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A B S T R A C T   

Biological psychiatry is a major funding priority for organizations that fund mental health research (e.g., Na
tional Institutes of Health). Despite this, some have argued that the field has fallen short of its considerable 
promise to meaningfully impact the classification, diagnosis, and treatment of psychopathology. This may be 
attributable in part to a paucity of research about key measurement properties (“physiometrics”) of biological 
variables as they are commonly used in biological psychiatry research. Specifically, study designs informed by 
physiometrics are more likely to be replicable, avoid poor measurement that results in misestimation, and 
maximize efficiency in terms of time, money, and the number of analyses conducted. This review describes five 
key physiometric principles (internal consistency, dimensionality, method-specific variance, temporal stability, 
and temporal specificity), illustrates how lack of understanding about these characteristics imposes meaningful 
limitations on research, and reviews examples of physiometric studies featuring a variety of popular biological 
variables to illustrate how this research can be done and substantive conclusions drawn about the variables of 
interest.   

1. Introduction 

The integration of biological and psychopathological research into 
the field of biological psychiatry is prioritized highly at the National 
Institutes of Health. Whereas there is substantial discussion and stan
dard reporting of certain types of measurement properties (e.g., 
dimensionality, retest reliability) for self-report questionnaires, less 
work has been done to investigate these measurement features for many 
relevant biological constructs and they are less frequently reported 
(Hajcak and Patrick, 2015). This is not to say that there has not been 
important investigation and regular reporting of measurement proper
ties specific to biological variables (e.g., intra-assay coefficients of 
variation). Rather, several metrics key to common methodological and 
statistical practices in psychiatry research have not received comparable 
attention for biological variables. This may be due to greater confidence 
in the measurement of that which is directly observable (e.g., concen
trations of analytes in blood). However, the ease with which a construct 
is operationally defined and measured does not directly translate to 
measurement qualities suitable for common statistical approaches. 

It is important to remember Cronbach and Meehl’s (1955) admoni
tion, "One does not validate a test, but only a principle for making 

inferences" (p. 297). Confidence that a test can measure a variable 
accurately is not sufficient to know that the test facilitates the inferences 
tested in statistical models. For that, there is need for a thorough analysis 
of measurement properties germane to the intended data collection and 
statistical procedures. Armed with information about key measurement 
properties (henceforth referred to as “physiometrics”; Segerstrom & 
Smith, 2012), researchers can design more cost-effective and 
well-powered studies that are better indicators of the true associations 
between variables of interest. 

2. The Perils of a Paucity of Physiometric Research 

Variables with poor or unknown physiometrics impose multiple 
limitations to meaningful research. Thus, to ensure that biological psy
chiatry research reaches its maximum potential utility, it is important to 
evaluate measurement qualities key to typical methods used in biolog
ical psychiatry research to determine what study designs and analytic 
techniques are best suited to various biomarkers. In this section, we 
outline some of the risks and constraints imposed by research using 
variables with poor or unknown measurement properties. 
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2.1. Internal Consistency 

Many theories in biological psychiatry are about multifaceted bio
logical constructs (e.g., reward processing, inflammation, etc.); how
ever, studies commonly test multiple individual indices of these larger 
constructs (Segerstrom and Smith, 2012). Given concerns about the 
reliability of single-item measures and issues with multiple statistical 
comparisons, increased use of composite biological variables might 
benefit replicability in biological psychiatry. When used thoughtfully, 
composite measures also have the benefit of accentuating variance 
shared between components and reducing the impact of measurement 
error. When using composite measures, it is important to report internal 
consistency, which indicates the level of shared variance between 
component variables (“true score”) relative to unshared (“error”) vari
ance (Cortina, 1993). Typically, researchers have hypotheses about the 
relationship between two constructs (e.g., inflammation and depres
sion); consequently, it is beneficial to maximize the “true score” of their 
constructs of interest. Although reporting internal consistency for 
self-report questionnaires is standard practice, it is infrequently reported 
for applicable biological variables. For example, internal consistency is 
reported inconsistently for measures involving the creation of a single 
score from several trials of a task (e.g., error related negativity (ERN)), 
despite providing insight regarding consistent performance across the 
task and having implications for effect size (Hajcak et al., 2017). Thus, 
whenever aggregate variables are used, it is important to report a measure of 
internal consistency (e.g., Cronbach’s α, coefficient Ω). 

2.2. Dimensionality 

Another important consideration when working with aggregate 
measures is the concept of dimensionality. Dimensionality refers to the 
degree to which a set of variables indicates the presence of one or more 
higher-order constructs. For example, under traditional conceptualiza
tions of psychopathology, all behaviors on a depression questionnaire 
are associated with the construct of depression. Similarly, an assortment 
of biological variables (e.g., different proinflammatory proteins) could 
serve as markers of a higher-order construct (e.g., inflammation). It also 
is important to consider potential construct heterogeneity, the possi
bility that several lower-order constructs (e.g., pro- and anti- 
inflammatory processes) might comprise a larger construct of interest 
(e.g., inflammation). 

Empirical evaluation of dimensionality is possible with dimension 
reduction techniques such as exploratory factor analysis (EFA) and 
principal components analysis (PCA). Both approaches investigate the 
structure of data with the logic that if all component variables are in
dicators of the same process, they should be strongly associated with one 
another (i.e., have high internal consistency, Clark & Watson, 1995, 
2019; Loevinger, 1957). As such, dimension reduction approaches can 
help identify whether sets of variables are unidimensional or multidi
mensional in nature as well as components that might not load onto any 
of these processes (Tabachnick and Fidell, 2013). The primary theoret
ical distinction between the two is that the dimensions found in EFA are 
theorized to cause the variables, whereas the dimensions found in PCA 
are simply aggregates of observed variables. Statistically, only shared 
variance is analyzed in an EFA, but all variance is analyzed in a PCA. 

Modeling decisions uninformed by dimensionality can have negative 
implications. Aggregating unrelated components into a single dimension 
or indicator reduces internal consistency and, consequently, the 
maximum observable true effect size (Hajcak et al., 2017). Relatedly, if 
only some dimensions/indicators are related to a criterion of interest, 
aggregating them with unrelated variables might wash out true effects. 
Alternatively, falsely assuming multidimensionality reduces power via 
failure to aggregate shared variance of interest. Further, it introduces 
issues with multiple comparisons. 

However, these techniques are not appropriate for all datasets. It is 
important to consider that the maximum number of dimensions is 

constricted by the number of indicator variables tested. In other words, 
there needs to be enough variables per dimension to statistically anchor 
each dimension. Further, datasets with lower numbers of variables, 
higher dimensionality, and weaker associations between the variables 
and the dimensions require higher sample sizes to produce stable results 
(Guadagnoli and Velicer, 1988). Additionally, it is ill-advised to draw 
conclusions about dimensionality without thoughtful consideration of 
biological plausibility. Consequently, it is important to consider dimen
sionality when multiple indicators of a broader construct of interest are 
collected before proceeding with hypothesis testing involving that construct. 
However, modeling decisions should be informed both by empirical investi
gation (if appropriate in the context of the dataset used) and biological 
plausibility. 

2.3. Method-specific Variance 

Although not a “metric” in the sense of something explicitly testable 
and reportable like the other characteristics reviewed here, a critical 
measurement issue for biological psychiatry is method-specific variance. 
In addition to the “random” variance that contributes to measurement 
error, there is variability associated with the specific method of mea
surement (e.g., self-report, behavioral, psychophysiological) that is un
related to the true construct of interest (Patrick et al., 2013). 
Consequently, two measures of the same construct using different 
methods will have smaller associations compared to two measures using 
similar modalities (e.g., self-report correlated with biological vs. 
self-report correlated with self-report). Given that biological psychiatry 
is, by definition, a multimodal field, this is a pervasive issue that needs to 
be considered when designing studies and interpreting results. Thus, 
method-specific variance should be considered for all studies including mul
tiple measurement modalities. This issue should inform power analyses, 
measurement error-adjusted analytic techniques, and consideration of 
aggregating multimethod assessments of the same construct. For a more 
detailed review of this issue and strategies to address it, see Patrick et al. 
(2019). 

2.4. Temporal Stability 

Whereas a measure given to multiple people at a single time point 
has two sources of variance (between-person differences and measure
ment error), a measure given multiple times introduces a third source of 
variability: within-person variance. Measures with low within-person 
variability (small changes over time) have high temporal stability. 
Temporal stability is most frequently quantified using retest Pearson 
correlations (correlating scores on a measure at two different time 
points) and intraclass correlation coefficients (ICCs, which quantify the 
proportion of stable between-person differences across multiple time 
points). It is standard practice to report (or at least cite other work 
about) the temporal stability of self-report measures, but it is reported 
less consistently for biological variables (e.g., Moriarity et al., 2020b). 
This is concerning, given that information about temporal stability is 
necessary to interpret the probability with which a score at baseline will 
be similar to the score at follow-up. It is important to note that highly 
stable measures are not always the goal; many biological constructs 
would be expected to have both trait (relatively stable) and state 
(varying across time and situational factors) components. Target tem
poral stability should be informed by the conceptual stability of the 
construct in question (e.g., few would expect mood to be 100% stable in 
a community sample over the course of a year). Temporal stability should 
be reported for all longitudinal studies. It should be calculated in the sample 
when repeated measures are available, or estimates reported from existing 
studies when calculation within the sample is impossible. 

2.5. Temporal Specificity 

Somewhat related is the concept of temporal specificity. 
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Longitudinal data are necessary to establish directionality of associa
tions; however, time between data points is an important methodolog
ical consideration. For example, the relationship between eating a hot 
pepper and experiencing pain after a couple minutes would not be as 
strong days after the meal. Thus, exploratory analyses are necessary to 
evaluate how the relationships between variables might fluctuate as a 
function of time (including potential developmental considerations). 
Temporally-informed study designs could improve replicability, provide 
information about when changes in biological risk factors manifest 
behaviorally (and vice-versa), and inform treatment studies given ex
pected delays between interventions and symptom reduction (e.g., anti- 
inflammatory treatments for depression). Thus, the field would benefit 
from more exploratory studies investigating the temporal specificity of asso
ciations of interest to identify optimal time lags between measurements. 

2.6. Effect Size and Power 

The practical implications of many biological psychiatry studies are 
often questioned because they frequently have small effect sizes, which 
could be directly impacted by the use of measures uninformed by their 
physiometrics (such as those reviewed above). To illustrate, consider the 
formula for the maximum observable true correlation between two 
variables as a function of their reliability: rxy(max) = √(rxxryy) where rxy 

represents the maximum observable true correlation between variables 
x and y, rxx represents the reliability of variable x, and ryy represents the 
reliability of variable y (Davidshofer and Murphy, 2005). Only if two 
measures are perfectly reliable (both rxx and ryy = 1) can the maximum 
correlation = 1. As reliability decreases, so does the maximum observ
able true correlation. Consider two research teams testing the same 
hypothesis and using the same measure for variable x (rxx = .70), but 
different measures for variable y (ryy = .70 for Team A but ryy = .30 for 
Team B). The maximum observable true correlation is .70 for Team A, 
but only .46 for Team B. Similar results have been found concerning the 
relationship between internal consistency and effect sizes (Hajcak et al., 
2017). 

This penalty is magnified in more complex designs. For example, 
many variables in biological psychiatry (e.g., inflammation) are theo
rized to be mediators between stress and psychopathology (e.g., Mor
iarity et al., 2018; Slavich and Irwin, 2014). Mediation analyses involve 
calculating the product of the association between i) the focal predictor 
and the mediator (a’ pathway) and ii) the mediator and the outcome 
variable (b’ pathway). Thus, unreliability of the mediator will result in 
misestimation of both estimates. Consequently, the bias introduced by 
poor reliability is effectively squared when calculating their product. 

This bias also exists for group comparisons, which often occur in 
biological psychiatry in the form of case-control studies (e.g., Ng et al., 
2019). The test statistics for these analyses (independent samples t-tests 
and between-subjects ANOVAs) are a ratio of the magnitude of the group 
difference divided by a variance component. Poor reliability inflates 
variability, decreasing the maximum observable true effect. For 
example, consider a researcher using an independent samples t-test to 
compare levels of interleukin (IL)-6 between participants with Major 
Depressive Disorder (MDD) and non-depressed controls. The formula for 
an independent samples t-test is t = M1− M2

SE . Suppose the true difference 
in IL-6 for individuals with MDD vs. non-depressed controls (M1-M2) is 
.30. In scenario A, the standard error of this difference (SE) is .15, and 
the t-score will = 2. The critical value that the t-score must be above to 
be significant at p < .05 is 1.96, so the researchers have a significant 
result. Now imagine scenario B, in which the group difference is the 
same, but the SE of this difference increases to .2 because of less reliable 
IL-6 measurement. Now the t-score is 1.5, which is not significant, 
despite having the same observed difference between the groups. The 
same logic applies for standardized (but not unstandardized) measures 
of effect size (e.g., Cohen’s d = M1− M2

SDpooled
). Given the same difference be

tween two means, as the standard deviation increases, d decreases. 

However, this does not mean that measurement error always results in 
attenuated effect sizes. Although it is true that the median standardized 
effect size will be lower when estimated with vs. without error, random 
error variance also can result in over-estimates (Segerstrom and Bog
gero, 2020), leading to false positives that could inspire misguided 
studies and intervention efforts. Thus, inflated variability caused by un
reliable measures can cause true effects to be overlooked both in terms of 
probability under null-hypothesis testing as well as their substantive impli
cations via standardized effect sizes. Unreliable measures can also result in 
false positives and artificially inflated effect sizes. Given the importance of 
individual differences research in the Research Domain Criteria (RDoC; 
Cuthbert & Kozak, 2013) initiative, this is a key (and addressable) 
source of bias in popular analytic strategies for NIH-funded research. 

3. Examples of Physiometric Research in Biological Psychiatry 

Below, several examples of physiometric research investigating a 
variety of biological variables are reviewed to illustrate the techniques 
used and conclusions about the variables of interest. 

3.1. Internal Consistency 

As previously discussed, strong internal consistency is evidence that 
various components of a measure are responded to similarly. To illus
trate the importance of investigating internal consistency for neural 
measures, Hajcak et al. (2017) evaluated error-related negativity (ERN) 
averaged across multiple trials as a function of the number of trials 
completed by participants in two groups (with and without generalized 
anxiety disorder). The study reported two measures of internal consis
tency: Cronbach’s α (how representative one trial was of all trials) and 
split-half reliability (correlating the average scores from the odd and 
even trials). They found that α increased sharply between four and eight 
trials, and modestly until approximately fourteen trials, after which α 
only increased subtly. Cronbach’s α reached a maximum of .75 - .85, 
which was comparable to the Spearman-Brown corrected split-half 
reliability (rsb = .71-.75). The lack of reliability when fewer trials were 
included is an expected feature of Cronbach’s α, and dovetails with 
concerns about the reliability of single-item/few-item indicators. 
Further, the diminishing returns of increased trials reflects that more 
trials only decreases random error, not systematic error (e.g., error 
introduced by data collection techniques). In fact, there is a mathe
matically quadratic relationship between the number of indicators in a 
composite and the Spearman-Brown reliability such that, with enough 
indicators, nearly perfect reliability is achievable regardless of the true, 
systematic error. These results can help researchers plan the ideal 
number of trials to minimize participant burden without resulting in 
data with subpar measurement qualities and, consequently, limited 
utility. Additionally, they highlight one way of comparing different 
methods of data collection. For example, comparing the trajectories and 
plateaus of internal consistency as number of trials increases could 
provide insight on ratios of random vs. systematic error for two different 
ERN measures. 

Kaye, Bradford, and Curtin (2016) present a thorough investigation 
of several measurement qualities (internal consistency, temporal sta
bility, and effect size stability, the latter two will be discussed later) of 
acoustic startle (defensive reflex in response to brief, startling noise 
probes) and corrugator responses (reaction of the corrugator muscle 
associated with frowning) during a no-shock/predictable shock/unpre
dictable shock (NPU) task, an affective picture viewing task, and resting 
state task over two study visits (approximately one-week apart). Spe
cifically, they evaluated Spearman-Brown corrected split-half reliability 
between odd and even trials as a measure of internal consistency. 
Further, the authors compared performance of within-person stan
dardized ((raw score for a trial minus the participant’s mean across all 
trials)/participant’s standard deviation across all trials) vs. unstan
dardized scores for startle potentiation and the time domain and 
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frequency domain for corrugator potentiation. For the sake of brevity, 
this review will focus on startle potentiation. For the NPU task, the in
ternal consistency for raw scores was higher than standardized scores for 
both predictable and unpredictable startle responses, with scores 
ranging from good to adequate (rsb = .81, .64, .57, .52, respectively). For 
the affective picture viewing task, internal consistency for startle mod
ulation was poor for all scores, but standardized scores were better for 
pleasant, and raw scores were better for unpleasant, startle modulation 
(raw pleasant rsb < .00, standardized pleasant rsb = .16, raw unpleasant 
rsb = .14, standardized unpleasant rsb < .00). Because within-subject 
standardized scores would have no utility for the resting state task, 
only internal consistency was reported for raw scores (rsb = .95). 
Recalling the sources of variance (between-person, within-person, and 
error), it is unsurprising that raw scores typically had higher internal 
consistency than within-person standardized scores because true 
between-person variance was removed from the latter. In addition to 
their descriptive value, comparison of different types of responses and 
the influence of within-person standardization across several tasks is 
informative for the establishment of best-practices for these behavioral 
tasks. 

Given the rise in popularity and high cost of functional magnetic 
resonance imaging (fMRI) in biological psychiatry, investigation of 
measurement properties of these methods is crucial. Luking et al. (2017) 
evaluated the split-half internal consistency for ERPs and blood oxygen 
level-dependent (BOLD) responses to monetary gain and loss feedback 
(an fMRI measure) within the ventral striatum and medial and/or lateral 
prefrontal cortex using Spearman-Brown corrected split-half reliability 
(comparing odd/even trials). Similar to Kaye et al. (2016), they 
compared several scoring methods: raw scores, difference scores (gain – 
loss), and residual scores (gain controlling for loss). Raw BOLD re
sponses across all regions and ERPs to both gain and loss feedback 
demonstrated high internal consistency (.66 ≥ rsb ≥ .86). Raw scores 
had consistently higher internal consistency than residual scores (.26 ≥
rsb ≥ .50), which had uniformly higher internal consistency than dif
ference scores (.02 ≥ rsb ≥ .36). Thus, although residual scores may not 
have ideal internal consistency, they might be preferable over 
subtraction-based difference scores for studying between-person differ
ences in within-person processes with these measures. 

Instead of concluding that difference scores (common in many areas 
of biological psychiatry) are universally unreliable, it is important to 
consider why reliability was lowest for the difference scores, and under 
what context difference scores have utility. First, when variance asso
ciated with one variable is removed from another (either via subtraction 
or creating a residual term), the variance removed will be from the 
reliable variance because it is impossible for two variables to share 
random error. This reduction in reliability is greater when the two raw 
variables are highly correlated (Thomas and Zumbo, 2012). However, as 
emphasized in the discussion of temporal stability above, reliability 
needs to be considered in light of the expected true reliability. For rea
sons beyond the technical scope of this review (see Rogosa and Willett, 
1983), when the individual differences in the difference score are not at 
least moderate, the reliability of the difference score will be more similar 
to the reliability of the raw scores. There also is evidence that BOLD 
difference scores that contrast win and loss conditions vs. neutral, 
instead of comparing win to loss conditions, can result in more reliable 
estimates (Holiga et al., 2018; Plichta et al., 2012), but the appropri
ateness of this approach depends on the research question at hand. 
Alternatively, many have argued that polynomial regression is a pref
erable technique to using difference scores altogether (Edwards, 2001). 

It is important to note that residual/difference scores also hold the 
potential to isolate theoretically relevant variance in certain designs. For 
example, consider a study that compared P3 amplitudes (an event 
related potential) to aversive vs. neutral stimuli (used to index general 
reactivity) as predictors of threat sensitivity, finding the split-half reli
ability excellent for both conditions (rsb = .92 and .90, respectively; 
Perkins et al., 2017). Split-half reliability for the difference between the 

two conditions (aversive-neutral) was poor (rsb = .29). Recalling that 
variance removed when creating a difference score always comes from 
true variability, never random error, this decrease in reliability is not a 
surprise. Both the absolute value of the correlation between the differ
ence score and threat sensitivity (r = -.12) and the correlation between 
general reactivity and threat sensitivity (r = .16) were small. However, a 
larger proportion of the systematic variance (true score) in the differ
ence score was associated with threat sensitivity (i.e., (-.122/.29) * 100 
= 5.00%) compared to general reactivity (i.e., (.162/.92) * 100 =
2.78%). This approach was particularly important when considering 
that the association between general reactivity and threat sensitivity 
was positive, but that the association between the variance unique to the 
aversive condition and threat sensitivity was negative. Thus, the vari
ance from general reactivity could washout the association unique to the 
aversive condition if it were not removed from the variable. Conse
quently, it is important to consider how variables with modest reli
ability, but that include substantial amounts of criterion-related 
variance, can be informative. 

3.2. Dimensionality 

Recall the example of inflammation as a complex construct often 
indexed by several indicators (Segerstrom and Smith, 2012). One study 
of atherosclerosis (Egnot et al., 2018) assessed the dimensionality of 
seven inflammatory proteins and coagulation biomarkers (specifically, 
CRP, IL-6, fibrinogen, Lp(a), slCAM-1, PTX-3, and D-dimer) in a sample 
of 1103 adults. Thus, the sample was well-powered and there were 
enough indicators to find a one- or two-dimensional structure. The re
sults of the EFA found a two-factor solution: Factor 1 consisted of CRP, 
IL-6, and fibrinogen; Factor 2 consisted of D-dimer and PTX-3, whereas 
slCAM-1 and Lp(a) did not load on either factor. Factor 1 was interpreted 
to represent a non-specific inflammatory process, whereas Factor 2 was 
interpreted to indicate coagulation burden. The authors then tested the 
factors as predictors of several outcomes, finding some associations 
unique to only one of the two factors. For example, although both factors 
were positively associated with risk for low ankle brachial index, higher 
levels of coagulation burden (Factor 2), but not inflammation (Factor 1), 
were associated with elevated common femoral artery intima-media 
thickness, suggesting that coagulation burden might be a better indi
cator of subclinical peripheral artery disease than inflammation. 

Independent component analysis (ICA) is a technique for investi
gating dimensionality primarily used with neuroimaging and EEG data. 
Kakeda et al. (2020) used ICA as a data-driven approach to identify brain 
regions that might differ in grey matter volume between individuals 
with depression (n = 45) and controls (n = 38), and whether the volume 
in these regions correlated with serum TNFα. Specifically, they used 
source-based morphometry (which applies an ICA to a segmented 
image) to arrange the voxels into common morphological features of 
grey matter concentration among participants. Results indicated four
teen independent structural components; however, based on previous 
work (Williams, 2016), Kakeda et al. excluded four primarily cerebellar 
networks. Of the ten remaining components, two (a prefrontal network 
and an insula-temporal network) had less grey matter volume in a group 
of participants with depression compared to controls. Of these two, 
serum TNFα was significantly negatively correlated with the prefrontal 
network, but was not significantly correlated with the insula-temporal 
network. It is important to note (as the authors themselves do) that 
this study was limited by a small sample size, which constrains the 
number of components ICA can extract (Li et al., 2007), similar to how 
the number of indicators limits how many factors can be found using 
EFA. 

3.3. Method-specific Variance 

As described earlier, a major obstacle for biological psychiatry 
research is domain-specific method variance, the systematic tendency 
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for two measures of the same construct using different modalities (e.g., 
self-report vs. biological vs. behavioral) to have smaller associations 
than two measures using the same modality. Ostensibly, one reason for 
this is that measures from disparate modalities each contribute unique 
method-specific error (variance related to the measurement method and 
unrelated to the construct of interest; Patrick et al., 2013). This suggests 
that the integration of indices of a construct across multiple methods of 
measurement into single variables, described as the “cross-domain 
approach” (Patrick et al., 2013; Venables et al., 2018), might accentuate 
the shared variance related to the construct of interest, improving utility 
and construct validity. 

To illustrate this, Nelson et al. (2011) measured three event-related 
potential (ERP) measures (ERN and P3 response to target stimuli from 
a flanker task and P3 response to feedback stimuli from a gambling 
feedback task) and investigated a) whether these measures represent 
overlapping indicators of externalizing proneness, and b) whether they 
index a shared neural process that accounts for their individual associ
ations with externalizing proneness. Results of an EFA suggested that a 
single factor accounted for the covariance among all three variables, and 
that all three variables contributed similarly to this shared factor. To 
evaluate whether this factor represented brain processes associated with 
externalizing proneness, Nelson et al. (2011) ran another EFA including 
the three ERP measures as well as a self-report measure of externalizing 
proneness, again finding a single factor. Results of analyses using the 
aggregated ERP factor found that the aggregate measure had stronger 
correlations with the majority of physiological and psychometric 
externalizing proneness criterion variables tested than did the individual 
ERP measures. In fact, the composite factor out-performed comparison 
ERP measures (not included in the composite) in predicting external
izing proneness, likely due to the composite variable accentuating the 
shared externalizing proneness-related variance in the individual ERP 
variables. However, as described above (and discussed by the authors), a 
factor analysis on three ERP components and a self-report measure is not 
enough to provide a convincing evaluation of the true structure of these 
measures or provide enough options to support alternative models. In 
other words, there were not enough components to anchor more than 
one factor, so the factor analytic solution could, at most, feature one 
aggregate measure and/or unrelated variables. Still, this study serves as 
an example of how variable aggregation can result in variables with 
stronger predictive validity than the component parts. 

To extend this work, Venables et al. (2018) first ran EFAs on several 
indices of inhibition-disinhibition within specific measurement domains 
(self-report, behavioral performance, brain response). Consistent with 
the ERP study above, indices within discrete measurement domains 
revealed single factor solutions. All possible pairwise correlations be
tween these three domain factors were significantly positively corre
lated. Next, two confirmatory factor analyses (CFA) were estimated: the 
first specifying all indices across the three measurement domains 
loading onto a single factor, and the second specifying three lower order 
factors corresponding with each measurement method that, in turn, load 
onto a higher order cross-domain factor. The former demonstrated poor 
model fit, but the cross-domain factor model fit the data well. Further, 
comparative fit indices found significant differences in model fit, sug
gesting that inhibition-disinhibition is best represented by a 
cross-measurement domain, hierarchical factor structure. Additionally, 
the cross-domain factor frequently demonstrated significant correlations 
with the vast majority of criterion variables tested, whereas 
measurement-domain specific scores were less likely to be correlated 
with criterion variables from other measurement domains. Thus, these 
results demonstrate how thoughtful investigation of dimensionality in 
biological psychiatry can improve the construct validity of variables by 
the creation of cross-measurement domain composites that ameliorate 
concerns about a) the reliability of single-item measures (which are 
common in biological psychiatry) and b) downward-biased estimates 
due to measurement domain-specific variability. 

3.4. Temporal Stability 

Out of all the physiometric characteristics described above, biolog
ical psychiatry probably has done the best with assessing and reporting 
temporal stability (the reliability of a measure between different time 
points). However, there are many constructs of interest for which there 
is a paucity of research on this topic, especially when considering the 
wide breadth of study durations seen in behavioral health research. 
Before reviewing some examples of temporal stability research in bio
logical psychiatry, it is important to emphasize that temporal stability 
estimates are only informative for the duration in which they are stud
ied. Unfortunately, across all disciplines of behavioral health research, it 
is commonplace for previous work to be cited as evidence that a measure 
has sound temporal stability with no reference to the duration for which 
the measure’s stability originally was assessed. Further, it also is 
essential to reiterate that having low temporal stability is not always 
indicative of a poor measure. The temporal stability of a measure is 
dependent on, and constrained by, stability of the construct under 
question. If one evaluated the 6-month temporal stability of depressed 
mood and height in a sample of adults, one would expect height to be 
more stable. Other contextual concerns, such as age, also are important 
to consider. For example, one would expect relatively lower 6-month 
temporal stability of height in a sample of 10-year-olds than a sample 
of adults. Finally, temporal stability, like many of the other measure
ment properties described in this review, can be misestimated due to 
unreliable measures. 

The most straightforward metric of temporal stability is retest reli
ability using Pearson’s r, the correlation between a measure at two 
different time points. In addition to internal consistency metrics, Kaye 
et al. (2016) (described above) also investigated one-week temporal 
stability of startle and corrugator responses to three tasks (NPU, affec
tive picture viewing, and resting state) comparing raw vs. within-person 
standardized scores (Bradford et al., 2015) as well as differences in the 
effect size of task manipulations (predictable and unpredictable poten
tiation for the NPU task and pleasant and unpleasant modulation for the 
affective picture viewing task) between the two sessions. Similar to 
above, this review only will cover startle responses for the sake of 
brevity. 

Temporal stability was higher for raw scores for both predictable and 
unpredictable startle potentiation during the NPU task (both r = .71) 
compared to within-person standardized scores (r = .58 and .49, 
respectively). When comparing the effect size of NPU manipulations 
between study visits, no significant differences were observed for raw or 
standardized predictable startle potentiation and raw unpredictable 
startle potentiation (all ήp

2 = .001-.033, p > .05), but the standardized 
startle potentiation was smaller at the second visit (ήp

2 = .04, p = .03), 
suggesting that the manipulation lost potency over time. Regarding the 
affective picture viewing task, one-week temporal stability was poor for 
both raw and standardized scores for pleasant startle modulation (r <
.00 and = .08, respectively), but was higher for the unpleasant startle 
modulation (r= .50 for raw, r= .40 for standardized). The effect sizes for 
the raw pleasant and unpleasant startle modulations were not signifi
cantly different after one week (ήp

2 = .02, p = .10; ήp
2 = 03; p = .09, 

respectively). It is interesting to note that the effect sizes for the stan
dardized pleasant and unpleasant startle modulations differed between 
testing sessions (ήp

2 = .05, p = .02; ήp
2 = .10, p < .001, respectively), but 

in opposite directions (Visit 2 was smaller for pleasant startle modula
tion, but larger for unpleasant). As mentioned above, standardized 
scores for the resting state task have no utility, but the raw scores had 
high one-week temporal stability (r= .89) and scores were smaller at 
Visit 2 (ήp

2 = .21, p < .001, respectively). There was no manipulation 
during (and consequently, no effect size for) the resting state task. In 
sum, these results demonstrate how different analytic approaches (i.e., 
raw vs. within-person standardized scores) can influence important 
temporal dynamics of behavioral tasks such as stability and the potency 
of the manipulation, which have important implications for designing 
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and interpreting research using repeated measures of these tasks. 
Temporal stability also can be influenced by how extreme values are 

handled, as evidenced by Landau et al. (2019), a study investigating 
salivary CRP. Immunoassays use standard concentrations of an analyte 
to generate a standard curve, on which sample values are interpolated. 
Many samples have values that are flagged by the procedure as too high 
or low to fit onto the standard curve. In “strict” standard curve datasets, 
these extreme values are excluded; in “relaxed” standard curve datasets, 
they are extrapolated outside the standard curve range. There are 
several techniques currently used to handle these values: list-wise 
deletion, pairwise deletion, multiple imputation (extreme values 
replaced with multiply imputed values), and winsorization (extreme 
values replaced with the most extreme value on the standard curve). 
Landau et al. (2019) applied each of these four techniques to a strict and 
a relaxed dataset, resulting in eight total datasets. Additionally, they 
compared the reliability of samples taken in the morning compared to 
the evening, given evidence of diurnal variation in CRP (Out et al., 
2012). The average two-day Pearson r was .49 for morning samples and 
.60 for evening samples, suggesting that evening samples might be more 
stable. Winsorization of extreme values resulted in the highest temporal 
stability, regardless of time of day (mean winsorized morning r = .61, 
mean winsorized evening r = .77, mean nonwinsorized morning r = .45, 
mean nonwinsorized evening r = .54) or whether the dataset was strict 
or relaxed (mean winsorized strict r = .70, mean winsorized relaxed r =
.68, mean nonwinsorized strict r = .47, mean nonwinsorized relaxed r =
.52). Relaxed data sets had an average stability of r = .56 compared to an 
average stability or r = .52 for strict datasets. However, it is important to 
always consider data management techniques in the context of one’s 
specific dataset. For example, winsorization might be less appropriate 
when there are many extreme cases in a dataset. Further, the decision to 
modify observed values should always involve contemplation about how 
“extreme” values are defined, the likelihood that they are valid (not the 
result of measurement error), and the influence “extreme” values would 
have on planned analyses (e.g., assumptions of normality, sensitivity to 
outliers). 

It will come as no surprise that, in addition to statistical procedure, 
measurement procedure can influence temporal stability as well. In 
addition to the actual method of data collection (e.g., specific self-report 
measure, particular imaging scanner model), some biological variables 
can be measured from different sources. For example, inflammatory 
proteins most frequently are measured via assaying blood samples (e.g., 
Moriarity et al., 2020a; Muscatell et al., 2016), but salivary measures 
have been increasing in popularity because they are less expensive and 
invasive than blood-based methods. However, the utility and compa
rability of these methods has been questioned as salivary markers of 
inflammation might reflect local, rather than systemic, immune function 
(Riis et al., 2015). Out et al. (2012) made an important contribution to 
this discussion by comparing the one- and two-year retest reliabilities of 
both plasma and salivary measures of CRP in a sample of adult women. 
Plasma CRP had higher one-year retest reliability than saliva CRP be
tween years 2 and 3 (r = .70 vs. .57), but lower reliability between years 
1 and 2 (r = .53 vs. .61). Plasma CRP also had higher two-year reliability 
(r = .58 vs. .46). Thus, results indicate comparable, but not identical, 
one and two-year retest stabilities when using these two methods to 
measure CRP. 

Another important factor to consider when assessing temporal sta
bility is the role of human development. Particularly for youth under
going drastic growth and developmental changes, it is plausible that 
temporal stabilities of many biological variables will differ compared to 
adults. Riis et al. (2014) extended the previous study to a sample of 
adolescent girls using a similar design (i.e., 3 yearly measurements of 
plasma and saliva inflammatory analytes). This study assessed nine cy
tokines, but did not measure CRP, so results cannot be directly 
compared. Controlling for age, the average year 1 to year 2, year 2 to 
year 3, and year 1 to year 3 reliabilities were higher for serum compared 
to saliva (average rs = .61 vs .30, .33 vs. .25, and .40 vs. .34, 

respectively). However, when comparing the stability of individual 
proteins, a more complex picture emerged. One-year retest reliability 
was uniformly higher for plasma between years 1 and 2 (rs = .39 - .75 vs. 
.21 - .38). However, this discrepancy was less consistent between years 2 
and 3 in which plasma reliability was higher for only four of the seven 
analytes (plasma rs = .10 - .54; saliva rs = .09 - .36) and for two-year 
reliability, for which saliva reliability was higher for four of the analy
tes (plasma rs = .16 - .57; saliva rs = .19 - .46). Thus, although these two 
studies suggest that serum measures of inflammation might be more 
stable than salivary measures, there might be important protein-level 
differences in ideal measurement methods. Also, the mouth is home to 
a complex microbiome that might introduce more confounding factors 
compared to circulating blood (Giannobile et al., 2009). Thus, future 
research establishing best practices for salivary methods of collection 
might find different estimates of temporal stability. 

Another popular way to quantify temporal stability is intra-class 
correlation coefficients (ICCs), which assess the proportion of total 
variance (between-person + within-person) that is attributable to 
between-person differences. Thus, higher ICCs indicate less relative 
within-person variability and greater temporal stability. Convention
ally, ICCs less than .40 are considered poor, between .40 and .59 are 
considered fair, between .60 and .74 are considered good, and above .75 
are considered excellent indicators of temporal stability (Cicchetti, 
1993), but desired ICCs should be considered in the context of the 
construct being studied. An important distinction between ICCs and 
retest reliability indexed by Pearson’s r is that correlations primarily 
reflect rank-order stability (i.e., an individual will have the same relative 
ranking in a sample at Time 1 and Time 2), whereas ICCs reflect 
rank-order stability and mean-level changes between time points. Thus, 
ICCs are a preferable measure when evaluating how stable a given score 
is over time. 

Continuing the discussion of inflammation, Shields et al. (2019) re
ported ICCs (in their supplemental material) for seven different salivary 
inflammatory proteins (CRP, IL-6, IL-8, IL-18, IL-1β, TNFα, MCP-1). 
They report stability estimates for two different durations: 120 mi
nutes apart during the same testing session (“short-term reliability”) and 
an 18-month follow-up (“long-term stability”). Importantly, testing 
stability of salivary analytes within the same testing session can help 
identify how many measurements of these proteins would be necessary 
to achieve a specific level of reliability. Short-term reliability ICCs 
ranged from .37 (for IL-8) to .80 (for CRP). To reach a goal short-term 
reliability of r = .80 using the Spearman-Brown prophecy formula, be
tween one (CRP) and four measurements (IL-8 and IL-18) were needed. 
The number of measurements needed to reach a goal short-term reli
ability indexed by ICCs was not reported. ICCs were low for all 7 proteins 
at the 18-month follow-up (all ICCs < .28), suggesting lower temporal 
stability of salivary inflammatory proteins using ICCs compared to 
Pearson’s r. Conceptually, this indicates that salivary inflammatory 
proteins might be more stable in terms of their person-level rank-order 
than their actual value. 

Given the relative expense of much biological psychiatry research (e. 
g., neuroimaging), many studies are cross-sectional and prospective 
studies typically have small sample sizes. Thus, meta-analyses pooling 
the results of multiple studies together have the potential to be very 
useful in investigating the temporal stability of various measures. Elliott 
et al. (2020) evaluated temporal stability of task-related fMRI measures 
in regions of interest (ROIs) using a meta-analysis of 90 substudies (N =
1,008 and 1,146 ICC estimates). When selecting articles, the authors 
noticed that several of the studies reported thresholded ICCs (i.e., only 
reported ICCs above a threshold, comparable to only reporting effect 
sizes for results with p < .05). Due to concerns this might inflate esti
mates of reliability, meta-analyses were conducted separately for studies 
reporting unthresholded vs. thresholded ICCs. These concerns were 
supported by results showing that the average ICC for unthresholded 
results (77 substudies) was poor (mean ICC = .397; 95% CI, .330 - .460), 
whereas the average stability for tasks in thresholded substudies (13 
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substudies) was moderate (mean ICC = .705; 95% CI, .628 - .768). 
Further, a moderation analysis including all substudies confirmed that 
the decision to report thresholded ICCs was associated with significantly 
higher ICCs. Importantly, test-retest interval (the duration between the 
two points of measurement) was not found to be a significant moderator 
of temporal stability, although the authors do not provide information 
on the average test-retest interval or variability in the intervals between 
studies. The authors highlight several methodological limitations of 
their meta-analysis (e.g., different, potentially outdated scanners, 
different pre-processing and analysis pipelines). 

These results suggest lower than ideal temporal stability for the study 
of individual differences. Importantly, the authors highlight that these 
tasks were created to robustly result in group-level changes, not to assess 
between-person differences in these changes. Therefore, the problem is 
not necessarily in the measures, but how researchers have extended 
their use to research questions they were not built to address. It also is 
important to highlight that this study only investigated ROIs. Similar 
analyses examining whole brain patterns might be more temporally 
stable. Additionally, some common ROIs not included in this paper (e.g., 
left nucleus accumbens and right anterior insula activity) have better 
temporal stability (e.g., ICC > .5) at large intervals (> 2.5 years) during 
the monetary incentive delay task included in Elliott et al. (2020) (Wu 
et al., 2014). In response to Elliott et al. (2020), Kragel et al. (2020, note 
this is a pre-print that has not undergone peer review) describe nine 
recent studies demonstrating strong short-term stability (i.e., less than 
five weeks) for task-based fMRI measures. They conclude that studies 
aggregating information across multiple brain regions (rather than 
ROIs) and/or aggregation across similar tasks, with larger samples, more 
data per participant (i.e., more time in the scanner), and shorter retest 
intervals paint a more promising picture of temporal stability for fMRI 
task measures than Elliott et al. (2020). It is worth note that many of 
these conditions involve using additional data (i.e., larger samples, more 
data per participant, aggregation across brain regions and similar tasks), 
underscoring that aggregating more data (e.g., across studies, see 
Segerstrom and Boggero (2020) below) will average out misestimations 
resulting from unreliable measures. Thus, further work is needed to 
identify best practices for individual differences research using various 
fMRI measures. 

Recall that measures taken across multiple time points for multiple 
people have three sources of variability: between-person, within-person, 
and measurement error. Generalizability theory (Shavelson and Webb, 
1991) is an extension of these principles that estimates what proportion 
of a single assessment is generalizable to other time points by separating 
variance due to stable individual differences, measurement occasions, 
and the interaction between the two. Results of generalizability analyses 
then can be used to inform the design of later studies with the goal of 
achieving a desired reliability. Segerstrom et al. (2014) applied this 
theory to investigate how many days of sampling would be needed to 
reliably characterize between-person differences and within-person 
changes in three cortisol metrics: diurnal mean, diurnal slope, and 
area under the curve (AUC) in two separate samples. Sample 1 consisted 
of young adults who provided five cortisol samples per day, for three 
consecutive days, across five separate occasions (mean time after pre
vious occasion; Time 2: 44 days, Time 3: 57 days, Time 4: 36 days, Time 
5: 29 days). Results indicated that three days were necessary for 
adequate reliability to facilitate individual differences research (defined 
as r = .60 in this study) for the diurnal mean, four days for the AUC, and 
11 days for diurnal slope. Further, reliable measurement of 
within-person changes would require three days of data for the mean, 
four for AUC, and eight for slope. Correlations comparing slopes 
calculated with 2, 3, and 4 time points per day suggested that collecting 
two samples per day (taken during the morning and evening) were 
excellent at reproducing slope estimates using four samples (r = .97), 
suggesting that collecting more than two samples per day does not 
substantively improve measurement. To evaluate whether these results 
replicate in a demographically different sample, a second study was 

conducted in older adults that resulted in comparable estimates. These 
results suggest that collecting two samples per day for several days will 
provide more reliable estimates than collecting more samples, but across 
fewer days. 

3.5. Temporal Specificity 

In addition to temporal stability, temporal specificity of effects is 
integral to advance longitudinal research. To illustrate this, consider the 
following studies of inflammation as a risk factor for depression. Miller 
and Cole (2012) reported that CRP predicted depression symptoms at a 
six-month follow-up, but only in female adolescents exposed to child
hood adversity. Gimeno et al. (2009) found that CRP and IL-6 predicted 
depression symptoms 12 years in the future. However, neither van den 
Biggelaar et al. (2007; five years of annual follow-ups) nor Stewart et al. 
(2009; six-year follow-up) found significant associations between IL-6 
and future depression symptoms, but van der Biggelaar et al. found 
that CRP predicted future depression. Further, Copeland et al. (2012) 
did not find that CRP predicted future depression in a sample of ado
lescents with up to nine assessments over a 12-year period. Although 
there might be (and likely are) many moderators influencing this het
erogeneity in results, time to follow-up is a plausible candidate that 
could inform design of future, and interpretation of past, studies. 

Moriarity et al. (2019) explored this possibility in a sample of 201 
adolescents with a baseline blood draw and a total of 582 assessments of 
depression symptoms (time to follow-up ranged from .07 – 30.49 
months). Using hierarchical linear models, they tested main effects 
models of five inflammatory proteins on change in depression symptoms 
as well as five exploratory models testing interactions between the five 
biomarkers, sex, and time to follow-up. The only protein with a signif
icant unconditional main effect was CRP; however, three of the four 
remaining proteins demonstrated significant three-way interactions. 
Specifically, both IL-6 and TNFα had stronger, more positive associa
tions with change in depression symptoms as time to follow-up 
increased, but only for females (e.g., Fig. 1). Conversely, IL-8 had a 
stronger association with change in depression symptoms for males as 
time to follow-up increased, but the association was negative. These 
results highlight how associations might not replicate between samples 
with different demographic characteristics (e.g., sex) or different in
tervals between assessments. This line of inquiry might be particularly 
important during adolescence, which is both a time of elevated risk for 
first onset of many psychopathologies (e.g., depression; Cummings et al., 
2014) as well as a time of rapid social, biological, and psychological 
development. Although testing individual proteins maximized this 

Fig. 1. Temporal specificity of Log IL-6 predicting change in depression 
symptoms by sex. This figure was first presented in Moriarity et al. (2019). 
Note: IL = interleukin, CDI = Children’s Depression Inventory. Shaded regions 
indicate 95% confidence intervals. 
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study’s relevance (as this is the most common approach in immunop
sychiatry) it is worth considering how results might have changed if an 
aggregate variable of “inflammation” was also tested. Possibly, by 
aggregating shared variance and increasing power, an 
empirically-supported aggregate variable may have predicted change in 
depression at a wider range of follow-up intervals or had larger effect 
sizes. 

The rise in popularity of intensive longitudinal designs allows for a 
wealth of new opportunities to investigate temporal specificity on a 
smaller time scale. For example, Graham-Engeland et al. (2018) 
measured serum levels of seven inflammatory proteins (combined into 
an inflammatory composite) and CRP (analyzed individually) after a 
14-day ecological momentary assessment (EMA) protocol. Before start
ing the EMA protocol, participants completed questions about recalled 
positive and negative affect “over the past month”. Then, participants 
completed questions about experienced positive and negative affect five 
times per day for 14 days leading up to the blood draw. Neither the 
inflammatory composite nor CRP were significantly predicted by posi
tive or negative affect “over the past month” or aggregated positive or 
negative affect over the 14-day EMA protocol. However, when the affect 
variables were separated by week, Week 2 (closest to the blood draw), 
but not Week 1, negative affect significantly predicted the inflammatory 
composite variable. Exploratory analyses found that the association 
between negative affect and inflammation consistently increased in 
strength as the lag between measurements shortened. Thus, these two 
studies illustrate how it is possible to leverage longitudinal studies of 
different time scales to identify whether risk factors for psychopathology 
operate on a proximal or distal time scale, providing important insight to 
study design and intervention efforts. 

3.6. Effect Size and Power 

As reviewed in the conceptual portion of this paper, all of the 
physiometric examples reviewed thus far have implications for model 
performance; however, some researchers have empirically tested the 
relationship between physiometrics and effect size/power in biological 
psychiatry. For example, Hajcak et al.s’ (2017) paper on how internal 
consistency of ERN changes as a function of trials completed in two 
groups of participants with, and without, generalized anxiety disorder 
(reviewed above) also tested how between-group effect sizes were 
related to internal consistency. Cohen’s d increased almost parallel to 
increases in internal consistency as the number of trials increased (r =
.94). Given that two primary goals of biological psychiatry are under
standing i) group differences between those with and without mental 
illness, and ii) the between-person variability in within-person effects 
contributing to psychiatric risk, resilience, and treatment, this is 
noteworthy. 

Simulation studies present a powerful option to evaluate the state of 
current measurement practices. Segerstrom and Boggero (2020) used 
212 study designs included as part of a meta-analysis (Boggero et al., 
2017) on the relationship between various psychosocial correlates and 
cortisol awakening response to investigate the probability of mis
estimates using these data. 100,000 data sets were simulated for each 
study design with sample sizes and reliability estimates extracted from 
the original studies. Boggero et al. (2020) found a meta-analytic effect 
size of less than r = 0.10, which was used as the “true” effect size for the 
purposes of the simulation study. Two types of misestimates were 
assessed: 1) sign errors (i.e., when the association was negative, instead 
of positive like the “true” effect); and 2) magnitude errors (i.e., when the 
estimate was more than .10 away from the “true” effect size). Consistent 
with literature reviewed above, more days of sampling in cortisol studies 
are associated with higher reliability. More days of sampling (and, by 
extension, reliability) was, in turn, consistently negatively correlated 
with both sign and magnitude errors in the simulations. Given that re
sults found that around 20% of all simulations resulted in sign errors, 
and nearly 40% in magnitude errors, this study highlights increased 

cortisol sampling as a way to increase reliability and overall study 
quality. 

4. The Promise of Biological Psychiatry 

Biological psychiatry has the potential to enhance both physical and 
mental health through the investigation of the reciprocal associations 
between the body and mind. However, this potential only can be real
ized with carefully crafted theory and rigorous methodology. Many have 
argued that the field has fallen short of its promise to meaningfully 
impact psychiatric classification, diagnosis, prevention, and treatment 
so far (Kapur et al., 2012; Miller, 2010; Venkatasubramanian and 
Keshavan, 2016). One important reason for this may be that a lack of 
sufficient attention to key measurement properties of biological vari
ables has constrained the utility of these data in statistical modeling, and 
thus, inference generation, despite rapid technological advances 
allowing for more precise data acquisition in many biological subfields. 

Although the physiometric characteristics covered in this review are 
far from exhaustive, we would like to reiterate five steps that would 
improve biological psychiatry research: 1) thoughtful investigation of 
the dimensionality of complex biological constructs in datasets 
including multiple indicators of these constructs; 2) standardized 
reporting of internal consistency when using aggregate measures; 3) 
careful consideration of the implications of method-specific variance; 4) 
standardized reporting of temporal stability, preferably calculated with 
the sample being analyzed or at least a reference to previous research 
with a similar time frame; and 5) increased exploration into the tem
poral specificity of associations between biological and behavioral 
phenomena. Further, it is imperative to keep in mind how the results of 
these investigations might be contingent on other analytic choices (e.g., 
handling of extreme values; Landau et al., 2019) and sample charac
teristics (e.g., sex; Moriarity et al., 2019). 

A physiometric awakening in biological psychiatry would promote a 
wide array of benefits to the field and those whom this work is intended 
to benefit. Projects uninformed by basic measurement principles 
germane to their study methods risk inflating the noise-to-signal ratio in 
statistical models. As a result, there is an increased risk for false- 
negatives and false-positives, hindering the actual progress of the field 
as well as belief in its utility relative to the associated costs. Further, 
many standardized effect sizes between biological and psychological 
variables likely are biased downward due to less than ideal matching of 
measures to procedures and method specific variance, weakening the 
appearance of their practical implications. Thoughtful application of 
measurement principles can reduce error-related variability in future 
studies via improvement of both study design and statistical modeling, 
resulting in improved replicability of findings and less biased effect 
sizes. 

Moreover, physiometric studies can provide guidance about which 
variables have the most utility, under what research designs they 
operate well, and how to optimally model constructs of interest. To 
illustrate this, consider designing a study of experienced negative affect 
as a predictor of inflammatory and coagulatory markers in adolescents. 
Having read Nelson et al. (2011), you know that aggregating variables 
containing overlapping variance can accentuate the shared variance 
related to other variables, increasing power. You originally considered 
the same panel of biomarkers as Egnot et al. (2018), but you decided not 
to assay and analyze slCAM-1 and Lp(a) because neither loaded onto 
either of the two factors in their study. This decision saves you money, 
enabling recruitment of more participants, hiring additional staff, or 
purchasing other supplies. Additionally, because Engeland et al. (2018) 
found that the association between negative affect and inflammation 
was stronger at shorter intervals, you might plan a one-week EMA 
protocol rather than a two-week protocol, saving money, time, and 
participant burden. However, instead of testing separate regressions for 
each day of negative affect, you could improve statistical rigor of this 
comparison by testing for moderations by time interval using multilevel 
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models like Moriarity et al. (2019). 
In addition to improving study design, thoughtful application of 

various statistical approaches holds the potential to ameliorate physio
metric issues in biological psychiatry. One example is structural equa
tion modeling (SEM), a powerful tool for reducing the impact of poor 
reliability on statistical models. SEM allows the estimation of latent 
factors from the shared variance between items, removing measurement 
error associated with individual observed variables and accentuating 
shared variance between biomarkers of interest. However, SEM models 
require larger samples than traditional models. Thus, multi-study col
laborations might be necessary to permit model testing for more 
expensive measures. 

As described in Perkins et al. (2017), many physiological variables of 
interest are associated with many different psychological constructs. 
Thus, when possible, researchers should carefully consider whether 
building statistical models that can isolate portions of variance relevant 
to one trait vs. another would be beneficial. However, we would like to 
underscore that the suitability of various variance isolation techniques is 
context dependent. As described above, variance removed from a vari
able always comes from the “true” and reliable variance, never from 
error variance. Thus, difference scores or predictors with variance par
tialled out for covariates are almost always less reliable and have a lower 
signal-to-error ratio (Lynam et al., 2006). This is amplified when the 
predictors are highly correlated (Thomas and Zumbo, 2012). Finally, it 
also is critical to remember that difference scores (or predictors with 
variance partialled out in multiple regression) are conceptually different 
than the raw variables. These interpretive concerns are more extreme 
with more heterogenous (lower internal consistency) measures, because 
it is more likely that the variance removed might only be associated with 
a subset of the components of the original variable. 

Additionally, most of this article has discussed physiometric work 
anchored in classical test theory. Future work could utilize generaliz
ability theory, an extension of classical test theory described above in 
the review of Segerstrom et al. (2014). Alternatively, item response 
theory (IRT) estimates reliability for varying levels of a continuum 
rather than the entire range of a measure. Typically, IRT requires binary 
or polytomous indicators, but continuous response models (CRM) are an 
extension of IRT models that allow for continuous variables (Samejima, 
1973). Physiometric research utilizing these approaches might lead to 
useful insight for how to best collect and model biological data. 

Increasing the efficiency of study design and statistical modeling will 
improve the ability to accurately detect associations and their effect 
sizes. These advancements have the potential to smooth the transition 
from basic research to the improvement of interventions and policy via 
increasing confidence in results and the ability to gauge their utility. 
Importantly, with lower rates of false positives, there is a reduced 
chance that ineffective biological interventions may be explored that 
have little to no real-world utility. 

Fortunately, as reviewed above, some researchers are working to arm 
the rest of the field with this crucial information. As more physiometric 
work is published, the value of comprehensive reviews of this literature 
increases. Recently, Segerstrom (2020) and Gloger et al. (2020) pub
lished reviews of salivary and serum biomarker physiometrics, respec
tively, but many more topics would benefit from a focused physiometric 
review (e.g., neuroimaging, ERP, heart rate variability). 

However, it is critical to admonish the dangers of treating particular 
levels of physiometric characteristics as benchmarks to hit, without 
careful consideration of what they mean in relation to the constructs 
being studied. Several methodologists have warned that primarily 
focusing on creating measures with high internal consistency can result 
in the removal of items/components that contribute to lower internal 
consistency, but would help capture the true breadth of the construct of 
interest (Clark and Watson, 2019; Cronbach and Meehl, 1955). This 
sacrifices construct validity for higher internal consistency and 
faux-unidimensionality. However, it is important to note that this 
concern is only applicable to the creation of measures using different 

biomarkers (e.g., different inflammatory cytokines), not repeated mea
sures of the same variable. Further, internal consistency increases as a 
function of the number of components included in its calculation, 
potentially resulting in larger, but not better, measures. Additionally, 
although there are many contexts in which high temporal stability can 
be beneficial, it is critical to avoid overvaluing components of larger 
constructs (e.g., brain regions for neuroimaging studies) with higher 
reliability. Rather, there should be reciprocal interplay between meth
odology and theory. 

Creating a solid physiometric foundation for biological psychiatry is 
not without obstacles. First and foremost, biological variables often are 
more expensive to measure than psychological variables, some of which 
can be measured via self-report questionnaires administered online from 
the comfort of participants’ homes. Measurement research and construct 
validation are, by their nature, iterative processes, amplifying the 
associated cost of this work. However, it is crucial to appreciate that 
good physiometric research is an investment; it will result in increased 
statistical power and better study design in the future, saving money and 
time. This requires investment both on the part of researchers as well as 
funding agencies. Fortunately, there is a lot of important work that can 
be done with existing data sets. Any study with repeated measures of a 
variable can estimate its temporal stability. Any study using an aggre
gate measure can assess the internal consistency of its components. In 
fact, there are many publicly available data sets that offer great oppor
tunities for physiometric research (e.g., the Human Connectome Project; 
Van Essen et al., 2013). 

Finally, this work can, at times, be statistically intensive and 
conceptually abstract. One of the strengths of biological psychiatry is 
that, by nature, it is an interdisciplinary pursuit with experts along the 
biology—psychology spectrum. Collaboration with statisticians and 
measurement specialists can serve as a catalyst for the efficient, high- 
quality research that is needed for biological psychiatry to reach its 
full academic, clinical, and policy-informing potential. 

5. Conclusion 

It is important to end on a clarification that the issues highlighted in 
this article should not be received with apprehension or pessimism. 
Rather, it is an invitation to ask new questions of the data collected to 
help the field of biological psychiatry realize its potential. Biological 
psychiatry has been criticized for falling short of its considerable 
promise in advancing knowledge about the interplay between biology 
and behavior in ways that will translate to substantive impact on clinical 
outcomes (Kapur et al., 2012; Miller, 2010; Venkatasubramanian and 
Keshavan, 2016). One addressable barrier to meaningfully advancing 
biological psychiatry is an understanding and appreciation of mea
surement properties for biological variables. By leveraging existing data 
sets and prioritizing funding for physiometric research, it is possible to 
advance current methods to allow for more informative and replicable 
studies that will provide greater clarity into what areas of research offer 
the greatest promise to make meaningful impacts on mental health, and 
how best to integrate them into intervention efforts. 
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