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Abstract 

Deep learning (DL) is a family of machine learning methods that has gained considerable 

attention in the scientific community, breaking benchmark records in areas such as speech 

and visual recognition. DL differs from conventional machine learning methods by virtue of its 

ability to learn the optimal representation from the raw data through consecutive nonlinear 

transformations, achieving increasingly higher levels of abstraction and complexity. Given its 

ability to detect abstract and complex patterns, DL has been applied in neuroimaging studies 

of psychiatric and neurological disorders, which are characterised by subtle and diffuse 

alterations. Here we introduce the underlying concepts of DL and review studies that have 

used this approach to classify brain-based disorders. The results of these studies indicate 

that DL could be a powerful tool in the current search for biomarkers of psychiatric and 

neurologic disease. We conclude our review by discussing the main promises and 

challenges of using DL to elucidate brain-based disorders, as well as possible directions for 

future research.  

Keywords: Deep learning; Machine learning; Neuroimaging; Pattern recognition; Multilayer 

perceptron; Autoencoders; Convolutional neural networks; Deep belief networks; Psychiatric 

disorders; Neurologic disorders. 

 

1. Introduction 

In the last two decades, neuroimaging studies of psychiatric and neurological patients have 

relied on mass-univariate analytical techniques (e.g. statistical parametric mapping). These 

studies typically compared patients with a diagnosis of interest against disease-free individuals 

and reported neuroanatomical or neurofunctional differences at group level. The simplicity and 

interpretability of this approach have led to significant advances in our understanding of the 

neurobiology of psychiatric and neurological disorders. Mass-univariate analytical techniques, 

however, suffer from at least two significant limitations. First, statistical inferences are drawn 

from multiple independent comparisons (i.e. one for each voxel) based on the assumption that 



different brain regions act independently. This assumption, however, is not in line with our 

current understanding of brain function in health and disease (Fox et al., 2005; Biswal et al., 

2010); for example, several psychiatric and neurological symptoms are best explained by 

network-level changes in structure and function rather than focal alternations (Mulders et al., 

2015; Kennedy and Courchesne, 2008; Sheffield and Barch, 2016). Second, mass-univariate 

techniques can be used to detect differences between groups but do not allow statistical 

inferences at the level of the individual. In contrast, a clinician has to make diagnostic and 

treatment decisions about the person in front of them. These two limitations may have 

contributed to the limited translational impact of neuroimaging findings in everyday clinical 

practice so far.  

In an attempt to overcome these limitations, the neuroimaging community has developed a 

growing interest in machine learning (ML), an area of artificial intelligence that aims to develop 

algorithms that discover trends and patterns in existing data and use this information to make 

predictions on new data. This is achieved through the use of computational statistics and 

mathematical optimization (Hastie et al., 2001). ML methods are multivariate and therefore take 

the inter-correlation between voxels into account, thereby overcoming the first limitation of 

mass-univariate analytical techniques. In addition, ML methods allow statistical inferences at 

single subject level and therefore could be used to inform diagnostic and prognostic decisions 

of individual patients, thereby overcoming the second limitation of mass-univariate analytical 

techniques (Arbabshirani et al., 2016). ML methods can be divided into two broad categories: 

supervised and unsupervised learning. In supervised ML, one seeks to develop a function 

which maps two or more sets of observations to predefined categories or values. In contrast, 

unsupervised methods seek to determine how the data are organised without using any a priori 

information supplied by the operator; here the main objective is to discover unknown structure 

in the data (Hastie et al., 2001).  

Over the past decade, several ML methods have been applied to neuroimaging data from 

psychiatric and neurological patients with varying degrees of success (Arbabshirani et al., 2016; 

Wolfers et al., 2015). The most popular amongst these methods is Support Vector Machine 

(SVM), a supervised technique that works by estimating an optimal hyperplane that best 

separates two classes. When these classes are not linearly separable, SVM uses external 



functions (kernels) that map the original data into a new feature space where the data become 

linearly separable (Pereira et al., 2009; Vapnik, 1995). Despite its popularity, SVM has been 

criticised for not performing well on raw data and requiring the expert use of design techniques 

to extract the less redundant and more informative features (a step known as “feature 

selection”) (LeCun et al., 2015; Plis et al., 2014). These features, rather than the original data, 

are then used for classification. While SVM remains a very popular technique within the 

neuroimaging community, an alternative family of ML methods known as deep learning (DL) 

(Bengio, 2009) is gaining considerable attention in the wider scientific community (Arbabshirani 

et al., 2016; Calhoun and Sui, 2016; LeCun et al., 2015). Deep learning methods are a type of 

representation-learning methods, which means that they can automatically identify the optimal 

representation from the raw data without requiring prior feature selection. This is achieved 

through the use of a hierarchical structure with different levels of complexity, which involves the 

application of consecutive nonlinear transformations to the raw data. These transformations 

result in increasingly higher levels of abstraction, where higher-level features are more invariant 

to the noise present in the input data than lower level ones (LeCun et al., 2015). Inspired by 

how the human brain processes information, the building blocks of DL neural networks – known 

as “artificial neurons” – are loosely modelled after biological neurons. Artificial neurons are 

organized in layers. A deep neural network consists of an input layer, two or more hidden layers 

and an output layer. The input layer comprises the data inputted into the model (e.g. voxel 

intensity); the hidden layers learn and store increasingly more abstract features of the data; 

these features are then fed to the output layer that assigns the observations to classes (e.g. 

controls vs. patients). Learning is achieved through an iterative process of adjustment of the 

interconnections between the artificial neurons within the network, much like in the human brain 

(Bengio, 2009). An essential aspect of DL that differentiates it from other ML methods is that 

the features are not manually engineered; instead, they are learned from the data, resulting in a 

more objective and less bias-prone process. Besides, the ability to achieve higher orders of 

abstraction and complexity relative to other ML methods such as SVM makes DL better suited 

for detecting complex, scattered and subtle patterns in the data (Plis et al., 2014).   

From a historical perspective, the use of DL in scientific research can be traced back to the 

perceptron (i.e. the original version of the artificial neuron), which many researchers refer to as 



the first ML algorithm (McCulloch and Pitts, 1943). After several setbacks, the pioneering work 

of Warren McCulloch and Walter Pitts resulted in the development of what is now known as 

artificial neural networks. However, such networks were able to handle a limited number of 

hidden layers. It was only in the 2000s that researchers developed a new approach for training 

artificial neural networks that allowed the inclusion of several hidden layers resulting in greater 

levels of complexity (Hinton et al., 2006). This breakthrough led to the development of a new 

family of ML methods - known as deep learning - which has been shown to outperform previous 

state-of-the-art classification methods in areas such as speech recognition, computer vision 

and natural language processing (Krizhevsky et al., 2012; Le et al., 2012). 

The use of DL could be particularly useful in the investigation of psychiatric and neurological 

disorders, which tend to be associated with subtle and diffuse neuroanatomical and 

neurofunctional abnormalities. Since high-level features can be more robust against noise in 

the input data, deep architectures may be more suitable to identify diagnostic and prognostic 

biomarkers than conventional ML methods. DL techniques might also provide an ideal tool to 

investigate the multi-faceted nature of psychiatric and neurological disorders since cross-

modality relationships (e.g. neuroimaging and genetics) are likely to occur at an even deeper 

level (Plis et al., 2014). In addition to these conceptual differences, the use of DL to investigate 

psychiatric and neurological disorders has the practical advantage of not requiring manual 

feature selection (LeCun et al., 2016). Therefore, it is unsurprising that an increasing number of 

neuroimaging studies are using DL to elucidate the neural correlates of these disorders (e.g. 

Payan and Montana, 2015; Pills et al., 2014; Kim et al., 2016). 

Given the insurgence of interest in DL within the field of neuroimaging, this review aims to 

give a brief overview of DL and potential applications to the investigation of brain-based 

disorders. In the first part of the review, we outline the underlying concepts of DL. To achieve 

this, we will use one of the simplest DL structures, i.e. the multilayer perceptron, to illustrate the 

steps of training and testing. This will be followed by a brief description of the most common DL 

architectures used in the field of neuroimaging, including stacked autoencoders, deep belief 

networks and convolutional neural networks. The second part of this article aims to summarise 

the studies that have applied DL to neuroimaging data to investigate psychiatric and 

neurological disorders. Finally, in the third part of the review, we discuss the main themes that 



have emerged from our review of the existing literature, and make a number of suggestions for 

future research directions.  

2. Overview 

Deep learning refers to the training and testing of multi-layered neural networks that are 

capable of learning complex structures and achieve high levels of abstraction. There are two 

main types of DL models which differ with respect to how the information is propagated 

through the network. In feedforward networks, the information is propagated through the 

network in just one direction, from the input to the output layer. Recurrent networks, in 

contrast, contain feedback connections that allow the information from past inputs to affect 

the current output. These connections enable the information to persist within the neural 

network, akin to a form of memory, and this allows the models to process sequential data, 

such as speech and language, in a natural way. 

The implementation of DL in the context of supervised classification problems involves 

two main steps. In the first step, the so-called training phase, a subset of the available data 

known as the training set is used to optimize the network‟s parameters to perform the desired 

task (classification). In the second step, the so-called testing phase, the remainder subset 

which is known as the test set is used to assess whether the trained model can blind-predict 

the class of new observations. When the amount of available data is limited, it is also 

possible to run the training and testing phases several times on different training and test 

splits of the original data and then estimate the average performance of the model – an 

approach known as cross-validation. The two phases of training and testing are not a specific 

feature of DL but are used in conventional ML methods. 

In this section, we will discuss the use of feedforward DL for classification problems. We 

will start with the multilayer perceptron (MLP), the simplest deep neural network (DNN) 

architecture, to illustrate three important aspects of deep learning – network structure, 

training and testing. We will then describe more complex networks, including stacked 

autoencoders and deep belief networks. Finally, we will describe the increasingly popular 

convolutional neural networks (CNN), an important adaptation of the MLP that has come to 

be considered the state-of-the-art for computer vision. 

 



 

2.1. Multilayer perceptron 

2.1.1. Network structure  

MLPs are organized in a layer-wise structure where each layer stores increasingly more 

abstract representations of the data (Fig. 1). The first layer is the input layer where the data is 

entered into the model. In neuroimaging, the data can be represented as a one-dimensional 

vector with each value corresponding to the intensity of one voxel. The last layer is the output 

layer which, in the context of classification, yields the probability of a given subject belonging 

to one group or the other. The layers between the input and output layers are called hidden 

layers, with the number of hidden layers representing the depth of the network. Each layer 

comprises a set of artificial neurons or “nodes” (Fig. 1a) in which each neuron is fully 

connected to all neurons in the previous layer (Fig. 1b). Each connection is associated with a 

weight value, which reflects the strength and direction (excitatory or inhibitory) of each 

neuron input, much like a synapse between two biological neurons.  

Unlike SVM, which relies on expert designed transformations to handle nonlinearly 

separable classes, the structure of neural networks itself allows the transformation of the 

input space. The consecutive layers perform a cascade of nonlinear transformations that 

distort the input space allowing the data to become more easily separable (Fig. 2). The 

optimal number of layers and nodes within each layer are not estimated as part of the 

learning process itself but are defined a priori. These a priori parameters, which are not 

optimized during the training, are called hyperparameters. It should be noted that the 

development of algorithms to find optimum values of these hyperparameters is an active area 

of research, and that at present there are no fixed rules (Bergstra et al., 2011; Gelbart et al., 

2014).  

 

2.1.2. Training  

Traditionally, neural networks can learn through a gradient descent-based algorithm. The 

gradient descent algorithm aims to find the values of the network weights that best minimize 

the error (difference) between the estimated and true outputs. Since MLPs can have several 

layers, in order to adjust all the weights along the hidden layers, it is necessary to propagate 



this error backward (from the output to the input layer). This propagation procedure is called 

backpropagation, and allows the network to estimate how much the weights from the lowers 

layer need to be changed by the gradient descent algorithm. Initially, when a neural network 

is trained, the weights are set at random. When the training set is presented to the network, 

this forward propagates the data through the nonlinear transformation along the layers. The 

estimated output is then compared to the true output, and the error is propagated from the 

output towards the input, allowing the gradient descent algorithm to adjust the weights as 

required. The process continues iteratively until the error has reached its minimum value. 

The backpropagation algorithm does not work well with the original models of DNNs that 

were based on sigmoid and hyperbolic tangent nonlinearities. In these models, the 

information of the error becomes increasingly smaller as it propagates backward from the 

output to the input layer, to a point where initial layers do not get useful feedback on how to 

adjust their weights – an issue known as the vanishing gradient problem. Therefore, initially, 

the use of backpropagation yielded poor solutions for networks with three or more hidden 

layers (Schmidhuber, 2015). In 2006, however, Hinton and colleagues put forward the idea of 

“greedy layerwise training”, which consists of two steps: 1) an unsupervised step, where 

each layer is trained individually and 2) a supervised step, where the previously trained 

layers are stacked, one additional layer is added to perform the classification (the output 

layer), and the whole network parameters are fine-tuned (Hinton et al., 2006). This 

breakthrough led to the fast-growing interest in deep learning and enabled the development 

of at least two types of pre-trained networks that have shown promising results: stacked 

autoencoders and deep belief networks. It should be noted that these methods are not actual 

classifiers themselves; instead, they are networks that are pre-trained to learn useful patterns 

in the data and then fed to a real classifier at the final layer. These two types of networks and 

their unique characteristics are described in section 2.2 and 2.3. 

2.1.3. Testing  

The performance of a deep neural network can be evaluated by several performance 

measures, such as sensitivity, specificity, accuracy and F-score. Sensitivity refers to the 

proportion of true positives correctly identified (e.g. the proportion of subjects that were 

predicted as patient and are true patients), and specificity refers to true negatives correctly 



identified (e.g. the proportion of subjects that were predicted as healthy controls and are true 

healthy controls). The accuracy of a classifier represents the overall proportion of correct 

classifications. The statistical significance of this overall accuracy can be tested using 

parametric tests such as permutation testing, which measures how likely the observed 

accuracy would be obtained by chance. Metrics such as F-score and balanced accuracy, 

which take into account each group‟s sample size, are particularly useful in cases where 

classes are unbalanced. The F-score is a measure that combines precision or positive 

predictive value (proportion of individuals classified as cases were actually cases) and 

sensitivity (proportion of true cases correctly classified as such). Balanced accuracy, on the 

other hand, corresponds to the average accuracy obtained on either class (Brodersen et al., 

2010). 

 

2.1.4. Risk of overfitting and possible strategies  

Due to the use of multiple nonlinear transformations, deep networks are highly complex 

models that involve the estimation of a very large number of parameters. This can lead to the 

model learning particular fluctuations in the training data that are irrelevant for the purpose of 

classification – an issue known as “overfitting”. When this happens, the model will perform 

very well on the training data but will not be able to replicate its performance on unseen data 

(Srivastava et al., 2014). The risk of overfitting is particularly high in the context of 

neuroimaging, where the number of data points (e.g. number of voxels) for a subject is much 

larger than the total number of subjects, resulting in high-dimensional data (Arbabshirani et 

al., 2016). However, there are a number of strategies that can be used to minimise the risk of 

overfitting, collectively known as “regularization”. A first strategy involves the use of weight 

decays (e.g., L1 and L2 norms) to penalise models with very high weights. It has been 

observed that extreme (very low or very high) weight values in a ML model are symptomatic 

of the model trying to learn the regularities of the data perfectly (Moody et al., 1995). By 

forcing weights to remain low, the network becomes less dependent on the training data and 

is able to better generalize to unseen data (Nowlan and Hinton, 1992). A second strategy, 

known as dropout, consists of temporarily removing a random number of nodes and their 

respective incoming and outgoing connections from the network during training. This means 



that the contribution of dropped-out neurons to the activation of downstream neurons is 

temporally removed on the forward pass and that any weight updates are not applied to 

these neurons on the backward pass. The aim of dropout is to extract different sets of 

features that can independently produce a useful output, thereby allowing higher levels of 

generalizability (Srivastava et al., 2014).  

 

2.2. Autoencoders  

Autoencoders are a special case of feedforward networks which comprise of two main 

components. The first component, i.e. the “encoder”, learns to generate a latent 

representation of the input data, whereas the second component, i.e. the “decoder”, learns to 

use these learned latent representations to reconstruct the input data as close as possible to 

the original (Fig. 3a) (Vincent et al., 2010).  

Since an autoencoder does not make use of labels, its training is an unsupervised 

learning process. In its shallow structure, an autoencoder is comprised of three layers: an 

input layer, one hidden layer and an output layer. The training to perform the input-copying 

task can be useful to extract meaningful features of the input data. This automatic feature 

extraction can be performed using an error function (or loss function) that encourages the 

model encoder to have specific characteristics, such as sparsity of the representation (sparse 

autoencoders) and robustness to noise (denoising autoencoders). Since autoencoders are 

automatic features extractors, they can also be stacked to create a deep structure to 

increase the level of abstraction of learned features. In this case, the network is pre-trained, 

i.e. each layer is treated as a shallow autoencoder, generating latent representations of the 

input data. These latent representations are then used as input for the subsequent layers 

before the full network is fine-tuned using standard supervised learning (Fig. 3b) (Larochelle 

et al., 2007).  

 

2.3. Deep belief networks 

Deep belief networks (DBNs), proposed by Hinton et al. (2006), are technically the first DL 

models. Similar to stacked autoencoders, DBNs are comprised of stacked shallow feature 

extractors, known as restricted Boltzmann machines (RBMs). An RBM is composed by only 



two layers: a visible layer and a hidden layer. Just like autoencoders, RBMs also aim to learn 

and extract useful features from the data. However, RBMs differ from autoencoders with 

regards to their training processes. RBMs can be interpreted as a stochastic neural network. 

Therefore, instead of using deterministic functions and the reconstruction error (like the 

autoencoders), the RBM uses the maximum-likelihood estimation to find a stochastic 

representation of the input in its hidden layer (latent features). To do this, RBMs are usually 

trained using a gradient descent algorithm, with the likelihood gradient being performed by an 

approximation algorithm known as contrastive divergence (Hinton et al., 2006). Here the 

input data, stored in the visible layer, are propagated to the hidden layer as in a feedforward 

network, and the resulting sum of the weighted inputs provides a measure of the neuron 

activation probability. The activation of hidden neurons can be thought of as the network‟s 

internal representation of the data, which is then propagated back to the visible layer in an 

attempt to reconstruct the input data from the network‟s internal representation. The network, 

therefore, learns by adjusting the weights based on the discrepancy between the true and 

reconstructed data. Similarly to autoencoders, RBMs can be stacked to create a deep 

network, where the hidden layer representation of one RBM serves as input layer for the 

following RBM, and the network can learn higher-level features from lower-level ones to 

arrive at an abstract representation of the data. Furthermore, the neural network 

corresponding to a trained DBN can be augmented by adding an output layer, where units 

represent the labels corresponding to the input sample. This results in a standard neural 

network for classification that can be further trained using supervised learning algorithms. 

 

2.4. Convolutional neural networks 

Convolutional neural networks (CNNs) are a special type of feedforward neural networks 

that were initially designed to process images, and as such are biologically-inspired by the 

visual cortex (LeCun et al., 1998). In addition to the input and output layers, CNN can 

comprise of three types of layers: a convolutional layer, a pooling layer, and a fully-connected 

layer (Fig. 4).  

The convolutional layer is organized in several feature maps. Every neuron in a feature 

map is connected to a fixed set of neurons in a local region of the previous layer – the 



receptive field – in such a way that the whole image is covered (“local connectivity”). Within 

the same feature map, the connections between each neuron and the corresponding 

receptive field share the same weights, whereas different feature maps use different sets of 

weights (“weight sharing”). As a result of this architecture, a feature map can be thought of as 

a “feature detector” that scans the whole image for the same pattern. This pattern is usually 

known as the kernel. Kernels in a CNN are learned during the training process, as opposed 

to in SVM, where they are defined a priori. In a network with several convolutional layers, 

each layer codes for increasingly more abstract features (e.g. lines  edges  eyes  face). 

The pooling layer simply reduces the number of neurons of the previous convolutional layer. 

The fully-connected layers are similar to the hidden layers from the conventional MLP where 

the neurons are connected to all neurons from the previous layer. All combined, the 

properties of CNN (local connectivity, weight sharing and pooling) result in a significant 

reduction in the number of parameters, which in turn decreases the likelihood of overfitting, 

and alleviates computational processing.  

 

3. Review of DL studies of psychiatric or neurological disorders 

In order to identify previous applications of DL in neuroimaging studies of psychiatric or 

neurological disorders, a search was conducted on 1
st
 August 2016 across several 

databases (PubMed, IEEE Xplore, Scopus and ArXiv) using the following search terms: 

("deep learning" OR "deep architecture" OR "artificial neural network" OR "autoencoder" OR 

"convolutional neural network" OR "deep belief network") AND (neurology OR neurological 

OR psychiatry OR psychiatric OR diagnosis OR prediction OR prognosis OR outcome) AND 

(neuroimaging OR MRI OR “Magnetic Resonance Imaging” OR "fMRI" OR “functional 

Magnetic Resonance Imaging” OR PET OR "Positron emission tomography"). This review 

did not include EEG studies, although there is some evidence that DL can also be used with 

this type of data, particularly in epilepsy (Page et al., 2014).  The initial search yielded a total 

of 172 articles. As the next step, we screened and cross-referenced these articles for studies 

that had applied a deep learning model to neuroimaging data to investigate a psychiatric or 

neurologic condition; this identified a total of 25 articles which were relevant to our review. 

We organized these articles as follows: i) diagnostic studies, which aimed to classify patients 



from healthy controls, ii) studies on conversion to illness, which used baseline scans from 

individuals identified as being at high risk of developing a psychiatric or neurologic disorder to 

predict subsequent transition to the illness, and finally iii) studies predicting treatment 

response, which used baseline scans from individuals with a neurological or psychiatric 

diagnosis to predict subsequent treatment response. These studies are summarised in 

Tables 1, 2 and 3 which provide the following information: sample size; type of data used as 

input; whether a whole brain (WB) or region of interest (ROI) approach was used; whether 

the information inputted into the model comprised of voxel or region-level features; whether 

feature selection was or was not used before inputting the data into the model; general type 

of DL architecture; diagnostic groups being investigated; and accuracy. Whenever performed, 

we also report the accuracies obtained for multiclass classifications, which involve 

discriminating between more than two classes (e.g. healthy controls vs. mild cognitive 

impairment vs. Alzheimer‟s disease). 

 

3.1. Diagnostic studies 

Studies using DL to classify psychiatric or neurological patients from healthy individuals 

have used a range of neuroimaging modalities including structural MRI (sMRI), resting-state 

fMRI (rsfMRI), positron emission tomography (PET) and a combination of different modalities 

(multimodal studies) (see Table 1). From Table 1 it can be seen that the vast majority of 

these studies were carried out in Alzheimer‟s disease (AD) and its prodromal stage, mild 

cognitive impairment (MCI). In addition, a smaller number of studies examined psychosis, 

attention deficit/hyperactivity disorder (ADHD), cerebellar ataxia and temporal lobe epilepsy 

(TLE). Within each diagnostic category, we first give an overview of the studies that have 

used a single neuroimaging modality, followed by studies that employed a multimodal 

approach and, finally, studies that have combined neuroimaging and clinical data within a 

single classifier.  

 

Mild Cognitive Impairment and Alzheimer Dementia. In one of the first studies using DL in AD 

and MCI, Gupta et al. (2013) argued that, since (i) natural images and brain imaging have 

similar, and therefore interchangeable, low-level features (e.g. lines and corners) and (ii) 



natural images, contrary to neuroimaging, are abundant, then natural images could be used 

to learn low level features which could then be used to identify lesions along the surface and 

ventricles of the brain. This process, whereby the features learned in one set of data are 

used to solve a problem in another set of data, is known as “transfer learning”. Based on this 

premise, the authors pre-trained a sparse autoencoder to learn features from natural images, 

which were then applied to structural MRI data via a CNN, achieving a classification accuracy 

of 94.7% for AD versus controls, 86.4% for MCI versus controls and 88.1% for AD versus 

MCI. Consistent with the authors‟ hypothesis, this method outperformed the one where the 

learned features were extracted from the neuroimaging data (93.8%, 83.3% and 86.3% for 

the same comparisons, respectively). However, a few years later and using a similar 

approach, Payan and Montana (2015) found comparable classification accuracies using 

features that were learned from the structural MRI data itself. This could potentially be 

explained by the fact that Payan and Montana (2015) used a much larger sample, as well as 

by the fact that authors used 3D brain images, as opposed to 2D, which possibly contain 

more useful patterns for classification. Indeed, Payan and Montana (2015) reported that, in 

general, the models based on 3D outperformed those based on 2D brain images (AD vs. HC 

(2D/3D)=95.4%/95.4%; AD vs. MCI (2D/3D)=82.2%/86.8%; MCI vs. HC 

(2D/3D)=90.1%/92.1%). The best accuracy (97.6%) from single modality studies came from 

Hosseini-Asl et al. (2016), who also used transfer learning. Instead of extracting features 

from natural images and then fine-tuning the model on Alzheimer‟s patients and controls, as 

seen in Gupta et al. (2013), Hosseini-Asl et al. (2016) used one Alzheimer‟s dataset for pre-

training and another independent Alzheimer‟s dataset to fine-tune the model. By performing 

the pre-training on an Alzheimer‟s dataset, this approach allowed for the network to extract 

generic features related to AD biomarkers, such as the ventricular size, hippocampus shape, 

and cortical thickness as opposed to more generic low-level features as in Gupta et al. 

(2013). By using two independent samples during the complete learning process, the final 

learned features for classification are much less dataset-specific, and should therefore be 

more generalizable. The final model‟s architecture was also deeper than in previous studies, 

which probably also contributed to the high accuracy. Taken collectively, these studies 

suggest that the application of DL to structural MRI data allows the classification of 



individuals with AD and MCI with high levels of accuracy. Consistent with the increasing 

popularity of CNN models, studies that have applied either CNN or a combination of AE and 

CNN have shown better performances compared to those using only AE, although it should 

be noted that the former group of studies tended to have larger samples than the latter group. 

In addition, and similar to the trend reported in computer vision competitions and research, 

the best performances were obtained by the deepest CNN models.   

Studies of AD and MCI using resting-state imaging have also achieved promising results. 

For example, Han et al. (2015) designed a hierarchical convolutional sparse autoencoder 

(HCSAE), which essentially extracts the most discriminating features from the resting-state 

data and encodes them in a convolutional manner. This particular arrangement allows for the 

extraction of the most useful information while conserving abundant detail. The final model 

classified AD and controls with an 80.0% accuracy and significantly outperformed SVM, 

which only yielded an accuracy of 50% (Fig. 4). While this is a promising result, the model 

assumed that functional networks were statistic over time – an assumption which underlies 

the vast majority of ML applications to resting-state neuroimaging data. However, recent 

studies have shown that the network-level functional organization of the brain is dynamic 

rather than static (Hutchinson et al., 2013). Suk et al. (2016) have addressed this issue by 

developing an approach which classifies people with MCI and healthy controls using a deep 

autoencoder to extract hierarchical nonlinear relations among brain regions, whilst modelling 

the inherent functional dynamics of resting-state data. This was also one of the few studies in 

which the same DL model was tested against and surpassed other competing models in two 

independent datasets (72.6% for dataset 1 and 80.0% for dataset 2), thus providing evidence 

of replicability, a crucial feature for diagnostic tools. In line with the studies using structural 

imaging, the best performance for the classification of AD patients with resting-state data was 

also obtained by a CNN model with an accuracy of 96.9% (Sarraf and Tofighi, 2016). These 

studies provide initial evidence that brain activity at resting state can be useful in identifying 

MCI and AD patients. We note that, compared to the performances obtained from structural 

data, DL models applied to functional data seem to perform worse. This discrepancy could 

be explained by the substantial difference in sample size between the two types of studies – 



while the smallest study using structural data included 140 subjects (Hosseini-Asl et al., 

2016) the largest study using functional data included 62 subjects (Suk et al., 2016). 

With regards to multimodal studies, Liu et al. (2014) applied a stacked autoencoder (SAE) 

to structural and PET data and successfully distinguished AD and MCI from controls with an 

accuracy of 87.8% and 76.9%, respectively. Using a very similar dataset, the same team (Liu 

et al., 2015a) achieved a better performance by designing a model where the hidden layers 

were able to infer the correlations between sMRI and PET, thus better capturing the synergy 

between the two modalities. This model classified AD and MCI against controls with an 

accuracy of 91.4% and 82.1%, respectively. Interestingly, the application of the same model 

to a structural data alone resulted in less impressive accuracies of 82.6% and 72% for AD 

and MCI, respectively. This discrepancy suggests that the integration of structural and 

functional data may improve classification accuracy. However, this conclusion should be 

drawn with great caution since that the authors did not report classification accuracy for PET 

data alone. 

Finally, four studies have tried combining neuroimaging data with clinical information to 

build a more robust classification model. For example, Suk and Shen (2013) used a SAE to 

extract latent features from neuroimaging data (sMRI, PET and CSF), which were then used 

to predict clinical data (measured using the Mini-Mental State Examination - MMSE - and 

Alzheimer's Disease Assessment Scale's cognitive subscale - ADAS-cog) and class labels. 

As the final step, the resulting learned features were used to classify AD and MCI from 

healthy individuals with an accuracy of 95.9% and 85.0%, respectively. Notably, two more 

studies (Li et al., 2014; Suk et al., 2015a) that have used the same exact sample (taken from 

the publicly available dataset ADNI; Alzheimer's Disease Neuroimaging Initiative) and the 

same types of data (sMRI, PET, CSF, MMSE and ADAS-cog) have also reported high 

accuracies for both AD and MCI despite using different implementations of DL. In general, 

studies combining clinical with neuroimaging data have, in general, reported higher 

accuracies than studies using single modality or multiple neuroimaging modalities. This is in 

line with previous studies using conventional ML methods (e.g. Willette et al., 2014; Moradi et 

al., 2015; Zang and Shen, 2012) and highlights the usefulness of adding clinical information 

in the classification of AD and its prodromal phase. 



 

Attention-deficit/hyperactive disorder. With regards to attention-deficit/hyperactivity disorder 

(ADHD), all five studies included here have used resting-state neuroimaging data. For 

example, Deshpande et al. (2015) applied a fully connected cascade artificial neural network 

- a variation of the multilayer perceptron – to functional connectivity from ADHD and healthy 

controls. The model successfully distinguished between the inattentive and combined 

subtypes from healthy controls with an accuracy of 90% for both comparisons, while the two 

subtypes were discriminated with an accuracy of 95%. Connections between frontal areas 

and the cerebellum were identified as the most discriminating features. There is also 

evidence that healthy children and children diagnosed with three different ADHD subtypes 

(inattentive, hyperactive and combined) can be distinguished in one single model using a 

multiclass approach, without the need to perform binary classifications between healthy 

controls and each ADHD subtypes. This evidence comes from three studies that have used 

data from different sites taken from the ADHD-200 consortium, a data-sharing platform aimed 

at understanding the neural basis of ADHD (Milham et al., 2012). Kuang et al. (2014) 

attempted to discriminate between healthy controls and ADHD subtypes (inattentive, 

hyperactive and combined) using data acquired from three different sites. Rather than 

looking at the whole brain, the authors first parcellated the brain and trained different DBNs 

for each brain area to examine which part of the brain best discriminated ADHD (regardless 

of subtypes) from healthy controls. A 4-way DBN was then performed for the each best 

discriminating area – prefrontal (PFC), cingulate (CC) and visual (VC) cortex – in each one of 

the three datasets separately (dataset 1: PFC=37.4%, CC=37.1%, VC=34.4%; dataset 2: 

PFC=54.0%, CC=54.0%, VC=51.2%; dataset 3: PFC=71.8%, CC=72.7%, VC=68.8%). 

Kuang and He (2014) partially replicated these findings by applying the same DL approach to 

functional measures of the prefrontal cortex; this allowed a 4-way classification accuracy of 

44.4%, 55.6% and 80.9% in three independent samples from the ADHD-200 consortium. 

Finally, Hao et al. (2015) identified the most discriminating areas – prefrontal, cingulate, 

somatosensory and visual cortex – and then combined them within a single model. The 

resulting input data were put through a deep Bayesian network (DBaN), where a DBN was 

used to reduce the dimensionality of the data and a Bayesian network was used to extract 



the relationships between the data. The resulting model achieved a 4-way classification 

accuracy of 48.8%, 54.0% and 72.7% for three independent samples also taken from the 

ADHD-200 consortium. These three studies suggest that DL can be used to solve multiclass 

classifications problems, as all performances were well above chance level (25% for a 

classification with 4 classes). In addition, these studies suggest that DL can extract 

meaningful information from patterns of brain functioning to classify ADHD from controls and, 

more notably, to differentiate between ADHD subtypes.  Nevertheless, we note that all four 

studies conducted in ADHD had unbalanced sample sizes between classes. For example, in 

Kuang et al. (2014), there were just between 2 and 5 children in the Inattentive subtype 

within each site, while the number of healthy children ranged from 69 to 110 per site. 

Similarly, each site in Kuang and He (2014) did not include any participants on at least one 

ADHD subtype which may have introduced a bias in the 4-way classification performed 

across all sites. With the exception of Hao et al. (2015) which reported sensitivity and 

specificity, all studies assessed model performance by estimating the overall accuracy. This 

metric is simply the proportion of participants correctly identified, and therefore does not take 

the unbalance between classes into account; this means that it is possible to have a good 

overall accuracy even if several participants from a class are misclassified (or even if all 

participants from a class are misclassified if the sample size for that class is very small 

compared to the total sample size). Therefore, given the highly imbalanced sample sizes, the 

possibility that the performances reported in these studies are inflated cannot be ruled out. 

This possibility is supported by the observation of much lower sensitivities (43.9%, 22.9% 

and 55.6% for each site) than specificities (68.8%, 87.7% and 83.0%), in Hao et al. (2014).   

 

Psychosis. With respect to psychosis, two studies have been performed with promising 

results. Using structural MRI data from four independent studies, Plis et al. (2014) applied a 

DBN to the original pre-processed images obtaining an impressive F-score of 91%. While 

this was a highly promising result, the patients group included both first episode and chronic 

schizophrenia patients, which could have diluted the models‟ performance. More recently, 

Kim et al. (2016) extracted functional connectivity patterns obtained from resting-state 

functional MRI of individuals diagnosed with schizophrenia and healthy controls and 



performed a series of experiments with an SAE-based model, in which different 

hyperparameters were tested. The proposed model consisted of an SAE with weight sparsity 

control, i.e. only a random selection of neurons in a given layer was activated, that classified 

schizophrenia patients and controls with an accuracy of 85.5%, outperforming SVM by a 

margin of 8.1%. Consistent with the literature on brain functional abnormalities in 

schizophrenia (Kühn and Jürgen, 2013; van der Meer et al., 2010), the most relevant 

features for the classification were the functional connectivity between the thalamus and the 

cerebellum, the frontal and temporal areas and between the precuneus/posterior cingulate 

cortex and the striatum. Despite this encouraging result, the sample sizes for each class 

were modest (50 for each group) and, therefore, it is not clear how well these findings will 

generalise to a different sample. Nevertheless, both studies suggest that DL can effectively 

classify psychosis patients on the basis of neuroanatomical and neurofunctional information. 

Despite the evidence that structural and functional data provide complementary information 

on the neural basis of psychosis (Cabral et al., 2016; Radua et al., 2012; Schultz et al., 2012), 

to date there have been no DL studies using a multimodal approach in psychosis. In addition, 

despite the evidence that psychosis, similar to AD, is preceded by a prodromal stage (Yang 

et al., 2005), there have been no studies applying DL to neuroimaging data to classify 

individuals at high risk of developing psychosis from healthy controls or distinguishing 

between high risk individuals who will and will not develop the illness.  

 

Temporal lobe epilepsy. One study examined the potential of DL to classify healthy 

individuals and patients diagnosed with temporal lobe epilepsy (TLE) from diffusion-weighted 

images (DWI) (Munsell et al., 2015). A stacked autoencoder was used to extract meaningful 

features from patients‟ connectome while SVM was chosen as the classifier. Deep learning 

was suggested as an attractive ML alternative because it is capable of encoding latent, 

nonlinear relationships in high dimension data. This combination yielded a relatively modest 

accuracy of 69%. In addition, this model was outperformed by another approach where 

features were extracted using a well-known linear automated method (ElasticNet) instead, 

which achieved an accuracy of 80%. This discrepancy in favour of the second model could 

potentially be explained by the absence of any form of regularizers in the first model. Given 



the high complexity resulting from the numerous parameters to be estimated, DL models are 

more prone to overfitting (high performance on the training data while performing poorly on 

unseen data) than conventional ML approaches. One standard solution, that the authors did 

not use, is to address this issue is by tuning the level of model complexity and penalizing 

highly intricate ones in order to have better generalizing models.  

 

Cerebellar ataxia. One study was conducted in cerebellar ataxia (CA), a neurodegenerative 

disorder that affects mainly the cerebellum, with multiple genetics variations each with its 

characteristic pattern of anatomical degeneration. Yang et al. (2014) applied a stacked AE to 

T1-weighted images of the cerebellum taken from healthy controls and individuals suffering 

from three CA subtypes: spinocerebellar ataxia type 2 (SCA2), spinocerebellar ataxia type 6 

(SCA6) or ataxia-telangiectasia (AT). The proposed method classified the four groups with an 

accuracy of 86.3%, an impressive result for a 4-way classification. However, the confusion 

matrix reported by the authors indicates that no case with the SCA2 subtype was correctly 

classified. Because the sample size of this group (only four participants) contributed very little 

for the total sample size (80), it is still possible to misclassify all its cases and achieve a low 

error rate. In such cases, a high accuracy can be misleading, as it may reflect an 

overestimation of the algorithm‟s performance (Arbabshirani et al., 2016). Balanced 

accuracy, for example, is a potentially useful alternative as it calculates the average of 

correct predictions of each class individually (Alberg et al., 2004).  

In short, since the first study published in 2013, there is already preliminary evidence that 

DL allows the accurate classification of a range of neurologic and psychiatric disorders, by 

extracting discriminating features from either single or multimodal imaging as well as other 

types of data such as clinical and cognitive information.  

 

3.2. Conversion to illness  

From Mild Cognitive Impairment to Alzheimer Dementia. A total of 8 studies have attempted 

to predict transition to illness using neuroimaging data, and all of them have focussed on the 

transition from MCI to AD (Table 2). With one exception (Liu et al., 2015a), all studies used a 

multimodality approach, with three of them also including clinical measures in the prognostic 



model. The highest accuracy (83.3%), was achieved by a model which included sMRI, PET, 

CSF and two clinical measures: the MMSE and the ADAS-cog (Suk et al., 2015a). 

Interestingly, the lowest performance (57.4%) resulted from a model which used the same 

input data (sMRI, PET, CSF, MMSE and ADASCog) and a similar sample size (Li et al., 

2014). However, the two studies differed on the DL approach, with the former employing a 

semi-supervised approach with a multilayer perceptron pretrained using a stacked sparse 

autoencoder, and the latter using a pure supervised approach. These findings highlight the 

potential impact of the DL architecture on performance, although we cannot exclude the 

contribution of other sample-specific factors to the results (e.g. recruitment criteria). Overall, 

this initial sample of studies suggests that individuals diagnosed with MCI who later convert 

to dementia can be identified using cutting-edge DL methods. Although, in general, 

accuracies are not as high as when classifying AD or MCI from healthy controls, this is not 

surprising since brain differences as well as clinical and cognitive symptoms between those 

identified as being at risk who do and do not develop a disorder are likely to be subtle. In 

addition to these encouraging results, the suitability of DL to multiclass classification means 

this analytical approach can easily be employed to examine the biomarkers of different 

stages of the illness. Four studies have taken advantage of this by conducting 4-way 

classifications to discriminate between no eminent risk of AD (healthy controls), individuals in 

the prodromal stage who did not (MCI-C) and did develop dementia (MCI-C) and established 

Alzheimer‟s (AD). Accuracies ranged from 46.3% to 53.8%. By using a deep Boltzmann 

machine to extract features from structural MRI and PET images, Liu et al. (2015a) classified 

the four groups with an overall accuracy of 53.8%. Suk et al. (2015b) examined the 

replicability of a DL approach known as deep weighted subclass-based sparse multi-task 

learning (DW-S2 MTL) in two different datasets, considering both binary and multi-way 

comparisons. The proposed model, specifically designed to mitigate the effect of less useful 

features for classification, showed a comparable performance for both binary (74.2% vs. 

73.9%) and 4-way (53.7% vs. 47.8%) classifications, thus suggesting good replicability. 

Taken collectively, these studies provide initial evidence that DL methods could be used to 

discriminate amongst different stages of illness – a common challenge in standard clinical 

settings. 



 

3.3. Treatment outcome 

Prediction of response to treatment is a research area of high clinical interest. In several 

psychiatric and neurological disorders, a better understanding of why some patients benefit 

from a certain treatment whereas others do not, could help clinicians make more-effective 

treatment decisions and improve long-term clinical outcomes (Mechelli et al., 2015). However, 

so far, only one study has used DL to predict clinical response to treatment (Table 3). 

Munsell et al. (2015) attempted to develop an algorithm that distinguished between patients 

with TLE who did and did not benefit from surgical treatment. This was implemented using a 

stacked autoencoder to extract meaningful features from the connectome of patients who 

were then classified using SVM. This model, however, yielded a low accuracy of 57%. For 

comparison, the author investigated another option where features were extracted with an 

alternative linear approach instead of an autoencoder. This second model resulted in a 

higher accuracy of 70%. Again, this discrepancy in favour of the second model could 

potentially be explained by the absence of any form of regularizers in the first model. This 

model comprised 4 layers, resulting in a high number of weights to be estimated which, 

together with a modest sample size (41 patients without seizures and 29 with seizures after 

treatment), might have resulted in overfiting.    

3.4. How does DL compare to a traditional machine learning approach? 

A total of twenty-five studies included in this review compared a DL model against a 

kernel-based model (SVM or MKL) in order to elucidate how DL compares to a more 

conventional ML approach.  The results of these comparisons are shown in Fig. 5. It can be 

seen that, for the majority of studies, DL showed improved performance compared to SVM. 

Given the small sample of studies, it is difficult to identify specific characteristics of the 

studies associated with greater or smaller improvement in performance following the 

implementation of DL. However, a margin favouring DL studies appears to be more evident 

in studies that have integrated different modalities with cognitive and/or clinical data (Fig. 6). 

This anecdotal observation is consistent with the notion that DL is a powerful tool for 

detecting abstract relations within the data, especially between different types of data that are 



likely to be associated in complex ways, such as neuroimaging and clinical/cognitive 

information (Plis et al., 2014).  

Since DL requires a large number of observations to learn increasingly complex patterns 

compared to conventional ML methods, one would expect to find a greater difference 

between the two methods as sample size increases. However, the effect of sample size on 

the difference in performance is unclear, possibly due to the small number of studies 

currently available. There is a minority of studies where SVM/MKL matched or even 

outperformed the proposed DL model. Amongst these, Munsell et al. (2015) reported the 

largest margin favouring SVM. However, this article had one of the smallest sample sizes 

(118 for the diagnostic comparison and 70 for the treatment outcome comparison) while 

employing one of the deepest networks with 5 layers. Notably, out of all the studies 

comparing the two approaches, Munsell et al. (2015) was the only one that did not make any 

formal attempt to prevent overfitting of the DL model, for example through the use of 

regularization. We note that susceptibility to overfitting becomes more pronounced when 

deeper and thus more complex networks are used, as in the study by Munsell et al. (2015), 

due to the higher number of weights to be estimated (Srivastava et al., 2014). Therefore, we 

speculate that the use of small sample sizes, coupled with the high-dimensionality of the data 

(i.e. when the number of variables highly exceeds the number of participants), may have 

increased the risk of overfitting in this study.  

 

4. Discussion  

ML has been gaining considerable attention in the neuroimaging community due to its 

advantages over traditional analytical methods based on mass-univariate statistics. In 

particular, ML methods take the inter-correlation between regions into account, while mass-

univariate methods operate under the assumption that different regions act independently. In 

addition, ML methods can be used to make inferences at the single-subject level – a critical 

difference with mass-univariate analytical methods that are only sensitive to differences at 

group-level. DL is a type of ML which is increasingly used in neuroimaging after leading to 

major scientific advances in the areas of speech recognition, computer vision and natural 

language processing by significantly outperforming other state-of-the-art classification 



methods (Krizhevsky et al., 2012; Le et al., 2012). There are two main characteristics that 

distinguish DL from conventional ML methods: first, DL is capable of learning features from 

the raw data without the requirement for a priori feature selection, resulting in a more 

objective or less bias-prone process; second, DL uses a hierarchy of nonlinear 

transformations, which make this approach ideally suited for detecting complex, scattered 

and subtle patterns in the data. Given its ability to detect abstract patterns from the data, DL 

can be considered a promising tool in neuroimaging, as most brain-based disorders are 

characterized by a scattered and diffused pattern of neuroanatomical and neurofunctional 

alterations (Plis et al., 2014). In previous sections of this review, we have described the most 

common DL architectures and have provided an overview of the studies that have applied DL 

to neuroimaging data to investigate psychiatric and neurological disorders. In this final 

section, we discuss the main themes that have emerged from the review of these studies. 

These will include (i) consistencies and inconsistencies in the existing literature (ii) the 

promise of CNNs, (iii) the issue of multiclass classification, (iv) how DL performs compared 

with conventional ML methods, (v) interpretability of DL in neuroimaging, (vi) the challenge of 

overfitting and (vii) technical expertise and computational requirements. We conclude by 

discussing possible directions for future research. 

 

4.1. Main conclusions from the existing literature 

The majority of published studies have been conducted in patients with MCI and/or AD; 

this may be explained by the availability of ADNI, a very large open-source dataset including 

thousands of patients, to the neuroimaging community (Mueller et al., 2005a, 2005b). 

However, studies have also been conducted in other disorders including ADHD, psychosis, 

TLE and cerebellar ataxia. Taken collectively, the findings published so far suggest that DL 

can be applied to neuroimaging data, including both structural and functional modalities, to 

classify diagnostic groups from healthy individuals. Indeed, the performance of the classifiers 

has been consistently high, with several studies reporting accuracies above 95% for binary 

classifications between patients and controls (Deshpande et al., 2015; Hosseini-Asl et al., 

2016; Payan and Montana, 2015; Sarraf and Tofighi, 2016; Suk and Shen, 2013; Suk et al., 

2015a; Suk et al., 2015b). Nevertheless, the application of a supervised model for diagnostic 



classification is arguably circular: since diagnostic labels in the training and testing datasets 

are predetermined through clinical examination, logic dictates that a perfect performance 

from an ML algorithm will simply mimic clinical assessment. Being able to predict a future 

diagnosis, or anticipate who will and will not benefit from a certain treatment, are questions of 

greater translational value in clinical practice. A total of 8 studies have applied DL to 

neuroimaging data acquired from individuals with MCI to predict subsequent transition to AD 

with promising results. For example, Suk et al. (2015a) successfully predicted conversion 

from MCI to AD with 83.3% accuracy, after combining structural MRI and PET data. 

However, no studies have yet examined transition to illness in other psychiatric disorders 

with a prodromal phase, such as psychosis, even though we know that it is possible to 

distinguish between converters and non-converters using conventional ML (Zarogianni et al., 

2013; Pettersson-Yeo et al., 2013; Valli et al., 2016). To our knowledge only one study has 

used DL to predict treatment outcome. Munsell et al., (2015) achieved an accuracy of 57% 

when classifying TLE patients who did and did not suffer from seizures after surgical 

intervention. As discussed earlier, however, this modest result could potentially be explained 

by the absence of formal strategies to avoid overfitting of the DL model.  

DL is a very flexible approach, meaning that is it possible to combine different 

architectures and manipulate a range of hyperparameters within the same model. In addition, 

the vast majority of existing studies have been published in the last 2 years, and therefore 

the field of DL applied to neuroimaging of brain-disorders should be considered still at a very 

early stage. Possibly as a result of this combination of flexibility and novelty, the methodology 

of the studies reviewed in this article varied considerably. For example, some studies 

employed a whole-brain approach whereas others focussed on a subset of regions of 

interest; some studies used the raw data without any form of feature selection whereas 

others performed a number of transformations on the data to select relevant features; and 

different studies used different DL architectures. Such methodological variability means that, 

at present, the reliability and replicability of the existing results remain unclear.  

 

 

 



4.2. The promise of convolutional neural networks  

CNNs are a particular type of feedforward neural network inspired by how the human 

visual cortex process information. Over the past decade, CNNs have been breaking records 

in computer vision across several competitions, making this approach a very promising one 

(Krizhevsky et al., 2012). Consistent with this, our review has shown that CNNs have 

generated the most encouraging results in the context of neuroimaging. In its raw form, 

neuroimaging data comprises millions of voxels. Considering the current computational 

resources available, putting all voxel intensities through a fully connected network would lead 

to an unfeasible number of weights to be estimated. Two intrinsic properties of CNNs - 

weight sharing and local connectivity - result in a significantly reduced number of weights, 

making it computationally possible to run the network at the voxel-level. Although in 

neuroimaging CNNs have only been used to examine MCI and AD patients, the accuracies 

of the studies published so far have been consistently high (i.e. ≥95% for AD and ≥86% for 

MCI versus controls). High accuracies have been observed with different modalities including 

structural MRI (Gupta et al., 2013; Hosseini-Asl et al., 2016; Payan and Montana, 2015), 

resting-state fMRI (Sarraf and Tofighi, 2016) and CT imaging (Gao and Hui, 2016), as well as 

with small (Gao and Hui, 2016; Sarraf and Tofighi, 2016) and large (Gupta et al., 2013; 

Hosseini-Asl et al., 2016; Payan and Montana, 2015) sample sizes. Hosseini-Asl et al. (2016) 

used an alternative and interesting approach which involved pre-training a CNN in one 

Alzheimer‟s dataset (CADDementia) and then fine-tuning and testing it in another dataset 

from the same diagnostic group (ADNI). The results were very promising for both 2-way and 

3-way classifications (HC vs. AD; HC vs. MCI; AD vs. MCI; and HC vs. AD vs. MCI), although 

it should be noted that the ADNI sample was of modest size. Taken together, these results 

are in line with the successful performances of CNN-based models reported in other scientific 

areas, and highlight CNNs as a promising tool in neuroimaging.  

 

4.3. From binary to multiclass classifications  

In the context of neuroimaging, the vast majority of conventional ML studies have relied 

on binary classifications involving the comparison between a group of patients and a group of 

healthy controls (Orrú et al., 2012; Wolfers et al., 2015). This can be explained by the fact 



that these studies have typically employed SVM, which was originally designed for binary 

classification problems (Hsu and Lin, 2002). However, the real challenge for clinicians is not 

to differentiate between patients and controls but to develop biomarkers which could be used 

to choose amongst alternative diagnoses or different stages of illness progression. Looking 

forward, therefore, ML models will need to be able to discriminate amongst several possible 

alternatives in order to inform real-world clinical decision making. Many approaches have 

been proposed to enable SVM to handle multiclass classification problems (Fei and Liu, 

2006; Hsu and Lin, 2002). However, this is still an active research area (Kumar and Gopal, 

2011) and none of the proposed approaches have been tested in the context of 

neuroimaging. Most neuroimaging studies using SVM addressed the multiclass problem by 

performing several binary classifications (for example, AD vs. HC, MCI vs. HC and AD vs. 

MCI) or one-against-all classifications (for example, AD vs. MCI & HC and MCI vs. AD & HC). 

DL however, requires less technical effort to perform multiclass comparisons, and therefore 

could provide a solution to this issue. This is mainly due to the use of the so-called softmax 

function in the output layer, which can be considered an extension of the binary logistic 

regression to several classes. Here the output reflects the probability of belonging to each 

class, which is a more intuitive index of class membership than some of the most 

sophisticated indices being developed for SVM multiclass solutions (Fei and Liu, 2006). In 

light of its suitability for multiclass classification, a number of studies have used DL to carry 

out 3 or 4-way classifications between different disorder subtypes or different stages of 

illness. For example, three of these studies were able to classify children into healthy controls 

and three ADHD subtypes (inattentive, hyperactive and combined) (Hao et al., 2015; Kuang 

and He, 2014; Kuang et al., 2014). Notably, there is also preliminary evidence for the use of 

DL to distinguish between individuals at no imminent risk of dementia, those identified at risk 

who will and will not develop dementia, and those with established Alzheimer‟s disease (Liu 

et al., 2015a; Liu et al., 2014; Suk et al., 2015b). These are encouraging findings, as they 

highlight how DL could help bridge the existing gap between neuroimaging findings and real-

world clinical practice.  

 

 



4.4. Is deep learning superior to conventional machine learning? 

Despite the success of DL in several scientific areas, the superiority of this analytical 

approach in neuroimaging is yet to be demonstrated. On the one hand, DL has been 

described as a potentially more powerful approach than conventional shallow ML, as it is 

capable of learning highly intricate and abstract patterns from the data, which can particularly 

useful in the case of brain-based disorders (Plis et al., 2014). On the other hand, given that 

neuroimaging data is very high-dimensional, the nonlinear approach of DL might not be 

advantageous as there are not enough data points to extract meaningful nonlinear patterns 

from the data, whereas the linear approach employed in conventional shallow ML might be 

more appropriate. Here we tried to clarify this issue by systematically examining the 

difference in performance between DL and conventional shallow ML in studies which used 

both approaches. A total of twenty-five studies reported classification accuracy for both DL 

and conventional shallow ML, with the latter being a kernel-based method, either SVM or 

MKL. For the majority of these studies DL performed better than conventional shallow ML as 

shown in Fig. 5, and in some cases the difference was by a reasonable margin (e.g. Han et 

al., 2015; Plis et al., 2014; Suk and Chen, 2013).  

From the available evidence, it is not clear whether DL tends to perform better under 

specific circumstances, for example depending on the modality type or the sample size. 

However, our systematic review provides anecdotal evidence that studies combining imaging 

and non-imaging data tend to have a larger margin in favour of DL (see Fig. 6). This is 

consistent with the notion that the association between brain abnormalities and cognitive 

symptoms, for example, is likely to exist at a deep and abstract level, and as such can be 

captured more effectively by DL methods than traditional shallow ML methods (Plis et al., 

2014). 

We know that the application of traditional shallow ML methods to neuroimaging data 

leads to higher and more stable accuracies as the sample size increases (Nieuwenhuis et al., 

2013). One would expect this to be especially true for DL: since a deep model is inherently 

more complex than conventional shallow ML models, larger sample sizes should be needed 

to compensate for the greater number of parameters to be estimated and to take full 

advantage of DL‟s ability to detect highly intricate and abstract patterns in the data. We were 



therefore expecting to see an increase in the margin by which DL outperforms kernel-based 

methods as sample sizes increase. Such increase however was not observed, as the pattern 

of difference in performance did not seem to vary systematically with sample size; one 

possibility is that larger sample sizes than those used in the existing literature would be 

required to detect increases in the margin by which DL outperforms kernel-based methods.  

In conclusion, our review suggests that, overall, DL performs better than conventional 

shallow ML. In light of the increasing interest in DL, however, we cannot exclude a 

publication bias which favoured studies showing the superiority of this new analytical 

approach relative to conventional shallow ML methods (Boulesteix et al., 2013). As the 

number of studies applying DL to neuroimaging data increases, a thorough assessment of 

publication bias would be useful to establish the reliability of this initial trend in favour of DL. 

 

4.5. Interpretability of DL in neuroimaging 

Despite having demonstrated state-of-the-art performances across several fields, DL has 

been under scrutiny for its lack of transparency during the learning and testing processes 

(Alain et al., 2016; Lou et al., 2012; Yosinski et al., 2015). For example, deep neural 

networks have been referred to as a “black box” in contrast with other techniques, such as 

logistic regression, which are less complex and more intuitive. Such lack of transparency has 

important implications for the interpretability of the results when DL is applied to 

neuroimaging data. Due to the multiple nonlinearities, it can be challenging to trace the 

consecutive layers of weights back to the original brain image in order to identify which 

features (e.g. regions) are providing the greatest contribution to classification (Suk et al., 

2015a). This information however would be useful in the context of clinical neuroimaging 

where the aim is not only to detect but also localise abnormalities. A first potential issue is 

that a model with an excellent performance may be using irrelevant features (e.g. orientation 

of the images, imaging artefacts), as oppose to clinically meaningful information (e.g. 

regional grey matter, connectivity between different brain regions), to classify participants. A 

second potential issue is that an accurate model which provides no information about the 

underlying neuroanatomical or neurofunctional alterations would be of limited clinical utility, 

for example with respect to treatment development and optimization.  



Despite its complex inner workings which make the visualization and interpretation of the 

weights challenging, DL can be used in a way which enables transparency. This is illustrated 

by several neuroimaging studies included in this review that did report the most important 

features (e.g., Deshpande et al., 2015; Kim et al., 2016; Liu et al., 2014; Suk et al., 2016). 

However, these studies used a variety of approaches to isolate the most informative features, 

and at present there is no standard and intuitive method for visualizing weights or interpreting 

latent feature representations (Suk et al., 2015a). This has motivated several attempts to 

develop new and intuitive ways of enhancing the interpretability of DL within the recent 

literature (e.g., Grün et al., 2016; Samek et al., 2015; Simonyan et al., 2013; Yosinski et al., 

2015; Zeiler and Fergus, 2014). There are two main methodological approaches to address 

this issue, including input modification methods and deconvolution methods. Input 

modification methods are visualization techniques that involve the systematic modification of 

the input and the measurement of any resulting changes in the output as well as in the 

activation of the artificial neurons in the intermediate layers of the network. An example of 

these methods is the so-called occlusion method (Zeiler and Fergus, 2013) which involves 

covering portions of the input image up to find the areas of the input data that influence the 

probability of the output classes. In contrast, deconvolution methods aim to determine the 

contribution of one or more features of the input data to the output. This involves selecting an 

activation of interest in an output neuron and then computing the contribution of each neuron 

in the next lower layers to this activation. Here a number of strategies are available to model 

the nonlinearities present across the layers, for example, deconvnet (Zeiler and Fergus, 

2013) and guided backpropagation (Springenberg et al., 2014). 

 

4.6. The challenge of overfitting  

Overfitting is arguably one of the main challenges in ML. Given their inherent complexity, 

DL networks are particularly prone to overfitting, i.e., learning irrelevant fluctuations in the 

data that limit generalizability. Not surprisingly, different approaches to address this issue, 

known as regularization strategies, have been developed and are now present in most DL 

algorithms. In section 2.1.4 we described some of the most commonly used regularization 

strategies applied to modern DL, namely weight decays and dropout. As expected, several 



studies reviewed here have used some form of regularization. The majority (e.g., Hosseini-

Asl et al., 2016; Kim et al., 2016; Liu et al 2015a) have employed the L1 or L2 norms, which 

prevent overfitting by penalizing very low or very high weight values. At least one study (Li et 

al., 2014) employed dropout, where a random number of nodes and respective connections 

are temporarily removed to extract different sets of features that can independently produce 

a useful output. The importance of regularization strategies in DL could potentially account 

for the fact that Munsell and colleagues, who trained 4- and 5-hidden layer models (for 

inferring diagnostic and treatment outcome, respectively) without using any form of 

regularization, reported such low performance for DL (Munsell et al., 2015).  

An additional approach for minimising the risk of overfitting involves reducing the 

dimensionality of the data before inputting them into the model. A possible way of achieving 

this is by extracting region- or patch-level features (as opposed to using voxel-level data). 

Using different types of features (whether voxel, patch or region) can have implications for 

how detailed the information inputted into the model is (for example, voxel-level features are 

very detailed, and also very noisy; region-level features on the other hand, ignore more 

localized patterns and are less sensitivity to noise). Another option to reduce dimensionality 

is feature selection. Feature selection is common in conventional ML, where linear methods 

such as principal component analysis, independent component analysis or elastic net, are 

used to select the most discriminating features that are then fed to a classifier. However, the 

use of conventional feature selection methods prior to a DL model seems counterintuitive, 

since one of the main advantages of DL is the ability to learn, through a purely data-driven 

method, the most useful features for classification. Several studies reported in this review 

have attempted to reduce the dimensionality of the data by extracting region- or patch-level 

features, using feature selection, or combining the two approaches. We note, however, that 

all CNN-based models were applied to voxel-level data without being preceded by any form 

of feature selection and yet reported consistently high performances on unseen data. This 

suggests that DL, and CNN-models and particular, can perform well with neuroimaging data 

without the requirement to downsize or even preprocess the data. For example, Hosseini-Asl 

et al. (2016) achieved high levels of accuracy after applying a CNN to voxel-level data 

without any preprocessing or even skull stripping of the images. This finding has potential 



implications for the development of clinical tools, as it suggests that it might be possible to 

apply DL to raw neuroimaging data, thereby saving time as well as technical resources.  

 

4.7. Technical expertise and computational requirements  

The studies reviewed in this article employed a wide range of DL architectures and 

hyperparameters. Such flexibility is what makes DL a very powerful tool but comes at a 

potentially high cost. The number of layers, the number of nodes within each layer and the 

activation function of each node are only a few examples of a long list of variables one has to 

consider when designing and optimizing a DL model. Automated optimization strategies are 

not yet widely available, making optimisation a manual process that requires a great deal of 

technical expertise and is potentially prone to subjective bias. Since the number of 

parameters to be estimated is very large, the computational requirements of DL are also 

more demanding than those of conventional ML methods. For example, Kim et al. (2016) 

reported that the estimation of a DL model with three hidden layers took 100 times longer 

than the estimation of a standard SVM model (~3.3 days vs. 0.8h).  However, with the fast-

growing availability of graphical processing units (GPUs), the application of DL to 

neuroimaging data is likely to become less and less time-consuming in the future.   

 

5. Conclusions and Future Directions  

While still in its initial stages, the application of DL in neuroimaging has shown promising 

results and has the potential of leading to fundamental advances in the search for imaging-

based biomarkers of psychiatric and neurologic disorders. Nevertheless, several 

improvements will be required before the full potential of DL in neuroimaging can be 

achieved. Firstly, given the complexity of DL models, we need to move away from studies 

with small to modest sample sizes in favour of much larger cohorts. A possible way of 

achieving this is through multi-centre collaborations, in which data is collected using the 

same recruitment criteria and scanning protocols across sites. A further way of increasing the 

sample size is through multi-site data sharing initiatives, such as ADNI for Alzheimer's 

disease and ADHD-200 for ADHD. Secondly, the integration of CNN and recurrent neural 

networks (i.e. networks that allow the processing of data with sequential inputs such as 



videos or speech) is likely to lead to significant advances in DL in the next few years 

(Donahue et al., 2015). In neuroimaging, this integration could be particularly useful for 

analysing fMRI data, as it would allow the detection of intricate spatial patterns while 

simultaneously modelling the temporal component of the BOLD signal. Thirdly, we anticipate 

that an increasing number of neuroimaging studies will make use of transfer learning, which 

involves using previously learned features from a large sample of similar enough images. 

This could help tackle the curse of dimensionality – a common problem in neuroimaging 

studies of brain disorders (Gupta et al., 2013; Hosseini-Asl et al., 2016). Evidence from vision 

science, where deeper models such as VGG net (Simonyan et al., 2014), residuals networks 

(He et al., 2015) and Inception-v4 (Szegedy et al., 2016) are achieving the highest 

performances, suggests that transfer learning could be particularly useful when deeper 

models are employed. Fourthly, we suggest that the so-called augmentation technique - 

which it is commonly used in computer vision – could be useful in the context of 

neuroimaging. This technique involves increasing the sample size by applying 

transformations to the data (e.g., rotation, shear, scaling), and then train a model that is 

invariant to such transformations. The use of augmentation could also address the issue of 

modest sample sizes and lead to a decrease in prepossessing time (because steps such as 

rotation may become redundant). Finally, the use of DL to predict continuous scores is 

another interesting area for further research with potential clinical applicability, following the 

encouraging results obtained using conventional ML methods (e.g. Gong et al., 2013; 

Stonnington et al., 2010; Tognin et al., 2014). So far, only one study has used DL to predict 

clinical scores from structural MRI scans in patients with Alzheimer‟s disease (Bosh and 

Tram, 2013).  

In conclusion, the capacity of DL models to learn complex and abstract representations 

through nonlinear transformations, makes this a promising approach to single subject 

prediction in neuroimaging. While there are still important challenges to overcome, the 

findings reviewed here provide preliminary evidence supporting the potential role of DL in the 

future development of diagnostic and prognostic biomarkers of psychiatric and neurologic 

disorders.  
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Fig. 1. (a) The building block of deep neural networks – artificial neuron or node. Each input 𝑥𝑖 has an 

associated weight 𝑤𝑖. The sum of all weighted inputs, Σ𝑥𝑖𝑤𝑖, is then passed through a nonlinear 

activation function 𝑓, to transform the pre-activation level of the neuron to an output 𝑦𝑗. For simplicity, 

the bias terms have been omitted. The output 𝑦𝑗 then serves as input to a node in the next layer. 

Several activation functions are available, which differ with respect to how they map a pre-activation 

level to an output value. The most commonly activation functions used are the rectifier function (where 

neurons that use it are called rectified linear unit (ReLU)), the hyperbolic tangent function, the sigmoid 

function and the softmax function. The latter is commonly used in the output layer as it can compute the 

probability of multiclass labels. (b) Example of a feedforward multilayer neural network (also referred to 

as multilayer perceptron) with two classes, in which the nodes in one layer are connected to all neurons 

in the next layer (fully connected network). For each neuron j in the first hidden layer, a nonlinear 

function is applied to the weighted sum of the inputs. The result of this transformation (𝑦𝑗) serves as 

input for the second hidden layer. The information is propagated through the network up to the output 

layer, where the softmax function yields the probability of a given observation belonging to each class.  

Fig. 2. Effect of the depth of the model. Each dot corresponds to a neuroimage-based data visualized in 

a two-dimensional map. With more hidden layers, the data becomes more easily separable due to 

nonlinear transformations along the network (Pills et al., 2014). 

Fig. 3. (a) Shallow or simple autoencoder. In its shallow structure, an autoencoder is comprised of an 

input layer, that represents the original data (e.g., pixels in an image), one hidden layer that represents 

the transformed data, and an output layer that reconstructs the original input data. (b) Stacked 

autoencoder. Two simple autoencoders are stacked with a 2-class softmax classifier as the final layer. 

From each simple autoencoder, the output layer is discarded, and the hidden layer is used as the input 

layer for next autoencoder.  

Fig. 4. Generic structure of a CNN. For illustrative purpose, this example only has one layer of each 

type; a real-world CNN, however, would have several convolutional and pooling layers (usually 

interpolated) and one fully-connected layer. (a) Input layer. In its simplest way, the data is inputted into 

the network in such a way that each pixel corresponds to one node in the  input layer. (b) Convolutional 

layer. A 3x3 filter or kernel (in green) is used to multiply the spatially corresponding 3x3 nodes in the 

image. The resulting weighted sum is then passed through a nonlinear function to derive the output 

value of one node in the feature map. The repetition of this same operation across all possible receptive 

fields results in one complete feature map. The same procedure with different kernels (in orange and 



blue) will result in separate complete feature maps. (c) Pooling layer. The size of each feature map can 

be reduced by taking the maximum value (or average) from a receptive field in the previous layer. 

Fig. 5. Results of studies comparing DL and kernel-based models. The graph shows the accuracies (F-

score for Plis et al., 2014) for DL models (blue), kernel-based models (red) and the difference between 

the two (green). HC, healthy controls; ADHD, attention deficit and hyperactive disorder; AD, Alzheimer‟s 

disease; MCI, mild cognitive impairment; MCI-NC, mild cognitive impairment non-converters; MCI-C, 

mild cognitive impairment converters; SZ, schizophrenia; TLE, temporal lobe epilepsy; TLEs, temporal 

lobe epilepsy with seizures after treatment; TLEns, temporal lobe epilepsy without seizures after 

treatment. 

Fig. 6. Difference in performance of DL against kernel-based methods for single modality, multimodal 

as well as for multimodal with cognitive/clinical data studies, according to sample size. 



 

       Table 1. Diagnostic studies. 

Authors, 
year 

Sample size Technique Features Previous 
feature 
selection 

DL 
architecture 

Comparison Accuracy (%) 

Gupta et al. 
(2013)

1
 

AD=200 sMRI WB voxel-
level 

No Sparse AE & 
CNN 

HC vs. AD  94.7 

MCI=411 HC vs. MCI 86.4 

HC=232 AD vs. MCI  88.1 

 HC vs. AD vs. MCI 85.0 

Payan and 
Montana 
(2015)

1
 

HC =755 sMRI WB voxel-
level 

No Sparse AE & 
CNN 

HC vs. AD  95.4 

AD = 755 HC vs. MCI 92.1 

MCI = 755 AD vs. MCI 86.8 

 HC vs. AD vs. MCI 89.5 

Hosseini-
Asl et al. 
(2016)

1,2
 

HC = 70* sMRI WB voxel-
level 

No AE & CNN HC vs. AD  97.6 

AD = 70*    HC vs. MCI 90.8 

MCI = 70*    AD vs. MCI 95.0 

    HC vs. AD vs. MCI 89.1 

Chen et al. 
(2015)

1
 

HC = 123 sMRI WB voxel-
level 

Yes SAE  HC vs. AD  89.0 

AD = 94 HC vs. MCI 81.7 

MCI = 121   

Liu et al. 
(2015a)

1
 

HC = 204 sMRI WB region-
level  

Yes SAE HC vs. AD  82.6 

AD = 180 HC vs. MCI 72.0 

MCI = 374   

Gao and 
Hui (2016) 

HC =117 CT WB voxel-
level 

No CNN HC vs. AD vs. Lesion 87.7 

AD = 51   

Lesions = 118   

Sarraf and 
Tofighi 
(2016)

1
 

HC =15 rsfMRI WB voxel-
level 

No CNN HC vs. AD  96.9 

AD = 28   

Suk et al. 
(2016)

1
 

HC = 31 rsfMRI WB region-
level  

Yes DAE HC vs. MCI 72.6 

MCI =31   

HC = 25 rsfMRI WB region-
level  

Yes DAE HC vs. MCI 81.1 

MCI = 12   

Hu et al. 
(2016)

1
 

HC = 52 rsfMRI WB region-
level 

No SAE HC vs. MCI 87.5 

MCI = 48     

Han et al. 
(2015)

1
 

HC = nr rsfMRI WB voxel-
level 

No AE & CNN HC vs. AD  80.0 

AD = nr   

Liu et al. 
(2015a)

1
 

HC = 77 sMRI & PET WB region-
level  

Yes SAE HC vs. AD  91.4 

AD = 85 HC vs. MCI 82.1 

MCI = 169   

Suk et al. 
(2014)

1
 

HC = 101 sMRI & PET WB region-
level  

Yes DBM HC vs. AD  94.9 

AD = 93 HC vs. MCI 80.6 

MCI = 204    

Liu et al. 
(2014)

1
 

HC =77 sMRI & PET WB region-
level  

Yes SAE HC vs. AD  87.8 

AD = 65 HC vs. MCI 76.9 

MCI = 169   

Suk et al. 
(2015b)

1
 

HC= 52 sMRI & PET 
& CSF 

WB region-
level  

Yes DW-S2 MTL HC vs. AD  95.1 

AD = 51 HC vs. MCI 80.1 

MCI = 99 HC vs. AD vs. MCI 62.9 

HC= 229 sMRI & PET 
& CSF 

WB region-
level  

Yes DW-S2 MTL HC vs. AD  90.3 

AD = 198 HC vs. MCI 70.9 



1 
ADNI dataset; 

2 
CADDementia dataset, 

3
ADHD-200 dataset; 

4
COBRE dataset; 

*
Sample sizes for the fine-tuning stage only (pre-training included an additional 386 

samples); 
**
F-score; 

***
Range of accuracies obtain from the different datasets used; HC, healthy controls; SZ, schizophrenia, FEP, first episode psychosis; ADHD, attention 

deficit/hyperactive disorder; ADHD-C, attention-deficit/hyperactive disorder combine subtype; ADHD-I, attention-deficit/hyperactive disorder inattentive subtype; ADHD-H, 

attention-deficit/hyperactive disorder hyperactive subtype; SCA2, spinocerebellar ataxia type 2; SCA6, spinocerebellar ataxia type 6; AT, ataxia-telangiectasia; TLE, 

temporal lobe epilepsy; AD, Alzheimer‟s disease; MCI, mild cognitive impairment; CC, cingulate cortex; VC, visual cortex, PFC, pre-frontal cortex; SSC, somatosensory 

cortex; sMRI, structural MRI; rsfMRI, resting-state functional MRI; CT, computed tomography; PET, Positron emission tomography; DTI, diffusion tensor imaging; CSF, 

cerebrospinal fluid; MMSE, mini mental state examination; ADASCog, Alzheimer's Disease Assessment Scale's cognitive subscale; AE, autoencoder, SAE, stacked 

autoencoder; FCC, fully-connected cascade; DBN, deep belief network, DBaN, deep Bayesian network; CNN, convolutional neural network; DAE, deep autoencoder; DBM, 

deep Boltzman machine; DW-S2 MTL, deep weighted subclass-based sparse multi-task learning; MLP, multilayer perceptron; nr, not reported.

MCI = 403 HC vs. AD vs. MCI 57.7 

Liu et al. 
(2015b)

1
 

HC =77 sMRI & PET 
& MMSE 

WB region-
level  

Yes SAE HC vs. AD  90.1 

AD = 85 HC vs. AD vs. MCI 59.2 

MCI = 169   

Suk et al. 
(2015a)

1
 

HC = 52 sMRI & PET 
& CSF & 
MMSE & 
ADASCog 

WB region-
level  

Yes SAE HC vs. AD  98.8 

AD = 51 HC vs. MCI 90.7 

MCI = 99 AD vs. MCI 83.7 

Li et al. 
(2014)

1
 

HC = 52 sMRI & PET 
& CSF & 
MMSE & 
ADASCog 

WB region-
level  

Yes MLP HC vs. AD  91.4 

AD = 51 HC vs. MCI 77.4 

MCI = 99   

Suk and 
Shen 
(2013)

1
 

HC = 52 sMRI & PET 
& CSF & 
MMSE & 
ADASCog 

WB region-
level  

No SAE HC vs. AD  95.9 

AD = 51 HC vs. MCI 85.0 

MCI = 99   

Han et al. 
(2015)

3
 

HC =  nr rsfMRI WB voxel-
level 

No AE & CNN HC vs. ADHD 65.0 

ADHD = nr   

Deshpande 
et al. 
(2015)

3
 

HC =744 rsfMRI WB region-
level  

Yes FCC HC vs. ADHD-C ~90.0 

ADHD-C = 260 HC vs. ADHD-I ~90.0 

ADHD-I = 173 ADHD-C vs. ADHD-I 95.0 

Kuang et al. 
(2014)

3
 

HC = 69 to 110 rsfMRI ROI (PFC) 
ROI (VC) 
ROI (CC) 

Yes DBN HC vs. ADHD-C vs. ADHD-I vs. ADHD-H 37.4 to 71.8
***

 

ADHD-C = 16 to 95 HC vs. ADHD-C vs. ADHD-I vs. ADHD-H 34.4 to 68.8
***

 

ADHD-I = 2 to 5 HC vs. ADHD-C vs. ADHD-I vs. ADHD-H 37.1 to 72.7
***

 

ADHD-H = 1 to 50   

Kuang and 
He (2014)

3
 

HC = 42 to 95 rsfMRI ROI (PFC) Yes DBN HC vs. ADHD-C vs. ADHD-I vs. ADHD-H 44.4 to 80.9
***

 

ADHD-C = 0 to 77   

ADHD-I = 0 to 44   

ADHD-H = 0 to 6   

Hao et al. 
(2015)

3
 

HC = 69 to 110 rsfMRI ROI (PFC, 
VC, SSC and 
CC 
combined) 

Yes DBaN HC vs. ADHD-C vs. ADHD-I vs. ADHD-H 48.9 to 72.7
***

 

ADHD-C = 16 to 95   

ADHD-I = 2 to 5   

ADHD-H = 1 to 50   

Plis et al. 
(2014) 

HC = 191 sMRI WB voxel-
level 

No DBN HC vs. SZ 91
**
 

SZ and FEP = 198   

Kim et al. 
(2016)

4
 

HC =50 rsfMRI WB region-
level  

Yes SAE HC vs. SZ 85.8 

SZ =50   

Munsell et 
al. (2015) 

HC = 48  DTI WB region-
level  

No SAE HC vs. TLE 69.0 

TLE = 70   

Yang et at. 
(2014) 

HC =31 sMRI ROI 
(Cerebellum) 

No SAE HC vs. SCA2 vs. SCA6 vs. AT 86.3 

SCA2 = 4   

SCA6 = 27   

AT = 18   



 

Table 2. Conversion to illness. 

1 
ADNI dataset; HC, healthy controls; AD, Alzheimer‟s disease; MCI-NC, mild cognitive impairment non-converters; MCI-C, mild cognitive impairment converters; sMRI, 

structural MRI; PET, Positron Emission Tomography; CSF, cerebrospinal fluid; MMSE, mini mental state examination; ADASCog, Alzheimer's Disease Assessment 

Scale's cognitive subscale; SAE, stacked autoencoder; DBM, deep Boltzmann machine; DW-S2 MTL, deep weighted subclass-based sparse multi-task learning; MLP, 

multilayer perceptron.

Authors, year Sample size Technique WB voxel-
level/ WB 
region-level/ 
ROI 

Previous 
feature 
selection 

DL 
architecture 

Comparison Accuracy (%) 

Liu et al. 
(2015a)

1
 

HC = 204 sMRI WB region-
level  

Yes SAE AD vs MCI-C vs MCI-NC vs HC 46.3 

AD = 180     

MCI-C=160     

MCI-NC=214     

Suk et al. 
(2014)

1
 

MCI-C = 76 sMRI & PET WB region-
level  

Yes DBM MCI-NC vs MCI-C 71.6 

MCI-NC =128     

Liu et al. 
(2015a)

1
 

HC = 77 sMRI & PET WB region-
level  

Yes SAE AD vs MCI-C vs MCI-NC vs HC 53.8 

AD = 85     

MCI-C=67     

MCI-NC=102     

Liu et al. 
(2014)

1
 

HC =77 sMRI & PET WB region-
level  

Yes SAE AD vs MCI-C vs MCI-NC vs HC 47.4 

AD = 65     

MCI-C= 67     

MCI-NC = 102     

Suk et al. 
(2015b)

1
 

MCI-C = 43 sMRI & PET & CSF WB region-
level  

Yes DW-S2 MTL MCI-NC vs MCI-C 74.2 

MCI-NC =56   AD vs MCI-C vs MCI-NC vs HC 53.7 

AD =51     

HC =52     

MCI-C = 167 sMRI & PET & CSF WB region-
level  

Yes DW-S2 MTL MCI-NC vs MCI-C 73.9 

MCI-NC =236   AD vs MCI-C vs MCI-NC vs HC 47.8 

HC= 52     

AD = 198     

Li et al. 
(2014)

1
 

MCI-C = 43 sMRI & PET & CSF & 
MMSE & ADASCog 

WB region-
level  

Yes MLP MCI-NC vs MCI-C 57.4 

MCI-NC =56     

Suk and Shen 
(2013)

1
 

MCI-C = 43 sMRI & PET & CSF & 
MMSE & ADASCog 

WB region-
level  

No SAE MCI-NC vs MCI-C 75.8 

MCI-NC =56     

Suk et al. 
(2015a)

1
 

MCI-C=43 sMRI & PET & CSF & 
MMSE & ADASCog 

WB region-
level  

Yes SAE MCI-NC vs MCI-C 83.3 

MCI-NC=56     



 

Table 3. Treatment outcome. 

HC, healthy controls; TLE-ns, temporal lobe epilepsy without seizures; TLE-ns, temporal lobe epilepsy with seizures; DTI, diffusion tensor imaging. 

Authors, year Sample size Technique WB voxel-level/ 
WB region-level/ 
ROI 

Previous 
feature 
selection 

DL 
architecture 

Comparison Accuracy (%) 

Munsell et al. (2016) TLEns = 41 DTI WB region-level  No SAE TLEns vs TLEs 57.0 

TLEs = 29      
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