (Wood et al., 1995). Impor-
antly, the effects of gestational cocaine exposure may persist into

dulthood. Rats prenatally-exposed to cocaine exhibited less social
nteraction, including sniffing, following, grooming, boxing and

restling with a partner, than saline-exposed rats when tested as
dults at 120 days of age (Overstreet et al., 2000). Opposite effects
n social play have been noted after prenatal exposure to morphine.
avioral Reviews 35 (2011) 498–515 505

Specifically, rats prenatally-exposed to morphine pinned play part-
ners significantly more at 3 and 4 weeks of age and exhibited more
social approach and less social avoidance in adulthood (Niesink et
al., 1996).

4.2. Role of mesocorticolimbic DA

Like other naturally motivated behaviors, social play is reinforc-
ing (e.g., animals will negotiate complex mazes in order to engage
in brief periods of social play with a play partner) (Normansell and
Panksepp, 1990), and is mediated, in part, by mesocorticolimbic
DA (Panksepp et al., 1984; Vanderschuren et al., 1997). Social play
increased DA levels and DA turnover in the forebrain of juvenile
rats (Panksepp, 1993). The frequency and/or duration of pinning
behavior and/or social grooming was significantly decreased by
haloperidol, a general DA receptor antagonist (Beatty et al., 1984;
Holloway and Thor, 1985; Niesink and Van Ree, 1989). Addition-
ally, low doses of apomorphine, which are thought to preferentially
activate presynaptic DA receptors (i.e., autoreceptors), and thereby
inhibit DA release, decreased the frequency and duration of pinning
and grooming behavior (Niesink and Van Ree, 1989). In contrast,
higher doses of apomorphine, which likely activate both pre- and
postsynaptic DA receptors, stimulated pinning behavior (Beatty et
al., 1984). Taken together, these studies suggest the involvement of
DA neurotransmission in social play. Further, neonatal rats given
intraventricular injections of 6-hydroxydopamine (6-OHDA), had
significantly depleted DA levels in the dorsal striatum and NAcc and
showed altered offensive and defensive play behaviors as juveniles
that led to the truncation of playful sequences and the transition
to other, non-play behaviors, such as allogrooming (Pellis et al.,
1993). While mesocorticolimbic DA may therefore be important
for social play, the involvement of specific brain regions and DA
receptor families is still largely unknown.

The mechanisms by which acute drug exposure may alter play
behavior are unclear. As psychostimulants directly increase DA lev-
els in the NAcc, the behavioral effects of these drugs are often
attributed to their impact on DA neurotransmission. However, pre-
treatment with DA receptor antagonists did not influence the MP-
or AMPH-induced disruption of play behaviors (Beatty et al., 1984;
Vanderschuren et al., 2008), indicating that altered DA neurotrans-
mission may not be responsible for the effects of these drugs on
social play. As these pharmacological manipulations were systemic,
further central manipulations may be required to more definitively
evaluate the involvement of central DA in the effects of MP and
AMPH on social play. DA receptor activation, however, is clearly
important for the positive acute effects of nicotine and ethanol on
social play, as the behavioral effects of these drugs were blocked
by pretreatment with the DA receptor antagonist a-flupenthixol
(Trezza et al., 2009).

Although few studies have directly examined the neural mecha-
nisms underlying the alteration of social play in subjects prenatally
exposed to drugs of abuse, it has been suggested that prenatal
exposure to drugs of abuse, particularly cocaine, results in last-
ing alterations in central DA systems, and that these alterations
may underlie impaired behavior later in life (Spear et al., 1989).
Given that monoamines play an important role in neural devel-
opment (for review see (Levitt et al., 1997)) and DAergic afferents
and receptors are notably present in limbic regions during brain
development (Schambra et al., 1994; Tennyson et al., 1973), these
regions are likely vulnerable to the effects of drugs of abuse during
this time period. Indeed, subjects prenatally exposed to cocaine

have pronounced anatomical changes and altered D1R-G protein
coupling in DA-rich areas of the cerebral cortex (Levitt et al., 1997).
Densities of DA receptors are also altered in both mesocorticolimbic
and nigrostriatal DAergic brain regions as a consequence of prena-
tal cocaine exposure, and these alterations seem to be moderated



5 Biobeh

b
e
F
d
m
(
h
m
j
e
h
o
t
a
s
c
n
f

5

5

b
p
c
s
a
a
H
m
p
S
(
2
d
c

i
v
e
o
fi
o
w
r
a
i
m
a
S
e
i
a

m
a
a
w
d
t
e
t
h
p

06 K.A. Young et al. / Neuroscience and

y both age and sex of offspring (Dow-Edwards et al., 1990; Ferris
t al., 2007; Glatt et al., 2000; Leslie et al., 1994; Scalzo et al., 1990).
urther, many of these regions, including the NAcc, VTA, amyg-
ala, MPOA, substantia nigra and CP exhibit significantly reduced
etabolic activity as a consequence of prenatal cocaine exposure

Dow-Edwards et al., 1990). Psychopharmacological experiments
ave also supported the suggestion that in utero cocaine exposure
ay result in lasting alterations in DA systems, as cocaine-exposed

uveniles have altered sensitivities to DAergic manipulations (Spear
t al., 1989). Moreover, meta-analysis of the existing literature
as indicated that age moderates the effects of prenatal cocaine
n DA levels specifically within the striatum, such that DA levels
end to be decreased in adolescents prenatally exposed to cocaine
nd marginally increased in adults (Glatt et al., 2000). While these
tudies provide important information about the effects of prenatal
ocaine exposure on DAergic neural substrates, future studies will
eed to examine whether these or other alterations are responsible

or the drug-induced impairment of social play.

. Aggressive behavior

.1. Drug effects on aggressive behavior

Another prominent effect of drug abuse on human social
ehavior is the augmentation of aggression. When tested in
lacebo-controlled laboratory settings, men and women that
onsumed alcohol displayed significantly higher levels of aggres-
ion toward others (Chermack and Taylor, 1995; Giancola et
l., 2009). Further, substance abuse has been strongly associ-
ted with weapon-related violence and homicide (Hagelstam and
akkanen, 2006; Madan et al., 2001; Spunt et al., 1998), inti-
ate partner aggression, including partner-directed physical and

sychological aggression (Chermack et al., 2008; O’Farrell and Fals-
tewart, 2000), sexual abuse (El-Bassel et al., 2001) and child abuse
Haapasalo and Hamalainen, 1996; Mokuau, 2002; Walsh et al.,
003). Collectively, drug related violence leads to family system
ysfunction and incarceration (Krug et al., 2002), creating signifi-
ant societal concerns.

While aggression research in humans has provided valuable
nformation regarding the relationship between drug abuse and
iolence, non-human primate and rodent models have been
mployed to systematically examine the effects of drug exposure
n aggression. In rodents, aggressive behavior is typically classi-
ed into two distinct categories: offensive and defensive. Examples
f offensive aggression include threats, attacks, bites, and chases
hereas defensive aggression often includes upright posturing and

etaliatory attacks (Blanchard and Blanchard, 1977; Blanchard et
l., 1977). While these aggressive behaviors are most often tested
n males, during intermale encounters, they are also commonly

easured in females after parturition, and under these conditions,
re collectively referred to as ‘maternal aggression’ (Gammie and
tevenson, 2006; Johns et al., 1998a, 1994; Numan, 1994; Siegel
t al., 1983). We will focus on research examining these behav-
ors to describe the effects of acute and repeated drug exposure on
ggression in males and females.

Multiple studies have demonstrated that aggressive behaviors
ay be altered shortly after drug exposure, and that the direction-

lity of these effects depends on the drug and dose administered,
s well as individual differences between subjects. For example,
hile some resident male mice displayed heightened offensive and
efensive aggression toward an intruder after low-dose adminis-

ration of alcohol, aggression in other residents was unaffected or
ven decreased (Berry, 1993; Miczek et al., 1998), a finding thought
o depend on individual differences between subjects. Gamma-
ydroxybutyrate (GHB), a relatively new drug with addictive
roperties, significantly increased offensive aggression (threats and
avioral Reviews 35 (2011) 498–515

attacks) in male mice at low doses, but decreased attack behavior at
high doses (Navarro et al., 2007). Further, low-dose administration
of cocaine in males had no effect on offensive aggression, whereas
higher doses of either cocaine or AMPH decreased offensive aggres-
sion (Darmani et al., 1990; Tidey and Miczek, 1992a), highlighting
the importance of drug dose on behavioral outcome. Similar to the
effects of cocaine in males, high-dose cocaine treatment decreased
offensive maternal aggression in females (Vernotica et al., 1996).
The administration of opiate drugs of abuse, such as morphine,
has also been shown to alter patterns of aggression, particularly
offensive aggression (Ferrari and Baggio, 1982; Gianutsos et al.,
1976, 1974; Puri and Lal, 1973; Rodriguez-Arias et al., 1999; Tidey
and Miczek, 1992b). For example, male mice injected with mor-
phine displayed enhanced offensive aggression toward other male
conspecifics (Rodriguez-Arias et al., 1997). In contrast, morphine
injections in lactating female rats decreased offensive maternal
aggression toward conspecific males (Kinsley and Bridges, 1986).

Although the short-term effects of drug exposure on aggres-
sion seem to depend on many factors, as noted above, repeated
exposure to drugs of abuse consistently enhances agonistic behav-
iors – specifically those associated with offensive aggression – and
these effects are enduring. For example, treatment of male Syrian
(i.e., golden) hamsters (Mesocricetus auratus) during adolescence
with cocaine (DeLeon et al., 2002a; Harrison et al., 2000a; Jackson
et al., 2005; Knyshevski et al., 2005a,b; Melloni et al., 2001) sig-
nificantly increased offensive/escalated aggression in adulthood.
Exposure to anabolic steroids – substances which are also com-
monly abused – during adolescence has also been found to enhance
offensive aggression in adulthood (DeLeon et al., 2002b; Harrison
et al., 2000b; Melloni et al., 1997; Melloni and Ferris, 1996). Fur-
ther, repeated drug exposure during gestation elevated subsequent
maternal aggression in lactating dams. Specifically, pregnant rats
that received daily cocaine injections from gestation day 1–20 dis-
played increased threats and attacks toward an intruder one to
two weeks after parturition (Johns et al., 1997b, 1998b). Inter-
estingly, prenatal drug exposure may affect aggressive behaviors
later in life. Adult female dams prenatally exposed to cocaine dis-
played elevated levels of offensive maternal aggression toward
an intruder (McMurray et al., 2008). Further, male mice exposed
prenatally to alcohol displayed enhanced offensive aggression in
adulthood relative to control males (Krsiak et al., 1977). With-
drawal from repeated drug exposure, particularly from central
nervous system depressants, has also been associated with the
induction or enhancement of aggression. For example, male mice
treated with a daily peripheral injection of morphine for 14 days
– which reliably induces morphine dependence-displayed higher
levels of offensive aggression during a 48-h withdrawal period than
vehicle-treated littermates (Rodriguez-Arias et al., 1999). Other
studies have also documented this withdrawal-induced aggression
after repeated treatment with morphine (Ferrari and Baggio, 1982;
Gianutsos et al., 1976, 1974; Puri and Lal, 1973; Rodriguez-Arias et
al., 1999; Tidey and Miczek, 1992b), and various other drugs includ-
ing methadone (Singh, 1975), benzodiazepines (Nath et al., 2000)
and ethanol (File et al., 1991).

Drug-induced aggression has also recently been examined in the
prairie vole (Microtus ochrogaster), a socially monogamous rodent
species that forms pair bonds after mating. Although sexually naïve
male prairie voles are highly affiliative toward unfamiliar conspe-
cific animals, mated males are highly aggressive (as characterized
by both offensive and defensive aggressive behaviors) toward unfa-
miliar strangers (Aragona et al., 2006; Gobrogge et al., 2007, 2009;

Insel et al., 1995a; Wang et al., 1997; Winslow et al., 1993). This
mating-induced aggression has been termed ‘selective aggression’
because it is directed toward unfamiliar male and female strangers,
but not toward the familiar female mate (Insel et al., 1995a; Wang et
al., 1997; Winslow et al., 1993). Interestingly, repeated AMPH expo-
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ure (1.0 mg/kg i.p. injection per day for 3 days) induced aggression
a combined score of both offensive and defensive behaviors)
oward unfamiliar conspecific animals in sexually naïve male
rairie voles (Gobrogge et al., 2009). Further, this AMPH treatment
ot only enhanced aggression toward unfamiliar strangers, but also
oward familiar female conspecifics (Gobrogge et al., 2009). These
esults suggest that the prairie vole could be used in future studies
o test interactions between drug exposure and partner-directed
ggression, one of the most common forms of drug-induced
ggression noted in humans (Chermack et al., 2008; O’Farrell and
als-Stewart, 2000). Results from these types of studies have the
otential to reveal neuromechanisms underlying this behavioral

nteraction and may allow for the development of novel therapeu-
ics for drug addiction and/or pathological aggression in humans.

.2. Role of mesocorticolimbic DA

Although many non-DAergic systems have been implicated in
ggression (Adams, 2006; Kavoussi et al., 1997; Miczek et al., 2002;
elson and Trainor, 2007; Siever, 2008), mesocorticolimbic DA
ay also play an important role. Early research into this mat-

er demonstrated that low frequency electrical stimulation of the
TA and NAcc suppressed attack behavior induced by hypothala-
ic electrical stimulation in felines (Goldstein and Siegel, 1980)

nd neurochemical lesions of the NAcc facilitated apomorphine-
nduced aggression in rats (Pucilowski and Valzelli, 1986). More
ecently it was demonstrated that DA release increased in the NAcc
f rats during the anticipation and display of an aggressive episode
Ferrari et al., 2003). Further, blockade of NAcc D1Rs decreased
ggression toward unfamiliar male conspecifics in pair bonded
ale prairie voles, indicating that NAcc D1R activation may be

mportant for aggressive behavior (Aragona et al., 2006).
Indirect and direct evidence for a role of mesocorticolimbic DA in

rug-induced alterations in aggressive behaviors exists. For exam-
le, cocaine-induced maternal aggression has been associated with

ncreased DA content in various mesocorticolimbic brain regions
ncluding the VTA and amygdala (Lubin et al., 2003). Further, vervet

onkeys chronically treated with methamphetamine had substan-
ially decreased striatal DA content and DA transporter binding
evels than saline-injected controls (Melega et al., 2008), however it
hould be noted that these changes were associated with decreased
evels of aggression throughout drug treatment. There are a limited
umber of studies that have directly assessed the role of mesocor-
icolimbic DA in drug-induced aggression. Of these studies, many
ave been performed within a few days of the cessation of repeated
rug treatment (e.g., during drug withdrawal). Systemic blockade
f DA receptors in general, D1Rs alone, or D2Rs alone, significantly
ecreased morphine withdrawal-induced aggression (Rodriguez-
rias et al., 1999). However site-specific manipulations have shown

he opposite effect. General blockade of NAcc DA receptors or D2Rs
lone enhanced morphine withdrawal-induced aggression in rats
Harris and Aston-Jones, 1994), while activation of D1Rs decreased
he display of aggressive behavior during morphine withdrawal
ithout changing locomotive behavior (Tidey and Miczek, 1992b).
hile these studies certainly indicate a role for DA neurotransmis-

ion in drug-induced aggression, future studies are needed to clarify
he role of mesocorticolimbic DA in this behavior.

. Pair bonding
.1. Drug effects on pair bonding

The formation of enduring social attachments, or pair bonds,
etween sexual partners occurs in nearly all human societies and

s common among the 3–5% of mammalian species that follow a
avioral Reviews 35 (2011) 498–515 507

monogamous life strategy (Kleiman, 1977). Despite its highly rein-
forcing nature, pair bonding can be compromised by drugs of abuse,
as evidenced by the disruptive effects of illicit drug use on marital
stability (Kaestner, 1995). Recently, we have developed the prairie
vole model for the investigation of the neurobiological mechanisms
underlying the complex relationship between drugs of abuse and
pair bonding. As previously mentioned, prairie voles are highly
social, monogamous rodents that form long term pair bonds after
mating (Aragona and Wang, 2004; Carter et al., 1995; Insel and
Young, 2001; Young et al., 2008a). Once bonded, an adult male and
female prairie vole will usually remain together until one partner
dies, and even then, will rarely form a new pair bond (Getz and
Carter, 1996; Pizzuto and Getz, 1998). A reliable behavioral index
of pair bond formation in the prairie vole is the development of a
preference for a familiar mate over a conspecific stranger, referred
to as a partner preference (Insel and Hulihan, 1995b; Williams et al.,
1992; Winslow et al., 1993). In the laboratory, partner preference
formation is reliably seen after 24 h of cohabitation with mating,
and endures for at least 2 weeks thereafter (Insel and Hulihan,
1995b).

Recently, we have demonstrated that repeated AMPH exposure
inhibits the formation of partner preferences in male prairie voles
(Liu et al., 2010). In this study, male prairie voles were divided into
four groups that received no injection (intact), a saline injection,
or an injection of 1.0 or 5.0 mg/kg AMPH (i.p.) once per day for 3
consecutive days. On the day immediately following the final injec-
tion, subjects were paired with a female for 24 h of mating and
then tested for the formation of partner preferences. Consistent
with previous studies, intact and saline-treated prairie voles spent
significantly more time with their familiar mate than the stranger
(i.e., formed mating-induced partner preferences) (Aragona et al.,
2003, 2006; Winslow et al., 1993). However, males pretreated with
AMPH spent equal amounts of time with both animals, indicat-
ing that repeated exposure to AMPH prevented partner preference
formation (Fig. 3A). It is important to note that the effects of AMPH
on partner preference formation were not secondary to effects on
other behavioral measures, as no differences in mating frequency
during the cohabitation period or locomotor activity during the
partner preference test were noted between saline- and AMPH-
treated animals.

The data described above highlight the deleterious effects of
repeated AMPH exposure on social bonding in male prairie voles,
however, repeated drug exposure may also negatively affect social
bonding in females. Indeed, recent experimental evidence from
our laboratory has demonstrated that repeated exposure to AMPH
inhibits the formation of mating-induced partner preferences in
female prairie voles (Young et al., 2008b). Interestingly, lower doses
of AMPH were effective to inhibit this social preference in females
than males, indicating that females may be more sensitive to the
effects of AMPH than males. This idea has been supported by pre-
vious studies in prairie voles – demonstrating a leftward shift in
the dose response curve of females in the development of AMPH-
induced conditioned place preferences (Aragona et al., 2007) –
and has also been supported by studies in other rodent species
documenting sexual dimorphisms in the behavioral and neural
responses to psychostimulant drugs of abuse (Becker, 1999; Becker
et al., 2001b; Roth et al., 2004).

6.2. Role of mesocorticolimbic DA

Previous work from our laboratory and others has demonstrated

that mesocorticolimbic DA – particularly DA neurotransmission
in the NAcc – is essential for the formation of partner prefer-
ences (Aragona et al., 2003, 2006; Curtis et al., 2003; Curtis and
Wang, 2005; Gingrich et al., 2000; Liu and Wang, 2003; Wang et
al., 1999). Mating – which facilitates partner preference forma-
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Fig. 3. Dopamine (DA) in the nucleus accumbens (NAcc) is involved in the amphetamine (AMPH)-induced impairment of pair bonding. (A) After 24hrs of mating, intact
and saline-treated (0.0; 1 injection/day/3 days) male prairie voles spent significantly more time in side-by-side contact with their familiar partner than a stranger (i.e.,
formed partner preferences). However, males treated with 1.0 or 5.0 mg/kg AMPH (1 injection/day/3 days) spent an equal amount of time in contact with the partner as with
the stranger. These results demonstrate that repeated AMPH exposure inhibits mating-induced partner preference formation in male prairie voles. (B) Male prairie voles
treated with AMPH (1.0 mg/kg/day/3 days) had higher levels of DA D1 receptor (D1R) mRNA (top image) and protein expression (bottom image) in the NAcc than saline-
treated controls. Quantitative analysis demonstrated that these differences were statistically significant (graph on the right). (C) Pair bonded (Paired) male prairie voles have
significantly higher levels of D1R binding in the NAcc than sexually-naïve (Naive) males. (D) Pair bonded male prairie voles that received intra-NAcc injections of cerebral
spinal fluid (CSF) showed low levels of aggression (data includes the frequency of both offensive and defensive aggression) toward their partner, but high levels of aggression
toward a stranger (i.e., selective aggression). Pharmacological blockade of NAcc D1Rs (D1R Ant) in pair bonded males abolished aggression toward a stranger, indicating
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hat NAcc D1R activation mediates selective aggression in pair bonded voles. (E) AM
ncludes the frequency of both offensive and defensive aggression) toward both fam

ale prairie vole (left) displaying aggression toward an unfamiliar female prairie v
*p < 0.01. Adapted from (Aragona et al., 2006; Gobrogge et al., 2009; Liu et al., 2010

ion – increases DA activity in the NAcc of both male and female
rairie voles (Aragona et al., 2003; Gingrich et al., 2000). Phar-
acological blockade of NAcc DA receptors via haloperidol blocks

artner preference formation induced by mating while activation
f NAcc DA receptors via apomorphine dose-dependently induces
artner preference formation in the absence of mating (Aragona
t al., 2003). These results indicate that DA neurotransmission in
he NAcc plays a critical role in the formation of a pair bond. Addi-
ional pharmacological manipulations have demonstrated that the

opaminergic regulation of partner preference formation is recep-
or specific, such that D1R activation inhibits, and D2R activation
acilitates partner preferences. Indeed, activation of D2Rs, but not
1Rs, in the NAcc facilitated the formation of partner preferences

n female and male prairie voles, whereas blockade of NAcc D2Rs
eated sexually-naïve male prairie voles display significantly more aggression (data
nd unfamiliar conspecific females than saline-treated controls. Picture illustrates a

ght). Bars with different Greek letters differ significantly from each other. *p < 0.05;

inhibited partner preference formation (Aragona et al., 2003, 2006;
Gingrich et al., 2000). Additionally, administration of a D1R ago-
nist into the NAcc blocked partner preference formation induced by
mating or D2R activation (Aragona et al., 2006). The DA receptor-
specific regulation of partner preference formation has been further
supported by the manipulation of the cAMP intracellular signaling
pathway within the NAcc (Aragona and Wang, 2007). Recall that
activation of D1Rs and D2Rs, through the alpha subunits of the G-
proteins with which they interact, have opposing effects on cAMP

intracellular signaling (Box 1; Fig. 2). In a recent study, intra-NAcc
injection of a pharmacological agent that inhibits the activation
of PKA facilitated partner preference formation (an effect consis-
tent with D2R activation) (Aragona and Wang, 2007). Additionally,
intra-NAcc injection of a pharmacological agent that increases PKA
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ctivity prevented the formation of mating-induced partner prefer-
nce formation (an effect consistent with D1R activation) (Aragona
nd Wang, 2007). Interestingly, all of the pharmacological manip-
lations described above affected pair bonding only if performed

n the NAcc shell, as opposed to the NAcc core or CP, indicating
hat the DAergic regulation of pair bonding is also brain region-
nd subregion-specific (Aragona et al., 2006; Aragona and Wang,
007).

As mesocorticolimbic DA plays a critical role in partner pref-
rence formation and is altered by repeated exposure to drugs of
buse, we hypothesized that alterations in this system may under-
ie the AMPH-induced impairment of partner preference formation.
o investigate this possibility, levels of DA receptor gene and pro-
ein expression in mesocorticolimbic brain regions were compared
etween male prairie voles treated with saline and AMPH (one
.0 mg/kg i.p. injection per day for 3 consecutive days—the same
osing regimen that inhibited partner preference formation). Males
reated with AMPH showed significantly higher levels of D1R, but
ot D2R, mRNA and protein labeling in the NAcc than males treated
ith saline, indicating that AMPH exposure increased D1R expres-

ion in the NAcc (Fig. 3B) (Liu et al., 2010). As changes in the
ensity of only one DA receptor type were noted, these results sug-
est that AMPH administration may alter the balance between DA
eceptor subtypes in the NAcc, leading to the inhibition of mating-
nduced partner preferences through an increased ratio of D1Rs to
2Rs in this region. In an additional experiment, pharmacological
lockade of D1Rs before daily AMPH injections dose-dependently
liminated the AMPH-induced impairment of partner preference
ormation (Liu et al., 2010). Taken together, these data indicate that
MPH exposure may inhibit partner preference formation through
D1R mediated mechanism. This notion is supported by our previ-
us work in prairie voles, which demonstrated that D1R activation
ot only inhibits the formation of mating-induced partner prefer-
nces but also likely plays a role in preventing the formation of
dditional pair bonds, once one has already been formed (Aragona
t al., 2003, 2006). For example, pair bonded male prairie voles
ave significantly higher levels of D1R binding in the NAcc than
exually-naïve males (Fig. 3C). This elevated level of D1R density
s thought to underlie, in part, the display of aggression toward
onspecific stranger females (Aragona et al., 2006), including sex-
ally receptive females (Gobrogge et al., 2007, 2009), as NAcc D1R
lockade in pair bonded males inhibits selective aggression toward
tranger females (Aragona et al., 2006) (Fig. 3D). As such, it is
hought that this natural form of neuroplasticity (i.e., increased
Acc D1Rs in pair bonded males) functions to maintain estab-

ished pair bonds by preventing the formation of new ones. As
MPH exposure increases NAcc D1R expression, it is possible that
MPH artificially triggers this neuroplasticity, resulting in the drug-

nduced impairment of partner preference formation. Indeed, after
epeated exposure to AMPH, sexually-naïve male prairie voles dis-
lay enhanced aggression toward both familiar and unfamiliar
emales (Fig. 3E) (Gobrogge et al., 2009), which could lead to the
mpairment of pair bonding. Ongoing experiments in our lab are
imed at further investigation of the mechanisms by which AMPH
mpairs pair bonding in male and female prairie voles with a focus
n interactions between mesocorticolimbic DA and neuropeptide
ystems essential for social behavior.

. Effects of social experience on the vulnerability to drug
buse
.1. Effects of social experience on drug abuse

While it is clear from the studies described above that drug
buse can profoundly alter social behaviors, there is an increasing
avioral Reviews 35 (2011) 498–515 509

amount of evidence to suggest that this relationship is reciprocal.
Social experiences and the presence/absence of social attachments
and interactions during early development and throughout life
can greatly influence drug intake and the susceptibility to drug
abuse. Indeed, perturbations in the social environment, particularly
during early development, can increase the vulnerability to drug
abuse later in life, while the development of strong social attach-
ments, including parent-offspring and adult pair bonds may protect
against substance abuse. This notion has been supported by several
studies described below.

Disruptions in the social environment during early develop-
ment and throughout life may increase the propensity for substance
abuse. Indeed, childhood neglect in humans has been associated
with an increased risk of alcohol-related problems later in life, an
effect most prominent in women (Widom et al., 1995). In rhesus
monkeys, alcohol consumption was compared in 4 year olds that
had been reared during the first six months of life either by their
peers without any access to adults or by their mothers (Higley et
al., 1991). When given free access to both an ethanol/sucrose solu-
tion and a sucrose control solution, peer-reared subjects consumed
significantly more ethanol than mother-reared subjects, indicating
that disrupted mother–infant bonds may play a role in later alcohol
abuse. Further, in the same study, when 4 year old subjects were
separated for multiple days from their cage mates, mother-reared
subjects increased their ethanol consumption, indicating that social
interactions later in life could also have a profound impact on drug
use (Higley et al., 1991).

Maternal separation/deprivation studies in rodents have fur-
ther demonstrated the importance of early social experiences on
responses to drugs later in life. In these studies, maternal separa-
tion was defined as the separation of an entire intact litter from the
dam for 1 or more hours each day over multiple days within the first
few postnatal weeks. Maternal deprivation was similar to mater-
nal separation, except that individual pups were isolated from each
other during daily separations. In accordance with the study in
rhesus monkeys aforementioned, maternally-separated rats drank
significantly more ethanol than normally-reared controls (Huot et
al., 2001; Ploj et al., 2003). Importantly, in these studies, no differ-
ences in total fluid intake were noted, indicating that early maternal
separation directly altered alcohol intake. Similarly, maternally-
deprived rats showed significantly increased morphine and AMPH
intake and enhanced acquisition of cocaine self-administration as
compared to normally-reared controls (Kosten et al., 2000; Vazquez
et al., 2006). Importantly, in the self-administration study, no
differences in the acquisition of operant responding for food or
locomotor activity were noted (Kosten et al., 2000). Taken together,
these studies highlight the effects of early disruptions in the social
environment on the vulnerability to substance abuse later in life.
However it should be noted that genetic factors and the specific
time course of social disruptions also play a role (Matthews et al.,
1999; van der Veen et al., 2008). Further, in addition to altering
drug-associated behaviors, early environmental perturbations can
also have a profound effect on social behaviors later in life (Cushing
and Kramer, 2005; Lee and Hoaken, 2007; Veenema, 2009). There-
fore, it is intriguing to consider the relationship between altered
social behavior and the higher vulnerability to drug abuse displayed
by adults exposed to negative early life events.

The quality of early life social interactions may also impact later
drug use. In humans, for example, the quality of parent-child rela-
tionship has been found to influence the likelihood of alcohol and
drug dependence later in life (Kendler et al., 2000). Similarly, levels

of maternal care in rats, characterized by licking and grooming of
pups, have also been correlated with the self-administration of both
cocaine and ethanol. Specifically, low levels of licking and grooming
were correlated with higher levels of pup drug intake and higher
levels of licking and grooming were associated with lower levels of
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up drug intake (Francis and Kuhar, 2008). This raises the impor-
ant point that maternal drug exposure, which disrupts the display
f licking and grooming as well as other maternal behaviors, may
irectly influence drug abuse vulnerability in offspring.

Just as disturbed social interactions may increase the vulnera-
ility to drug abuse, strong social attachments between individuals
ay protect against substance abuse. In humans, having an intact

uclear family has been negatively associated with substance abuse
roblems in general, and the use of “hard” drugs such as AMPH
nd cocaine (Bell et al., 2000; Ellickson et al., 1999). Further, stable,
ntimate relationships between adult pairs have been associated

ith decreased rates of relapse to drug use (Kosten et al., 1987).
his notion is further supported by our recent study in which
air-bonded male prairie voles required a higher dose of AMPH to
xpress conditioned place preferences than sexually-naïve males,
uggesting that pair bonding experience may decrease AMPH-
ssociated motivation (Liu et al., 2007).

.2. Role of mesocorticolimbic DA

Although little is known about the mechanisms underlying the
ehavioral interactions noted above, childhood neglect in humans
nd maternal deprivation in non-human primates and rodent
pecies have been associated with altered activity of DA systems.
or example, children subjected to maltreatment, of which child
eglect is the most prevalent form (National Research Council,
993), within the first 6 years of life had significantly lower DA
eta hydroxylase (the enzyme that converts DA to norepinephrine

n neurons) activity than children that had not been maltreated
Galvin et al., 1995). Elevated baseline urinary DA levels have also
een associated with childhood maltreatment (De Bellis et al.,
999). Although the functional significance of these alterations is
ot yet known, it has been suggested that neurophysiological alter-
tions induced by social disruptions early in life may underlie later
ulnerability to drug abuse (De Bellis, 2002; Gordon, 2002). Support
or this idea comes from studies in rodent models. For example,

aternal deprivation, which enhanced the self-administration of
arious drugs of abuse (as described above) resulted in enhanced
Acc DA transmission in response to AMPH and cocaine, suggesting
n increased sensitivity of mesocorticolimbic DA to drugs of abuse.
urther, this enhanced sensitivity was noted in infant, juvenile and
dult rats, indicating an enduring effect of maternal deprivation on
he mesocorticolimbic DA system (Kehoe et al., 1998, 1996; Kosten
t al., 2003, 2005). Drug intake may also differentially affect meso-
orticolimbic DA receptor levels depending on social experience, as
aternally-separated rats had significantly lower D1R binding lev-

ls in multiple brain regions, including the NAcc core, after ethanol
onsumption compared to non-treated rats (Ploj et al., 2003).

. Summary and future directions

The evidence reviewed here suggests a significant interaction
etween drugs of abuse and social behavior. Acute exposure to
oth psychostimulants and central nervous system depressants
ransiently alters social behaviors, and repeated use may lead to
nduring deficits in adaptive behaviors such as maternal care and
air bonding, and the compulsive display of sexual behaviors and
ggression. Interestingly, while drug exposure reduces the display
f some social behaviors, it facilitates the display of others. The
echanisms underlying these differential effects on behavior are
nclear. However, social behaviors are complex and are regulated
y multiple neural circuits. While some circuits are likely involved

n all social behaviors, others may be recruited during specific social
nteractions. Differences in the neural circuitry that mediate each
ehavior may explain why drugs of abuse increase the display of
avioral Reviews 35 (2011) 498–515

some behaviors, but decrease the display of others. Further, as
described above, drug type may differentially mediate social behav-
iors (e.g., morphine and ethanol increase, while psychostimulants
decrease, social play). Drug-specific effects on multiple neurotrans-
mitter (e.g., DA, serotonin, norepinephrine) and neuropeptide (e.g.,
oxytocin, arginine vasopressin, opioid, dynorphin) systems may
explain these drug-specific effects on social behaviors. Finally, just
as drugs of abuse may alter social behaviors, social interactions
and the existence of strong social bonds during early development
and throughout life may protect against future vulnerability to sub-
stance abuse and relapse to drug seeking in addicted individuals.

As discussed above, the mesocorticolimbic DA system is in a key
position to mediate the interaction between drugs of abuse and
social behavior. This system is not only intrinsically involved in
social behavior – due to its role in the assignment of motivational
value to biologically relevant social stimuli – but also undergoes
well-characterized alterations following acute and repeated expo-
sure to drugs of abuse (Nestler, 2005). DA neurotransmission in the
NAcc may play a particularly important role, as it has been impli-
cated in all of the social behaviors discussed above. However, as
NAcc DA is involved in a variety of processes associated with social
behaviors, including locomotion, reward, and motivation, its spe-
cific role – and whether it contributes in a similar way to all of these
behaviors and their interactions with drugs of abuse – is unclear.
One possibility is that NAcc DA mediates the reinforcing aspects
of social interactions, and that disruption of this process under-
lies drug-induced alterations in social behavior. For example, it has
been suggested that reduced activation of NAcc neurons, a conse-
quence of D2R activation, is critical for reward-related processes
(Carlezon and Thomas, 2009). In line with this hypothesis, NAcc
D2R activation mediates many of the social behaviors discussed
above, including maternal, sexual, and pair bonding behaviors
(Aragona et al., 2003, 2006; Gingrich et al., 2000; Everitt, 1990; Silva
et al., 2003). Drug-induced alterations that increase NAcc activity,
such as the psychostimulant-induced enhancement of NAcc D1R
sensitivity and expression (Henry et al., 1989; Henry and White,
1991, 1995; Liu et al., 2010; Simpson et al., 1995), may therefore
alter the rewarding properties of social interactions, leading to the
impairment of social behavior. Such alterations in the balance of
NAcc DA receptor activity may play a key role in the effects of drugs
of abuse on social behaviors – through their effects on reinforce-
ment as well as other processes related to social behavior – and
may explain how drugs of abuse can affect such a diverse range of
behaviors.

Although this review has focused almost exclusively on meso-
corticolimbic DA, many other neural systems are also likely
involved in the interaction between drugs of abuse and social
behavior. For example, neuropeptide systems, such as arginine
vasopressin and oxytocin, regulate a variety of social behaviors and
are significantly altered by acute and chronic exposure to drugs of
abuse (Butovsky et al., 2006; Johns et al., 1997a). Additionally, sen-
sitivity to these neuropeptide systems – as well as steroid hormones
– is thought to be altered by early social experiences, and these
alterations likely underlie the effects of early social experience on
adult behavior (Cushing and Kramer, 2005). Further, these sys-
tems interact with mesocorticolimbic DA to mediate social (Liu and
Wang, 2003) and drug-related behaviors (Sarnyai, 1998; Sarnyai
and Kovacs, 1994). Therefore, although this idea has been rela-
tively unexplored, these systems (McGregor et al., 2008), and their
interactions with mesocorticolimbic DA, may play an important
role in the reciprocal relationship between substance abuse and

social behaviors. Future investigation into the neural substrates and
neurotransmitter systems that mediate interactions between drug
use and social behavior could provide information essential for the
prevention and treatment of drug addiction and social disorders in
humans.
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