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a  b  s  t  r  a  c  t

The  hippocampus  is  not  fully  developed  at birth  and, with  respect  to  spatial  cognition,  only begins  to
show  signs  of  adult-like  function  at three  postnatal  weeks  in rodents.  Studying  the  developmental  period
spanning  roughly  two to  four  weeks  of  age  permits  an understanding  of  the  neural  framework  neces-
sary  for  the  emergence  of  spatial  navigation  and,  quite  possibly,  human  episodic  memory.  However,  due
to developmental  factors,  behavior  data  collection  and interpretation  can be severely  compromised  if
inappropriate  designs  are  applied.  As such,  we propose  methodological  considerations  for  the  behav-
ioral  assessment  of  hippocampal  function  in  developing  rats  that  take  into  account  animal  size,  growth
rate,  and  sensory  and  motor  ability.  We  further  summarize  recent  key  interdisciplinary  studies  that  are
beginning  to  unravel  the  molecular  machinery  and  physiological  alterations  responsible  for hippocampal
maturation.  In general,  hippocampal  development  is  a protracted  process  during  which  unique contri-
MPAR
MDAR
ehavioral testing
ovelty
nvironment

butions  to spatial  cognition  and complex  recognition  memory  come  “on  line”  at  different  postnatal  ages
creating  a  unique  situation  for  elucidating  the neural  bases  of specific  components  of  higher  cognitive
abilities.

© 2014  Published  by  Elsevier  Ltd.
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. Introduction

Episodic memory constitutes the “what,” “when” and “where”
spects of personal experiences and is subserved by the hippocam-
us and associated neural structures (Nyberg et al., 1996). Episodic
emory allows us to relate past experiences to current situations,

o plan future scenarios, to create narratives and, in large part,
efines who we are as individuals. In rodents, the hippocampus
its at the top of a perceptual and cognitive system that permits
apid spatial memory formation and spatial navigation (Dumas and
udy, 2010). Due to similarities in architecture, cellular physiology
nd network dynamics across species, research into spatial navi-
ation and spatial memory in rodents serves as an ideal model to
nderstand the physiological bases of episodic memory in humans
Squire, 1992; Squire and Zola, 1998). Moreover, the protracted
evelopment of the hippocampus during the late postnatal period
llows for examination of discrete hippocampus-dependent func-
ions as they come on line, beginning with contextual encoding
t two weeks and ending with the ability to form and retrieve
ong-term episodic memories at after four weeks of age.

In humans, spatial memory emerges at about three years of age
Aadland et al., 1985; Huttenlocher, 2008). In rodents, as judged by
erformance in spatial learning and memory tasks, the hippocam-
us does not show signs of adult-like function until at least the
nd of the third postnatal week (Blair et al., 2013; Douglas et al.,
973; Dumas, 2004; Kraemer and Randall, 1995; Rudy et al., 1987).
eliance of spatial learning and memory on well-developed motor
nd distal sensory systems (Rudy, 1992) may  partially explain why
he hippocampus matures late in the postnatal period, so that
nformation fed to the juvenile hippocampus is an accurate, high
delity representation of the environment (Fagiolini et al., 1994;
öb et al., 1987; Schachtele et al., 2011; Stanton, 2000). This notion

s substantiated by studies that have demonstrated that the trajec-
ory for hippocampal maturation can be modified via experimental

anipulation of visual experience (Dumas, 2004; Foreman and
ltaha, 1992; Kenny and Turkewitz, 1986), gain-of-function phar-
acological treatment (Blair et al., 2013), and genetic mutation of

eurotransmitter receptors (Sanders et al., 2013). Such approaches
ermit creation of a holistic model of hippocampal construction and

dentification of the specific neural processes that underlie various
spects of spatial cognition and episodic memory.

To fully understand episodic memory in adulthood, it is impor-
ant to understand how the hippocampus is built during postnatal
evelopment and how it gains the ability to influence behavior
Wills et al., 2013). Because developmental approaches to inves-
igation of hippocampal function are on the rise, this mini-review
Please cite this article in press as: Albani, S.H., et al., Deve
dependent behaviors: Insights from interdisciplinary studies and
http://dx.doi.org/10.1016/j.neubiorev.2014.04.009

s intended to define appropriate behavioral tests for younger ani-
als (often referring back to pioneering literature) and highlight

ecent mechanistic experiments that are beginning to create a uni-
ed model of the neural bases of hippocampal maturation.

ig. 1. Long–Evans rats at P19 and P38. Both height (A) and length (B) differ dramatically b
n  size and step length in relation to the animal’s age.
 PRESS
avioral Reviews xxx (2014) xxx–xxx

2. Considerations for behavioral tests in immature rodents

Behavioral testing in juvenile rodents is very similar to that
performed in adults with a few considerations, including smaller
body size and accelerated growth rate of young rodents, continued
refinement of sensory and motor systems, and interpretation com-
plications produced by multiple-day training procedures. Attention
paid to such details reduces experimental variability and increases
the ability to resolve age-related differences in spatial learning and
memory.

2.1. Issues related to size, diet, and rapid growth

Developing rats and mice are smaller than adults and remain
in a phase of rapid growth as they approach three weeks of age
(Fig. 1). Because juveniles are smaller, maze dimensions need to be
adjusted (Bulut and Altman, 1974; Carman and Mactutus, 2002;
Carman et al., 2003; Dumas, 2004). Also, during the third post-
natal week, developing rodents still feed from the dam while
transitioning to solid food. Thus, appetitive tasks that require food
deprivation, whether spatial or not, are likely to produce exces-
sive metabolic and/or psychological stress prior to training, impact
growth trajectory, and are not appropriate (Bronstein and Spear,
1972). As well, appetitive rewards that are salient to older animals
may  not be so to younger animals, impeding analysis of learning
and memory abilities (Smith and Bogomolny, 1983). Furthermore,
appetitive and aversive tasks that require multi-day training pro-
cedures produce temporal confounds that hinder interpretation of
results. For instance, if behavior changes from day one to day two
of a multi-day procedure, without single exposure controls, it is not
possible to know if any behavioral alteration observed during day-
two performance was  influenced by day-one training or emerged
independently on day two.

2.2. Environmental considerations

Finally, while sensory and motor abilities are largely well-
developed at three weeks of age, some degree of continued
refinement is apparent (Moye and Rudy, 1987; Prusky and Douglas,
2003). It is likely that, at three weeks, young animals cannot see as
far as more mature animals (Fagiolini et al., 1994; Liao et al., 2004).
Thus, given testing environments of the same size, contextual cue
patterns should be larger for juveniles (Rudy et al., 1987) (Fig. 2).
Finally, three-week-old rodents are not as strong as adults nor have
lopmental studies of the hippocampus and hippocampal-
 tips for new investigators. Neurosci. Biobehav. Rev. (2014),

they produced as thick a coat of fur. Therefore, special attention
should be paid to environmental temperature and number of tri-
als administered, especially in wet mazes where these animals do
not float as well and may  be more adversely affected by excessive

etween these age groups. Behavioral testing conditions must account for differences
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re reduced to accommodate the smaller juvenile. Visual cues for juvenile testing
hould be larger and separated by a greater distance than their adult counterparts
o  allow for developmental differences in visual acuity.

umber or duration of trials and inter-trial temperature changes
Iivonen et al., 2003; Kraemer and Randall, 1995).

.3. Optimal tasks for probing hippocampal integrity in juveniles

Given the warnings described above, some spatial naviga-
ion tasks are more appropriate than others when working with
mmature rodents. For instance, while the Morris water maze is
onsidered by many to be the gold standard behavioral assay
or hippocampal function in adults (Morris, 1984; Vorhees and

illiams, 2006), this test is suboptimal for developing animals. The
ounger the animal, the more effort must be exerted to remain
float (Kraemer and Randall, 1995), which may  produce stress lev-
ls that negatively impact learning and memory. Additionally, the
ounger the test subject, the greater the impact of water and ambi-
nt temperature on performance. To the contrary, tests that are
erformed on dry mazes, are confined to one day of training, do
ot require food restriction or substantial time away from the dam,
nd are minimally stressful are best suited for studying develop-
ental trajectory of hippocampal maturation. At the top of the

ist are spontaneous alternation in a Y-maze and tests of novelty
etection.

.3.1. Spontaneous alternation
The use of spontaneous alternation as a behavioral assay for hip-

ocampal integrity has become well established over the past half
entury (Dember and Fowler, 1958; Douglas, 1975; Kirby, 1967;
alonde, 2002; Richman et al., 1986). Examination of spontaneous
lternation is typically conducted in a T-maze or symmetrical Y-
aze having three identical, equally spaced arms with walls. For

-maze testing, animals are individually introduced to the maze
or eight to fifteen minutes and allowed to freely navigate. There
s no food deprivation or taxing physical exertion, and animals
re almost always active enough beyond postnatal day (P) 16
o collect sufficient data and calculate alternation rate (Dumas,
004). Spontaneous alternation in a Y-maze may  also be prefer-
ble to discrete-trials alternation in a T-maze due to the minimal
mount of handling needed for data collection (Conrad et al., 1996;
ughes, 2004). Selective sensitivity of spontaneous alternation to
ippocampal lesions (Douglas, 1972) and robust age-dependency

ate in the postnatal period strongly support use of this test to study
ippocampal maturation.

Foundational contributions by Robert Douglas and colleagues
rmly established the validity of the spontaneous alternation
Please cite this article in press as: Albani, S.H., et al., Deve
dependent behaviors: Insights from interdisciplinary studies and
http://dx.doi.org/10.1016/j.neubiorev.2014.04.009

aradigm for assessing hippocampal development. They first
howed that in normal adult rats, alternation rate was  about
5–70% of total arm choices, which was significantly greater than
hance levels (50%, given the observation that re-entry back into
 PRESS
avioral Reviews xxx (2014) xxx–xxx 3

an arm just exited is rare) (Douglas and Isaacson, 1965; Douglas,
1972). In rats with hippocampal lesions, alternation rate dropped
to 50%. As well, when visual contextual cues were limited, alter-
nation rate was  reduced, indicating that maze navigation is guided
primarily by visual experience (Douglas, 1966; Means and Douglas,
1970). Douglas and colleagues then used this task to assess the
time course of hippocampal maturation and found that alterna-
tion rate increased across the third week of postnatal development
and reached adult levels by roughly P25 (Douglas et al., 1973;
Douglas, 1975). More recent longitudinal studies have replicated
this finding (Dumas, 2004) and experiments with discrete testing
ages showed that alternation rate is significantly greater at P22-24
than at P17-19 (Blair et al., 2013; Egger et al., 1973), suggesting
that navigation based on the constellation of extramaze cues may
occur as early as P20. While there is no experimentally defined spa-
tial goal or explicit learning and memory phases in spontaneous
alternation, this task very likely necessitates contextual encod-
ing and use of spatial information for navigation and serves well
for defining the age at which these latter cognitive abilities first
emerge.

2.3.2. Novelty detection
Rodents have an innate desire to explore novel objects and

places. Thus, it is no surprise that, without explicit training or
reward contingencies, exploration behavior is dictated in large
part by novelty (Poucet et al., 1986). Historically, the precise
role of the hippocampus in novelty approach and investigation
has been debated. Some studies have deemed the hippocam-
pus necessary to varying degrees for novel object recognition
(Broadbent et al., 2010; Cohen et al., 2013) and novel place recog-
nition (Barker and Warburton, 2011). However, other studies have
shown that hippocampal lesions leave novel object recognition
intact, but impair recognition of objects in novel places and novel
contexts (Mumby  et al., 2002; Piterkin et al., 2008). A compre-
hensive study by Rosamund Langston and Emma Wood showed
that when the hippocampus was completely destroyed bilaterally
in adult rats, novel object and novel place recognition abilities
remained largely intact (Langston and Wood, 2010). However,
object–place–context memory, determined by selective investiga-
tion of one of two familiar objects placed in an unexpected location
relative to the context in which it was  originally presented, was
impaired (Fig. 3). Recently, Langston and colleagues applied this
approach to developing rats (Langston et al., unpublished results),
and found that novel object and novel place recognition mature
earlier than novel object–place recognition, which matures earlier
than novel object–place–context recognition. The former abilities
emerge shortly after the end of the third postnatal week, but the
latter does not become apparent until the animals are well over one
month of age. Combined, the adult lesion and developmental trajec-
tory studies suggest that complete integration of the hippocampus
into brain networks necessary for identification of specific events
occurring at distinct places within specific contexts (i.e. episodic
memory) emerges later in development than the ability to navi-
gate according to spatial context. Alternatively, differences in age of
onset of spatial navigation and novel object–place–context recogni-
tion may  exist due to delayed maturation and greater involvement
of the prefrontal or perirhinal cortex in novel object–place–context
recognition (Barker and Warburton, 2011; Browning et al., 2005).
In general, temporal separation in the developmental emergence
of various hippocampal-dependent cognitive abilities (context
lopmental studies of the hippocampus and hippocampal-
 tips for new investigators. Neurosci. Biobehav. Rev. (2014),

encoding, navigating according to context, complex novelty recog-
nition) creates an attractive model for delineation of the individual
neural properties that subserve each individual cognitive func-
tion.
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C 

Fig. 3. Object–place (A), object–context (B), and object–place–context (C) recognition tasks as described by Langston and Wood (2010). The cylinder and cube represent twoQ5
different objects. (A) In the sample phase of the object–place task, two  different objects (green cube and orange cylinder) are presented to the rat. In the test phase, two
objects of the same shape are presented in the same context, such that one object (the circled cube) is in a novel place. (B) In the sample 1 phase of the object–context task,
two  objects of the same shape are presented in spatial context 1. In the sample 2 phase, two  copies of a different object are presented in spatial context 2 (denoted by the blue
platform). The test condition maintains context 2 and swaps one object from context 2 with one object from context 1, such that one object (the circled cube) is in a novel
object–context configuration. (C) In the sample 1 phase of the object–place–context recognition task, two  different objects are presented in context 1. In the sample 2 phase,
the  context is changed and the object locations are swapped. The test condition returns to the original context and presents a copy of one object from the original context
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ith  one object from the second context in the place of the other object, such that
here  is a two-minute latency between phases of each recognition experiment. (For
eb  version of the article.)

. First reports of the neural underpinnings of
ippocampal maturation

Arguably, no single individual has contributed more to our
nderstanding of the developmental profiles for learning and mem-
ry abilities in rodents than Jerry Rudy. Rudy used cleverly designed
ehavioral experiments to tease apart the individual trajectories
or specific types of learning and memory (reviewed in Dumas
nd Rudy, 2010), including the design of two or more maze tasks
iffering in only one procedural aspect to isolate the cognitive
echanism underlying the performance deficit (Moye and Rudy,

987; Rudy et al., 1987). For instance, to delineate a timeline for
arious types of conditioned learning, Moye and Rudy performed
hree behavioral tasks in animals either fifteen or seventeen days of
ge (1985). They observed a failure to fear condition to a visual cue
t P15 but not P17. Upon swapping the visual cue for an auditory
ue, fear condition was apparent at P15. Additional tests confirmed
etection of the visual stimulus. Combined, the results suggest that
he inability to fear condition to a visual cue at P15 was not a func-
ion of a basic visual deficit or a basic fear conditioning deficit, but
nstead was due to a selective impairment of the visual system to
ssociate the light with the shock. However, until fairly recently,
irect investigation of the neural substrates of cognitive matu-
ation in developing rodents was limited to lesion and behavior
tudies. On the rise are interdisciplinary studies that unify behav-
oral actions and neural processes, tremendously enhancing our
nderstanding of hippocampal development.

.1. Early eyelid parting
Please cite this article in press as: Albani, S.H., et al., Deve
dependent behaviors: Insights from interdisciplinary studies and
http://dx.doi.org/10.1016/j.neubiorev.2014.04.009

One decade ago, studies on the impact of early eyelid parting
n rodents first demonstrated parallels between synaptic modifica-
ions in the hippocampus and behavioral adjustments in spatial

azes (Dumas, 2004). In this study, eyelids were parted at P8,
bject (the circled cube) is in a novel object–place–context configuration. Typically,
retation of the references to color in this figure legend, the reader is referred to the

nearly a week in advance of normal eyelid parting (P14–15) and
spontaneous alternation in a Y-maze and excitatory synaptic trans-
mission in hippocampal slices were investigated. Akin to the
work of Douglas, in control animals, spontaneous alternation rate
increased steadily from P16 to roughly P28. In animals that under-
went early eyelid parting, alternation rate peaked near P22, almost
one week earlier than observed in controls. These data suggest that
altering the developmental trajectory of visual perception indi-
rectly influences and, in this case, hastens the rate of developmental
of the hippocampus. This notion was  confirmed by the electro-
physiological recordings, which showed accelerated development
of fiber pathways leading into the dentate gyrus and area CA1 and
earlier maturation of excitatory synaptic transmission in the den-
tate gyrus with early eyelid parting. This work underscored that
the developmental trajectory of the hippocampus is modifiable by
external input and is regulated by visual experience.

3.2. Place cell electrophysiology

In vivo electrophysiological recording of action potential dis-
charge from the hippocampus in freely behaving rats has been
performed since the 1970s. John O’Keefe and colleagues discov-
ered that there were neurons in the hippocampus that discharged
action potentials only when the animal was in a particular location
in the testing environment (O’Keefe and Dostrovsky, 1971). The
cells were termed “place cells” and the region of the maze in which
they discharged was  called the “place field.” Different place cells
have different place fields such that, when combined, populations
of place cells encode complete environments or produce a cognitive
map  (O’Keefe and Nadel, 1979). Place cells have since been shown to
lopmental studies of the hippocampus and hippocampal-
 tips for new investigators. Neurosci. Biobehav. Rev. (2014),

do more than map  environments, and are also engaged in memory
for locations visited in the recent past (Foster and Knierim, 2012; Ji
and Wilson, 2008) and planning paths to future intended destina-
tions (prospective encoding) (Ainge et al., 2007, 2012; Ferbinteanu
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Fig. 4. Single units (individual action potential discharge events) and LFPs reflecting
population-level events can be measured in real time during arena exploration. (A)
Typically, tetrodes are implanted so that the tips of the electrodes reside in the cell
body layer of hippocampal area CA1. (B) Signals are high-pass filtered to observe
the  pattern of responses that individual action potentials produce on each elec-
trode, permitting isolation of multiple distinct units (X and Y) by each tetrode. (C)
One  or more electrodes can be used to record population LFPs. Power scores can be
calculated to determine the amount that any frequency or range of frequencies is
represented in the population trace. Oscillatory rhythms in the range of 6–12 (theta)
and 45–120 Hz (gamma) are often analyzed with respect to behavior of the animal.
The  example LFP is filtered at 3–140 Hz. Scale bar is one second. (D) The exploration
path of an animal in a circular arena (left) shown with the heat map  of discharge fre-
quency for a single unit (right) reveals the place field of a single neuron. Firing rate
increases when the animal occupies the place field and different units have different,
but sometimes overlapping place fields. (E) During prospective encoding, neurons
with established place fields (indicated by the colored dots on the linear maze and
waveforms at top) fire transiently in advance of the animal’s movement and sweep
from one place field (Neuron A) to the next (Neuron B) toward the animal’s des-
tination (X) (Johnson and Redish, 2007). In a 2-dimensional maze, neurons with
established place fields (indicated by the colored dots) show prospective encoding
by  firing sequentially (red, blue, then green) toward the animal’s destination (X).
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eurons sweep toward a home location (X) independent of the animal’s previous
utbound path (Pfeiffer and Foster, 2013). (For interpretation of the references to
olor in this figure legend, the reader is referred to the web  version of the article.)

nd Shapiro, 2003; Johnson and Redish, 2007; Pfeiffer and Foster,
013) (Fig. 4).

In 2010, the first two reports of in vivo electrophysiological
ecording in awake and behaving juvenile rats younger than three
eeks of age were published and contained highly similar find-

ngs with regard to properties of individual units and oscillatory
ctivity in local field potentials (LFPs) (Langston et al., 2010; Wills
t al., 2010). That is, stable place cells were observed well before
he end of the third postnatal week, as early as P16, in conjunc-
ion with adult-like properties of “head-direction cells” in the pre-
nd parasubiculum and “grid cells” in the medial entorhinal cor-
ex. Approximately half of all hippocampal units monitored at the
oungest age passed the criteria for place cell classification (com-
ared to roughly 80% in adults), were theta modulated, and even
isplayed theta phase precession and place field expansion with
ontinued experience in the same environment. These findings sup-
ort the presence of a relatively stable geometric reference system
nd the ability to identify, process, and discern different contexts at
his early age. Comparing these physiological data with behavioral
rofiles, it appears that many spatial properties of large numbers
f individual neurons are somewhat mature well in advance of
he first behavioral indicators of spatial navigation. However, age-
Please cite this article in press as: Albani, S.H., et al., Deve
dependent behaviors: Insights from interdisciplinary studies and
http://dx.doi.org/10.1016/j.neubiorev.2014.04.009

elated increases in the number of place cells, spatial coherence and
nter-trial stability were noted beyond the end of the third postna-
al week, along with increases in theta power measured from LFPs
nd entorhinal grid stability. Many of these developmental changes
 PRESS
avioral Reviews xxx (2014) xxx–xxx 5

were corroborated in a later study highlighting an increase in the
proportion of adult-like place cells, average spatial signal, and place
field stability from P23 to P35 (Scott et al., 2011). No studies have
yet correlated developmental alterations in spatial behavior with
place or grid cell metrics or the concomitant increase in theta power
(Hasselmo, 2005; Vanderwolf, 1969). Also, more complex place
cell properties, like prospective encoding, have not been investi-
gated in developing animals, but are prime candidates as factors
that regulate the emergence of hippocampal-dependent behaviors.
Specifically, the prospective “sweeping” behavior of extra-field fir-
ing (Johnson and Redish, 2007; Pfeiffer and Foster, 2013) may be a
necessary developmental pre-requisite for navigating according to
spatial context.

3.3. Glutamatergic receptors

Most recently, spatial navigation was  explored in developing
rodents in combination with pharmacological and genetic manipu-
lations of key neurotransmitter receptors within the hippocampus,
namely glutamatergic AMPA and NMDA receptors. As described
below, these innovative and highly informative approaches are cre-
ating a holistic model of hippocampal maturation.

3.3.1. AMPA receptors
AMPA receptors create the fast postsynaptic depolarization that

results from the presynaptic release of the neurotransmitter, glu-
tamate. Relationships between spatial navigation and functional
dynamics of AMPA receptors were explored (Blair et al., 2013)
through treatment with a positive allosteric modulator that pro-
longs AMPA receptor-induced postsynaptic depolarization (Arai
and Kessler, 2007). Increasing the duration of AMPA receptor
depolarization in rats less than three weeks of age increased spon-
taneous alternation rate. Electrophysiological work showed that
prolonging AMPA receptor responses also produced stronger cou-
pling between excitatory synaptic depolarization and postsynaptic
discharge and reduced the activity threshold necessary for induc-
tion of long-lasting synaptic plasticity. Proteomic analysis of AMPA
receptors revealed a change in the composition of subunits from
P17–24 that would explain both the developmental increase in
excitatory synaptic response duration under control conditions and
the decrease in drug efficacy with increasing age. More specifically,
higher expression levels for GluA1 shifted to higher expression lev-
els for GluA3 and the transmembrane AMPA receptor regulatory
protein (TARP) (Fig. 5). Effects of increasing age on behavior were
not mimicked when blocking inhibitory synaptic transmission, nor
did allosteric modulation of AMPA receptors alter behavior in a
task known to not rely on the hippocampus, specifying the drug-
induced enhancement of alternation rate to excitatory synapses in
the hippocampus. Combined, the findings promote the notion that
subtle molecular alterations to the AMPA receptor protein complex
late in postnatal development drive changes in basic functional
properties of excitatory transmission that are sufficient to alter
hippocampal network function and unmask spatial navigation abil-
ity. Molecular modification of the AMPA receptor protein complex
might represent a synaptic alteration that provides a more sta-
ble network to support long-term memory storage with sufficient
plasticity to encode new information.

3.3.2. NMDA receptors
Glutamatergic synapses contain NMDA receptors in combina-

tion with AMPA receptors. Activation of NMDA receptors has been
shown to be critical for activity-dependent synaptic plasticity in the
lopmental studies of the hippocampus and hippocampal-
 tips for new investigators. Neurosci. Biobehav. Rev. (2014),

hippocampus (Collingridge and Singer, 1990; Collingridge, 2003;
Morris, 1989; Morris et al., 1990), place cell stability (Kentros et al.,
2004), and spatial learning and memory (Butcher et al., 1990;
Collingridge, 1987; Morris, 1989; Morris et al., 2013). Modification
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Fig. 5. Developmental modifications to AMPA receptors and NMDA receptors at
excitatory synapses in the hippocampus. (A) During the third postnatal week, NMDA
receptors with GluN2B subunits (blue) are replaced by NMDA receptors with GluN2A
subunits (green). (B) From P17 to P24, expression of the AMPA receptor subunit,
GluA1 (red), decreases while expression of GluA3 (yellow) and transmembrane
AMPA receptor regulatory protein TARP (brown) increase. Synapse associated pro-
tein (SAP102) and postsynaptic density protein (PSD95) are anchoring proteins
(orange) for AMPA and NMDA receptors at glutamatergic synapses (Elias et al., 2008).
TARP regulates synaptic anchoring and AMPA receptor channel dynamics (Jackson
and Nicoll, 2011). (For interpretation of the references to color in this figure legend,
the reader is referred to the web  version of the article.)
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Adapted from Sanders et al. (2013).
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to NMDA receptor composition during late postnatal development
is suspected to play a role in age-related improvements in spatial
navigation and spatial memory (Dumas, 2005b). As hippocampal
neurons mature in culture (Barria and Malinow, 2002) and dur-
ing the third postnatal week in vivo, synaptic NMDA receptors
with GluN2B subunits are replaced by NMDA receptors contain-
ing GluN2A subunits (Monyer et al., 1994; Williams et al., 1993).
This subunit switch alters numerous properties of NMDA receptor
function including channel open probability, channel deactiva-
tion, and intracellular protein-protein signaling (Sanders et al.,
2013). In a recent study, chimeric GluN2 subunits were expressed
in transgenic mice to isolate changes in channel dynamics, and
hence calcium conductance (amino and transmembrane regions),
and intracellular protein-protein signaling (carboxy terminus) at
various postnatal ages (Sanders et al., 2013) (Fig. 6). Isolated
modification to calcium conductance domains, but not intracel-
lular protein-protein signaling domains, elicited mature levels of
spontaneous alternation at P17–19 (Sanders et al., 2013), impli-
cating calcium conductance dynamics in the final maturation of
the hippocampus and the emergence of spatial navigation. Related
research in genetically modified mice in which GluN2B is condi-
tionally deleted (Gray et al., 2011; Hall et al., 2007) or replaced
with GluN2A (Wang et al., 2011) suggest that the developmental
NMDA receptor subunit switch promotes maturation of excitatory
synaptic transmission and precedes the changes in AMPA recep-
tor structure and function. Concerted modifications to NMDA and
AMPA receptors likely underlie the late postnatal emergence of
hippocampal-dependent behaviors.

4. Summary and conclusions

A blossoming of research into the neural factors that regu-
late hippocampal maturation is underway. As more investigators
become involved, it is important to lay the groundwork for appro-
priate methods for experimentation and unification of research
findings. It is imperative to design behavioral assays that are
amenable to performance by smaller, weaker animals and that are
acute so as to best define temporal aspects of behavioral mod-
ifications and minimize stress. Preliminary findings support the
notion that alterations in neural network function both within
the hippocampus and between the hippocampus and other late-
developing, pertinent brain structures (such as prefrontal cortex)
underlie late postnatal changes in spatial navigation and novel
object–place–context recognition abilities. Moreover, changes in
excitatory synaptic transmission and plasticity, involving structural
and functional modifications to both AMPA and NMDA receptors,
are primary cellular candidates that enable the network changes
permitting adult-like hippocampal processing.

The time is ripe to fully understand how the hippocampus is
built and, in doing so, to reveal the individual contributions of dif-
ferent forms of synaptic plasticity in the construction of neural
networks, encoding of experiences, retrieval of learned informa-
tion for goal-directed behaviors, and complex novelty recognition.
Information gleaned from such investigation will undeniably lead
to better treatments for memory loss due to congenital disorders,
neural injury, neurodegeneration, and aging.
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