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A B S T R A C T   

Brain development is a life-long process that encompasses several critical periods of transition, during which 
significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all pe
riods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition 
builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic 
marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can 
influence development, cognition, and health outcomes. For example, parental environment influences 
imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in 
hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in 
life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early 
environmental interactions prime a system towards a particular health outcome and influence susceptibility to 
disease or cognitive impairment throughout life.   

1. Introduction 

Transition states represent critical periods during development and 
aging when systems undergo significant changes. These “critical pe
riods” are highly dynamic and may span several years, such as in the 
case of puberty and reproductive senescence (perimenopause in women 
and andropause in men) (Petricka and Benfey, 2011). The effects of 
these transition periods are also accompanied by a neurological 
component, suggesting that the two are intimately linked (Brinton et al., 
2015). Brain development is a life-long process that is sensitive to both 
genetic and environmental factors. Perturbations that occur during 
critical periods can result in lasting epigenetic alterations that have the 
potential to lie dormant before playing out later in life (Dominguez-Salas 
et al., 2014; Gali Ramamoorthy et al., 2015; Bhandari et al., 2015; Gore 
et al., 2011; Rzeczkowska et al., 2014; Gabory et al., 2011). 

Although a cell’s underlying DNA remains relatively unchanged 
throughout life, the epigenome is constantly changing. While a single 

epigenetic change may not result in an altered phenotype, accumulation 
of many changes over time has the potential to alter health trajectories 
and outcomes. With time and continuous exposure, diverse environ
mental insults can sensitize brain systems and increase the likelihood 
that a subsequent environmental trigger will induce a disease phenotype 
(Brinton et al., 2015; Chen et al., 2012). Dysregulation of the brain 
epigenome has been linked to a number of neurological dysfunctions 
and aberrant DNA methylation and histone modifications have been 
seen in Autism (Abdolmaleky et al., 2015; Berko and Greally, 2015), 
Alzheimer’s disease (AD) (Bennett et al., 2015; Herrmann and Obeid, 
2011a; Marques et al., 2012; Mastroeni et al., 2010; Nagata et al., 2015; 
Wang et al., 2008), Schizophrenia (Brucato et al., 2014; Milekic et al., 
2014), and post-traumatic stress disorder (PTSD) (Schmidt et al., 2011; 
Roth, 2014). In this review, we refer to epigenetics broadly, but focus 
mainly on DNA methylation and histone modifications, which are the 
best-characterized mechanisms of epigenetic regulation. 
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2. Methyl-donor molecules and one-carbon metabolism build 
and maintain the epigenome throughout life 

Establishment, maintenance, and reorganization of the epigenome 
rely on the availability of methyl-donor molecules that are produced in 
the one-carbon cycle. One-carbon metabolism utilizes co-factors such as 
folate, choline, and various other B vitamins (B6, B12, riboflavin), to 
produce S-adenosylmethionine (SAM), the universal methyl-donor that 
provides methyl-groups used for DNA, histone, and other protein 
methylation (Fig. 1). Evidence of impaired one-carbon cycling, either 
due to decreased enzymatic activity or co-factor deficiency, is the 
accumulation of the intermediate molecule homocysteine (Hcy) (Herr
mann and Obeid, 2011a; Tomizawa et al., 2015). Methyl-donor syn
thesis from Hcy relies on the bioavailability of the B vitamins (Fig. 1). 
Disruption of this process can result in epigenome dysregulation, setting 
the stage for long-term health consequences. 

Prevalence and severity of impairments associate with B12 de
ficiencies are largely determined by a complex series of interactions 
between genetic variants, nutrition, and lifestyle (de Bree et al., 2001; 
Refsum et al., 2006; Steegers-Theunissen and Steegers, 2003; Stee
gers-Theunissen et al., 2013). In particular, lifestyle factors such as 
smoking, and coffee and alcohol consumption have been linked to per
turbations in one-carbon metabolism and elevated levels of Hcy (Refsum 
et al., 2006). 

How these effects are mediated through epigenetics can be demon
strated in the agouti mouse model. Experimentally, the agouti mouse 
serves as an “epigenetic sensor,” allowing for easy visualization of epi
genome perturbations. Hypomethylation of the agouti gene, which de
termines coat color, results in a yellow coated mouse. Conversely, 
animals that exhibit agouti gene hypermethylation are brown in color. 
Intermediate levels of methylation in the agouti gene result in a mottled 
coat, with the degree of methylation directly corresponding to mottle 
intensity (Jirtle and Skinner, 2007). Pregnant agouti mice fed a diet 
supplemented with one-carbon metabolites, such as FA, B12, and 
choline, give birth to mice with altered coat color, indicating that these 
molecules have the ability to directly influence DNA methylation pat
terns in the periphery (Cooney et al., 2002; Waterland and Jirtle, 2003; 
Rakyan et al., 2002). Furthermore, transgenerational effects that per
sisted to the F2 generation were observed (Cropley et al., 2010). Inter
estingly, these offspring were also less prone to obesity and other 
diseases (Waterland and Jirtle, 2003). 

One-carbon metabolism and methyl-donor production remain vital 
to epigenetic maintenance throughout life, particularly during “critical 
periods” of transition. Despite this however, B-vitamin supplementation 
is only encouraged during pregnancy (and shortly after breastfeeding). 
Although an increased intake of folate during pregnancy has the po
tential to prevent the miscarriage and birth defects associated with 
deficiency, this practice has fostered an increase in individuals 

harboring genetic polymorphisms that compromise folate usage (Shea 
and Rogers, 2014). These individuals, in particular, may have an 
increased requirement for additional folate that may not be met during 
adolescence and adulthood and could predispose them to early neuro
endocrine aging and cognitive impairments later in life. Just as all 
mothers are encouraged to increase their folate intake during preg
nancy, B-vitamin supplements may be beneficial for young children 
(Hassan et al., 2019) and adolescents (Tomizawa et al., 2015; Kanani 
and Poojara, 2000) whose brains are still developing. 

Complicating this discussion, however, are reports that folate sup
plementation may both suppress or facilitate progression of certain 
cancers, depending on the timing of administration (Baggott et al., 1992; 
Kim, 2004; Kotsopoulos et al., 2003; Song et al., 2000a, b). Furthermore, 
many scientists have begun to stress the importance of distinguishing 
between naturally occurring folates and folic acid, a synthetic com
pound that is added to supplements and fortified foods (Ulrich and 
Potter, 2006). More research is necessary to identify specific gene net
works that are impacted by both methyl-donor deficiency and B12 
supplementation at different stages of life and brain development, and 
how this relates to disease pathogenesis down the line. 

3. Epigenetics regulate learning and memory 

3.1. DNA methylation modulates transcription during learning events 

In recent years, the epigenetic mechanisms that regulate learning 
and memory have been characterized. It is now widely accepted that 
DNA methylation regulates neuroplasticity, learning, and memory by 
playing a dual role in memory formation; serving as both a transient 
modulator of transcription during learning, as well as a static marker 
involved in remote memory maintenance (Creighton et al., 2020). 

Memory formation during a learning event requires the coordination 
of transcriptional changes in a number of genes. Transcriptional patterns 
vary at different stages of memory formation and early perturbation can 
disrupt downstream events. For example, inhibition of transcription and 
protein synthesis during the first few hours after a learning event dis
rupts long-term potentiation (LTP), but not short-term memory. 

Epigenetic modulators, such as and DNA methyltransferases (DNMT) 
and ten-eleven-translocation proteins (TETs), are abundant in neurons, 
where active methylation and demethylation occur during learning 
(Antunes et al., 2019). In vivo studies have demonstrated that treatment 
with DNMT inhibitors disrupts DNA methylation, resulting in altered 
transcription, LTP suppression, and impaired memory formation (Miller 
and Sweatt, 2007; Levenson et al., 2006). 

The process of memory formation occurs in two distinct waves, 
where the first wave of altered transcription triggers the second. 
Included in the second wave of transcriptional changes are a number of 
genes that encode epigenetic modulating proteins involved in memory 

Fig. 1. One-carbon metabolism utilizes co-factors such as folate, choline, and various other B vitamins (B6, B12, riboflavin), to produce S-adenosylmethionine 
(SAM), the universal methyl-donor that provides methyl-groups used for DNA, histone, and other protein methylation. Impaired one-carbon metabolism results in 
loss of SAM production, an accumulation of homocysteine, and can lead to dysregulation of the epigenome. 
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maintenance (Duke et al., 2017). It is during these events that DNA 
methylation influences memory by altering transcriptional outcomes 
that impact memory formation and maintenance within the hippocam
pus, prefrontal cortex, and amygdala (Miller and Sweatt, 2007; Duke 
et al., 2017; Holliday, 1999; Miller et al., 2010). 

3.2. One-carbon metabolism is intimately linked to learning, and memory 

Methyl-donor deficiency can impair the dynamic regulation of DNA 
methylation that is required to modulate transcription during learning 
and memory in neurons. Indeed, mice with methyl-donor deficiency 
show reduced memory consolidation, poor performance in novel object 
recognition memory tests, and differential methylation and expression 
of the glutamate receptor gene, Gria1, which is involved in synaptic 
plasticity (Tomizawa et al., 2015). In addition to one-carbon metabo
lites, fetal deficiency of other micronutrients have epigenetic conse
quences linked to learning and memory impairments that persist into 
adulthood (Tran et al., 2015). Iron deficiency is associated with reduced 
brain-derived neurotrophic factor (BDNF) expression in the hippocam
pus that is accompanied by a loss of DNA methylation, an increase in 
histone deacetylase 1 (HDAC1) binding, and decreased ribonucleic acid 
(RNA) polymerase II binding at the BDNF promoter (Tran et al., 2015), 
all of which are involved in learning and memory. However, these ef
fects of iron deficiency can be reversed by choline supplementation 
during late gestation, further implicating one-carbon metabolism as 
essential for both neuro-development and long-term cognitive function. 

4. Both maternal and paternal preconception environments 
impact offspring health via epigenetic mechanisms 

4.1. Imprinting 

Offspring health outcomes can be impacted prior to conception 
through non-genetic mechanisms such as epigenetic imprinting, which 
is established in parental gamete cells during the maturation process 
from the primordial germ line. Gamete imprinting primarily occurs in a 
sex-specific manner and ensures that certain genes are preferentially 
expressed from either the maternal or paternal allele. Immediately after 
fertilization, the embryonic genome experiences dramatic and wide
spread loss of DNA methylation and histone modifications. This eraser of 
epigenetic information is seemingly a “reset” for the newly created 
genome. However, some epigenetic information must be maintained 
from the original egg and sperm in order to initiate the subsequent re- 
programming of the methylome. These retained epigenetic character
istics are referred to as being “imprinted” onto the new genome. 
Imprinting control regions (ICR) that survive reprogramming are 
retained through cellular differentiation and are ubiquitously present in 
the adult organism’s somatic tissues. Only primordial germ cells are 
exempt from the process of imprinting (Bartolomei and Ferguson-Smith, 
2011; Luedi et al., 2007); this exemption ensures that sex-specific 
epigenetic patterns can be appropriately re-established in both male 
and female offspring during gamete maturation. 

The imprinting process is particularly important in genes where a 
double dose is toxic (Gendrel and Heard, 2014; Lyon, 1998). For 
example, the insulin-like growth factor 2 gene (IGF2) is maternally 
imprinted by epigenetic markers and is transcriptionally silenced. In 
health offspring, only the paternal copy of IGF2 is actively expressed. 
Re-activation of the maternally inherited IGF2, due to loss of imprinting, 
can impact mitochondrial function in offspring (Bjornsson et al., 2007). 
Similarly, improper imprinting of the Insulin (INS) and Guanine 
Nucleotide Binding Protein (G Protein), Alpha Stimulating Activity 
antisense RNA (GNASAS) genes are associated with an increased risk in 
coronary heart disease in adulthood (Talens et al., 2012). Disrupted 
imprinting at fertilization has been associated with a number of cogni
tive and developmental disorders that emerge later in life, including 
schizophrenia (Brucato et al., 2014; Marsit et al., 2012), Angelman 

syndrome (Clayton-Smith and Laan, 2003), Beckwith-Wiedemann syn
drome (Viljoen and Ramesar, 1992), Prader-Willi syndrome (Cassidy 
et al., 2000), as well as multiple types of cancers (Feinberg and Tycko, 
2004; Feinberg and Vogelstein, 1983; Yuan et al., 2003; Feng et al., 
2008; Cui et al., 2002; Nakano et al., 2006; Kuerbitz et al., 2002). 

4.2. Paternal environment before conception influences epigenetic 
programing during spermatogenesis 

It is now widely accepted that the paternal preconception environ
ment plays an important role in the imprinting process, early embryonic 
development, and both long term physical and cognitive health of 
offspring. As studies investigating paternal environmental factors begin 
to accumulate, the epigenetic mechanisms driving offspring traits are 
coming into better focus. Not surprisingly, it is the continuous nature of 
spermatogenesis that allows for environmental interactions, that influ
ence the testis and sperm epigenomes, to subsequently impact the 
epigenetic programing of offspring. 

A number of animal studies have investigated the effects of paternal 
stress on offspring stress response and anxiety behaviors. Results are 
somewhat mixed, with some reporting offspring with reduced anxiety 
(Mychasiuk et al., 2013; Rodgers et al., 2013; He et al., 2016), blunted 
stress response (Mychasiuk et al., 2013; Rodgers et al., 2013; Dias and 
Ressler, 2014; Dietz et al., 2011; Gapp et al., 2014), and improved 
behavioral flexibility (Mychasiuk et al., 2013; Rodgers et al., 2013), and 
others finding a general increase in anxiety and depressive behaviors 
(Rodgers et al., 2013; Dietz et al., 2011; Gapp et al., 2014; Azizi et al., 
2019). Changes in DNA methylation and/or gene expression patterns in 
various regions of the brain have been identified in offspring born to 
stressed fathers (Mychasiuk et al., 2013; He et al., 2016; Dias and 
Ressler, 2014). Many of these alterations occurred in a sex-specific 
manner, with male and female offspring exhibiting divergent neuro
logical and epigenetic effects (Mychasiuk et al., 2013; Rodgers et al., 
2013; Dietz et al., 2011; Gapp et al., 2014; Azizi et al., 2019). 

A study investigating physical exercise found global decrease in 
hippocampal DNA methylation and improved spatial learning in male 
rat offspring. Curiously, the authors found no changes in sperm DNA 
methylation were detected, suggesting that alternative epigenetic 
mechanisms play a role in transmission, such as histone modifications or 
sncRNA (Rodgers et al., 2013; Beeler et al., 2019; Krawetz et al., 2011). 

Although extensively studied by number of groups, the biological 
consequences of paternal alcohol use is complicated. Findings across 
studies are mixed in terms of learning and behavioral patterns, as well as 
incidence of affective disorders in offspring (Beeler et al., 2019; Nieto 
and Kosten, 2019; Finegersh and Homanics, 2014; Liang et al., 2014; 
Rompala et al., 2017). Similarly, observed epigenetic perturbations are 
not consistent across studies. These inconsistencies are likely due to 
differences in species, strain, experimental paradigms, and the technical 
methods used. 

Undeniably however, EtoH is a known epigenetic modifier in both 
adult (Cervera-Juanes et al., 2017) and developing tissues (Garro et al., 
1991). Animal studies have demonstrated EtOH-induced alterations in 
DNA methylation, histone acetylation, and sncRNAs in both testis and 
developing sperm cells. In humans, alcohol use can produce hypo
methylation of typically-hypermethylated ICR in sperm cells (Ouko 
et al., 2009). Animal studies have similarly demonstrated decreased 
methylation at paternally imprinted genes in offspring of EtOH-exposed 
fathers (Liang et al., 2014). In addition to imprinting alterations, other 
non-imprinting changes have been observed (Chang et al., 2017). How 
these epigenetic changes directly impact offspring health and develop
ment are only beginning to be understood. A recent study by Conner 
et al. identified abnormal patterns of gene expression in offspring 
neocortex and subtle alternations in patterns of intraneocortical con
nections (Conner et al., 2020). Cognitively, both male and female 
offspring exhibited changes in sensorimotor integration, decreased 
balance, coordination, and short-term motor learning. Consistent with 
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other studies(Kim et al., 2014), the authors observed a sex-specific in
crease of activity level in male offspring, a clinically relevant observa
tion as the incidence of ADHD is increased in children born to alcoholic 
fathers (Knopik et al., 2005). 

Several groups have begun to investigate other paternal factors. A 
recent retrospective clinical analysis revealed that non-allergic asthma 
was more common in offspring of fathers who either smoked, or had 
exposure to occupational welding, prior to conception (Mychasiuk et al., 
2012). Paternal mental “enrichment” has been demonstrated to influ
ence cognitive performance, reduce brain weight, and induce changes in 
global DNA methylation in the hippocampus and prefrontal cortex of 
both male and female offspring (Mychasiuk et al., 2012). Finally, other 
studies have shown that paternal diet alters glucose metabolism and 
brain development of offspring (Anderson et al., 2006; Kim et al., 2013; 
Ng et al., 2010) and is associated with changes in DNA methylation, 
possibly mediated through one carbon metabolism (Kim et al., 2013). 

Both B12 vitamin deficiency and gene mutations impacting one- 
carbon metabolism are associated with low sperm count and poor 
viability (Bezold et al., 2001; Boxmeer et al., 2009; Dhillon et al., 2007; 
Safarinejad et al., 2011). Preliminary animals studies demonstrate 
altered sperm DNA methylation patterns in males with methylenete
trahydrofolate reductase (MTHFR) genetic variants, suggesting that 
perturbations in once carbon metabolism can directly impact epigenetic 
programing during spermatogenesis (Chan et al., 2010; Chen et al., 
2001). 

4.3. Maternal environment before conception influences the oocyte 
maturation processes and offspring health 

The oocyte maturation process is period of epigenetic reorganization 
that is poorly understood but demonstratively sensitive to a variety of 
environmental factors, including alcohol(VandeVoort et al., 2015), 
endocrine disrupting chemicals (EDCs)(Susiarjo et al., 2013), diabetes 
(Ge et al., 2013), diet(Hou et al., 2016), as well as fertility treatments 
such as assisted reproductive technologies (ARTs)(Manipalviratn et al., 
2009). It is likely that these factors influence maturation through 
epigenetic mechanisms (Steegers-Theunissen et al., 2013; Whitelaw 
et al., 2014; Zhang et al., 2010). Improper or disrupted epigenetic pat
terns in the oocyte genome can lead to subsequent disturbances in em
bryonic epigenetic reprograming at fertilization, setting the stage for the 
offspring’s subsequent responses to environmental perturbations and 
influences epigenetic remodeling later in life. Indeed, preconception 
exposure to many of these factors have been linked to offspring neuro
logical and health outcomes in both humans and animal models 
(Bhandari et al., 2015; Gore et al., 2011; Zhang et al., 2010; Collier et al., 
2020; Allen et al., 2006). 

Although few studies have directly investigated the role of one- 
carbon metabolism and in regulating epigenetic programing in the 
maturing oocyte, one-carbon biomarkers in follicular fluid (FF) are 
associated with fertility, oocyte and embryo quality, and pregnancy 
outcome (Boxmeer et al., 2009, 2008a; Boxmeer et al., 2008b; Ebisch 
et al., 2006; Pacchiarotti et al., 2007; Jerzak et al., 2003). Increased 
levels of FF Hcy is associated with endometriosis, and subfertility in 
women (Ebisch et al., 2006). Animal models have demonstrated that 
impaired one-carbon metabolism leads to a reduction of FF methionine 
and SAM, and an increase in Hcy (Kanakkaparambil et al., 2009; Sinclair 
and Singh, 2007). In couples undergoing IVF or ICSI, those who adhere 
to a diet rich in B12 vitamins have increased chance of successful 
pregnancy (Twigt et al., 2012; Vujkovic et al., 2010). These evidences 
demonstrate the importance of one-carbon status prior to conception 
and suggest the involvement of epigenetic mechanisms in driving the 
effects preconception environmental factors have on offspring. 

5. The embryonic environment and implications later in life 

5.1. Early embryonic reorganization of the epigenome 

Undeniably, early embryonic development is a period of dramatic 
change and cellular reprogramming. Although each differentiated cell 
has a unique epigenetic signature that cannot be easily reversed, suc
cessful reproduction requires a “reset” of this signature to allow for 
totipotency to be restored to a fertilized zygote. Genome-wide studies 
mapping the DNA methylation patterns of mouse oocytes, sperm, and 
fertilized zygote cells through early development provide evidence for 
two major epigenetic reprogramming phases during early embryonic 
development (Smith et al., 2012). Upon fertilization, the zygote un
dergoes global de-methylation of the genome. DNA methylation levels 
continue to drop during the first few rounds of cellular division before 
genome re-methylation begins and global levels stabilize. In contrast to 
somatic tissues, where high CpG-density is correlated with low DNA 
methylation, the early pre-implantation phase of a developing embryo is 
a period during which DNA methylation is differentially positioned and 
maintained (Deaton and Bird, 2011). During early development, 
non-CpG methylation and higher levels of hydroxymethylation have 
been observed (Kinde et al., 2015). Little is known about the regulatory 
role of non-CpG methylation and hydroxymethylation; however, this 
may suggest that the pre-implantation phase is highly plastic and hy
persensitive to environmental perturbations that have an increased po
tential to influence the health outcomes of the developing organism. 

5.2. Prenatal one-carbon status contributes to the developing epigenome, 
and impacts neurodevelopment and cognition 

The critical role of B-vitamin micronutrients during embryonic 
neuro-development is well documented. Elevated maternal Hcy is 
associated with small gestational age and congenital heart disease 
(Verkleij-Hagoort et al., 2006). In humans, maternal folic acid (FA) and 
choline deficiencies are linked to neural tube defects (spina bifida) and 
an increased risk for autism (Barua et al., 2014; Gillberg et al., 1986; 
Suren et al., 2013; Tamura and Picciano, 2006). Furthermore, maternal 
FA status correlates with preeclampsia, fetal growth restriction and 
other congenital malformations in offspring (Herrmann and Obeid, 
2011b). In rats, choline deficiency is linked to a reduction of neural 
progenitor cell proliferation and an increase in apoptosis in developing 
brain tissues (Albright et al., 1999a, b). Choline-deprived offspring also 
show diminished visuospatial and auditory memory that persists 
throughout life (Meck and Williams, 1999). Conversely, offspring of 
choline-supplemented mothers exhibit an accelerated rate of neuro
genesis, a reduction in apoptosis (Albright et al., 1999a; Craciunescu 
et al., 2003), and an increase in visuospatial and auditory memory that is 
not subject to decline during normal aging, suggesting that supple
mental choline in utero may protect against age-related cognitive decline 
later in life (Meck and Williams, 1997a, b; Meck and Williams, 1997c; 
Meck et al., 1988; Meck and Williams, 2003). 

Other studies have further demonstrated the interactions of B-vita
mins with epigenetic patterns and neurodevelopment in utero. Choline 
deficiency is associated with changes in the DNA methylation of genes 
related to the cell cycle (Niculescu et al., 2006, 2004), and maternal FA 
regulates DNA methylation in a sex-specific manner (Barua et al., 2014). 
Male offspring, of mice fed a high FA diet, exhibited reduced expression 
and methylation patterns of Ror2(receptor tyrosine kinase like orphan 
receptor 2) (Barua et al., 2014), a gene involved in neurogenesis and 
development of the neocortex (Endo et al., 2012). Conversely, female 
offspring from these mothers exhibited hypomethylation and over 
expression of the Mtap4 (microtubule-associated protein 4) gene, which 
plays a role in the central nervous system (CNS) and in 
microtubule-dependent transport (Tokuraku et al., 2010). 

Sex specific effects of maternal FA were also observed in several 
health-related imprinting genes in the offspring. Female offspring of 
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HMFA mothers showed altered methylation patterns in the Dio3 (Dei
odinase, Iodothyronine, Type III) gene which has been implicated in 
insulin-related diseases. Males however showed no such effect in Dio3. 
Lastly, both male and female HMFA offspring demonstrated brain 
hypermethylation of several autism candidate genes, suggesting that 
maternal folic acid’s protective effects against autism is mediated 
through epigenetic mechanisms (Gillberg et al., 1986; Suren et al., 2013; 
Tamura and Picciano, 2006). 

5.3. Epigenetic patterns established in utero remain sensitive to the 
postnatal environment 

Environmental perturbations during embryonic development can 
result in epigenetic modifications that correlate with alterations in the 
gene expression profiles seen in many adult-onset diseases (Gali Ram
amoorthy et al., 2015; Gabory et al., 2011). Adverse maternal envi
ronments, such as poor nutrition, substance abuse, diabetes, and poor 
mental health, can also have life-long consequences for offspring 
(Dominguez-Salas et al., 2014; Barua et al., 2014). Maternal 
under-nutrition is known to cause intrauterine growth restriction 
(IUGR) and low birth weight (Vieau, 2011). Conversely, maternal 
over-nutrition, as well as gestational diabetes, has been linked to mac
rosomia or high birth weight (Vieau, 2011). Both IUGR and macrosomia 
have been linked to an increased risk of adult-onset obesity and meta
bolic disorders (Curhan et al., 1996; Pettitt and Jovanovic, 2001; Ong, 
2006). Moreover, the fetal programming of the hypothalamus, which 
controls food intake and energy expenditure, is also influenced by 
maternal nutrition. Over- or under- nutrition can negatively impact the 
hypothalamic appetite regulatory systems and predispose offspring to 
metabolic disorders in adulthood (McMillen et al., 2005; Bouret, 2009; 
Ross and Desai, 2014). 

Mechanistically, the loss of the pancreatic and duodenal homeobox 
(Pdx1) gene expression in IUGR is associated with adult-onset diabetes. 
Under conditions of poor maternal nutrition during fetal development 
the histone deacetylase complex mSin3/HDAC is recruited to the Pdx1 
promoter in the pancreas. The loss of the histone acetylation at the Pdx1 
promoter results in the loss of the transcription factor binding required 
for Pdx1 gene expression (Pinney and Simmons, 2010). Postnatally, a 
loss of the activating histone mark on histone 3 (H3) lysine 4 (K4) 
tri-methylation (me3) (H3K4me3), and an increase of the repressive H3 
Lysine 9 (K9) di-methylation (me2) (H3K9me2), are seen at the Pdx1 
gene promoter. While at this point, repression is still considered to be 
“reversible,” the accumulating H3K9me2 marks soon recruit the DNA 
methyltransferase DNMT3A, which then methylates and permanently 
silences Pdx1 expression (Gabory et al., 2011). 

Although IUGR does not immediately result in Pdx1 gene silencing 
through DNA methylation in utero, it establishes a chromatin state that is 
sensitive to further environmental impact, and raises the likelihood that 
the gene will be silenced later in life. This same principle can be applied 
to neurodevelopment, where the early environment can influence the 
likelihood of a particular cognitive outcome and modify the risk of 
neurodegenerative diseases later in life. 

5.4. Toxic in utero exposures and negative health risks 

EDCs are chemicals that can interfere with the endocrine system and 
produce adverse effects on development, health, and reproduction. 
EDCs are mostly synthetic and have been used widely in industry to 
produce plastics, pesticides, and oral contraceptive birth control. In 
recent years, EDCs have come under intense scrutiny as they have been 
linked to birth defects, behavioral issues, cancer, and immune system 
and metabolic dysfunction (Kim, 2004). EDCs are harmful to organisms 
both pre- and post-natally, and are able to disrupt proper genomic 
imprinting. Maternal exposure to bisphenol A (BPA) during late oocyte 
and early embryo development has been shown to modify gene 
expression in mouse embryos and placentas through the alteration of 

DNA methylation patterns and contribute to abnormal placental devel
opment (Kotsopoulos et al., 2003; Song et al., 2000a). The trans
generational effects of in utero EDC exposure are well documented 
(Bhandari et al., 2015; Gore et al., 2011; Susiarjo et al., 2013; Gore, 
2008; Jandegian et al., 2015). Between the years 1958 and 1976, 
diethylstilbestrol (DES) was a common medicine given to pregnant 
women to prevent miscarriage. Both male and female offspring exposed 
to this chemical have been documented as having a dramatically 
increased risk for cancers and reproductive issues as adults (Hoover 
et al., 2011), and a number of studies have also observed third genera
tion health risks (Blatt et al., 2003; Brouwers et al., 2006; Chantrain 
et al., 2009; Newbold et al., 2006; Ruden et al., 2005). Interestingly, 
these adverse health effects appear during puberty, suggesting that DES 
may alter the epigenetic mechanisms involved in puberty programming. 

In animal models, prenatal alcohol exposure (PrEE) has also been 
linked to adiposity (Dobson et al., 2012), beta cell dysfunction, and 
glucose intolerance in adulthood (Chen and Nyomba, 2003). Neuro
logically, PrEE is associated with reduced brain weight and cortical 
length, abnormalities in intraneocortical circuitry, DNA hypo
methylation of the neocortex and behavioral abnormalities (Bottom 
et al., 2020). Remarkably, co-administration of supplemental choline in 
alcohol exposed pregnancies successfully minimized or prevented many 
of these developmental abnormalities in offspring and experimentally 
reducing histone deacetylase expression has been shown to reverse 
glucose intolerance in alcohol-exposed offspring (Bottom et al., 2020). 
These experimental strategies highlight the potential for developmental 
disease intervention if the specific epigenetic perturbations can be 
identified (Yao et al., 2014). 

5.5. Placental epigenetics 

The placenta plays a critical role in development and facilitates 
nutrient and waste exchange between mother and fetus. Additionally, 
the placenta provides the fetus with protection and responds to maternal 
cues via epigenetic mechanisms regulating gene expression (Appleton 
et al., 2013; Gheorghe et al., 2010; Nugent and Bale, 2015). Epigenetic 
changes in the placenta, that occur in response to environmental per
turbations, have the potential to alter long-term neurodevelopment and 
fetal programming (Nugent and Bale, 2015; Bale et al., 2010). These 
topics have been reviewed in detail by several groups, including Nugent 
and Bale (Nugent and Bale, 2015). 

6. Puberty is a window period for long-term neurocognitive 
health consequences and is regulated by epigenetics 

6.1. Pubertal timing and health outcomes 

In mammals, initiation of puberty by activation of the hypothalamic- 
pituitary-gonadal (HPG) system relies on the functional organization of 
the hypothalamic GnRH neural network - a process that takes place early 
in development (Gore, 2008), suggesting that the transition to puberty is 
a process that begins in utero and is manifested later in life (Tena-
Sempere, 2013). Timing of puberty varies between individuals as well as 
by sex, with females reaching sexual maturity earlier than males 
(McCarthy, 2013). Females are more likely to experience precocious, or 
early, puberty, while males are more likely to transition later (Rzecz
kowska et al., 2014; McCarthy, 2013). The age of puberty onset can be 
modified by environmental factors, and is associated with multiple 
health and cognitive outcomes later in life. In girls, early menarche has 
been associated with an increased risk of breast cancer, cardiovascular 
disease, depression, eating and behavioral disorders, diabetes and 
obesity, as well as an overall increase risk of mortality (Rzeczkowska 
et al., 2014). Conversely, late menarche has been associated with a 
decreased risk of ischemic heart disease, but an increased risk of oste
oporotic fracture (Rzeczkowska et al., 2014). In boys, initiation of pu
berty can be difficult to identify due to lack of a quantitative 
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measurements, such as age of menarche in girls; however, age of voice 
breaking is commonly used as a qualitative measurement of puberty 
onset in males (Day et al., 2015). Early male puberty has been linked to 
an increased risk for testicular cancer, whereas late puberty has been 
linked to both biological and social outcomes such as depression and low 
self-esteem (Rzeczkowska et al., 2014; Day et al., 2015; Golub et al., 
2008). In both sexes, it is difficult to determine whether mistiming in 
puberty directly causes the associated health conditions, or if these 
health conditions are due to the underlying factors controlling puberty 
onset in the first place. Nevertheless, the transition through puberty is a 
critical period when environmental factors can permanently alter 
developmental and health trajectories. 

6.2. Onset of puberty onset is epigenetically controlled 

As many as 106 distinct parent-of-origin alleles have been implicated 
in the regulation of puberty, suggesting that puberty is at least partly 
controlled by classic, Mendelian genetics (Perry et al., 2014). However, 
variable onset is present in monozygotic twins, as well as inbred rodent 
strains raised in similar environments, suggesting that epigenetics may 
be involved. Indeed, several groups have identified the KISS1 gene, 
which regulates puberty in all mammals, to be under epigenetic control 
(Lomniczi et al., 2013; Wyatt et al., 2013; Semaan and Kauffman, 2013; 
Garcia-Galiano et al., 2012; Roa et al., 2008; Tena-Sempere, 2008). 

The initiation of puberty begins with the expression of KISS1’s pro
tein product kisspeptin. Subsequent signaling through the Kiss1 receptor 
in gonadotrophin-releasing hormone (GnRH) neurons activates the 
neuroprotective and hypothalamic-pituitary-adrenal (HPA) axes. Mu
tations in KISS1, or its receptor KISS1R, can result in a failure to tran
sition into puberty (Wyatt et al., 2013). Differential expression of KISS1 
is thought to contribute to sex differences in the timing of puberty and in 
the secretion of Luteinizing hormone (LH) in adulthood (Semaan and 
Kauffman, 2013). Indeed, studies have found sex-specific differences in 
KISS1 messenger RNA (mRNA) expression as well as differences in DNA 
methylation along the KISS1 promoter (Semaan et al., 2012; Kauffman, 
2009; Semaan and Kauffman, 2010). Furthermore, neonatal exposure to 
EDCs can alter the activation and function of the HPG axis (Tena-
Sempere et al., 2000) and the timing of the hypothalamic expression of 
Kiss1 (Navarro et al., 2004, 2009), demonstrating how early environ
ment can influence transition periods and health outcomes later in life. 

Prior to puberty, the hypothalamus expresses the genes embryonic 
ectoderm development (Eed) and chromobox 7 (Cbx7), which bind to 
the KISS1 promoter and recruit polycomb repressive complex 2 (PRC2) 
(Lomniczi et al., 2013; Wyatt et al., 2013). PRC2 is responsible for 
silencing the KISS1 promoter through chromatin reorganization by tri
methylating H3 on lysine 27 (H3K27me3) (Lomniczi et al., 2013). At the 
onset of puberty, DNA methylation increases at the Eed and Cbx7 gene 
promoter regions. The increase of DNA methylation is accompanied by a 
decrease in the expression of the two genes, and a subsequent loss of 
their binding at the KISS1 promoter (Lomniczi et al., 2013; Wyatt et al., 
2013). Loss of Eed and Cbx7 binding, resulting in a loss of KISS1 
repression, is accompanied by an increase in transcription-activating 
histone marks, H3K4me3, H3K9ac, and H3K14ac along the KISS1 pro
moter (Lomniczi et al., 2013). Thus the KISS1-mediated onset of puberty 
is set into motion through the epigenetic silencing of repressive factors 
(Lomniczi et al., 2013). Over-expression of Eed or treatment with 5-aza
dine, a DNA methylation inhibitor, is able to block puberty in female 
rats, further supporting the role of epigenetic programming in the pu
bertal transition (Lomniczi et al., 2013). 

Considering the complexity of puberty and the wide range of sys
temic changes associated with the transition, it is probable that epige
netic mechanisms are involved in orchestrating the cooperation of many 
gene networks during this period. A series of studies have demonstrated 
that epigenetic mechanisms directly regulate GnRH transcription, both 
in vitro and in vivo (Kurian and Terasawa, 2013; Kurian et al., 2010; El 
Majdoubi et al., 2000). During puberty, a rise in GnRH mRNA is 

accompanied by a change in the DNA methylation status of the gene 
promoter (Kurian and Terasawa, 2013). Additionally, specific patterns 
of histone modifications at the GnRH gene are associated with differ
ential levels of transcription (Iyer et al., 2011). Immature GnRH 
neuronal cells, which do not yet produce GnRH, possess mostly repres
sive H3K9me2 histone marks along the GnRH gene, while mature GnRH 
neuronal cells possess permissive H3K9ac and H3K4me3 histone marks 
(Iyer et al., 2011). 

Lominiczi et al. surveyed genome-wide changes in DNA methylation 
and RNA transcription across different points of the female puberty 
transition and found that several genes with changes in expression were 
involved in chromatin and histone modification (Lomniczi et al., 2013). 
Expression changes of many of these genes were also accompanied by 
changes in DNA methylation. However, hormones are also known 
modifiers of the chromatin landscape. Estrogen induces changes in 
KISS1 promoter histone acetylation, possibly contributing to the positive 
feedback that is involved in generating the preovulatory surge in females 
(Tomikawa et al., 2012). More research is needed to explore the details 
of the cause-effect relationship between epigenetic programing and 
hormone signaling during puberty. 

6.3. Brain changes that occur during puberty are sex-specific 

In addition to the maturation of reproductive tissues, puberty is a 
time of widespread maturation and reorganizational in the brain (Spear, 
2013). White matter volume in the frontal and parietal lobes peak at 
puberty (and subsequently declines thereafter) (Giedd et al., 1999; 
Perrin et al., 2008; Pfefferbaum et al., 1994), the limbic areas finish 
developing (Isgor et al., 2004; Bock et al., 2014), and task-dependent 
brain activity changes (Adleman et al., 2002; Kwon et al., 2002). 
Many of these aspects of normal brain development require organiza
tional augmentation that is dependent on the sex-steroid surge which 
occurs during puberty (Morrison et al., 2014). These changes often occur 
in a sex-specific manner and can be blunted by gonadectomy, high
lighting the role of sex steroids in brain development and reorganization 
during this period (Ahmed et al., 2008; Sex On Brain European Research 
Group et al., 2013). 

6.4. Environmental perturbations during puberty can have long lasting 
and sexually dimorphic effects, and are likely regulated by epigenetics 

Alcohol use during adolescence is associated with an increased risk 
of alcohol abuse in adulthood (DeWit et al., 2000). Curiously, children 
who first used alcohol at ages 11–14 had the highest risk for developing 
alcohol disorders later in life (DeWit et al., 2000), while those who first 
used alcohol at an older or younger age did not carry this same risk. 
These findings indicate that ages associated with the pubertal window 
might be more sensitive to environmental perturbations. Indeed, periods 
of hormonal flux, such as puberty, pregnancy, and perimenopause, have 
been identified as hypersensitive to environmental perturbations 
(Brinton et al., 2015; Dahl and Gunnar, 2009; Morrison et al., 2017). 

Curiously, onset of many neuropsychiatric disease symptoms often 
occurs during or immediately following puberty (Arborelius et al., 1999; 
Corbett et al., 2009; Moghaddam, 2002; Nestler et al., 2002; Walker 
et al., 2008) and adverse childhood experiences are predictive for af
fective disorders in women (Morrison et al., 2017). Dysregulation of 
stress neurocircuitry in the HPA axis is a key endophenotype observed 
across affective disorders as well as many other psychiatric diseases 
(Arborelius et al., 1999; Corbett et al., 2009; Moghaddam, 2002; Nestler 
et al., 2002; Walker et al., 2008). 

The HPA axis, which regulates responsivity to stress, is further 
developed during puberty, under the guidance of the sex steroids. 
Furthermore, the impact that estrogen and testosterone have on stress 
reactivity is different in adult versus pre-pubertal animals (Foilb et al., 
2011; Romeo et al., 2004a, 2013). It is now understood that stress 
neurocircuitry in the HPA axis is augmented by the sex steroids during 
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puberty to elicit the reactivity response patterns observed in adulthood 
(Romeo et al., 2004a; Goldman et al., 1973; Lui et al., 2012; Romeo 
et al., 2006; Viau et al., 2005). In male rats for example, prepubertal 
animals take longer to recover from stress tests and demonstrate a 
prolonged stress response. In adulthood, testosterone reduces the stress 
response through mechanism that cannot be recapitulated through ste
roid treatment of prepubertal animals (Romeo et al., 2004a). 
Sex-specific differences in response to stress also exist. Female rats 
exposed to chronic stress during puberty have demonstrated blunted 
neurogenesis in the dentate gyrus and changes in hippocampal plasticity 
in adulthood (Barha et al., 2011). However, these effects were not 
observed in males. 

Reorganization of the HPA’s stress neurocircuitry that occurs during 
puberty suggests the involvement of epigenetic regulation (Carey et al., 
1995; Handa et al., 1994; McCormick et al., 2002; Romeo et al., 2004b). 
Similarly, chronic stress or adversity during puberty likely exploits 
epigenetic mechanisms to elicit adult neurobiological deficits (Morrison 
et al., 2014). Recent studies have begun to investigate these mecha
nisms. Chronic stress during puberty increases visceral pain behaviors in 
rats and leads to an increase in the DNA methylation of the glucocorti
coid receptor and a decrease in the DNA methylation of 
corticotrophin-releasing factor in the amygdala (Tran et al., 2013). 
Additionally, exposure to estrogenic compounds during early puberty 
has been demonstrated to alter the population of neurons expressing 
estrogen receptor alpha in the female rat hypothalamus (Ceccarelli 
et al., 2007), implicating the importance of epigenetic-hormone 
crosstalk. 

In addition to biological programing, behavioral and social devel
opment also occurs during early adolescence under the influence of 
pubertal hormones. Animal models have demonstrated that during pu
berty, the presence of sex steroids augments hormone-induced behav
ioral response patterns towards those observed in adulthood, in a sex- 
specific manner (Schulz and Sisk, 2006). Pubertal hormones also pro
gram sex steroid-independent behavioral responses in the adult brain, 
further implicating epigenetic-hormone interactions as a key player 
during this developmental period. Perturbations in the timing of hor
monal flux in the adolescent brain are likely to have long-lasting con
sequences on adult social and reproductive behavior (Schulz and Sisk, 
2006). 

7. Epigenetic shifts during aging and reproductive senescence 
contribute to age-related diseases and cognitive decline 

7.1. Normal aging 

Only 20–30 % of the individual variation in average human life span 
can be attributed to genetic variation, implying that longevity is largely 
due to environmental factors (Herskind et al., 1996; Mitchell et al., 
2001; Zampieri et al., 2015). At birth, monozygotic twins have nearly 
identical epigenomes. Over time however, their epigenomes diverge due 
to environmental interactions and spontaneous errors in epigenetic 
maintenance (Zampieri et al., 2015). At older ages, the epigenomes of 
monozygotic twins can be dramatically different, explaining why many 
have remarkably different medical histories and health outcomes 
(Zampieri et al., 2015; Feil and Fraga, 2011; Poulsen et al., 2007). This 
kind of alteration in epigenetic patterning is referred to as epigenetic 
drift. 

In contrast to epigenetic drift, which is a seemingly random accu
mulation of epigenetic changes over time, there is strong evidence for 
the existence of an “epigenetic clock,” suggesting that many age-related 
changes in the epigenome may be “programmed” as a natural part of 
aging. Many groups have identified trends in DNA methylation that 
changes in predictable manners with increasing age (Horvath, 2013; 
Day et al., 2013; Weidner et al., 2014). In general, global DNA 
methylation declines with age, with region specific hypermethylation. 
Age related global DNA hypomethylation is mainly associated with 

repeating regions in the genome, such as Long interspersed nuclear el
ements (LINEs) and Alu elements (Bollati et al., 2009; Christensen et al., 
2009; Jintaridth and Mutirangura, 2010; Heyn et al., 2013). Global 
hypomethylation results in the loss of chromatin regulatory proteins 
such as polycomb repression complexes and histone modifications 
which, subsequently, results in the global remodeling of chromatin and 
genome instability (McClay et al., 2014; Vijg and Dolle, 2007). How
ever, DNA hypermethylation at CpG islands (CGIs) results in reduced 
expression in many genes involved in tumor suppression, genomic sta
bility and repair, metabolism, cell differentiation and growth, and 
regulation of the immune system (Zampieri et al., 2015). Over time, 
accumulated changes in DNA methylation and gene expression in net
works involved in age-related diseases predispose an individual to either 
susceptibility or resiliency to disease pathogenesis (Zampieri et al., 
2015; Florl et al., 2004; Neuhausen et al., 2006; Shen et al., 2005; 
Siegmund et al., 2007). 

7.2. Reproductive senescence and dysregulated GnRH signaling is linked 
to neurological disease pathogenesis in both men and women 

In both males and females, reproductive senescence is not merely 
characterized by the loss of sex steroids, but instead is a function of both 
gonadal failure and hypothalamic-pituitary aging. The HPG axis, which 
is activated during puberty, is a negative feedback system in which 
pulsatile GnRH, produced in the hypothalamus, stimulates LH and 
follicle-stimulating hormone (FSH) production and secretion by the pi
tuitary. LH and FSH stimulate estrogen and testosterone production in 
the ovaries and testes respectively. Systemic estrogen and testosterone 
then feedback onto the pituitary and hypothalamus and modulate 
GnRH, LH, and FSH production and secretion (Davis et al., 2015). The 
pituitary response to GnRH, and the gonadal response to LH and FSH 
simultaneously decline with age resulting in the diminished sex steroid 

Fig. 2. The hypothalamic-pituitary-gonadal axis is activated during puberty by 
the epigenetic silencing of repressive factors. Kisspeptin expression in the hy
pothalamus activates GnRH-releasing neurons that signal to the pituitary to 
synthesize and release LH and FSH. LH and FSH then stimulate estrogen and 
testosterone production in the ovaries and testes, respectively. During repro
ductive senescence, pituitary responsiveness to GnRH decreases and LH pulses 
become desynchronized leading to an impaired sex steroid production and a 
loss of negative feedback onto the hypothalamus and pituitary. Luteinizing 
hormone (LH), Follicle stimulating hormone (FSH), Gonadotropin-releasing 
hormone (GnRH). 
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production characteristic of menopause and andropause, and a loss of 
negative feedback resulting in increased GnRH, LH, and FSH production 
(Fig. 2) (Davis et al., 2015; Meethal et al., 2005; Bottner et al., 2007; 
Wang et al., 2010). 

LH and GnRH receptors are present in neurons throughout the brain, 
and changes in concentrations of these gonadal hormones during 
reproductive senescence have the potential to influence the structure 
and function of their neuronal targets. In the hippocampus, LH receptors 
are highly expressed (Meethal et al., 2005), and GnRH receptor con
centrations increase with age and castration (Badr et al., 1989, 1988). 
Interestingly, increased LH levels are seen during the same time period 
that age-related cell cycle alterations and the upregulation of oxidative 
markers are observed (Nunomura et al., 2001; Ogawa et al., 2003). 

In AD patients, increased levels of LH and GnRH are also observed in 
hippocampal pyramidal neurons (Meethal et al., 2005; Bowen et al., 
2000; Short et al., 2000), suggesting that their altered signaling activity 
during reproductive senescence might be involved in disease patho
genesis. Indeed, LH has been implicated in the re-activation of mitotic 
signaling pathways seen in early AD pathogenesis (Harris et al., 2002; 
Mattson et al., 2004) and shown to promote the amyloidogenic pathway 
in amyloid precursor protein (APP) processing (Meethal et al., 2005), 
providing a direct link to the progression of AD pathology. 

In the hippocampal pyramidal neurons, activation of GnRH receptors 
results in a long-lasting enhancement of synaptic transmission via 
glutamate receptors in CA1 & CA3 (Lu et al., 1999; Osada and Kimura, 
1995). Normally, GnRH receptor activation is modulated by estrogen 
(Gore et al., 2004). The loss of estrogen negative feedback on the HPG 
axis, due to ovarian senescence, results in increased GnRH signaling that 
may play a role in driving neurodegeneration in AD (Wang et al., 2010; 
Badr et al., 1989, 1988). Conversely, men who have undergone GnRH 
agonist therapy for prostate cancer (which ultimately reduces LH pro
duction) show a decreased incidence of neurodegenerative diseases 
(Almeida et al., 2004; Gandy et al., 2001) 

A series of studies have demonstrated that epigenetic mechanisms 
directly regulate GnRH transcription, both in vitro and in vivo (Kurian 
and Terasawa, 2013; Kurian et al., 2010; El Majdoubi et al., 2000). For 
example, during puberty a rise in GnRH mRNA is accompanied by a 
change in the DNA methylation status of the gene promoter (Kurian and 
Terasawa, 2013). Additionally, specific patterns of histone modifica
tions at the GnRH gene are associated with differential levels of 

transcription (Iyer et al., 2011): immature GnRH neuronal cells, which 
do not yet produce GnRH, possess mostly repressive H3K9me2 histone 
marks along the GnRH gene, while mature GnRH neuronal cells possess 
permissive H3K9ac and H3K4me3 histone marks (Iyer et al., 2011). 
Better understanding of epigenetic control of GnRH expression patterns 
during aging may provide insights on how to clinically manage aberrant 
signaling pathways during reproductive senescence in the hopes of 
reducing negative neurological outcomes. 

7.3. Epigenetic control of female reproductive senescence 

The heritability of menopause timing is 44–66 % and similar to pu
berty, variability is present in monozygotic twins and inbred rat strains, 
suggesting that epigenetics and environmental factors are involved 
(Bennett et al., 2015). While recent studies have begun to compare the 
pre- and post- menopause epigenome, no studies have directly investi
gated specific epigenetic mechanisms involved in driving the transition 
itself. 

In humans, menopause has been associated with accelerated epige
netic patterns of aging, including global hypomethylation (Levine et al., 
2016) in blood and Repetitive Element DNA Methylation (Lu et al., 
2018) (Fig. 3). Furthermore, women with an earlier age of menopause 
onset have been found to be “epigenetically older” than women with a 
later onset (Levine et al., 2016). The cause-effect relationship between 
epigenetics and menopause has been challenging to understand as dif
ferences in epigenetic patterns seen across the perimenopause transition 
consist of both age-related changes that initiate onset of reproductive 
senescence, as well as changes that occur as a direct result of endocrine 
status and loss of circulating sex hormones. Untangling these relation
ships are particularly important, as differential outcomes of menopause 
have been associated with a risk for neurodegenerative and autoimmune 
diseases (Fenichel and Sosset, 1997; Farage et al., 2012). 

Recently in our own lab, we demonstrated that neuroendocrine aging 
precedes onset of perimenopause and is directly regulated by DNA 
methylation and one carbon metabolism, using a rat model that re
capitulates characteristics of the human perimenopause (Bacon et al., 
2019). In the hypothalamus, the majority of age-related changes in gene 
expression occurred while animals were still cycling regularly, indi
cating that hypothalamic aging begins before the phenotypic manifes
tation of perimenopause. Alongside these transcriptional changes, we 

Fig. 3. In humans, menopause is strongly associated with the accelerated epigenetic patterns of aging in blood. Post-menopausal women are “biologically and 
epigenetically” older than pre-menopausal women of the same chronological age (hypothetically marked along each trajectory as “X”). Epigenetic changes prior to 
and during the perimenopause transition may provide an explanation for the age-related negative health and cognitive outcomes associated with early menopause. 
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observed decline in global DNA methylation with both age and repro
ductive senescence. Interestingly, within the young, regularly cycling 
animals we observed two distinct populations with “high” and “low” 
global DNA methylation levels suggesting that individual animals 
appear to be aging at various rates, suggesting that individual epigenetic 
differences that are present before perimenopause onset predispose an 
individual toward a particular outcome (late vs. early menopause). To 
interrogate mechanisms driving these observations, we treated young, 
regularly cycling animals with the DNA-methyltransferase-1 inhibitor, 
5-aza-20-deoxycytidine, and monitored DNA methylation over time via 
blood. Treated animals exhibited loss of DNA methylation and an 
accelerated transition to reproductive senescence, as characterized by 
loss of estrus cycling, compared to non-treated animals. Conversely, we 
also supplemented young, regularly cycling animals with methionine, a 
SAM precursor, displayed delayed onset of reproductive senescence, 
highlighting the role that one-carbon metabolisms plays in neuroendo
crine aging. Finally, genome-wide epigenetic profiling revealed changes 
in DNA methylation in genes required for hormone signaling, glutamate 
signaling, and melatonin and circadian pathways, providing insight into 
the origin of perimenopause-associated neurological symptoms. 

7.4. Menopause is associated with an increased risk for 
neurodegeneration in some women 

Perimenopause refers to the transition into female reproductive 
senescence. Menopause, the completion of the perimenopause transi
tion, is characterized by the exhaustion of oocytes, amenorrhoea, and 
the loss of circulating estrogen (Brinton et al., 2015; Harlow et al., 
2012). Loss of estrogen during female reproductive aging has profound 
effects in nearly all tissues, including breast, bone, cardiovascular, and 
brain. Menopause in humans is also marked by an increased risk for 
stroke, coronary heart disease, and neurological dysfunction in some 
women (Rocca et al., 2012; Weber et al., 2014; Silva and Naftolin, 2013; 
Wellons et al., 2012). Although a majority of women have no long-term 
health consequences, many women experience neurological symptoms 
during and after the perimenopause transition (Brinton et al., 2015). 
Furthermore, early menopause has been associated with adverse 
cognitive outcomes later in life, and the loss of estrogen during the 
perimenopause transition is considered to be a risk factor for developing 
AD (Geerlings et al., 2001; Henderson and Sherwin, 2007; Rocca et al., 
2011). 

The neurological consequences of menopause have been largely 
attributed to the dramatic loss of circulating estrogen. Estrogen-centered 
therapies have been used to treat many diseases, including breast, 
uterine, and ovarian cancers, as well as neurodegenerative diseases. 
However, cellular response and sensitivity to estrogen has been shown 
to decline following long-term hormonal deprivation (Gibbs, 2000), and 
although hormone therapy (HT) has been proposed as a possible treat
ment in reducing the risk and symptoms of AD (Paganini-Hill and 
Henderson, 1994; Ohkura et al., 1994), to date no studies have shown 
HT to be beneficial once AD symptoms have already presented (Almeida 
et al., 2006; Gurney et al., 2014). Furthermore, recent meta-analyses 
have suggested that HT may actually worsen cognitive dysfunction if 
initiated too late (O’Brien et al., 2014; Winkler and Fox, 2013), sug
gesting that there may be a “critical window” after menopause during 
which HT may be effective in preventing negative neurocognitive out
comes. Non-clinical studies in rodent models have shown a similar 
age-related loss of estrogen sensitivity (Selvamani and Sohrabji, 2010; 
Suzuki et al., 2007). While estrogen promotes neurotrophic support in 
neonatal, glial cultures (Arimoto et al., 2013; Rozovsky et al., 2002), 
these effects are lost in “aging” glial cultures originated from older male 
animals or from middle-aged females with irregular estrus cycles - 
implying that these changes occur across both age and the perimeno
pause transition and somehow alter cellular properties and influence 
responses to estrogen (Arimoto et al., 2013). 

The molecular basis for age- and perimenopause- related loss or 

dysregulation of estrogen sensitivity is poorly understood. However, 
evidence suggests that changes in estrogen signaling may originate from 
changes in the DNA-binding profiles of the ERs. The ability of a tran
scription factor to modulate gene transcription depends upon the 
accessibility of the target region in the DNA. Response to estrogen is 
context dependent and differs between tissues and cell type, suggesting 
possible epigenetic mechanisms (Arimoto et al., 2013; Bourdeau et al., 
2004; Foster, 2012). Indeed, local chromatin structure governs the 
context dependent ER-DNA-binding by controlling access to binding 
sites along the DNA (Miranda et al., 2013). Epigenetic modifications that 
occur with age and across the perimenopause transition may inhibit the 
ability of ERs to interact with the appropriate target regions of DNA. 
Development of better technologies to combat estrogen-related diseases 
hinges upon a better understanding of the molecular mechanisms 
behind age-related dysregulation of estrogen signaling. Further explo
ration of these details will allow us to more clearly define, the “window 
period” for beneficial hormone therapy in the prevention of AD as well 
as other estrogen-related diseases associated with increased age, such as 
various kinds of cancer, cardio-vascular disease, osteoporosis, and in
sulin sensitivity. 

7.5. Deficiencies in one-carbon metabolism during perimenopause links 
female reproductive senescence to age-related diseases 

One-carbon metabolism has the potential to modify the relationship 
between sex hormones and methylation in a bi-directional manner 
(Ulrich et al., 2012), further contributing to the complexity of endocrine 
aging and related health outcomes. The efficiencies of one-carbon 
metabolism vary among individuals, and can fluctuate over time and 
with menopause status (Zeisel, 2009). Estrogen stimulates the expres
sion of phosphatidylethanolamine N-methyltransferase (PEMT), a gene 
involved in the endogenous production of choline (Resseguie et al., 
2007). The loss of estrogen during menopause results in a decreased 
ability to produce choline and dramatically increases the need for 
exogenous choline intake. Demonstratively, postmenopausal women are 
much more sensitive to choline deficiency and are more likely to suffer 
from deficiency-induced fatty liver and muscle damage than are pre
menopausal women (da Costa et al., 2004, 2005). Conversely, dietary 
supplementation of folate has been shown to increase luteal progester
one levels in pre-menopausal women and to decrease the risk of sporadic 
anovulation (Gaskins et al., 2012), suggesting that folate may be able to 
regulate the initiation of the perimenopause transition through 
one-carbon metabolism. 

Dietary differences in folate and other one-carbon metabolites, in 
addition to individual differences in sex hormone levels, may explain 
some of the individual differences seen in menopausal age, risk for 
cognitive impairment, and response to intervention therapies. Systemic 
decline in estrogen combined with nutrient deficiencies resulting in 
impaired epigenetic maintenance creates a hyper-plastic state that 
sensitizes the perimenopausal brain to environmental insults and mod
ifies an individual’s health trajectory (Fig. 3). 

Elevated plasma Hcy is observed in post-menopausal women (Hak 
et al., 2000), as well as in AD patients, indicating impaired one-carbon 
metabolism. High levels of Hcy are additionally associated with an 
increased risk for developing AD (Shen and Ji, 2015; Nazef et al., 2014), 
and impaired one-carbon metabolism has been linked to AD, Parkinson’s 
disease, and other psychiatric disorders (Lucock, 2000; Moat et al., 
2004; Mattson and Shea, 2003; Kronenberg et al., 2009; Tangney et al., 
2011; de Jager et al., 2012; Wald et al., 2011; Kronenberg et al., 2008; 
Nilsson et al., 2002; Clarke et al., 1998; Fuso et al., 2012, 2008; Lee 
et al., 2012). Coincidently, dysregulation of the epigenome in many of 
these same disorders are well established (Marques et al., 2012; Mas
troeni et al., 2010; Wang et al., 2008; Lardenoije et al., 2015; Xu, 2015; 
Julien et al., 2009; Chen et al., 2009; Chouliaras et al., 2012). Thus, 
estrogen loss and impaired one-carbon metabolism, resulting in the 
dysregulation of the epigenome, provides a causal link between the 
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perimenopause transition and a risk for cognitive impairment later in 
life (Fig. 3). 

8. Conclusion 

Brain development is a life-long process that is sensitive to both 
genetic and environmental factors. While the genetic code is mostly 
invariant, environmentally-induced epigenetic alterations that occur 
during critical periods in the brain can cause phenotypic changes that 
manifest later in life. While traditionally only associated with early brain 
development, “critical periods” occur throughout life: gamete forma
tion, development in utero, puberty, and reproductive senescence are all 
periods of transition that are hypersensitive to environmental pertur
bations. Changes that occur during these sensitive periods are then able 
to influence subsequent critical periods. For example, choline deficiency 
in utero may lead to epigenetic patterns associated with aberrant 
glutamate signaling that leaves the pubescent brain hypersensitive to 
stressors which impair brain plasticity and increase the risk for cognitive 
decline later in life. Similarly, initiation of sexual maturation is tightly 
regulated by epigenetic mechanisms, and the transition through puberty 
is a dynamic process that is influenced by environmental factors. If early 
events in utero are able to alter the HPG axis to impact puberty onset, it is 
likely that environmental conditions during the pubertal transition 
continue to influence other still-developing brain networks. Alterations 
in histone modifications and DNA methylation are mechanisms by 
which environmental factors during puberty can sensitize the brain to
wards specific neurological outcomes and aging phenotypes later in life. 
Rather than being isolated episodes, each event builds upon the last and 
to manifests a phenotype that is the culmination of a complex series of 
events that begin in utero and progress throughout life. 
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