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A B S T R A C T   

It has long been suggested that human behavior reflects the contributions of multiple systems that cooperate or 
compete for behavioral control. Here we propose that the brain acts as a “Mixture of Experts” in which different 
expert systems propose strategies for action. It will be argued that the brain determines which experts should 
control behavior at any one moment in time by keeping track of the reliability of the predictions within each 
system, and by allocating control over behavior in a manner that depends on the relative reliabilities across 
experts. fMRI and neurostimulation studies suggest a specific contribution of the anterior prefrontal cortex in this 
process. Further, such a mechanism also takes into consideration the complexity of the expert, favoring simpler 
over more cognitively complex experts. Results from the study of different expert systems in both experiential 
and social learning domains hint at the possibility that this reliability-based control mechanism is domain 
general, exerting control over many different expert systems simultaneously in order to produce sophisticated 
behavior.   

1. Introduction 

For decades if not centuries, researchers in psychology and neuro
science across many different domains including cognitive and social 
psychology, animal-learning and in behavioral and decision neurosci
ence, have proposed the existence of multiple systems in the brain that 
co-operate or compete to control behavior (Damasio, 1994; Daw et al., 
2005; Dickinson, 1985; Figner and Weber, 2011; Kahneman, 2011; 
Laibson, 1997; Norman and Shallice, 1986; Shiffrin and Schneider, 
1977). Typically, a theoretical claim is made for the existence of a di
chotomy (in some instances a trichotomy)– such that the interactions 
between the competing systems can produce nuanced effects on 
behavior that would not be predicted by the effects of only one system 
alone. For instance, in a number of theoretical frameworks for 
value-based decision-making, an impulsive system that wants immedi
ate gratification competes for control over behavior with a more patient 
reflexive system that is focused on fulfilling longer term goals (Laibson, 
1997; McClure et al., 2004). In a framework derived from 
animal-learning, a goal-directed system that accesses the current 

incentive value of outcomes as well as the causal relationship between 
actions and outcomes, competes for control against a habit system that 
selects actions based on previously reinforced stimulus-response re
lationships (Dickinson, 1985). In the computational reinforcement- 
learning literature, a model-based (MB) system that actively plans ac
tions based on a cognitive map competes against a model-free (MF) 
system that performs actions based on previously learned value pre
dictions (Daw et al., 2005). Such multi-system theories are so ubiqui
tous, that there is hardly an area of study in the psychology of the mind 
that does not feature such a theory in some or other form. 

We contend that the proliferation of such multiple systems theories is 
not merely a curiosity in the sociology of the science of the mind. 
Instead, we believe they reflect a recognition of the fundamental 
importance of a multiple systems architecture for understanding the 
brain, because from an evolutionary and individual stand-point, the 
existence of multiple systems or strategies for solving a cognitive 
problem is highly advantageous for an organism. One crucial reason 
boils down to the meaning behind the folk expression that “two heads 
are better than one”, or to the notion that the crowd can express wisdom 
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not found in a single individual (Surowiecki, 2005). Simply put, just as 
when polling the ideas of two executives with different backgrounds and 
expertise might yield better decisions for a company than if only one of 
those actors had taken a decision, our brain can poll the opinions of 
different systems, each of which either has access to different forms of 
information and/or operates on the information differently. Therefore, 
each system has the potential to reach different conclusions about the 
state of the world, and/or which policy might be best. 

Here, we argue that a useful framework with which to consider how 
the brain “polls” different systems, is the “mixture of experts” frame
work adapted loosely from machine-learning (Jacobs et al., 1991). Ac
cording to the mixture of experts idea, different computational strategies 
operate on a computational problem, and these experts can each come 
up with different evaluations/beliefs and/or proposals for action. In 
some instances, the experts might operate on completely distinct 
sub-problems, and even operate on different data partitions. For 
instance, two different experts might be focused on decoding sounds 
from low and high frequency domains. In other circumstances, experts 
might work on overlapping sub-problems and even use the same input 
data, but use different algorithms or strategies to solve the sub-problem. 
In general we suggest that different experts can be distinguished from 
each other based on any one of three criteria: (a) the experts operate on 
different partitions of the state-space, whether input (different sensory 
input) or output (different motor actions), (b) the experts use qualita
tively different algorithms to make predictions, or (c) unique experts 
might also be identified from studies of neural implementation if distinct 
experts are mapped to dissociable neural circuits. 

Machine learning researchers have considered several strategies for 
how to produce an overall decision based on integrating across different 
modules that have distinct expertise either by having access to different 
partitions of the input data and/or by performing different operations on 
the input data (Jacobs et al., 1991; Titsias and Likas, 2002; Yuksel et al., 
2012). In essence, the goal of training a Mixture of Expert (MoE) system 
in machine-learning is to train each of the individual experts on the most 
relevant parts of the problem to which they can contribute, and also to 
train the “manager” in how to allocate task responsibilities over these 
experts such that their collective expertise is efficiently utilized to solve 
the overall problem (Jacobs et al., 1991). That is, the system should 
assign weights to the individual experts depending on the specific 
relevance of their expertise for solving a particular problem. One doesn’t 
want to have an electrician work on one’s kitchen sink, or a plumber 
work on one’s lighting. 

Because the “manager” adapts a behavioral policy that arises from an 
integration of the opinions of the individual experts, weighted by its 
relative confidence in their predictions, all possible opinions on the 
subject by individual experts will have been taken into account in an 
optimal manner, provided the evaluation of the degree of confidence 
that one should have in each expert is veridical. 

2. Confidence in an expert can be inferred from the degree of 
reliability of the expert’s predictions 

How can the meta-decision agent determine how confident it should 
be in an expert’s opinions? We propose that the simplest way to do so is 
to poll how well the expert is doing in making its own predictions (see 
Daw et al. (2005) for the original application of this idea to a dual system 
framework), which we call prediction reliability. Prediction reliability is 
the converse of prediction uncertainty which has been well studied in 
the theoretical neuroscience literature, in turn often fractionated into a 
number of distinct components such as expected uncertainty, unex
pected uncertainty and estimation uncertainty (Payzan-LeNestour and 
Bossaerts, 2011; Yu and Dayan, 2005). Here for the purpose of the MoE 
framework, there is no need to distinguish between different forms of 
prediction reliability (or uncertainty). Instead what the manger is 
interested in is the overall recent performance of the expert – how often 
it makes a good prediction and how often it makes a poor prediction. 

Those experts that make good predictions about the world (or which 
action to select in it) should be deemed more reliable and should be 
allocated more confidence by the manager. Thus, the simplest mecha
nism for attributing confidence to an expert’s predictions involves 
reading out a single reliability signal about that expert’s predictions in a 
manner that pools over (or is indifferent to) the source of the variance 
that led to that reliability estimate (i.e. whether it comes from estima
tion, expected or unexpected uncertainty). This single reliability signal 
could be used to allocate a relative weight that (when compared to the 
current level of uncertainties present in the other experts) is used to 
determine that experts influence over behavior. 

But how might such reliability signals be computed in the first place? 
A computationally cheap way to learn about reliabilities within indi
vidual experts is to keep track of the prediction errors produced by a 
given expert, i.e. comparing its predictions to actual outcomes. We have 
found evidence for this in the domain of model-based and model-free 
reinforcement-learning (Lee et al., 2014). The expert can thus build an 
approximate estimate of the degree of reliability in its predictions by 
taking the absolute amount of surprise it is experiencing (the absolute 
value of the prediction error signals), and using this as an update signal 
for the average reliability of its predictions (Box 1). Although very much 
an open empirical question, we suggest that given the ubiquity of pre
diction errors in the brain (Schultz and Dickinson, 2000), a similar 
mechanism for keeping track of the absolute value of the prediction 
errors to generate a proxy estimate of prediction reliability could be 
deployed very universally within the brain, for each of its constituent 
experts. The average of the absolute prediction error is simply quanti
fying the deviation of the expert from a perfect prediction (by tracking 
deviations in the expert’s prediction errors from zero, where zero pre
diction error implies the expert has made a perfect prediction). Intui
tively, it is easiest to understand this averaged unsigned prediction error 
as simply a measure of the expert’s recent average performance in 
making predictions: if the expert has made a lot of recent errors in its 
predictions (whether over or underestimating the consequences of its 
actions), then it is less reliable than an expert that has made smaller or 
fewer errors in its predictions. 

3. Prediction reliability is necessary and sufficient to allocate 
control weights over experts 

An important feature of a number of theories of cognitive control is 
that the controller takes into account considerations about the cognitive 
costs and the expected increase in rewards incurred by engaging a 
particular sub-system. For instance, expected value of control theories 
propose that the expected gain from engaging a particular cognitive 
strategy is traded off against the expected cost in terms of the cognitive 
effort involved in doing so (Shenhav et al., 2013). Various arbitration 
schemes between model-based and model-free RL also consider the 
tradeoff between the additional cost of computation for model-based RL 
vs the decreased accuracy of model-free RL (Dromnelle et al., 2020; Kool 
et al., 2017; Pezzulo et al., 2013). It is clear that by manipulating task 
complexity (one way to modulate cognitive cost), it is possible to in
fluence the balance of control between different constituent experts (e.g. 
see Kim et al., 2019). However, we suggest that it is possible to 
accomplish this cost benefit tradeoff implicitly without necessitating 
explicit computations of cognitive cost. The MoE system will indeed be 
sensitive to the overall expected value of pursuing a particular strategy 
as well as to the complexity of the model utilized by a particular expert, 
which should scale with the cognitive cost. However, this comes for free 
in the MoE framework because it is baked into the prediction uncer
tainty measure, as follows: Firstly, an expert that has lower prediction 
uncertainty than another will, all else being equal, perform better in 
terms of the cumulative gains that would pertain if the agent implements 
a behavioral policy recommended by that expert. Thus, implicitly 
minimizing the agent’s overall prediction uncertainty by selecting ex
perts that make better (more precise) predictions will also ensure that 
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the agent will perform more successfully overall in terms of the cumu
lative rewards obtained. Secondly, selecting experts based on prediction 
reliability also implicitly favors experts with less complex models. The 
reason is because of the bias/variance trade-off (Geman et al., 1992; 
Luxburg and Schölkopf, 2011). Simply put, a more complex model may 
well explain a particular portion of the input data well, but such a model 
will often perform much worse when generalizing to new data samples 
because of the increased risk of overfitting. In the MoE scheme, this 
would mean that an agent with a more complex model would often fail 
to make good predictions when faced with new input data, resulting in 
increased errors and hence increased prediction uncertainty. Relatedly, 
a model that is too simple, would also end up being biased in its pre
diction and result in increased errors. Thus, the expert with a sufficient 
but moderate degree of complexity to solve the task at hand will end up 
with the lowest degree of prediction uncertainty, being favored for the 
control of behavior over experts utilizing models that are either too 
simple to be fit for purpose, or too complex. 

Beyond the bias/variance trade-off that will operate in this situation, 
another important system constraint that will also naturally impose a 
tendency not to rely on an overly cognitively demanding model is simply 
that cognitive capacity constraints in the system, such as limitations in 
working memory, will naturally constrain the cognitive complexity of 
the experts that can make good predictions. If a highly demanding 
cognitive strategy is utilized, then this strategy will likely end up making 
poor predictions if working memory or other cognitive capacities are 
over-taxed, resulting in an increase in prediction uncertainty. Thus, 
prediction uncertainty is we argue, sufficient to enable the selection of 
experts that are complex enough to solve the task, while not being too 
cognitively complex so as to incur overfitting or to come up against 
cognitive constraints that limit its performance. In sum, utilizing pre
diction uncertainty learned through tracking prediction errors gener
ated by each expert, may be both necessary and sufficient to 
accommodate a mixture of experts architecture that favors better per
forming and less cognitively demanding experts over experts that are 
either less well performing and/or more cognitively demanding. We do 
not doubt that the expected cost of taking particular actions enters into 

decision values, which could include the expected time taken to solve a 
particular problem. 

It is an open empirical question whether cost is entered as a meta- 
decision variable determining allocation of behavioral control by the 
MoE manager. However, we would suggest that it is imperative to first 
rule out the parsimonious explanation that explicit considerations of 
cost do not need to be explicitly entered into the MoE scheme, because 
such considerations are already catered for implicitly via prediction 
reliability and cognitive constraints. 

4. What experts contribute to the mixture? 

Within this framework, the next obvious question arises as to what 
precisely are the experts that contribute to the mixture? At this point in 
our understanding of the building blocks of cognition, there are 
numerous different conceptualizations that can be drawn upon to 
identify putative “experts”. As alluded to earlier, psychologists and 
behavioral economists have postulated the existence of various dual or 
tri-process theories to account for human behavior. A key difference of 
the proposed MoE framework over existing multiple systems theories in 
psychology and neuroscience, is that here we are not pre-committing to 
a specific number of individual experts, such as two or three. Instead, the 
framework can include many possible experts. Clearly though it does not 
make sense to presume that there are an infinite or even a very large 
number of experts, given the brain occupies finite neural real estate. 
Instead, it is reasonable to assume there is a finite and relatively small 
number of experts. We speculate that many existing multiple systems 
theories and the empirical assays that derive from them are simply using 
different semantic labels and distinct experimental paradigms to 
describe and characterize the same underlying systems of experts, 
although little empirical work has yet been conducted to establish the 
nature of the overlap between constructs in order to determine whether 
this is indeed the case. The literature on possible expert systems is so 
fractionated, we think a critical direction for future research on this 
question will be to gather the various dual and tri-system theories of 
cognition and the behavioral tasks that are proposed to reveal their 

Box 1 
In the illustration below, different experts (colored in red, yellow, green and blue) make distinct predictions about the expected future reward 
that will follow for a particular action or set of actions. Each expert has a different mean prediction (dotted lines), but also has an uncertainty 
about its prediction (depicted by the width of each of the curves). A manager of these experts can elect to compute a more accurate estimate of 
the expected reward by averaging over the predictions of each expert, weighted by the amount of uncertainty inherent in the predictions of each 
expert*. One frugal and efficient way to approximate the uncertainty that each expert has in its predictions, is to see how well the expert has 
done in successfully predicting actual reward outcomes. A measure of this is the reliability or inverse of the average unsigned prediction error for 
each expert. The unsigned prediction error for each expert is simply the unsigned difference between its predictions and actual outcomes, and a 
recency weighted average over that signal corresponds to a measure of current reliability. The averaged unsigned prediction error can also be 
viewed as yielding an approximate yet computationally tractable estimate of different forms of uncertainty, thereby linking to theoretical 
perspectives on distinct forms of prediction uncertainty alluded to in the main text. Expected uncertainty can be approximated by integrating 
over a longer time window of prediction errors generated in the past, while unexpected uncertainty can be approximated by sampling prediction 
errors that have occurred in the recent past (see Iigaya, 2016). However, because the MoE does not care about the source of uncertainty, just how 
well an expert is doing in its predictions overall, those different time-scales of prediction error are pooled over in this case. 

*This concept is related to Gaussian Mixture Models in statistics and machine learning (Williams and Rasmussen, 1995), but note here we are not 
committing to particular distributional assumptions. The figure depicts distributions with a Gaussian form for ease of illustration.  

J.P. O’Doherty et al.                                                                                                                                                                                                                           



Neuroscience and Biobehavioral Reviews 123 (2021) 14–23

17

operation, and systematically attempt to delineate what is common and 
what is distinct across all of these different theories, as they are 
measured through the behavioral tasks and also in terms of the neural 
circuits on which they depend. A fundamental question is whether there 
exists a core set of experts that can explain all of the variance in behavior 
proposed in all of these disparate frameworks. In other words, it should 
be possible to perform some form of dimensionality reduction or factor 
analysis to reveal the underlying cognitive ontology (Poldrack and 
Yarkoni, 2016). 

In the following section, we will focus on candidate experts that have 
been widely considered in the decision neuroscience field. We do this 
not because we wish to argue that what follows is the only possible set of 
experts or that they necessarily represent the only meaningful way to 
carve up the cognitive architecture, but because on a prosaic level these 
experts happens to be the focus of our own research, and also because 
they have provided the initial empirical evidence to support our more 
general claims about the MoE framework. We also do not consider 
complications to the framework that have yet to be understood, such as 
how the brain deploys strategies to solve the exploration/exploitation 
dilemma in the context of multiple experts (Cohen et al., 2007). 

We and others suggest the existence of multiple systems or experts 
for controlling behavior in humans and other animals (Balleine et al., 
2009; Balleine and O’Doherty, 2010; Daw et al., 2005; Dickinson, 1985; 
Lee and Seymour, 2019). These include, a goal-directed system, which 
as alluded to earlier, involves selecting actions in a manner that is sen
sitive to the current incentive value of the goal, and a habitual system in 
which instrumental actions are selected by antecedent stimuli (mediated 
by stimulus-response associations) without reference to the current 
incentive value of a goal (Dickinson, 1985). At the algorithmic level, it 
has been suggested these two systems can be accounted for in terms of 
model-based and model-free reinforcement-learning respectively (Daw 
et al., 2005), although establishing the precise overlap between these 
sets of constructs and the neural circuits involved is still a focus of 
on-going research and debate . Another class of candidate expert systems 
are ones that mediate Pavlovian behavior in which innate reflexes that 
have been acquired over an evolutionary timescale, are elicited by 
stimuli that predict behaviorally significant outcomes (Dayan and Ber
ridge, 2014). Recent evidence suggests that a reliability-based arbitra
tion scheme might also mediate the interactions between Pavlovian and 
instrumental experts (Dorfman and Gershman, 2019). Notably, there is 
strong evidence for the existence of multiple forms of Pavlovian pre
diction, therefore suggesting the existence of multiple forms of 
Pavlovian experts (Dayan and Long, 1998; Holland and Straub, 1979; 
Pool et al., 2019). This indicates there is likely to be a rich interplay 
between multiple Pavlovian experts and other experts, which could be 
perhaps become a focus of study within the broader canvas of the MoE 
framework. 

In addition to those experts in the domain of experiential learning, 
we suggest the existence of additional expert systems to mediate 
learning from observing others. These include, the capacity to learn 
from the rewards experienced by others – so-called vicarious 
reinforcement-learning, the capacity to learn to imitate others’ actions – 
imitation-learning, and the capacity to learn from inferring the goals 
and/or intentions of others: emulation learning (Charpentier et al., 
2020; Heyes and Saggerson, 2002). These three forms of observational 
learning rely either on distinct algorithms for their implementation 
compared to MB vs MF, and/or operate on different partitions of the 
state space thereby meeting the criteria of being classed as distinct ex
perts. For instance, emulation learning is (unlike MB-RL) concerned 
with inferring the hidden state of the world through observing another’s 
actions, for instance by trying to work out what goal the observed agent 
is currently working toward. Imitation learning is concerned with 
learning to predict which actions an agent will choose next based on the 
actions it chose in the past. Vicarious RL on the other hand is argued to 
use the same algorithm as model-free RL, but instead, the reward 
function that is input into the algorithm is the reward function of the 

other agent (the rewards received by that other agent) as opposed to the 
rewards experienced by the observer (Cooper et al., 2011). 

An implication of the MoE framework, is that each of these systems 
will be available to control behavior at each moment in time, and that 
their contribution to behavior will be weighted by the “confidence” that 
the manager has in the likely success of a given expert for solving a given 
problem. In practice, if the manager has little confidence in a given 
expert’s contribution to a given situation, then the weight assigned to 
this expert will be effectively zero, so that it will not actively contribute 
to behavior. 

To understand better the implications of the MoE framework for 
characterizing the nature of the interactions between the systems, let’s 
consider the interaction between just two experts: the goal-directed and 
habitual system. Empirically, evidence has accumulated to support the 
existence of training duration effects on the trade-off between these two 
systems, such that the goal-directed system dominates behavior early on 
in the development of instrumental action learning, while the habitual 
system gradually begins to increase its influence over behavior as action- 
learning continues, eventually becoming dominant over the goal- 
directed system in its control of behavior (Adams, 1982). It is also 
often presumed that the habit or model-free system, necessarily pro
duces noisier and more approximate estimates of the true distribution of 
rewards associated with particular actions than the goal-directed system 
(Daw et al., 2005). Thus, the trade-off between the two systems is sug
gested to be one between a necessarily more accurate model-based 
system and a less accurate but cognitively cheaper model-free system. 
However, we would argue that the model-free system may not neces
sarily always have the less accurate predictions, but in fact that the 
predictions of the model-free system can be more robust and general
izable and hence more accurate than the model-based system under 
some conditions. This would happen under situations where the 
model-based system ends up relying on an overfit and hence brittle 
cognitive model of the decision problem. In other words, we suggest that 
it is better not to think about the competition between multiple systems 
solely as being akin to the trade-off between the cost of taking on a smart 
and competent professional contractor to work on your house that 
nevertheless is very expensive, compared to a crude and blundering 
amateur that often gets the job done but never perfectly, yet is cheap to 
hire. Instead, we think it may be more useful to think about the 
trade-offs between systems as being about different systems having 
different advice and expertise, and that which expert actually has the 
more accurate predictions at any one moment will depend to a consid
erable degree on the local properties of the learning environment and 
the nature of the problem at hand. 

There are two important implications of this last point: firstly, which 
system might end up being dominant in the control of behavior in 
particular experimental contexts can be expected to be highly situa
tionally specific, albeit not inscrutable. This is because the MoE frame
work can make specific predictions about when one system might be 
expected to be favored over the other depending on the nature of the 
environmental variability. Secondly, the MoE framework also suggests 
that it is useful and indeed beneficial for both systems to jointly continue 
to actively make predictions across a wide variety of environmental 
situations because of their different forms of expertise, so long they 
continue to be useful to rely on. In other words, it does not necessarily 
make sense for the model-based system to switch off and yield control 
over behavior entirely to the model-free or habit system even after a 
long training duration, even though the habit system is less cognitively 
expensive. Instead, to maximize accuracy in predictions, under many 
regimes both systems might continue to provide useful input that the 
MoE system continues to poll (in proportion to the relative uncertainty 
in those predictions), even if the relative balance between the experts 
does shift as a function of environmental experience. We do suspect, 
however, that if an expert has little in the way of reliable advice to 
contribute to a particular situation such that its reliability falls below a 
certain threshold, it would make sense for that expert to no longer be 
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polled at all, and indeed it would be efficient for that expert to no longer 
make active predictions in that situation, thereby no longer drawing on 
cognitive resources. 

5. Prefrontal cortex plays a role as a “manager” over the experts 

It could be questioned whether or not the mixture of experts 
framework we have outlined necessarily requires a “manager” at all. For 
instance, an alternative implementation could be that the experts would 
mutually inhibit each other, sharing control proportionately without 
any top down mechanism or meta-controller: in essence a form of 
competitive anarchy. However, what we know about the architecture of 
the brain strongly argues against this type of anarchical system. Decades 
of work in neuropsychology, electrophysiology and neuroimaging 
strongly supports the suggestion that the prefrontal cortex plays a major 
role in cognitive control and in the co-ordination of neural structures 
elsewhere in the brain for the purpose of guiding behavior (Burgess and 
Shallice, 1996; Miller and Cohen, 2001). The prefrontal cortex therefore 
is a natural candidate for the location of a “manager” which exerts 
control over subsidiary experts. This proposal resonates with a number 
of longstanding proposals about the prefrontal cortex, in which this 
region has been proposed to act as a “central executive”, (Baddeley, 
1996) or as a conductor of goal-directed control (Miller and Cohen, 
2001; Norman and Shallice, 1986). 

The MoE framework provides for specific predictions about the 
neural computations that might be expected of the MoE manager. Spe
cifically, one prediction is that the manager will have access to neural 
signatures of the uncertainty in the predictions of the various expert 
systems, or even more usefully, the “precision” in the predictions of the 
various expert systems (the inverse or negative of the uncertainty). 
These precision signals would subsequently be utilized by the manager 
to allocate responsibility over behavior. In order to accomplish this, the 
manager would need to normalize across the relative precisions of each 
expert in order to assign relative weights for behavioral control. Another 
feature of the MoE framework is that somewhere in the brain there 
should be an output channel that encodes the combined recommenda
tions of the various systems about the behavioral policy. In essence, the 
output channel combines across the predictions of each of the experts 
weighted by their relative precisions, and this output channel is utilized 
directly to control behavior. How might the output system be influenced 
by the manager? One way this could be done is via a gating mechanism – 
in which the manager gates the contribution of each of the individual 
experts to the overall recommendation, by for instance, either inhibiting 
the contributions from the experts that have high prediction uncertainty 
(or low precision), and/or by actively amplifying the contributions from 
the experts with low prediction uncertainty (or high precision). A 
possible architecture for the manager of the mixture of experts is illus
trated in Fig. 1. In the following section we review neuroscience evi
dence for the existence of a MoE framework in the brain, highlighting in 
particular the role of prefrontal cortex as a manager over the experts, 
further specifically localizing this manager to specific sub-regions of the 
prefrontal cortex. 

6. Empirical evidence 

The MoE framework makes the following specific predictions: (1) 
That each expert should compute its own predictions and that these 
predictions should be measurable in the brain for each putative expert 
system. (2) That the reliability of the predictions of each expert should 
be represented somewhere in the brain ideally within the same pre
frontal cortex manager, so that they can be flexibly used to assign 
weights to each expert. (3) That this influence will be exerted possibly 
due to an inhibitory mechanism operating on the constituent experts (or 
potentially via both an excitatory and inhibitory mechanism). (4) That 
the reliability estimates are predicted to enable an overall output to be 
computed that reflects an integrated policy recommendation and that 

this output signal will be represented in the brain so that it can be used to 
guide the agent’s overall choice behavior at the time of decision-making. 

In the following section we briefly review evidence in support of 
these findings from ourselves and others. The evidence we present is 
inherently limited in scope because to date we and others have focused 
mostly on only a small number of putative experts, predominantly 
model-based and model-free RL, and also more recently emulation and 
imitation in the domain of observational learning. 

6.1. Separable value predictions for different experts 

We (Lee et al., 2014), studied the interaction and arbitration between 
model-based and model-free RL using fMRI. We found evidence for a 
representation of separate value predictions for the two systems in 
multiple areas of the brain including medial prefrontal cortex (for 
model-based control) and posterior putamen for model-free control. A 
number of other studies have also reported similar findings (Doll et al., 
2015; Horga et al., 2015; Huang et al., 2020; Kim et al., 2019). 

6.2. Reliability signals for different experts 

In that same Lee et al. study, we tested for brain regions involved in 
representing the reliability of the predictions of both systems. We found 
evidence for overlapping reliability signals for both MB and MF RL in the 
ventrolateral prefrontal cortex in particular, as well as in the rostral 
prefrontal cortex (Fig. 2A). The presence of both of these reliability 
signals in the anterior prefrontal cortex led us to hypothesize a role for 
this region as mediating the arbitration process between MB and MF RL. 
In the language of the broader MoE framework, this region can be 
implicated as the “manager” of the MoE. Moreover, Kim et al. (2019) 
replicated the reliability signal findings in vlPFC in another variant of 

Fig. 1. Schematic of a putative mixture of experts system for the brain. Each 
individual expert receives sensory input and makes its own predictions about 
the expected value of taking different actions. The predictions of each expert 
can then be compared with reality, when the organism takes an action and 
experiences an outcome. The difference between predicted and actual outcomes 
are then compared to yield a prediction error. The prediction errors for each 
system are then reported to a “manager” which uses them to compute a reli
ability signal (blue line), corresponding to a recency-weighted cumulative 
averaged prediction error for that controller. The manager uses these reliability 
signals to compute weights over the experts, proportional to their relative re
liabilities. These weights are used by the manager to implement a gating of the 
outputs of each expert (red line), modulating the degree to which each expert 
contributes its “advice” toward the overall control of behavior (black line). The 
overall behavioral policy of the organism then corresponds to a combination of 
the advice of each expert, weighted by its overall reliability. The present 
schematic is agnostic as to the nature of the experts or their number. Four 
generic experts are depicted here. For a related mixture of experts imple
mentation in computational reinforcement-learning see Hamrick et al. (2017). 
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the multi-step MDP used by Lee et al. (2014). Another study by Korn and 
Bach (2018), provides evidence of a role for vlPFC in tracking reliability. 
In that study two different foraging strategies were examined during a 
sequential decision task in which participants could either deploy an 
optimal strategy or a simpler heuristic strategy (which may be loosely 
analogous to a model-based and model-free strategy respectively). 
Although not the main focus of these authors’ conclusions, they reported 
a negative correlation with uncertainty in the choice for both the 
optimal and heuristic strategies in ventrolateral prefrontal cortex. The 
negative of uncertainty is reliability. Thus, we interpret those findings as 
likely reflecting a similar signal to that reported by Lee et al. (2014). 

Evidence that the contributions of vlPFC might also generalize to 
managing other experts beyond model-free and model-based RL in the 
experiential domain, arose from a recent study of observational learning 
(Charpentier et al., 2020). In this study, we examined the process of 
arbitration between two of the strategies for guiding observational 
learning alluded to earlier: emulation and imitation. Using a task that 
differentially induced variance in the predictions of the two strategies, 
we found that the control over behavior of the two systems was 
moderated by the reliability (or precision) of the predictions, especially 
that of the emulation system. In the brain we found evidence once again 
of a role for the ventrolateral prefrontal cortex (alongside rostral 
cingulate cortex and temporoparietal junction) in tracking the reliability 
or precision of the predictions, particularly of the emulation system 
(Fig. 2B). 

When taken together, these results implicate the anterior prefrontal 
cortex as contributing to the MoE manager. 

6.3. The role of prefrontal cortex in setting the weights over the experts 

Furthermore, in the Lee et al. study of model-based and model-free 
RL arbitration, we also found that functional connectivity between the 
ventrolateral prefrontal cortex and regions involved in encoding model- 
free predictions changed as a function of a change in the degree pre
dicted by the reliability-based arbitration system as to which behavior 
should be under model-based or model-free control. When behavior was 
predicted to be more model-based, there was an increase in connectivity 
between these two regions, while conversely when behavior was pre
dicted to be model-free, there was reduced connectivity between these 
two regions. This finding led us to speculate that one additional 
contribution of vlPFC is to act as a gate on the degree to which the 
model-based and model-free systems exert control over behavior. One 
way this could be accomplished is via an active inhibition of the system 

involved in model-free control, which would be applied when behavior 
is predicted to be more model-based, thereby ceding control to the 
model-based system. 

Causal evidence supporting this putative inhibitory mechanism arose 
from a transcranial direct current stimulation study (tDCS; Weissen
gruber et al., 2019). In that study, anodal tDCS stimulation was applied 
over the vlPFC while participants performed the model-based vs 
model-free arbitration task. We expected that anodal stimulation over 
this region would produce an increase in activity in vlPFC, thereby 
producing an increase in the inhibitory action of this region on the 
model-free areas. This was in turn predicted to cause an increase in 
model-based control. Consistent with this prediction, we found that 
when participants were exposed to the anodal stimulation over this re
gion, the degree to which they manifested model-based control was (in 
one of the key task conditions) increased. In addition to the anodal 
stimulation we also produced cathodal stimulation over the same re
gion. Because cathodal stimulation is known to decrease or inhibit ac
tivity in a given region, we expected that cathodal stimulation would 
reduce the inhibitory action over the vlPFC which consequently would 
result in an increase in model-free behavior. Once again, our predictions 
were supported. These results suggest that one way in which the vlPFC 
gates the control of the model-based and model-free systems over 
behavior is via an inhibitory action on striatal areas involved in 
model-free control. In these findings also lies a clue about the possible 
gating mechanism for a more generalized MoE framework. Specifically, 
the prefrontal MoE manager might influence the output of individual 
experts via an inhibitory effect on those experts as a function of the 
relative precision in their predictions. Crucially, the inhibition may not 
impact on the ability of those systems to make predictions in the first 
place, but only gate the extent to which that individual expert exerts 
influence on the output channel. A study by Bogdanov et al. (2018) also 
provided direct evidence that neuromodulation of vlPFC impacts the 
relative control of different expert systems. In that study, theta-burst 
TMS was used to inhibit activity in vlPFC while participants per
formed a slips-of-action task aimed at pitting goal-directed and habitual 
strategies. In that task, participants learn multiple action-outcome re
lationships, and then some of the outcomes are devalued, requiring 
participants to selectively stop responding to those actions, setting up a 
conflict between goal-directed and habitual performance. Inhibition of 
ventrolateral prefrontal cortex was found to reduce participant’s ca
pacity to flexibly adjust their behavior in a goal-directed fashion, 
consistent with an increased engagement of the habitual system. The 
specific contribution identified here of a causal role for vlPFC in 

Fig. 2. Evidence for the role of anterior pre
frontal cortex in encoding the reliability of 
different “expert” strategies in the human brain. 
This signal that could be used by a prefrontal- 
based manager of the mixture of experts. A. 
Shows regions of ventrolateral prefrontal cortex 
bilaterally in which activity (measured with 
fMRI) correlates with the reliability of both 
model-based and model-free reinforcement 
learning systems during performance of a multi- 
step MDP. From Lee et al. (2014). 
(b) A region of ventrolateral prefrontal cortex 
(on the right) was found to correlate with the 
reliability of a strategy for “emulation” in which 
participants infer the goals of another agent 
while observing them perform a simple 
decision-making task. This finding supports a 
wider contribution of ventrolateral prefrontal 
cortex to the process of representing reliability 
of different strategies, supporting a more gen
eral contribution of anterior prefrontal cortex as 
the manager over multiple experts. From 
Charpentier et al. (2020).   
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mediating the balance of control between MB and MF systems, is also 
consistent with a broader literature implicating the vlPFC in inhibitory 
control more generally, specifically in the capacity for inhibiting motor 
responses that are no longer relevant (Aron et al., 2014). 

Another feature of the findings by Lee et al. (2014) in their con
nectivity analysis was that the manager putatively located in anterior 
prefrontal cortex in that study selectively showed changes in functional 
connectivity with regions involved in model-free control as a function of 
the arbitration (reliability-based) weights, but did not show any evi
dence of connectivity-based modulation on regions involved in 
model-based control. This raises the possibility that one possible way in 
which the MoE framework might operate is by inhibiting the simpler or 
default strategy when necessary (in this case model-free control), as 
opposed to directly modulating brain regions involved in implementing 
the more complex strategy. However, we should note, that it remains 
possible that the manager of the MoE could also exert an excitatory 
influence on experts that are deemed to have higher precision in their 
predictions. Although we are not aware of any evidence to support this 
latter possibility, it should not be ruled out at this juncture. 

6.4. Candidate neural substrates for the output channel 

There is evidence to suggest that the ventromedial prefrontal cortex 
(vmPFC) acts as an output channel of the MoE system. The output 
channel involves the representation of an integrated prediction, that 
corresponds to the average across the predictions of the individual ex
perts, weighted by the relative reliabilities of the predictions of each 
expert. This signal is the one that can be used as an input to the overall 
decision process, in order to settle on the actual behavioral policy that 
should be taken on a given trial. The first evidence to implicate the 

vmPFC in this function arose from a study by Hampton et al. (2006), in 
which two different computational strategies were investigated for their 
role in accounting for behavior and neural effects during performance of 
a stimulus-reward reversal learning paradigm. In that study, participants 
selected one of two stimuli that delivered different amounts of monetary 
gains and losses. One of the stimuli gave more gains than losses, and 
hence should be favored, while the other stimulus gave more losses than 
gains, and hence should be avoided. However, after a period of time the 
reward contingencies accorded to the two stimuli was reversed, so that 
participants should then switch their choice of stimulus. The perfor
mance of two computational strategies in capturing participants’ 
behavioral and neural activity on the task was compared. One strategy 
incorporated knowledge of the task rules and reversals, while another 
just learned from reward feedback without incorporating any structural 
knowledge. These two strategies can be seen to map onto a model-based 
vs model-free framework. Participants appeared to deploy the more 
model-based strategy, suggesting they were using knowledge of the task 
to guide their behavior. In the brain within vmPFC, BOLD activity was 
found to be correlated with both strategies, albeit more strongly with the 
model-based strategy than the model-free (Fig. 3A). This finding could 
be interpreted in the context of a mixture of experts framework that in 
fact the recommendations of both strategies are actively represented in 
the vmPFC, albeit with a stronger weighting toward the “model-based” 
strategy in this particular instance. Wunderlich et al. (2012), also found 
evidence to support the existence of an integrated strategy in the 
ventromedial prefrontal cortex. These authors compared two different 
strategies for learning values and guiding behavior, a model-based 
strategy that used planning to guide behavior, and a model-free strat
egy that emerged with extensive training. They found that while each of 
the two strategies was encoded in unique brain structures in the striatum 

Fig. 3. Evidence of a role for vmPFC in representing combined predictions from multiple controllers. This is consistent with a role for vmPFC (comprising medial 
orbital and adjacent medial prefrontal cortex) as the output of the mixture of experts, where predictions are assembled that are used to guide the overall behavior of 
the organism. A. Region of mPFC showing activity correlating with both model-based and model-free value predictions during performance of probabilistic reversal 
learning task in humans. From Hampton et al. (2006). B. Region of ventromedial prefrontal cortex (colored in green) correlating with the combined weighted 
predictions of model-based and model-free RL, in which the weights are set by an arbitration scheme (in essence a reduced form of the proposed mixture of experts 
mechanism). From Lee et al. (2014). C. Plot of regression coefficients from a functionally defined region of interest defined in the medial orbitofrontal cortex. Average 
activity in this ROI was found to reflect the combined value predictions of emulation and imitation strategies for observational learning weighted by their relative 
reliability as determined by an arbitration scheme. The plots show separate results from two independent fMRI studies. From Charpentier et al. (2020). 
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(anterior caudate for the planning strategy and posterior putamen for 
the model-free strategy), an integrated value signal that combined the 
predictions of both strategies was found in the vmPFC. Once again, these 
findings support the notion that vmPFC integrates over the predictions 
of these multiple systems, providing an overall recommendation (in the 
form of a value signal), that can be used to guide behavior (see also 
Beierholm et al., 2011). Lee et al., also examined the representation of 
value signals from both model-based and model-free strategies. They 
found that similar to Wunderlich et al., while the model-based and 
model-free strategies were represented in a number of distinct brain 
structures including posterior putamen for model-free values, and 
medial prefrontal cortex for model-based values, an integrated value 
signal which correlated with the value predictions of the two systems 
weighted by their relative contribution to behavior estimated by the 
arbitration system, was found to be present in the vmPFC (Fig. 3B). 
Finally, in the recent study by Charpentier et al. on arbitration over 
observational learning strategies, the vmPFC was found once again to 
encode an integrated value signal at the time when participants needed 
to use information they had gleaned through observational learning to 
make their own decisions, the integrated value signal reflected a com
bination of the value predictions of the imitation and emulation systems 
weighted by their relative contributions to behavior as estimated by the 
arbitration system (Fig. 3C). When taking all of these findings together, 
the evidence points to a role for the vmPFC as integrating across pre
dictions of multiple systems in a manner proportional to the relative 
reliabilities of the predictions as computed by the arbitrator. In other 
words, we suggest that the vmPFC acts as an output channel of the MoE 
system. Value signals computed with vmPFC that reflect the integrated 
predictions of the MoE system can then be fed into decision-making 
comparators so as to derive choices over actions, that take into ac
count the different predictions (or advice) of the various constituent 
experts for each action or object in the choice set. 

7. Hierarchical mixture of experts 

So far, we have considered an MoE architecture that is relatively flat 
in that we have envisaged the existence of multiple experts at the same 
level of seniority, alongside a manager which reads out the relative re
liabilities of the experts’ predictions and combines those together to 
generate an output signal weighted by their relative precision. However, 
we think it is likely the case that the MoE architecture is substantially 
richer. Rather than being flat, we suspect that the MoE architecture is in 
fact hierarchical, in the sense that each constituent expert likely depends 
on the nested contributions of sub-experts. In turn, sub-experts produce 
predictions that are integrated at the level of the individual expert in 
order to be passed on to the higher-up manager. Such a hierarchical 
organization would imply that each expert acts as its own manager for 
its own set of individual sub-experts, gating their contributions to the 
overall recommendation of each expert. What would the sub-experts be 
concerned with? We suggest that the sub-experts might be usefully 
focused on computing recommendations arising from different in
terpretations of the state-space and/or task structure. It is probably most 
useful to illustrate this idea by reference to a specific class of experts. For 
this we will return to the model-based vs model-free distinction, though 
we emphasize that this idea should not be considered limited to the 
model-based vs model-free distinction and that in fact a similar principle 
should apply across a whole host of experts. Let’s take a model-based 
agent first. When behaving in model-based manner, it is essential for 
the agent to encode a cognitive map or model of the world, so that when 
using that cognitive map, it is possible for the agent to engage in plan
ning in order to compute model-based values that in turn can be used to 
guide behavior. However, in an uncertain and noisy environment, there 
is no guarantee that (except in a very stereotyped environment such as 
might happen in a laboratory experiment) the agent has converged on 
the correct cognitive model. In fact, there may be multiple possible 
cognitive models of the world that have non-zero probabilities from the 

organism’s perspective. One way this could be resolved would be by 
having multiple model-based sub-experts make different predictions on 
the basis of differing possible hypotheses about the nature of the model 
of the state-space. So for instance, if computing which model-based 
policy to pursue to gain access to your office building after office 
hours, you might compute two model-based policies, one based on the 
possibility that the main entrance will have a security guard posted and 
thus be open, and another based on the possibility that the rear entrance 
will be open instead. At the level of the model-based expert, two possible 
strategies might therefore be available as recommended policies, with 
an overall uncertainty over them depending on how likely each of these 
hypotheses over the state-space are likely to be true. The strategy of 
considering multiple hypotheses about the nature of the state-space 
simultaneously, such as by entertaining the possibility that both the 
front and back doors are open, could help ensure that the brain is 
maximally sensitive to varying possibilities about the state of the word. 
It would also likely improve its capacity to flexibly adapt to new situa
tions, because new situations can as a first pass be approached using a 
weighted combination of existing beliefs about the world. 

A recent study by de Silva and Hare (Feher da Silva and Hare, 2020) 
supports this possibility. In this paper, the authors found evidence to 
suggest the possibility that participants might actually compute multiple 
model-based strategies to solve a standard two-step task, based on wildly 
different beliefs about the nature of the task-structure (and hence 
leading to very distinct cognitive models). Similarly, for a model-free 
agent, beliefs over very different state-space structures could give rise 
to very distinct model-free predictions. For instance, in the typical 
two-step task, one model-free strategy would be to rely on a state-space 
structure in which each trial (two-steps) in the MDP is treated as being 
independent from each other trial, and thus the agent learns about the 
cached values of each of the states within a trial only. Alternatively, a 
much richer state-space is possible, in which the outcomes received on 
the preceding trial become states that are used in the subsequent trial to 
compute values. Thus, it is easy to imagine that depending on how the 
state-space is carved up, that a model-free agent can produce very 
distinct (and sometimes very rich predictions that can appear 
model-based). Thus, it is possible to envisage that each constituent 
expert in fact relies on multiple sub-experts which make predictions as a 
function of differing hypotheses or beliefs about the nature of the 
state-space and transition probabilities that make up the causal structure 
of the world. As alluded to earlier, multiple sub-experts have also been 
suggested to contribute to predictions in the Pavlovian system (Dayan 
and Long, 1998). 

Naturally, a pernicious scaling problem emerges with having mul
tiple sub-experts each trying to provide (sometimes) competing advice: 
one could quickly end up with an exponentially large number of sub- 
experts across all the experts each competing to make predictions that 
would quickly run into limits of cognitive capacity. For this reason, we 
suspect that the bias/variance tradeoff would quickly result in sub- 
experts being favored that are likely to have more plausible hypothe
ses about the state-of-the-world, as well as hypotheses that are parsi
monious and not too complex. It is likely that sub-experts with 
prediction reliabilities that are in fact very low, would end up being 
discounted completely and not actively polled for their advice. This 
would imply that once a sub-expert has very poor reliability it will 
quickly be discounted, ignored and no longer required to actively pro
vide advice. 

8. Relationship between MoE and other frameworks of 
hierarchical control 

The MoE framework we have just outlined might raise the question 
about how similar it is to other existing frameworks of hierarchical 
control. One such framework is hierarchical reinforcement-learning 
(HRL; Botvinick et al., 2009). According to HRL, when solving a deci
sion problem, a given task is typically broken down into sub-tasks. Each 
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sub-task concerns itself with a particular partition of the state-space, 
which can exist at different levels of the hierarchy. For instance, the 
sub-task “open the red door”, has to be implemented by performing a 
number of discrete actions, including walking to the door, putting one’s 
hand on the handle, turning the handle, and pulling on the door etc. In 
HRL terms, groups of actions are clustered together to form “options”, 
which can facilitate easier learning of an overall policy, than if each 
individual action has to be independently learned about. We suspect that 
HRL can be viewed as a special case of the MoE framework, where a 
particular expert is concerned with solving different sub-tasks or prob
lems that exist at different levels of a hierarchy over state-space features. 
In current implementations of HRL as applied to neurobiology, each of 
the sub-tasks are solved by the same expert. That is the same algorithm is 
used to solve problems at each level of the hierarchy, for instance, a 
model-free RL agent. In the MoE framework, we consider the possibility 
that the same sub-problem can be focused on by a range of different 
experts. For instance, when working out how to open the red door, both 
model-based and model-free experts might contribute to working out 
how to solve this problem, and indeed multiple model-based and 
model-free strategies might be deployed depending on how much un
certainty exists about the nature of the state-space and/or transition 
model within that space. Thus, the MoE framework can accommodate 
HRL in the sense that unlike a single system HRL framework, the hier
archical decomposition occurs not only at the level of tasks and 
sub-tasks, but also at the level of which set of experts is utilized to solve a 
given task and sub-task. The hierarchical MoE framework also bears 
some relationship to broader theories of cognitive function such as the 
free energy principle and predictive coding models more generally 
(Friston, 2010; Mumford, 1992; Rao and Ballard, 1999; Srinivasan et al., 
1982). In the free energy theory (Friston, 2010) the agent acts to 
minimize its own prediction errors, either actively or passively. This 
theory also envisages a hierarchical organization of brain function, in 
which each level of the hierarchy computes prediction errors that are 
passed to the next level of the hierarchy. These prediction errors are 
minimized throughout the system by adjusting predictions to better 
account for sensory data, as well as by adjusting behavior to actively 
minimize uncertainty. In this sense, it is possible to envisage that an MoE 
architecture would emerge in the context of a system that is designed to 
minimize prediction errors. Indeed, in the MoE framework, the experts 
that are nominated to provide the most control over behavior are those 
that by definition generate the smallest prediction errors, and hence 
have the highest reliability or precision. The MoE framework as envis
aged here has more in common with traditional reinforcement-learning 
in the sense that it envisages the ultimate goal of the organism is to 
maximize expected future reward by selecting from those experts best 
equipped to deliver on that promise as opposed to minimizing surprise 
per se. However, both frameworks predict an important role for pre
diction uncertainty and/or precision, as well as making predictions that 
prediction errors should be prevalent as a means of updating and 
learning predictions as well in learning about the precision of those 
predictions within each constituent expert throughout the brain. 

9. Summary and conclusion 

Here we outline a framework for conceptualizing the contribution of 
multiple systems to behavioral control in the human brain. Our main 
argument is that the brain utilizes a framework loosely analogous to the 
mixture of experts in machine learning, in which a prefrontal-based 
manager, reads out the reliability of the predictions by each of the 
constituent experts, and uses these predictions to allocate control over 
behavior to the experts in a manner that is proportional to the relative 
precision or uncertainties in their predictions. This reliability-based 
framework is suggested to be mediated via prediction errors, which 
are likely to be present in each expert system provided the system 
generates a unique prediction. At the level of neural implementation, we 
propose that the ventrolateral prefrontal cortex and anterior frontal pole 

encode reliabilities for multiple expert strategies and that connectivity 
between the anterior frontal cortex and other brain regions is involved in 
the allocation of control of different systems over behavior. By contrast, 
the ventromedial prefrontal cortex represents an integrated policy that 
takes into account the predictions of the different expert systems 
weighted by their relative reliabilities. We suggest that this reliability- 
based arbitration process between experts is both necessary and suffi
cient for the efficient allocation of control between systems, as this 
approach takes into account not only the accuracy and hence the 
average expected value of the actions nominated by each expert, but also 
implicitly takes into account the cognitive costs and cognitive con
straints. The interaction between systems that makes up the experts is 
we suggest, better conceived of as one of polling the advice from 
different systems that each have different relevant expertise that can and 
should be respected owing to differences in the nature of the information 
that is being processed, and in the algorithmic transformations that are 
performed on that information. These experts should be listened to as a 
collective, because they provide the right mixture of opinions needed to 
act in the world effectively. 
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