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a b s t r a c t

Depression is a major contributor to the global burden of disease and disability, yet it is poorly understood.
Here we review data supporting a novel theoretical model for the biology of depression. In this model,
a stressful life event leads to microdamage in the brain. This damage triggers an injury repair response
consisting of a neuroinflammatory phase to clear cellular debris and a spontaneous tissue regeneration
phase involving neurotrophins and neurogenesis. During healing, released inflammatory mediators trig-
ger sickness behavior and psychological pain via mechanisms similar to those that produce physical pain
during wound healing. The depression remits if the neuronal injury repair process resolves successfully.
Importantly, however, the acute psychological pain and neuroinflammation often transition to chronic-
ity and develop into pathological depressive states. This hypothesis for depression explains substantially
more data than alternative models, including why emerging data show that analgesic, anti-inflammatory,
pro-neurogenic and pro-neurotrophic treatments have antidepressant effects. Thus, an acute depressive
episode can be conceptualized as a normally self-limiting but highly error-prone process of recuperation
from stress-triggered neuronal microdamage.

© 2010 Elsevier Ltd. All rights reserved.
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. Introduction

Depression is projected to become the second biggest contribu-
or to the global burden of disease and disability by the year 2020
World Health Organization, 2009), yet significant unmet need for
reatment exists (Greden, 2002). Studies that have used modern
echniques to assess depressive episodes in the general population
oncur that 13–16% of adult United States residents meet criteria
or having experienced Major Depressive Disorder so far in their
ives (Hasin et al., 2005; Kessler et al., 2003), perhaps reaching 20%

hen extrapolated to the entire lifespan. In these general popu-
ation samples, the average depressive episode is 3 or 4 months in
uration (Eaton et al., 2008; Kessler et al., 2003; Spijker et al., 2002).
bout half of the first time sufferers will recover and never expe-
ience a recurrence (Eaton et al., 2008), although approximately
0% of depressive episodes run a chronic course lasting two years
r longer (Spijker et al., 2002). These data reveal that depression in
he general population, almost half of which is left untreated (Eaton
t al., 2008; Hasin et al., 2005; Kessler et al., 2003), is more com-
on, briefer in duration, and less often recurrent than is apparent

rom studies of clinical samples.
In this article, we review findings that shape our understand-

ng of the biology of depression, including that depression is
ften triggered by stressful life events (Section 2), that stress trig-
ers neuronal microdamage (section 3) and neuroinflammatory
ctivation (Section 4) in the brain, and that inflammatory medi-
tors can induce depressive symptoms (Section 5). In addition, we
eview evidence that anti-inflammatory treatments are emerging
s having antidepressant effects (Section 6) and that antidepressant
reatments increase neurogenesis, neurotrophins and neuronal
lasticity (Section 7). By utilizing these findings in diverse ways, a
ariety of theoretical models (reviewed in Section 8) have proposed
hat different malfunctions lead to depression. However, no single
iew has garnered a widespread consensus, leaving the field with-
ut a unified theoretical framework that organizes the disparate
ndings and guides future research.

Because it is difficult to understand dysfunction of any process
ithout an appreciation of what the healthy functioning of the pro-

ess is, our approach in Section 9 is to use these same findings to
laborate a theoretical model for the proper biological function-
ng of the response to stressful events. In this theoretical model, a
ealthy response to stress-induced neuronal microdamage consists
f an injury repair process with inflammatory-mediated demolition
nd stem cell-facilitated regrowth. The inflammatory mediators
reate an episode of psychological pain and sickness behavior
hich comprise depressive symptoms. In using this injury repair
odel to refine existing hypotheses about pathology in depression,
e suggest in Section 10 that this normally self-limiting repair

esponse may become chronic or exaggerated by similar mecha-

isms to those that commonly lead to chronic inflammatory and
athological pain conditions.

Implications of this brain injury repair model for depression are
iscussed in Section 11. For example, because our theoretical model

nvokes physical pain mechanisms for psychological pain, it offers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

biological scenarios explaining why analgesics appear to have some
antidepressant effects, and why depression shares features with
a family of disorders involving central sensitization of pain path-
ways and hyperalgesic priming. Because our theoretical model
proposes that depressive symptoms are a result of inflammatory
mediators released during repair of stress-induced brain injury,
it offers an explanation for why brain injury induced by means
other than stress also results in depression at a high rate. Regarding
drug discovery, this model underscores that brain injury, neu-
roinflammation, and pain mechanisms may represent therapeutic
targets for depression. We propose the additional hypotheses that
a function accomplished during the acute depressive episode is
to dismantle neural circuitry underlying behavior that has been
rendered disadvantageous by the life event and to grow neural tis-
sue mediating new behavioral strategies (Section 11.2); and that
the degree of depressogenicity of the stressor is related to the
extent, type and neuroanatomical location of the remodeling (Sec-
tion 11.3). Finally, we suggest that the graded nature of the response
can explain the common sense notion that depression is on a con-
tinuum with normal sadness.

A note about terminology: The criteria by which a typical reac-
tion to a harrowing event or environment is distinguished from a
mental “disorder” is the topic of much controversy, e.g. (Kendler
et al., 2008; Maj, 2008; Wakefield et al., 2007). Therefore, through-
out this review, we will use the general terms “depression” and
“depressive episode” to refer to the full range of severity of depres-
sive symptoms, including both those that do and do not reach the
DSM-IV-TR (American Psychiatric Association, 2000) criteria for
“Major Depressive Disorder” and “Major Depressive Episode”.

2. Data suggest that stressful life events can precipitate
depressive episodes in humans

An association between stressful life events and depressive
episodes has long been noted (Hammen, 2005; Paykel, 2001) (for
reviews). The onset of the first episode of depression is preceded
by a severe life event in 70–80% of cases (Brown et al., 1986,
1995; Kendler et al., 1999). To address causality, some studies have
focused on events that are judged to be “bad luck” or “fateful” to
exclude events that might have been brought on by the person’s
own potential prodromal dysfunction. The odds that a person with
major depression has experienced a disruptive, fateful event have
been measured at 2.5 times that of community residents who have
no apparent depression (Shrout et al., 1989). In a separate study,
events judged to have not resulted from the patients own behavior
strongly predicted the occurrence of an onset of major depression
at an odds ratio of 2.33 (Kendler et al., 1999). In populations subject
to mass conflict and displacement in which the number of poten-

tially traumatic events experienced was positively associated with
depression, time since conflict was negatively associated (Steel et
al., 2009) (for meta-analysis). These findings support the notion
that causality can flow from the stressful event to the depressive
episode.
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Examples of depression-associated stressors include physiolog-
cal and psychological events, such as transitioning to menopause
Cohen et al., 2006; Freeman et al., 2004, 2006), experiencing

ajor health problems such as myocardial infarction (Ziegelstein,
001) (for review), having a baby (Paulson and Bazemore, 2010)
Robertson et al., 2004) (for review), and caregiving for a loved one
ith degenerative disease (Mahoney et al., 2005).

Simple, one-way causality is not the whole story, however.
tressful life events may also be a consequence of depression. Sup-
orting this possibility, people with a history of depression are
ignificantly more likely, even in periods of remission, to expe-
ience high levels of subsequent episodic life events to which
hey themselves contributed (Hammen, 2005) (for review). Causal-
ty may sometimes run bidirectionally, as has been suggested for
he myocardial infarction–depression link (Lippi et al., 2009) (for
eview). While life events can be both a cause and consequence of
epression, causality may also come from a third factor. Support-

ng this possibility, people who are high on the personality trait of
euroticism are at greater overall risk of major depression and are
ore sensitive to the depressogenic effects of adversity (Kendler

t al., 2004). Furthermore, causality may shift over the course of
he illness. This contention is supported by the finding that first
pisodes of depression are more strongly associated with major
ife stress than subsequent episodes, which has led to a kindling
ypothesis (Kendler et al., 2000) (Monroe and Harkness, 2005) (for
eview). Finally, not all stressful life events elicit depression in all
eople each time such an event occurs (Bonanno, 2004).

Therefore, stressful life events and depression likely share a
omplex relationship. Within this complexity, however, the most
ecent review of the field concludes that overall, the evidence indi-
ates that a robust proportion of the association is due to causality
owing in the direction of the event to depression (Hammen, 2005)
for review). Establishing this type of causality is important for
eveloping a theoretical model of depression because it suggests
hat stress can initiate a cascade of biological events that lead to
epression.

. Stress can trigger remodeling and microdamage in the
rain

“. . . one is . . . an unwilling witness of an execution, the disintegra-
tion of one’s own personality . . . this phase comes to a dead-end,
eventually, and is succeeded by vacuous quiet. In this you can try to
estimate what has been sheared away and what is left” (Fitzgerald,
1996) describing a depressive episode he had experienced.

A finding that has emerged with particular clarity over decades
f research is that stress reshapes the physical structure of the brain
Arnsten, 2009; Lupien et al., 2009; McEwen, 2007; Rodrigues et al.,
009) (for reviews). Stress triggers increases in markers of apopto-
is (Bachis et al., 2008; Jalalvand et al., 2008; Lucassen et al., 2001),
ecreases in neurogenesis (Alonso et al., 2004; Bain et al., 2004;
land et al., 2006; Chen et al., 2006a; Cherng et al., 2010; Czeh et al.,
001, 2002, 2007; Dagyte et al., 2009; Ferragud et al., 2010; Goshen
t al., 2008; Gould et al., 1997; Heine et al., 2004; Hill et al., 2006;
oo and Duman, 2008; Lagace et al., 2010; Lee et al., 2006a; Luo
t al., 2005; Malberg and Duman, 2003; Oomen et al., 2007; Pham
t al., 2003; Rosenbrock et al., 2005; Thomas et al., 2007; Torner
t al., 2009; Westenbroek et al., 2004; Xu et al., 2006a; Zhou et al.,
007) but see (Parihar et al., 2010), and region-specific changes in
rain derived neurotrophic factor (BDNF), both increases (Aguilar-

alles et al., 2005; Berton et al., 2006; Bland et al., 2005, 2007;
harrier et al., 2006; Dagnino-Subiabre et al., 2006; Givalois et al.,
001, 2004; Hammack et al., 2009; Lee et al., 2006b; Li et al., 2007;
armigere et al., 2003; Molteni et al., 2009; Pardon et al., 2005;

age et al., 2002; Schulte-Herbruggen et al., 2009) and decreases
iobehavioral Reviews 35 (2011) 742–764

(Adlard and Cotman, 2004; Aleisa et al., 2006; Bland et al., 2007;
Cavus and Duman, 2003; Charrier et al., 2006; Chen et al., 2008b;
Duric and McCarson, 2005, 2006; Dzitoyeva et al., 2008; Fuchikami
et al., 2009; Gronli et al., 2006; Kozlovsky et al., 2007; Li et al., 2009;
Luo et al., 2004; Murakami et al., 2005; Park et al., 2009; Scaccianoce
et al., 2003; Smith et al., 1995; Takeda et al., 2006; Vaidya et al.,
1999; van Donkelaar et al., 2009; Vollmayr et al., 2001; Xu et al.,
2002, 2004, 2006a,b; Yun et al., 2002), with a minority of studies
detecting no change (Allaman et al., 2008; Lucca et al., 2008).

In studies that have directly examined neuronal structure, stress
was found to induce neurite growth in certain brain regions, e.g.
(Dias-Ferreira et al., 2009; Liston et al., 2006; Vyas et al., 2002).
However, many more studies have documented that stress leads
to a reduction of dendritic, spine, and synaptic material in the hip-
pocampus and prefrontal cortex. Some studies have referred to this
morphological change with stress as “atrophy”, e.g. (Conrad et al.,
1999; Galea et al., 1997; Lambert et al., 1998; Liu and Aghajanian,
2008; Magarinos and McEwen, 1995a, 1995b, Magarinos et al.,
1996; Ramkumar et al., 2008; Watanabe et al., 1992a, 1992b). Some
have called it “retraction”, e.g. (Conrad, 2006; Izquierdo et al., 2006;
McLaughlin et al., 2005, 2010; Radley et al., 2005). Some call it
“loss”, e.g. (Chen et al., 2008c; Radley et al., 2006; Sandi et al., 2003).
Others have used the term “damage”, e.g. (McEwen and Magarinos,
2001; McEwen, 2002; Sapolsky, 1996; Sousa et al., 2000; Sunanda
et al., 1997). For the purposes of this review, we will refer to the
stress-induced reduction of neuronal material as “microdamage”.

Most studies addressing structural change with stress have used
chronic stress protocols, but structural changes have also been
observed after brief stressors. For example, in the hippocampus,
a reduction in dendritic spines can be seen within hours of either
the onset of restraint stress (Chen et al., 2008c) or intermittent tail-
shock (Shors et al., 2001), and brief social defeat stress induces a
reduction in apical dendritic length (Kole et al., 2004). Loss of den-
dritic length has also been seen in the infralimbic cortex after a
single ten minute episode of swim stress (Izquierdo et al., 2006).

These structural changes can be transient. After cessation of
stress, some replacement of missing tissue can be observed within
30 days (Conrad et al., 1999; Goldwater et al., 2009; Radley et al.,
2005; Sousa et al., 2000). The stress-induced loss of neuronal mate-
rial can be reversed more quickly if a new learning (Sandi et al.,
2003) or rewarding (Ramkumar et al., 2008) experience is provided,
suggesting that learning and reward counter the effects of stress on
brain structure.

Structural changes are also seen in the brains of depressed
patients (Ebmeier et al., 2006) (for review). The best studied change
is reduced hippocampal volume, which has been confirmed in
three meta-analyses (Campbell et al., 2004; McKinnon et al., 2009;
Videbech and Ravnkilde, 2004). The reduced hippocampal volume
in depression may not be apparent if the duration of illness is less
than two years or fewer than two episodes (McKinnon et al., 2009)
(for meta-analysis). This volume loss is significantly positively cor-
related with the total number of previous episodes (Videbech and
Ravnkilde, 2004 for meta-analysis). Thus, the data suggest that the
reduced volume generally occurs after disease onset (McKinnon
et al., 2009) and may be a consequence of repeated episodes of
depression (Videbech and Ravnkilde, 2004). In addition, there is
also evidence that among people who have familial risk of depres-
sion but have not yet had a first episode, some hippocampal volume
decrease preexists (Baare et al., 2010; Chen et al., 2010a; Rao et al.,
2009). In a recent review analyzing various possible explanations
for the hippocampal volume decrease in depression, alterations

in dendritic, axonal, and synaptic components, as well as putative
glial changes were considered to be more consistent with the data
(including postmortem analyses) than massive neuronal loss or a
suppression of neurogenesis. However, shifts in fluid balance or
changes in the extracellular space could not be excluded (Czeh and
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ucassen, 2007) (for review). Some evidence suggests that effective
ntidepressant treatment reverses hippocampal volume changes
Ebmeier et al., 2006) (for review).

Thus, a picture is emerging that stress can induce structural
emodeling including reversible microdamage in the rodent brain, a
henomenon that may be echoed in human depression. Even brief
tressors have been found to elicit such structural change in the
odent.

. Stress may stimulate the neuroinflammatory system

Evidence of inflammatory activation can be observed in both
lood and brain of stressed rodents and humans. For example,
cute stress increases markers of inflammation in the blood cir-
ulation of rodents, e.g. (Grippo et al., 2005; Hale et al., 2003;
ohnson et al., 2005). Stress induces cytokine responses in vari-
us rodent brain regions, e.g. (Barnum et al., 2008; Blandino et al.,
006, 2009; Goshen et al., 2008; Grippo et al., 2005; Johnson et al.,
005; Kwon et al., 2008; Murray and Lynch, 1998; Nguyen et al.,
998) (Garcia-Bueno et al., 2008; Munhoz et al., 2008) (for reviews).
lthough there have been inconsistencies across studies, these
ay be attributed to varying stressor characteristics (Deak et al.,

005a,b) and to regional selectivity in the response to a given stres-
or (Blandino et al., 2009). In addition to cytokine responses, both
cute and chronic stress induce inflammatory signs in microglia
the resident inflammatory cells of the brain) such as increases in

icroglial proliferation (Nair and Bonneau, 2006), morphological
ctivation (Sugama et al., 2007, 2009), activation marker expression
Frank et al., 2007), and decreases in a marker of microglial quies-
ence (Blandino et al., 2009) in various brain regions. In addition,
tress increases the number of microglia in certain stress-sensitive
rain regions and triggers a marked transition of microglia from a
amified-resting state to a non-resting state (Tynan et al., 2010).
here is even one report of recruitment of bone-marrow derived
ells into the hippocampus during stress (Brevet et al., 2010),
uggesting that stress may trigger full blown neuroinflammation
ather than merely activating brain cytokine signaling. Treatment
ith the putative microglial inhibitor minocycline prevented the

tress-induced rise in interleukin (IL)-1 expression (Blandino et
l., 2006, 2009), suggesting that the stress-induced activation of
icroglia may be responsible for some of the cytokine responses.

n humans, acute stress induces a robust increase in inflamma-
ory cytokines IL-6 and IL-1 in the blood circulation (Steptoe et
l., 2007) (for review and meta-analysis). In addition, one study
ound elevated levels of the inflammatory mediator substance P
n cerebrospinal fluid of stressed human subjects (Geracioti et al.,
006).

In depressed patients, many, but not all studies have found signs
f inflammatory activation in the blood circulation. Three recent
eta-analyses (Dowlati et al., 2009; Howren et al., 2009; Zorrilla

t al., 2001) concur that overall, the data support the conclusion
hat the hallmarks of inflammatory activation are present in the
lood circulation of depressed subjects. Evidence for altered lev-
ls of inflammatory mediators in cerebrospinal fluid of depressed
atients has been inconsistent, e.g. (Carpenter et al., 2004; Deuschle
t al., 2005; Geracioti et al., 2006; Levine et al., 1999; Lindqvist et
l., 2009).

Note that the presence of inflammatory markers in the blood
irculation does not necessarily indicate a peripheral site for the
nflammation because activation of the resident inflammatory sys-

em within the brain also results in inflammatory markers in the
lood. For example, elevations of circulating cytokines occur in
ther disorders with solely central nervous system (CNS) inflam-
ation, such as Alzheimer’s disease (Alvarez et al., 2007; Bonotis

t al., 2008; De Luigi et al., 2002; Licastro et al., 2000; Lombardi et
iobehavioral Reviews 35 (2011) 742–764 745

al., 1999; Sala et al., 2003; Zuliani et al., 2007) and stroke (Allard
et al., 2004; Castellanos et al., 2004; Di Napoli et al., 2001; Intiso et
al., 2004; Lynch et al., 2004; Pedersen et al., 2004; Reynolds et al.,
2003; Rost et al., 2001; Silvestri et al., 2004; Smith et al., 2004).

Taken together, the studies reviewed in this section suggest
that stress elicits evidence of inflammatory activation in the rodent
brain with inflammatory signs in the blood circulation of stressed
and depressed people. The mechanism by which stress might
induce neuroinflammatory responses is not yet clear. It has been
suggested that inflammatory activity in the brain is induced, para-
doxically, by the usually anti-inflammatory glucocorticoids that are
released during stress (Sorrells and Sapolsky, 2007) (for review).
Other data suggest that catecholamines, such as norepinephrine,
are required for stress to induce biomarkers of inflammatory activ-
ity in the brain (Blandino et al., 2006, 2009; Johnson et al., 2005;
Miller, 2007; Miller et al., 2009). We suggest the additional possi-
bility that the stress-induced microdamage in the brain described
in Section 3 above may be a stimulus that contributes to activation
of the neuroinflammatory system.

5. Inflammatory mediators can induce depressive
symptoms

A body of evidence shows that inflammatory mediators, such
as cytokines, are potent modulators of behavior and affect. For
example, people who are treated with the inflammatory medi-
ators interferon-� or IL-2 in the course of therapy for various
medical conditions unrelated to mood develop Major Depression
during treatment at a frequency of 23–45% (Hauser et al., 2002;
Horikawa et al., 2003; Musselman et al., 2001; Robaeys et al.,
2007) (Lotrich, 2009) (for review). Of those with preexisting depres-
sion before cytokine treatment began, most exhibited a worsening
of depressive symptomatology (Beratis et al., 2005). Depressive
symptoms in cytokine-treated patients respond to antidepressant
medication (Musselman et al., 2001), suggesting biological sim-
ilarity of cytokine-induced depression to depression in general.
Even in healthy human volunteers, experimental exposure to an
inflammatory stimulus, such as vaccination, elicits depressed mood
(Eisenberger et al., 2009; Eisenberger et al., 2010; Harrison et al.,
2009; Strike et al., 2004; Wright et al., 2005). In experimental ani-
mals, injection of cytokines or lipopolysacharide (LPS, a bacterial
endotoxic cell wall component which induces cytokine release)
generally leads to depressive behavior in the forced swim and tail
suspension tests (Dunn and Swiergiel, 2005; Frenois et al., 2007;
Godbout et al., 2008), but see (Deak et al., 2005a,b).

The capacity of inflammatory mediators to induce depression
is further supported by the study of individual depressive symp-
toms. For example, inflammatory mediators induce anhedonia in
rodents as measured by decreased sucrose consumption or pref-
erence (De La Garza, 2005) (for review). However, sucrose related
measures can be confounded with anorexia, a symptom that is also
induced by inflammatory mediators. Therefore, intracranial self-
stimulation reward has been used as an alternative measure of
reward function. Using this procedure, several studies have veri-
fied that injection of cytokines or LPS generally results in decreased
reward reactivity (Anisman et al., 1996; Anisman et al., 1998; Barr
et al., 2003; Borowski et al., 1998; Miguelez et al., 2004), but see
(Kentner et al., 2007).

Sleep and appetite disturbances and fatigue, which character-
ize depression (American Psychiatric Association, 2000), are part

of a cytokine-triggered syndrome termed “sickness behavior” that
also occurs when an organism has an infection (Dantzer et al., 2008;
Konsman et al., 2002) (for reviews). It is now thought that the brain
recognizes cytokines as molecular broadcasts of injury or infection,
reorganizes the individual’s behavior in ways that promote recu-
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eration, and that sickness behavior reflects this reprioritization
Dantzer et al., 2008; Konsman et al., 2002). Specifically, cytokines
ave been found to mediate the changes in sleep produced by infec-
ion (Imeri and Opp, 2009) (for review). Evidence also supports a
ole for cytokines in mediating the appetite changes in depression
Andreasson et al., 2007) (for review).

Difficulty in concentrating or thinking clearly is a symptom
f depression (American Psychiatric Association, 2000) that may
lso be a consequence of inflammatory activation. Acute cogni-
ive impairments have been noted in many situations in which
he inflammatory system is activated (Dantzer et al., 2008) (for
eview), such as after cytokine injection (Rachal Pugh et al., 2001)
for review), peripheral infection, e.g. (Sparkman et al., 2006), tis-
ue injury, such as major surgery (Wan et al., 2007), and chronic
nflammatory conditions (Dimopoulos et al., 2006). More specifi-
ally, inflammatory molecules affect synaptic plasticity (Boulanger,
009) (for review).

Somatic complaints, including diarrhea (Sugahara et al., 2004),
ausea (Haug et al., 2002), aches (Lecrubier, 2006), and fever
Sugahara et al., 2004), are often associated with depression. These
ymptoms are also commonly experienced in flu-like illness and
re all thought to be induced by inflammatory mediators (Eccles,
005; Elmquist et al., 1997; Musch et al., 2002).

What is the route by which inflammatory mediators influence
ehavior? In the case of sickness, the symptoms are triggered
y cytokines originating in the periphery. Several pathways have
een discovered that transmit the inflammatory signal from the
eriphery to the brain, but engagement of these immune-to-brain
ommunication pathways ultimately leads to the production of
roinflammatory cytokines by microglial cells of the brain (Dantzer
t al., 2008) (for review). In the case of stress-induced depression,
more parsimonious mechanism for cytokine-induced behavioral

hange is possible. The inflammatory mediators could originate
rom microglia within the brain.

To recap this section, inflammatory mediators administered
o experimental animals induce depressive symptoms, including
nhedonia, sleep, appetite and activity level disturbances, cogni-
ive deficits, and other flu-like complaints. Furthermore, in humans,
dministration of inflammatory mediators can trigger the entire
ajor Depressive syndrome. These data have led recent reviews to

oncur that inflammatory mediators can play a role in the gener-
tion of depressive symptoms (Dantzer et al., 2008; Miller et al.,
009; Raison et al., 2006).

. Anti-inflammatory manipulations may have
ntidepressant effects

Evidence suggests that various anti-inflammatory manipula-
ions have antidepressant effects in experimental animals and in
umans. For example, genetic knockout of IL-6 in mice reduces
epressive-like behavior in the forced swim, tail suspension,

earned helplessness, and sucrose preference tests (Chourbaji et
l., 2006). Knockout of the IL-1 receptor blocked stress-induced
epressive-like behavior in the sucrose preference and social explo-
ation tests (Goshen et al., 2008). IL-1 receptor antagonist delivered
o the rodent brain blocks stress-induced depressive behaviors such
s escape deficits (Maier and Watkins, 1995), anhedonia (Goshen et
l., 2008; Koo and Duman, 2008), and reduction of social behavior
Arakawa et al., 2009; Goshen et al., 2008).

There is some evidence for an effect of nonsteroidal anti-

nflammatory drugs (NSAIDs) on mood (Brunello et al., 2006;
etterer et al., 1996; Onder et al., 2004). Positive effects of NSAIDs
n mood have been noted in humans during therapy for psoriasis
Krishnan R. et al., 2007; Tyring et al., 2006). A small study using
he anti-inflammatory agent acetylsalicylic acid found a shortened
iobehavioral Reviews 35 (2011) 742–764

onset of action of antidepressants as well as an augmentation of
their therapeutic effects in humans (Mendlewicz et al., 2006) and
in an animal model of depression (Brunello et al., 2006). Likewise,
adjunctive treatment with the anti-inflammatory cyclooxygenase-
2 inhibitor celecoxib showed superiority over antidepressant alone
in the treatment of major depression (Akhondzadeh et al., 2009)
and may produce a rapid-onset antidepressant effect in bipolar
patients (Nery et al., 2008). Muller and colleagues found that cele-
coxib has therapeutic effects in major depression in a double-blind,
randomized, placebo-controlled add-on pilot study to reboxe-
tine, a selective norepinephrine reuptake inhibitor (Muller et
al., 2006). An antidepressant effect of celecoxib has also been
reported in an animal model of depression (Guo et al., 2009).
Several anti-inflammatory manipulations, including injection of
the NSAID indomethacin, relieved depressive-like symptoms in
the rodent maternal separation model (Hennessy et al., 2009a)
(for review).

Minocycline, which has powerful anti-neuroinflammatory
properties (Tikka et al., 2001; Yrjanheikki et al., 1998; Yrjanheikki
et al., 1999), is reported to have an antidepressant effect in a human
case (Levine et al., 1996) and in animal models of antidepressant
activity (Molina-Hernandez et al., 2008a; Molina-Hernandez et al.,
2008b; Pae et al., 2008), but see (Deak et al., 2005a,b). Furthermore,
positive effects of the anti-cytokine antibody, infliximab on mood
in humans have been noted during treatment of Crohn’s disease
(Lichtenstein et al., 2002).

Systemically administered steroidal anti-inflammatory drugs,
such as prednisone, have also been noted to affect mood. For
example, in one series of human cases, prednisone augmentation
of antidepressant therapy showed promise in treatment-resistant
depression (Bouwer et al., 2000). Patients taking prednisone for var-
ious health concerns are counseled that they may have to endure
“inappropriate happiness” as a side effect (U.S. National Library
of Medicine and the National Institutes of Health, 2009). While it
appears that short-term treatment with high-dose prednisone often
leads to mania and hypomania, long-term treatment leads more
often to depression (Bolanos et al., 2004; Brown et al., 2002) (Brown
and Suppes, 1998; Brown and Chandler, 2001) (for reviews). In
accord with potential opposing effects of acute versus chronic
glucocorticoids on mood, together with evidence of chronic hyper-
cortisolemia in some depressed people (Gillespie and Nemeroff,
2005), both administration of steroidal drugs (Bouwer et al., 2000)
as well as blockade of endogenous cortisol secretion (Gallagher
et al., 2008) are being pursued as potential antidepressant
therapies.

In addition to these examples of anti-inflammatory treatments
that may have antidepressant effects, there is evidence that the
antidepressant treatment vagal nerve stimulation (VNS) may have
anti-neuroinflammatory activity. Despite some controversy, VNS
has received United States Food and Drug Administration (FDA)
approval for the treatment of refractory depression and a recent
review continues to supports its usefulness (Rush and Siefert,
2009) (for review). The mechanism of action of VNS is open to
speculation. Several hypotheses have been ventured, such as that
its effectiveness is due to the anticonvulsant effects of VNS or
due to neural connections between the vagus and brain regions
that regulate serotonin and norepinephrine (Groves and Brown,
2005; Nemeroff et al., 2006) (for reviews). An alternative possi-
bility is that VNS effectiveness in depression is attributable to its
effects on the inflammatory system (Corcoran et al., 2005; Das,
2007). VNS is effective against a wide variety of conditions with

inflammatory features, such as endotoxemia (Borovikova et al.,
2000), experimental sepsis, ischemia/reperfusion injury, hemor-
rhagic shock, arthritis, and other inflammatory syndromes (Tracey,
2007) (for review). In addition to these effects in the periphery,
VNS inhibits neuronal damage after cerebral ischemia (Masada
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t al., 1996) and reduces infarct size (Ay et al., 2009). Following
raumatic brain injury, VNS protects gamma aminobutyric acid
GABA) neurons (Neese et al., 2007), enhances motor and cogni-
ive recovery (Smith et al., 2005; Smith et al., 2006), and attenuates
ortical edema (Clough et al., 2007). These data suggest that VNS
ay have anti-inflammatory and neuroprotective effects in the

rain.
Thus, evidence indicates that anti-inflammatory manipulations

ave antidepressant actions in humans and animals. Therefore,
n addition to inflammatory mediators being sufficient to induce
epressive symptoms as reviewed in Section 5 above, the evidence
eviewed in this section suggests that inflammatory mediators are
ometimes necessary for depressive symptoms.

. A therapeutic mechanism of action for antidepressant
reatments may involve neuronal plasticity, neurogenesis,
nd neurotrophins

The degree of efficacy of antidepressant medications in the
reatment of depression has been a matter of debate. Two recent

eta-analyses (Fournier et al., 2010; Kirsch et al., 2008) that cir-
umvent problems of publication bias (Turner et al., 2008) concur
hat while the magnitude of benefit of antidepressant medication
ompared with placebo may be minimal or nonexistent, on aver-
ge, in patients with mild or moderate symptoms, for patients on
he upper end of very severe depression, the benefit of medications
ver placebo is statistically and clinically significant. The possibil-
ty remains that an effect of antidepressants on mild to moderate
epression was obscured by a substantial and growing placebo
ffect (Walsh et al., 2002), which may include a high sponta-
eous resolution rate (Andrews, 2001; Hrobjartsson and Gotzsche,
001). Nonetheless, the meta-analyses provide some rationale for
ontinuing research into the mechanism of action of current antide-
ressant medications.

Antidepressant treatments influence plasticity at the elec-
rophysiological and structural levels. Chronic administration
f the selective serotonin reuptake inhibitor and antidepres-
ant fluoxetine restores ocular dominance plasticity in the adult
isual cortex as assessed electrophysiologically and behaviorally
Maya Vetencourt et al., 2008). Furthermore, fluoxetine protected
ippocampus synaptic plasticity during conditioned fear stress
Spennato et al., 2008). In addition, fluoxetine and the tricyclic
ntidepressant imipramine induce structural changes in the hip-
ocampus (Bessa et al., 2009; Chen et al., 2008a; Hajszan et al.,
005), the somatosensory cortex (Guirado et al., 2009), and the
refrontal cortex (PFC) (Bessa et al., 2009).

Increases in neurogenesis result from treatment with all major
lasses of antidepressant drugs, e.g. (Pechnick et al., 2008; Wang
t al., 2008; Yanpallewar et al., 2010; Zhao et al., 2008) (for
eview), as well as with other antidepressant interventions, such
s exercise, e.g. (Stranahan et al., 2006; van Praag et al., 2005) and
lectroconvulsive therapy, e.g. (Perera et al., 2007; Segi-Nishida
t al., 2008). Antidepressant treatment-induced neurogenesis has
een reported in humans (Boldrini et al., 2009), non-human pri-
ates (Perera et al., 2007), tree shrews (Czeh et al., 2001), and

odents (Zhao et al., 2008) (for review), albeit not in all strains.
ne survey found that fluoxetine increases hippocampal cell pro-

iferation only in those mouse strains that also show a positive
ehavioral response to treatment (Miller et al., 2008). In one
train of rat, however, the tricyclic antidepressant nortriptyline

nduced an antidepressant behavioral change in the forced swim
est while no increase in neurogenesis was detected (Petersen et
l., 2009). In that strain (the genetic depression model, Flinders
ensitive Line) neurogenesis was already elevated compared to the
linders Resistant Line. Thus in general, but not without excep-
iobehavioral Reviews 35 (2011) 742–764 747

tion, antidepressant-induced behavioral change is accompanied by
increased neurogenesis.

Importantly, evidence indicates that in some instances, the
behavioral effects of antidepressant drugs depend on neurogene-
sis (Zhao et al., 2008) (for review). Antidepressants fail to elicit
behavioral effects when neurogenesis is blocked by localized x-
irradiation (Airan et al., 2007; David et al., 2009; Santarelli et al.,
2003; Surget et al., 2008; Wang et al., 2008), by genetic manipu-
lation of receptor tyrosine kinase trkB on neural progenitor cells
(Li et al., 2008), or by pharmacological inhibition of vascular
endothelial growth factor (VEGF) receptor Flk-1 (Warner-Schmidt
and Duman, 2007). The dependence of antidepressant-induced
behavioral change on neurogenesis has been found in various
strains of mice (David et al., 2009; Li et al., 2008; Santarelli et
al., 2003; Surget et al., 2008; Wang et al., 2008) and rats (Airan
et al., 2007; Warner-Schmidt and Duman, 2007). Neurogenesis-
dependence has been demonstrated for fluoxetine (Airan et al.,
2007; David et al., 2009; Li et al., 2008; Santarelli et al., 2003;
Surget et al., 2008; Wang et al., 2008), imipramine (Li et al., 2008;
Santarelli et al., 2003; Surget et al., 2008), and the tricyclic antide-
pressant desipramine (Warner-Schmidt and Duman, 2007). This
neurogenesis-dependence has been seen for antidepressant effects
on a variety of behavioral endpoints, such as grooming (Surget et
al., 2008), anhedonia (Warner-Schmidt and Duman, 2007), immo-
bility in the forced swim test (Airan et al., 2007; Warner-Schmidt
and Duman, 2007) and tail suspension test (Li et al., 2008), novelty-
suppressed feeding (David et al., 2009; Li et al., 2008; Santarelli et
al., 2003; Surget et al., 2008; Wang et al., 2008; Warner-Schmidt
and Duman, 2007), and learned helplessness (Warner-Schmidt and
Duman, 2007). It should be noted, however, that a minority of stud-
ies did not find any neurogenesis-dependence to antidepressant
effects on behavior (Bessa et al., 2009; Holick et al., 2008), and
the dependence appears to vary in a behavioral endpoint-specific
(David et al., 2009) and antidepressant-specific (Surget et al., 2008)
manner.

A similar set of findings has been obtained for BDNF. Chronic
exposure to a variety of antidepressant treatments increases BDNF
expression in various brain regions, e.g. (Conti et al., 2002; Maya
Vetencourt et al., 2008; Nibuya et al., 1995; Tsankova et al., 2006;
Yanpallewar et al., 2010) and even in the blood circulation of
antidepressant-treated human subjects (Brunoni et al., 2008; Sen et
al., 2008) (for meta-analyses). Infusions of BDNF into the midbrain
(Siuciak et al., 1997), hippocampus (Shirayama et al., 2002; Sirianni
et al., 2010), and ventricle (Hoshaw et al., 2005) elicit antidepres-
sant effects in the forced swim test and learned helpless procedure,
although opposite effects have been reported for infusion of BDNF
into the ventral tegmental area (Eisch et al., 2003).

Studies have shown that the effects of antidepressant drugs on
behavior depend on BDNF or its receptor (Chen Z.Y. et al., 2006;
Ibarguen-Vargas et al., 2009; Rantamaki et al., 2007; Saarelainen
et al., 2003) and have localized this dependence to the forebrain
(Monteggia et al., 2004; Monteggia et al., 2007), to the dentate gyrus
within the forebrain (Adachi et al., 2008), and to neural progenitor
cells within the dentate gyrus (Li et al., 2008). This set of find-
ings intersects with the data showing neurogenesis-dependence
of antidepressant drug effects on behavior, as well as with data
showing that BDNF generally increases neurogenesis (Henry et
al., 2007; Lee et al., 2002; Mohapel et al., 2005; Pencea et al.,
2001; Rasika et al., 1999; Rossi et al., 2006; Schabitz et al., 2007;
Scharfman et al., 2005) but see (Galvao et al., 2008; Larsson et al.,
2002).
In addition to these effects on plasticity, neurogenesis, and
BDNF, antidepressants exert anti-inflammatory (Abdel-Salam et al.,
2003; Abdel-Salam et al., 2004; Brustolim et al., 2006; Diamond et
al., 2006; Kubera et al., 2001; Maes et al., 1999; Roumestan et al.,
2007) and anti-neuroinflammatory effects (Hashioka et al., 2007;
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It may be easier to predict how a response can malfunction, how-
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wang et al., 2008; Lim et al., 2009; O’Sullivan et al., 2009; Tai et al.,
006; Vollmar et al., 2008) and provide neuroprotection (Jin et al.,
009; Lim et al., 2009; Peng et al., 2008) (Lauterbach et al., 2010;
ostert et al., 2008) (for reviews).
Overall, recent literature reviews concur that increases in

eurotrophins and neurogenesis are required for at least some
ehavioral effects of some antidepressants in some strains (Eisch
t al., 2008; Krishnan and Nestler, 2008; Martinowich et al.,
007; Sahay and Hen, 2007; Zhao et al., 2008) (for reviews). In
ddition to the trophic effects, antidepressants appear to have anti-
euroinflammatory and neuroprotective effects.

. Several theoretical models for the pathophysiology of
epression have been built with these findings

The above sections review an evidence base of moderate
trength for each of the following six conclusions. In humans,
epression is often triggered by a stressful life event. Stress induces
icrodamage and remodeling in the brain. Stress induces signs of

euroinflammatory activation. Inflammatory mediators can trig-
er many depressive symptoms. Anti-inflammatory treatments
ay have antidepressant effects. Finally, antidepressants affect

euronal plasticity and, under some circumstances, the effects
f antidepressants on behavior are dependent on neurogenesis
nd neurotrophins. Several authors have used the above find-
ngs to develop theoretical models for the pathophysiology of
epression.

In the “neurogenesis hypothesis of depression”, (i) the decrease
n neurogenesis seen with stress, (ii) coupled with the loss of
ippocampal volume seen in depressed patients and (iii) the

nvolvement of neurogenesis in the effects of antidepressant drugs
n behavior supported the following hypothesis: stress-induced
eductions in neurogenesis might be an important causal factor
n precipitating depressive episodes (Jacobs et al., 2000; Jacobs,
002). However, in subsequent studies, there was no indication that
lockade of neurogenesis by brain irradiation leads to a depressive
henotype, at least in the forced swim test (Airan et al., 2007; Holick
t al., 2008). Likewise, eliminating neurogenesis did not increase
ensitivity to the depressive effect of unpredictable chronic mild
tress measured on several behavioral tests (Surget et al., 2008).
n addition, there are a number of indirect arguments against the
ossibility that impaired neurogenesis could cause depressive phe-
otypes (Decarolis and Eisch, 2010; Sahay and Hen, 2007; Sapolsky,
004) (for reviews). Taken together, recent reviews agree that
lthough the findings are firm that stress leads to decreased neuro-
enesis and that behavioral effects of antidepressants often require
eurogenesis, decreased neurogenesis is not likely to be a causal

actor in precipitating depression (Krishnan and Nestler, 2008;
ahay and Hen, 2007).

The BDNF saga is similar to that of neurogenesis. The original
ersion of the “neurotrophin hypothesis of depression” proposed
hat decreased expression of BDNF contributes to depression
Duman and Monteggia, 2006). However, in general, little effect
f genetically reduced BDNF signaling was seen on tests reflect-
ng depressive-like behavior (Adachi et al., 2008; Chourbaji et al.,
004; Li et al., 2008; MacQueen et al., 2001; Monteggia et al., 2004;
aarelainen et al., 2003; Zorner et al., 2003) but see (Monteggia et
l., 2007). Data on whether reductions in BDNF increase sensitivity
o stress-induced depressive behavior are mixed, e.g. (Advani et al.,
009; Ibarguen-Vargas et al., 2009). Overall, recent reviews concur

hat data do not support the hypothesis that reduced BDNF signal-
ng can cause depressive-like behavior, despite firm findings that
DNF is regulated by stress and that BDNF is required for antide-
ressant effects (Krishnan and Nestler, 2008; Martinowich et al.,
007).
iobehavioral Reviews 35 (2011) 742–764

The “cellular plasticity hypothesis of depression” (Kempermann
and Kronenberg, 2003) incorporates features of both the neu-
rotrophin and neurogenesis hypotheses to overcome the lim-
itations of either hypothesis alone, but it has not explicitly
incorporated the data implicating the inflammatory system in
depression.

Likewise, other hypotheses contain valuable additional insights
but are still incomplete. For example, the “hygiene hypothesis”,
and more accurately the “old friends hypothesis”, argues that an
immunoregulatory failure precipitated by the unprecedentedly
hygienic environment of developed nations is responsible for the
rising incidence of chronic inflammatory disorders (Guarner et al.,
2006; Rook, 2007, 2009). Invoking data on the involvement of
the inflammatory system in depression, Rook (Rook and Lowry,
2008; Rook, 2009) has extended this hypothesis to explain the ris-
ing incidence of depression. This hypothesis persuasively argues
that this immunoregulatory failure could increase vulnerability
to stress-related depression, but the hypothesis has not yet been
further elaborated to incorporate data on the involvement of neu-
rotrophins, neurogenesis and plasticity in depression.

In the “macrophage hypothesis of depression”, Leonard
(Leonard, 2001) argues that stress-induced hypersecretion of glu-
cocorticoids results in a malfunctioning of macrophages and
dysregulated release of cytokines which in turn increases gluco-
corticoids further and leads to dysregulation of noradrenergic and
serotonergic neurotransmission and sickness behavior. According
to this hypothesis, antidepressants have anti-inflammatory effects
on macrophages which lead to a normalization of glucocorticoid
release and downstream effects on central neurotransmission. This
is an older hypothesis that does not, as is, incorporate the recent
data on neurogenesis, neurotrophin, or stress-induced structural
changes.

In an elaboration of the “Mayberg model” by Stone and col-
leagues (Stone et al., 2008), stressful experiences lead to prolonged
hypoactivity in the brain’s reward circuitry, which in turn reduces
neurotrophic and neurogenic support in these regions, leading
to disuse atrophy. Simultaneously, the stressful experience leads
to overstimulation of the stress circuitry. Stress-sensitizing and
reward-inhibiting actions of cytokines contribute to depression.
Antidepressants lead to a normalization of these effects and grad-
ually overcome the atrophy.

In the inflammation and neurodegenerative hypothesis of
depression (Maes et al., 2009), an inflammatory process triggered
by stress enhances neurodegeneration and reduces neurogenesis.

The diversity of these theoretical models reviewed in this sec-
tion highlights the fact that the phenomena of stress, microdamage
in the brain, cytokines, reduced neurogenesis, neuroinflammation,
and neurotrophic factors are reciprocally interconnected in many
different ways. Many of these theoretical models are not mutually
exclusive and very little data exist to distinguish one from another.
In fact, these models could conceivably all represent individual
facets of a complex of interconnected pathologies that stress can
trigger in the brain.

9. These findings can also be assembled into a theoretical
scenario for a healthy response to stressful life events

In all of the theoretical models described in Section 8, it is
assumed that depression is a result of some kind of malfunction.
ever, after first comprehending the cascade of events that comprise
its proper function. Therefore, we now use the above findings to
address what the healthy response to stressful life events might be
and use that as a framework to clarify and organize ideas of how
dysfunction occurs.
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.1. A healthy response to tissue damage includes wound repair
uring an episode of recuperative behavior

“The complex of melancholia behaves like an open wound . . .”
(Freud, 1917/1957).

To build a theoretical model for a healthy response to a stress-
ul event we will start with the stress-induced microdamage in the
rain and ask what a typical response to this damage might be
Fig. 1). Generally, when tissue in the body is damaged, a three-
tage wound repair process is triggered. An initial phase of wound
ealing is the demolition phase, in which devitalized tissue is
emoved and proinflammatory cytokines are released. With the
ound cleared of debris, the release of growth factors from var-

ous sources triggers a second, regenerative phase of wound repair
n which new tissue is formed (Gurtner et al., 2008) (for review).
his process involves stem cells which are resident in virtually all
issue types. These cells provide daughter cells that differentiate
nd directly participate in the structural repair of the wound, and
hey also supply secreted factors that downregulate the inflamma-
ory response (Stappenbeck and Miyoshi, 2009; Uccelli et al., 2007)
for reviews). Finally, there is a third refinement phase that can take

onths to years (Gurtner et al., 2008) (for review).
A similar process takes place after brain injury (Blizzard et al.,

010; Wieloch and Nikolich, 2006) (for review). After stroke, for
xample, a neuroinflammatory response is triggered involving acti-
ation of microglia, the resident inflammatory cells in the brain

Kreutzberg, 1996) (for review). After activation, microglia migrate
o the site of injury, release proinflammatory cytokines, and phago-
ytose cellular debris (Kreutzberg, 1996) (for review). In the region
f reversible stroke damage called the penumbra, those neurons
hat do not die lose dendritic spines (Murphy and Corbett, 2009)

ig. 1. Theoretical model for depression. In this model, a major adverse stressful life eve
endritic length, spines, and branching in the hippocampus and prefrontal cortex (Section
eurogenesis and neurotrophin activity (Section 3). The activated neuroinflammatory syst
ddition, these neuroinflammatory mediators hypersensitize psychological pain circuits b
ain circuits in the context of bodily injury (Section 9.2). If the neuroinflammatory respons
ther hand, a healthy inflammatory response will spontaneously resolve and transition to
euroinflammatory activity releases inhibition of neurotrophin activity and neurogenesi
elease of pro-inflammatory mediators decrease, allowing depressive symptoms to remit
o an increase in neurogenesis and neurotrophin expression (Section 7), these treatments
iobehavioral Reviews 35 (2011) 742–764 749

(for review), as has also been seen after stress (Chen et al., 2008c;
Goldwater et al., 2009; Hajszan et al., 2009; Radley et al., 2006). At
some point, microglia begin to release growth factors, such as BDNF
(Madinier et al., 2009; Rickhag et al., 2007; Sato et al., 2009) which
can increase neurite outgrowth and sprouting in the injured brain
(Batchelor et al., 1999, 2000, 2008; Chen et al., 2005; Mamounas et
al., 2000). In general, functional recovery from stroke is enhanced
by (Muller et al., 2008; Schabitz et al., 2004; Schabitz et al., 2007)
and is in fact dependent on (Chen et al., 2005; Ploughman et al.,
2009) this BDNF signaling, but see (Nygren et al., 2006). By a few
weeks after the stroke, dendritic spine turnover and synaptogenesis
are apparent, and new functional connections proliferate (Murphy
and Corbett, 2009) (for review). These changes can occur in the per-
infarct, as well as connected areas (Carmichael, 2006) (for review).

Although neuroinflammation transiently inhibits neurogenesis
(Ekdahl et al., 2003; Monje et al., 2003) (Zhao et al., 2008) (for
review), injury eventually increases neurogenesis, e.g. (Arvidsson
et al., 2002; Ohira et al., 2009; Parent et al., 2002; Yu et al., 2008),
presumably in the later regenerative phase of brain injury repair.
Although neurogenesis only occurs in a small number of brain sites,
in the case of stroke the neural progenitors are able to migrate great
distances to the site of neuroinflammation, a process that is reg-
ulated by chemokines (Belmadani et al., 2006). These newborn
neurons have been demonstrated to take up residence at the site of
injury and integrate synaptically (Arvidsson et al., 2002; Yamashita
et al., 2006; Zhang et al., 2007) (Massouh and Saghatelyan, 2010)

(for review). In addition to this cell replacement role in repair of the
injury, neural stem cells also protect the CNS from inflammatory
damage in other ways (Martino and Pluchino, 2006) (for review),
including immunomodulation (Pluchino et al., 2005, 2009). These
effects presumably help resolve the neuroinflammatory phase and

nt (reviewed in Section 2) leads to neuronal microdamage, such as a reduction of
3). Such microdamage elicits a neuroinflammatory response (Section 4) that inhibits
em releases inflammatory mediators which elicit sickness symptoms (Section 5). In
y a similar mechanism to that by which they are known to hypersensitize physical
e fails to resolve, then the depressive episode becomes chronic (Section 10). On the

the proliferative phase of injury repair (Section 9.1). In this transition, the decreased
s, and these trophic processes increase. As the injury repair nears completion, the
. Because antidepressant treatments have anti-neuroinflammatory effects and lead
promote resolution of the injury repair response.
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romote the growth phase in the course of brain injury repair.
ome months after the stroke, refinement of synaptic connections
ccurs (Murphy and Corbett, 2009). The end result is that, albeit
o a limited extent, neurons have been rewired, function has been
ecovered, and the brain has self-repaired (Murphy and Corbett,
009).

In general, wound repair responses are graded on a continuum
rom para-inflammation to full-blown inflammation. The body
eacts to cellular stress, malfunction, or microdamage with para-
nflammation to help the tissue restore functionality (Medzhitov,
008) (for review). Mild cases can be handled by tissue-resident
acrophages, while more severe damage requires recruitment of

eukocytes and plasma proteins from the circulation as occurs in
ull-blown inflammation. The degree of activation will determine
hether the inflammatory response is detectable using common

iomarkers (Medzhitov, 2008).
Another component of the healthy response to injury is behav-

oral change that supports recuperation. For example, an injured
rimate might reduce foraging, rest in a safe place and tend its
ounds (Dittus and Ratnayeke, 1989). As discussed in Section 5, a

imilar behavioral syndrome is triggered by cytokines during infec-
ion and is typically called “sickness behavior” (Dantzer and Kelley,
007) (for review) but could equally well be termed “convalescent
ehavior”.

Taken together, the healthy response to brain injury likely
nvolves many of the phenomena that have emerged as important
n depression, stress, and antidepressant response. These phe-
omena include neuroinflammatory activation, cytokines, sickness
ehavior, BDNF, neurogenesis, and plasticity. Therefore, a the-
retical model for the healthy response to stress-induced mild
rain injury is as follows: An initial neuroinflammatory phase of
rain injury repair inhibits growth while clearing the lesion of cel-

ular debris. During this initial phase, released proinflammatory
ytokines induce a motivational reprioritization, sickness behav-
or, that promotes convalescence. As the repair process transitions
o the regenerative phase, trophic influences and neurogenesis gain
ominance and inhibit proinflammatory processes. Sickness symp-
oms ultimately resolve and a final refinement phase of the repair
esponse is carried out (Fig. 1).

.2. Response to tissue damage includes inflammatory pain and
entral sensitization of pain pathways: candidate mechanisms for
sychological pain during acute depressive episodes

“. . .the gray drizzle of horror induced by depression takes on the
quality of physical pain.” (Styron, 1990).

Postulating an injury repair process for stress-induced micro-
amage suggests possible molecular mechanisms for the psycho-

ogical pain in depression. Inflammatory pain is produced during
he wound repair process by a large number of mediators in the
inflammatory soup” which act through their respective receptors
nd signaling cascades to phosphorylate TRP (transient receptor
otential) and voltage-gated sodium channels (Hucho and Levine,
007). This modification alters the thresholds and kinetics of
he channels, thereby increasing the sensitivity of the nocicep-
ive neurons. For example, one of these pathways to hyperalgesia
hypersensitivity to pain) is demonstrated by the familiar anal-
esic effectiveness of NSAIDs. NSAIDs target cyclooxygenase, the
nzyme that synthesizes prostaglandins. Prostaglandin E2 (PGE2)
s released from activated macrophages after an injury. PGE2 then

nteracts with its G-protein-coupled receptor on the surface of
ain fibers. The resulting stimulation of cAMP (cyclic adenosine
onophosphate) production leads to activation of protein kinase
and phosphorylation of sodium channel Nav1.8, thereby reduc-

ng the activation threshold and increasing responsiveness of the
iobehavioral Reviews 35 (2011) 742–764

nociceptors (Hucho and Levine, 2007). In addition to cyclooxy-
genase inhibition, selective pharmacological blockade of Nav1.8
sodium channels produces antinociception in animal models of
neuropathic and inflammatory pain (Jarvis et al., 2007). This type of
inflammatory pain lasts the duration of the wound repair process
and resolves upon successful healing.

The above mechanisms describe inflammatory pain as it
occurs on peripheral neurons at the site of injury. After such a
peripheral injury, a similar process can also occur on neurons
within the CNS, further augmenting the hypersensitivity to pain.
Peripheral injury stimulates glia in the CNS to release inflam-
matory mediators, such as tumor necrosis factor (TNF)-�, IL-6,
IL-1�, prostaglandin, bradykinin, and monocyte chemoattractant
protein-1 which increase the sensitivity of central pain pathways
(McMahon and Malcangio, 2009) (for review). Thus, a neuroinflam-
matory mechanism contributes to the sensitization of these central
pathways (Gao et al., 2009; Hains and Waxman, 2006; Harvey et
al., 2004; Kawasaki et al., 2008; Kohno et al., 2008; Samad et al.,
2001; Watkins et al., 2001). This phenomenon of enhanced sen-
sitivity to pain that is mediated by changes in the central, rather
than peripheral, nervous system is called “central sensitization” of
pain pathways. Note that “central sensitization” of pain pathways
should not be confused with sensitization to the effects of drugs of
abuse or of psychiatric medication.

Might these mechanisms of central sensitization to inflamma-
tory pain also apply to the psychological pain of depression? A
molecular overlap is supported by the finding that IL-1 signaling
is increased in the brain with stress (Barnum et al., 2008; Blandino
et al., 2006, 2009; Deak et al., 2005a,b; Goshen et al., 2008; Grippo
et al., 2005; Johnson et al., 2005; Kwon et al., 2008; Murray and
Lynch, 1998; Nguyen et al., 1998), is necessary in the brain for
stress-induced depressive symptoms (Arakawa et al., 2009; Goshen
et al., 2008; Koo and Duman, 2008; Maier and Watkins, 1995), and
is known under other circumstances to rapidly and directly induce
pain hypersensitivity in the periphery (Binshtok et al., 2008) and
to participate in central sensitization to pain (Samad et al., 2001)
(Kawasaki et al., 2008) (for review).

In further support of the possibility of shared mechanisms
between physical and psychological pain, it has been proposed
on theoretical grounds that psychological pain serves a related
function to physical pain in motivating avoidance of certain
types of evolutionary fitness-detracting threat (Thornhill and
Thornhill, 1989). Empirical evidence bolsters the theoretical sim-
ilarity between physical and psychological pain. For example,
functional magnetic resonance imaging (fMRI) studies suggests
neuroanatomical overlap in the processing of physical pain and
psychological pain, such as from social rejection (Eisenberger
et al., 2003), envy (Takahashi et al., 2009), dread (Berns et al.,
2006), empathy for someone else’s pain (Singer et al., 2004),
and the placebo-responsive component of physical pain (Wager
et al., 2004). Behavioral, cognitive, linguistic, and psychologi-
cal evidence also suggests that physical and social pain operate
via common mechanisms (Eisenberger and Lieberman, 2004;
MacDonald and Leary, 2005) (for reviews) (Panksepp, 2003) (for
comment).

In concluding this section, we propose that, in the context of
stress-induced microdamage in the brain, similar molecular and
cellular mechanisms that have been elucidated for central sen-
sitization to inflammatory pain may contribute to psychological
pain in depression. Thus, in accord with bodily pain, the terms
“psychache” (Lester, 2000), “psychological hyperalgesia”, “psycho-

logical allodynia” (allodynia is pain triggered by stimuli that are not
normally painful), and even aching emotional numbness may apply
to different characteristics of psychological pain in depression. In
addition to central sensitization of psychological pain pathways
in depression, we propose that central sensitization also occurs in
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hysical pain pathways, giving rise to the physical pain complaints
hat are common in depression (Lecrubier, 2006).

0. Both pain and inflammation are vulnerable to
hronicity: candidate mechanisms for dysfunctional
epression

“Productive and unproductive depression (reflects) the success or
failure of a vital process” (Gut, 1989).

Chronic inflammation is a common mechanism of disease, with
he clinical presentation of the disease varying widely depending
n which tissue is involved. For example, chronic inflammatory
ctivity can affect lungs, heart, scalp, skin, gums, joints, arter-
es, bones, muscle, tendon, intestines, as well as CNS sites, such
s the spinal cord, caudate putamen, nigrostriatal dopaminer-
ic pathway, and cortex. Chronic inflammatory activity at these
ites has been suggested to contribute, respectively, to asthma,
yocarditis, alopecia, psoriasis, gingivitis, arthritis, atherosclero-

is, osteoporosis, myositis, tendonitis, inflammatory bowel disease,
s well as a Amyotrophic lateral sclerosis, Huntington’s, Parkinson’s
nd Alzheimer’s disease (Frank-Cannon et al., 2009). Almost any tis-
ue is at risk for becoming chronically inflamed, with inflammation
t each site giving rise to a unique symptomatology.

The pathological potential for inflammation is unprecedented
s a physiological process (Medzhitov, 2008) (for review). Even
n a well controlled inflammatory response, collateral damage
o surrounding healthy tissue is an unavoidable consequence
Medzhitov, 2008) (for review). Thus, inflammation is both a cause
nd consequence of tissue damage. When the work of the acute
nflammatory response is accomplished, a successful inflammatory
eaction will swiftly resolve, thus limiting collateral damage. Res-
lution is not merely a passive termination of inflammation, but
ather an active, tightly coordinated biochemical process involving
ro-resolution mediators, some of which are biosynthesized from
mega-3 fatty acids (Serhan et al., 2008) (for review).

Chronic inflammation arises under certain circumstances.
hronic persistence of an infectious, injurious, insoluble, or anti-
enic agent can drive chronic inflammation. It has also been
uggested that genetic or lifestyle-mediated interference with reso-
ution (Lawrence and Gilroy, 2007) or tolerance (Rook, 2009) might
ontribute to chronic inflammatory disorders.

Just as inflammatory responses are prone to becoming chronic,
o too are pain responses. Chronic pain develops in a substantial
raction of people who experience common surgeries (10–50%)
Kehlet et al., 2006) (for review), serious bodily injury (44%)
Jenewein et al., 2009), and even mild traumatic brain injury
75%) (Nampiaparampil, 2008) (for review). In addition, sometimes
hronic pain develops without any obvious precipitant (Burton,
003).

Several mechanisms have been elucidated for the transition
rom acute to chronic or exaggerated pain. If an injury involves
amage to the nervous system, then the response leading to inflam-
atory central sensitization is much exaggerated and creates pain

hat can persist well beyond the completion of the wound healing
rocess (Latremoliere and Woolf, 2009) (for review). In addition to
his neuropathic central sensitization, an interrelated phenomenon
n chronic pain is hyperalgesic priming. In hyperalgesic priming, an
cute inflammatory insult can prime nociceptors (pain neurons)
o develop an exaggerated hypersensitivity to pain upon future
nflammatory insult (Reichling and Levine, 2009) (for review).
We suggest that these mechanisms for chronic inflamma-
ion and exaggerated pain may also occur during the depressive
esponse, rendering the response pathological (Fig. 1.). First regard-
ng chronic inflammation, in our theoretical model, the stressful life
vent is injurious to the brain. If a chronic stressor is unavoidable,
iobehavioral Reviews 35 (2011) 742–764 751

unpredictable, or uncontrollable, we argue it would be persis-
tently injurious to the brain, driving chronic neuroinflammation
and chronic depression. An alternative route to chronic depression
might be via immunoregulatory failure precipitated by the high
contemporary level of hygiene as proposed by Rook and Lowry
(Rook and Lowry, 2008). In our theoretical model, however, we
suggest that the CNS is the site of the chronic inflammation giving
rise to chronic depression, whereas the Rook and Lowry hypothe-
sis assumes a diffuse peripheral origin for the chronic inflammation
that promotes depression.

Regarding chronic pain mechanisms, since injury to nervous
tissue leads to exaggerated central sensitization of physical pain
circuits, we argue that the stress-induced injury to nervous tissue
has a high risk of leading to neuropathic central sensitization of psy-
chological pain circuits and thus to chronic depression. In addition,
although the mechanism of hyperalgesic priming was originally
described in peripheral nociceptors, it could, theoretically, apply to
central “psychological nociceptors” as well.

In sum, if the proper functioning of the response to stress-
induced microdamage involves pain mechanisms and inflamma-
tory activity, then we propose that dysfunction of this response
likely occurs via the common complications of pain and inflam-
mation, such as conversion to exaggerated and chronic states.

11. Implications, predictions and future directions

Because our model proposes molecular similarity between the
mechanisms of physical and psychological pain (Sections 9.2 and
10 above), it offers a molecular basis to explain suggestive data
that analgesics may be effective in depression. For example, opi-
ates were used routinely to treat depression until the 1950s when
tricyclic antidepressants were introduced (Ban, 2001) (for review).
Several small recent studies continue to support the role of opiates
as effective, durable, and rapid therapeutic agents in the treatment
of depression (Tenore, 2008) (for review). Additional evidence that
analgesics may have antidepressant actions comes from subanes-
thetic doses of ketamine which act as an analgesic (Annetta et al.,
2005). Robust and rapid antidepressant effects result from a single
intravenous dose of ketamine in treatment-resistant major depres-
sion (Skolnick et al., 2009) (for review).

Depression is often grouped with a large family of other dis-
orders that includes chronic fatigue syndrome, fibromyalgia, and
irritable bowel syndrome. This grouping is based on a number of
different criteria, including frequent comorbidity with each other
(Whitehead et al., 2002), shared response to antidepressant treat-
ments (Hudson and Pope, 1990), common risk factors such as
childhood maltreatment (Tietjen et al., 2009), coaggregation in
families (Hudson et al., 2003), evidence of stress intolerance (Van
Houdenhove and Luyten, 2009), and the absence of ongoing periph-
eral organ pathology (Burton, 2003). It is thought that these shared
features reflect a common, cryptic biopsychosocial etiology, the
nature of which has not yet been firmly established. It has also been
suggested that this family of disorders may be united by the phe-
nomenon of hyperalgesic priming (Reichling and Levine, 2009) or
central sensitization (Yunus, 2007). Because hyperalgesic priming
and central sensitization to physical and psychological pain con-
tribute to depression in our theoretical model, it offers a biological
scenario explaining why depression seems to be part of this family
of syndromes.

Because our theoretical model proposes that stress-induced

microdamage in the brain triggers a cascade of neurobiologi-
cal events leading to the depressive episode, this might explain
data indicating that brain injury induced by means other than
stress also precipitates depression at a high rate. For example,
a few preliminary studies in experimental animals have noted
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hat depressive-like behaviors follow traumatic or ischemic brain
njury, although the studies are not well controlled for confounds
Kato et al., 2000; Milman et al., 2005; Pandey et al., 2009; Shapira
t al., 2007) but see (Jones et al., 2008). In humans, depression is
common sequelae of traumatic brain injury (Bombardier et al.,

010), even when mild (Ryan and Warden, 2003). In fact, the symp-
om overlap between depression and the common “postconcussion
yndrome” is substantial (Bryant, 2008; Hoge et al., 2008). Further-
ore, there is evidence that late-life depression can be precipitated

y accumulated small silent cerebral infarctions that appear as
hite matter hyperintensities on MRI scans, a phenomenon termed

vascular depression” (Alexopoulos et al., 1997; Sheline et al., 2010;
homas et al., 2002) (Santos et al., 2009) (for review). Moreover, a
hird of survivors of overt stroke develop post-stroke depression
Lenzi et al., 2008) (for review).

Our theoretical model encourages testing of emerging drugs
hat target brain injury, neuroinflammation, and pain for antide-
ressant effects. For example, an acute depressive episode brought
n by an acute stressful life event may respond to treatments that
arget traumatic or ischemic brain injury, e.g. (Xiong et al., 2009),
cute inflammation, inflammatory pain, or acute central sensitiza-
ion to pain. Our theoretical model argues that chronic depression
esulting from exposure to chronic unavoidable, unpredictable, or
ncontrollable stressors, such as in the chronic mild stress animal
aradigm (Willner, 2005), may respond to agents that are effec-
ive in chronic neuroinflammation or neurodegenerative disease.
ccurrences of depression in which a depressive reaction to a stres-

or is worsened by a prior psychologically traumatic event, such as
fter repeated maternal separation of guinea pig pups (Hennessy
t al., 2009b), may respond to emerging neuropathic pain treat-
ents (Dray, 2008) and inhibitors of protein kinase C epsilon, which

lock hyperalgesic priming (Reichling and Levine, 2009). Finally,
ince our model argues that inflammatory activity within the brain
ften contributes to depressive symptoms, the extent to which anti-
nflammatory and pro-resolution treatments pass the blood-brain
arrier may influence their antidepressant efficacy. Thus, while this
heoretical model proposes a common core cascade in depression
nvolving brain injury, neuroinflammation, and psychological pain,

ithin this core, different therapeutic opportunities exist in dif-
erent types of depression and are highlighted by different animal
aradigms.

1.1. What are the mechanisms by which stress produces
euronal microdamage?

In our theoretical model, it is assumed that acute stress induces
euronal microdamage by some unknown mechanism and that
his microdamage in turn induces neuroinflammatory activity.
his assumption requires experimental confirmation because any
bserved differences between the healthy and affected individuals
ay always represent either the cause or the consequence of the

isease. Neuroinflammation may be the brain’s attempt to repair
he stress-induced microdamage as we have hypothesized, but it is
lso possible that the observed neuroinflammation may instead be
he cause the neuronal microdamage in the first.

In resolving this classic conundrum, it may be important to
onsider data from acute and chronic paradigms separately. It
s possible that some unknown mechanism initially induces the

icrodamage in acute depression, but in cases that progress to
hronic depression, the initial neuronal microdamage is main-
ained by a self-perpetuating cycle of inflammation-induced

issue destruction that results when the acute neuroinflammatory
esponse fails to resolve for any reason.

Studies using chronic paradigms suggest the involvement of
hronic glucocorticoids. Chronic glucocorticoid exposure produces
loss of apical dendritic length and branching in the hippocampus
iobehavioral Reviews 35 (2011) 742–764

that mimics chronic stress-induced microdamage, e.g. (Conrad et
al., 2007). Chronic stress-induced microdamage was prevented by
cyanoketone, a steroid synthesis blocker (Magarinos and McEwen,
1995a). Further dissection of the pathway suggests a dependence
on serotonin and glutamate, as the microdamage that follows
chronic glucocorticoid or chronic stress exposure is reduced by
tianeptine, an enhancer of serotonin reuptake (Conrad et al., 1999;
Magarinos et al., 1999; McEwen et al., 1997; Watanabe et al.,
1992c), and by phenytoin, an inhibitor of excitatory amino acid
release and action (Magarinos and McEwen, 1995a; McEwen et al.,
1997; Watanabe et al., 1992a). There are also scattered reports of
chronic stress-induced microdamage being reduced by a variety of
other manipulations, such as by protein kinase C inhibition (Hains
et al., 2009), by enhancement of GABAergic tone (Magarinos et al.,
1999), by antioxidants (Lee et al., 2006c), by estradiol (McLaughlin
et al., 2010), and by disruption of the tissue plasminogen activa-
tor gene (Bennur et al., 2007). These studies provide many tools by
which a causal chain of events between chronic stress and micro-
damage can start to be assembled.

On the other hand, with acute stress, dendritic microdamage can
be produced via a mechanism upstream from gluccocorticoids. A
corticotropin-releasing hormone (CRH) receptor 1 blocker inhibits
acute stress-induced spine loss (Chen et al., 2008c, 2010b). CRH,
which is released with stress not only from the hypothalamus, but
also within the hippocampus, induces rapid spine loss and dendritic
regression in hippocampal cultures (Chen et al., 2008c, 2010b).
Because this effect can be seen in culture, CRH’s acute effects cannot
be mediated via adrenal glucocorticoids. Further exploring these
pathways from acute and chronic stress to neuronal microdamage
is an important future direction.

11.2. Is a function of the acute depressive episode to dismantle
neural circuitry that has been rendered disadvantageous, such as
by a life event, and to grow neural tissue mediating new
behavioral strategies?

“I speak of ‘productive depression’ when at the end of a period
of being depressed there is evidence . . . that . . . some behavior
has been reorganized, some plan revised, so that following the
depressed episode we function more effectively . . .” (Gut, 1989).

“. . . if her patients did not achieve some sort of restructuring,
they became chronically ill. Something had interfered with the
resolution of their depressed response, she felt, so that it lost its self-
limiting quality and became autonomous and self-perpetuating.
Again we can use the analogy of the immune response to explain
this. If the immune response . . . does not resolve normally, it may
become a problem in its own right–an immune disorder.” (Zuess,
2003)

The data we have reviewed so far would suggest that the
brain is extremely vulnerable to stress-induced microdamage. Yet
to be so easily injured would seem maladaptive. In the case of
an acute depressive episode, might stress-induced microdamage
in the brain actually reflect neurite autodestruction that serves
some sort of adaptive function? Evidence suggests that the stress-
induced structural remodeling that has been seen at specific brain
sites, such as the hippocampus, prefrontal cortex, and amygdala
(reviewed in Section 3 above) may be the structural correlates
of long-term behavioral adaptations to the stressor. For example,
stress-induced structural change in the hippocampus is accom-
panied by change in hippocampal-dependent behavioral tasks, in

general enhancing hippocampal-dependent fear-related memory
but impairing hippocampal-dependent memories acquired out-
side of a fear-conditioning context (Kim and Diamond, 2002) (for
review). In another example, stress was found to induce selective
impairment of attention set-shifting, with no change in reversal
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earning, with corresponding structural changes in the two brain
egions thought to mediate these behavioral tasks, the medial pre-
rontal cortex (mPFC) and orbitofrontal cortex, respectively (Liston
t al., 2006). The mPFC is also implicated in extinction of con-
itioned fear. Stress attenuates this extinction in a manner that
orresponds with mPFC dendritic retraction (Izquierdo et al., 2006).
n another study (Vyas et al., 2002), two different stress proto-
ols that elicited contrasting behavioral effects in the elevated plus
aze were accompanied by contrasting structural changes, such

hat enhanced anxiety-like behavior was accompanied by sprout-
ng in the amygdala (a key structure in the fear circuit) (Rodrigues
t al., 2009) (for review). Increases in anxiety, changes in atten-
ion, a learning bias for fear-related memories, and a resistance
o their extinction that are observed after threatening laboratory
tressors could function, in a natural setting, to promote vigilance
nd aversive memories that enable the animal to avoid future harm
rom similar stressors. Thus, a possible function for stress-induced
emodeling in the brain is to create long-term behavioral adapta-
ions to the stressor.

Is there any evidence that such long-term behavioral adapta-
ions are created during an episode of depressive symptoms? Some
upport comes from work on a social defeat paradigm in mice. In
esponse to social defeat stress, half of the exposed animals exhib-
ted a transient depressive-like episode and a persistent change
n social avoidance behavior. The other half manifested neither
f these changes and could therefore be considered resilient to
efeat stress (Krishnan V. et al., 2007). Although the authors of
hose studies interpret these findings as indicating that the per-
istent social avoidance behavior reflects maladaptive functioning
Krishnan V. et al., 2007; Lagace et al., 2010), another interpreta-
ion is possible. Both the resilient and the depressive/avoidance
ehavioral trajectories may be evolutionarily adaptive under dif-
erent circumstances. The persistent social avoidance could be

long-term behavioral adaptation to defeat stress that serves
o protect the animal from future aggression. In contrast, the
esilient trajectory might be evolutionarily adaptive if the costs of
he depressive/avoidance behavioral change outweigh its benefits.
hese studies were done in an inbred strain suggesting that it was
ot genetic differences that dictated which of the trajectories were

ollowed. Because the persistent social avoidance behavior devel-
ped only in the subset of animals that displayed the transient
epressive-like episode (Krishnan V. et al., 2007), our alternative

nterpretation is consistent with the possibility that the neural
nderpinnings of long-term behavioral adaptations to the stressor
re created during an episode of depressive symptoms.

Is a neural injury repair process required for the development
f long-term behavioral adaptation to the stressor? In this social
efeat paradigm, both the resilient and the depressive/avoidant
roups showed a transient decrease in neurogenesis which resolved
y 24 h after cessation of defeat stress (Lagace et al., 2010). While
he resilient subset showed no further changes in neurogenesis,
he depressive/avoidant subset began to demonstrate subsequent
ompensatory increases in neurogenesis (Lagace et al., 2010). Neu-
ogenesis proved to be important for the development of the
ong-term behavioral change because if neurogenesis were ablated
ia irradiation, then the development of the persistent social avoid-
nce behavior was attenuated (Lagace et al., 2010). Similar results
ere seen for BDNF (Berton et al., 2006; Krishnan V. et al., 2007).

he spontaneous increase in neurogenesis and BDNF that were
etected only in the subset that were experiencing the depressive-

ike episode supports our wound healing model of the depressive

pisode. Furthermore, the requirement of neurogenesis and BDNF
or the full expression of the persistent social avoidance introduces
he possibility that the growth phase of the stress-induced injury
epair process may be involved in creating the neuronal underpin-
ings of long-term behavioral adaptations.
iobehavioral Reviews 35 (2011) 742–764 753

What effect do antidepressant drugs have on the develop-
ment of long-term behavioral adaptations to the stressor? In this
social defeat paradigm, the depressive-like episode resolves spon-
taneously, without requiring antidepressant medication. However,
if the animals were chronically treated with the antidepressants
imipramine or fluoxetine, then the persistence of the social avoid-
ance behavior was blocked or attenuated (Berton et al., 2006). These
findings were interpreted by the authors of those studies as fur-
ther indication that the persistent social avoidance is a maladaptive
component of depressive symptomatology (Lagace et al., 2010).
Another possible interpretation, however, is that by hastening the
resolution of an acute depressive episode, antidepressants can dis-
rupt a function of the episode, which is a slow and delicate process
of developing the neural underpinnings of long-term behavioral
adaptations to the stressor.

Another paradigm in which such a “behavioral metamorphosis”
hypothesis for depression could be tested is the maternal sepa-
ration model in guinea pigs. Soon after pups are isolated from
their mothers, the pups begin to display depressive-like behavior
that is inhibited by anti-inflammatory treatments (Hennessy et al.,
2009a). Do the pups develop long-term behavioral adaptations to
separation, such as a reduction in attachment behavior, during the
course of this depressive-like episode? There is some evidence that
pups respond differently to the presence of the mother when tested
after two weeks of a similar separation protocol, relative to those
pups who had not been separated from their mothers (Hennessy
and Morris, 2005). Does inhibition of neuroinflammation, neuro-
genesis, or BDNF during the depressive-like episode inhibit any
subsequent reduction of attachment behavior? Can microglial acti-
vation, focal cytokine release, and neural structural changes in the
brain be detected in parallel with the behavioral change?

Thus, in addition to our theoretical model whereby a
stressful event elicits a brain injury repair process involv-
ing neuroinflammatory-assisted demolition and subsequent
neurogenesis- and BDNF-facilitated growth, here we propose a
testable “behavioral metamorphosis” hypothesis for depression:
This injury repair response that occurs during an episode of depres-
sive symptoms ultimately functions to remove circuitry that has
been rendered disadvantageous and to create the neuronal under-
pinnings of long-term adaptive behavioral change. Such a behav-
ioral metamorphosis function for depression may also apply to
depressions that are triggered by situations other than stressful life
events, such as by commitment to unreachable goals (Nesse, 2000).

11.3. Is the depressogenicity of a stressor related to the extent,
type and neuroanatomical location of the remodeling that it
elicits?

“Now in what consists the work which mourning performs? . . .
Each single one of the memories and hopes which bound the
(reward motivation) to the (lost) object is brought up . . . and the
detachment of the (reward motivation) from it accomplished. . . .
loss in melancholia would also result in an inner labour of the same
kind. . . If the object had not this great significance, strengthened
by a thousand links, to the ego, the loss of it would be no meet cause
for either mourning or melancholia.” (Freud, 1917/1957)

What features of the stressor influence the severity of the depres-
sive response? Some data are consistent with the possibility that
the extent of behavioral remodeling that is triggered by the stres-
sor may influence the depressogenicity of that stressor. In humans,

for example, the dependency of the event on the patient’s own
behavior influences the event’s depressogenicity. If the patient was
judged to have contributed to the adverse event, then its associa-
tion with the depressive episode is significantly greater than if the
event was judged to have been just “bad luck” (Kendler et al., 1999).
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urthermore, events that remove from a person the possibility of
nacting a behavioral role, such as being devalued in the role of
pouse, parent, or breadwinner, are strongly linked to depressive
pisodes (Kendler et al., 2003).

What features of a stressor promote a depressive trajectory as
pposed to alternative responses to stressful events, such as post
raumatic stress disorder (PTSD), or Somatization Disorder? There
s some evidence that events involving physical/sexual abuse are

ore likely to precede Somatization Disorders than to precede
epression, e.g. (Modestin et al., 2005; Spitzer et al., 2008). Events
hat represent danger are more likely to precede bouts of anxi-
ty disorders than depression, whereas the loss of a relationship
nd other types of losses are especially depressogenic (Kendler
t al., 2003; Hammen, 2005) (for review). The finding that loss is
ore depressogenic than other types of stressors is consistent with
any decades of clinical observation, e.g. (Freud, 1917/1957). Thus,

ifferent classes of stressors seem to elicit different predominant
ymptoms.

Interpreting these data in the context of our theoretical work, we
ropose three hypotheses. First, we propose that different classes
f stressors trigger remodeling of different circuits. For example,
n event that represents a loss of a source of reward might trigger
emolition along the reward circuit, which includes among other
ites the hippocampus and prefrontal/infralimbic cortex (Haber
nd Knutson, 2010) (for review). An event that represents a new
ource of danger might trigger remodeling along the fear circuit,
hich includes the amygdala (Wilensky et al., 2006).

Second, as our theoretical model proposes focal inflamma-
ory activity at the sites of remodeling with localized release of
nflammatory mediators there, we propose that which circuit the
nflammatory mediators are localized to influences which symp-
oms predominate. Just as local inflammatory mediators can alter
he threshold for firing of neurons in pain circuits, we argue that
hese molecules can alter the threshold for firing of neurons of other
ircuits. For example, raising the threshold for firing of neurons in
he reward circuit may lead to anhedonia. Lowering the threshold
or firing of neurons in the fear circuit may lead to anxiety. Inflam-

atory mediators at other neuroanatomical sites might give rise to
redominantly somatic symptoms.

Third, just as the duration and severity of pain responses vary
ith the extent of bodily injury being repaired, we propose that

he duration and severity of depressive symptoms would relate to
he extent of the “injury” resulting from the demolition of neu-
al tissue. Thus, a minor adverse event, such as a disappointment,
ight trigger only modest neural demolition, such as dismantling

eural tissue underlying an erroneous reward prediction, induce
nly subtle activation of the inflammatory system such as para-
nflammation, which might induce only brief and mild depressive
ymptoms like sadness. On the other hand, the loss of a major
ource of reward might trigger extensive demolition that induces
he inflammatory system to grade up the continuum toward a
ull-blown wound repair response. Under these circumstances, the
pisode of depressive symptoms would be more severe and longer
asting, perhaps sometimes reaching the DSM criteria for a Major
epressive Episode.

These three hypotheses propose mechanisms by which the
epressogenicity of a stressor may be influenced by the extent and
euroanatomical location of the injury that the stressor elicits. This
rovides a basis for the common sense notion that depression is at
he extreme end of a continuum that includes ordinary states such
s disappointment, sadness, and distress.
2. Limitations

Although our theoretical model integrates six bodies of data
Sections 2–7), it does not propose how to integrate data showing
iobehavioral Reviews 35 (2011) 742–764

that the hypothalamic-pituitary-adrenal (HPA) axis, female gen-
der, genetics, and the personality trait of neuroticism play roles
in risk for depression. Although our theoretical model proposes
explanations for acute stress-induced depressive episodes, chronic
depression, late-life vascular depression, post-stroke depression,
post-concussion depression, the increased risk of depression after
traumatic childhood experiences, and the full range of symp-
toms severity, our model does not address Seasonal Affective
Disorder, Bipolar Disorder, or Premenstrual Dysphoria. Further,
this model does not propose an explanation for why the hip-
pocampus and prefrontal cortex are particularly susceptible to
stress-induced microdamage. In addition, the model does not pro-
pose molecular mechanisms by which serotonin or norepinephrine
reuptake inhibitors lead to enhancement of neurogenesis, BDNF,
and plasticity and have anti-inflammatory and neuroprotective
actions. Nor does it explain the antidepressant efficacy of Cogni-
tive Behavioral Therapy, Electroconvulsive Therapy, or Transcranial
Magnetic Stimulation. The model presented here does not pro-
pose what specific symptom criteria could be used to distinguish
a well-functioning acute depressive response from a malfunctioning
response. Nor does it indicate what cutoff would distinguish acute
from chronic depression.

We do not discuss the large and growing field showing differ-
ential fMRI responses in various brain regions of depressed versus
nondepressed individuals. One possibility is that these fMRI differ-
ences may be the neurobiological correlates of the differences in
affective processing that are produced by cytokines and contribute
to the motivational reprioritization of sickness behavior (Harrison
et al., 2009).

Although the hypothesis elaborated in the present article sug-
gests a molecular mechanism for psychological pain and physical
pain in depression, it does not propose a molecular mechanism for
other symptoms or common comorbidities of depression, such as
anxiety (Shorter and Tyrer, 2003), irritability (Snaith and Taylor,
1985), guilt (American Psychiatric Association, 2000), and worth-
lessness (American Psychiatric Association, 2000), nor does it
provide a mechanism by which inflammatory mediators in the
brain induce the sickness symptoms that are common in depres-
sion, such as sleep and appetite disturbances (American Psychiatric
Association, 2000), fatigue (American Psychiatric Association,
2000), nausea (Haug et al., 2002), diarrhea (Sugahara et al., 2004),
and fever (Sugahara et al., 2004). In a separate manuscript (Wager-
Smith, in preparation), we present a theoretical model whereby
these symptoms respresent a family of behavioral defenses that
are controlled by neuronal circuits for which the trigger threshold
can be altered by inflammatory mediators.

Two additional symptoms of depression have not been dis-
cussed in this review nor in the manuscript just mentioned:
recurrent thoughts of death/suicide and psychomotor retarda-
tion/agitation (American Psychiatric Association, 2000).

Thus, although we have integrated many bodies of data into
our theoretical model for depression, many relevant findings and
symptoms of depression remain to be incorporated. Many hypothe-
ses and predictions that emerge from this model will need to be
tested before it can be determined whether this model is a solid
foundation upon which a more complete understanding of depres-
sion can be built.

13. Conclusion

In this article, we have reviewed data supporting a theoretical

model for the biological etiology of depression. This model uses
a novel scenario for the healthy functioning of the response to
stress in order to predict sources of pathology in depression. In
this model, what could be considered emotionally traumatic brain
injury, eTBI, triggers a neuroinflammatory-facilitated injury repair
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esponse. The sickness symptoms of depression are induced by the
eleased inflammatory mediators which also produce central sen-
itization of psychological pain circuits. As after stroke, the injury
riggers neurogenesis at remote brain sites and produces newborn
eurons that migrate to the sites of injury across the brain. The
epressive symptoms remit if the healing process is successful,

f the neuroinflammatory response resolves rather than becom-
ng chronic, and if the transition to an exaggerated psychological
ain state is avoided. This depressive response is graded so that
eak stressors would induce only mild and short-lived depressive

ymptoms like ordinary sadness.
However, pathological outcomes develop frequently, as they do

fter serious bodily injury, and can lead to chronic psychological
ain and lasting disability. If chronic neuroinflammation occurs,
hen inflammatory-mediated destruction of tissue at some brain
ites can lead to loss of material that is detectable macroscopically.
urthermore, hyperalgesic priming can lead to exaggerated reac-
ions to trivial stressors, allowing future depressions to develop
ithout any apparent precipitating event.

According to one hypothesis that emerges from this theoreti-
al model, this stressful life event-triggered injury repair process
ay serve a greater function, that is to dismantle neural circuitry

hat has been rendered disadvantageous by the life event, and to
enerate neural underpinnings of an updated behavioral program.
ithin this view, if a behavioral or physiological solution to the

tressful predicament is not possible, this might provide an addi-
ional route to dysfunction of the depressive response.

These various types of exaggerated and malfunctioning depres-
ive responses will likely be overrepresented in the subset
f individuals who seek treatment. If individuals with such
athological depression receive antidepressant medications, these
reatments have a number of effects that may tip a growth/pruning
alance in the brain by inhibiting destruction and promoting
rowth of neural tissue (Fig. 1). Such a constellation of effects would
e expected to accelerate, but not to instantaneously terminate, the
ealing process. This may explain the several-week-long delay in
pparent antidepressant efficacy. On the other hand, if an acute,
ell-functioning depressive episode is treated with antidepres-

ants, such accelerated healing might disrupt the delicate process
f creating the long-term neural and behavioral changes that were
ecessitated by the stressor.

Our theoretical model for depression suggests answers to many
uestions such as what is the source of inflammatory mediators
hat have been detected in the blood circulation of depressed
atients (brain injury), how does vagal nerve stimulation exert
ntidepressant efficacy (through anti-neuroinflammatory effects),
ow does traumatic and ischemic brain injury lead to depression
the brain injury repair process induces depression), why does
epression share features with a family of other chronic disor-
ers (they share a central sensitization or hyperalgesic priming
athophysiology), and how do analgesic and anti-inflammatory
rugs exert antidepressant effects (via shared mechanisms for psy-
hological and physical pain). Our theoretical model encourages
rug discovery efforts for depression to include testing emerging
nalgesic, anti-neuroinflammatory, and neuroprotective agents in
nimal depression paradigms that are chosen to match each of
heir unique hypothesized etiologies with the process that the drug
argets.

The concept, that a healthy function of a depressive episode is
o accomplish some sort of enduring psychological transformation,
as a long history in an extremely broad variety of disciplines, both

cientific and nonscientific. For example, psychoanalytic obser-
ations have led to the proposal that depression consists of an
nner labor that allows a person to detach from some entity which
e/she had become attached to but had subsequently lost (Freud,
917/1957) and that resolution of depression involves some type
iobehavioral Reviews 35 (2011) 742–764 755

of inner restructuring such as behavioral reorganization, revision
of plans, or abandoned strivings (Gut, 1989). Animal and human
psychological studies led to the proposal that depression is a stage
in the incentive-disengagement cycle during which the individ-
ual terminates a commitment to pursue a particular incentive
(Klinger, 1975). An evolutionary argument posits that the low mood
in depression can foster disengagement from unreachable goals
(Nesse, 2000). An integration of each of these notions of depres-
sion with conceptions drawn from other sources, including Native
American spiritual traditions and the philosophy of homeopathic
medicine, led to the proposal that depression is a healing response
that functions as a mediator of personal transformation (Zuess,
2003). Observations in clinical sociology indicate that depression
enables a change in social roles (Fein, 1990). A neuropsychoana-
lytic argument holds that sadness functions to decouple outdated
stimulus-reward associations, thereby correcting reward predic-
tion errors (Freed and Mann, 2007; Freed, 2009). Each of these
disparate perspectives also emphasize that depressive responses
sometimes fail in their adaptive function, go awry, and create
clinical depressive illness. Our theoretical model for depression
suggests molecular and cellular processes that may underlie this
widely proposed psychological transformation function and its vul-
nerability to dysfunction.

In our scenario, the depressive episode can be considered anal-
ogous to a period of convalescence from a serious injury, such
as a broken pelvis. If one were unfortunate enough to have to
endure an unmedicated recuperation from this analogous injury,
a two or more week long period of clinically significant distress
and impaired social and occupational functioning would certainly
be expected. It would not be hard to imagine that most of the
day, nearly every day, the victim of one of these incidents would
experience markedly diminished interest in almost all activities,
diminished ability to concentrate, appetite disturbances resulting
in significant weight loss or gain, insomnia or hypersomnia, fatigue,
as well as pain, anxiety, irritability, and an unwillingness to get out
of bed. Despite meeting the DSM criteria for Major Depressive Dis-
order, a diagnosis of a “disorder” would not be given here because
an exclusion criterion is met (American Psychiatric Association,
2000): The symptoms are due to a medical condition—a major
injury. Future study will discern whether the DSM inclusion criteria
for Major Depressive Disorder can be reached by a well-functioning
depressive response to severe stress-induced neuronal injury in
the absence of any mental illness, in addition to being reached by
individuals with a malfunctioning depressive response.
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