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Aims: Aging, a physiological process andmain risk factor for cardiovascular and renal diseases, is associated with
endothelial cell dysfunction partly resulting fromNADPH oxidase-dependent oxidative stress. Because increased
formation of endothelium-derived endothelin-1 (ET-1) may contribute to vascular aging, we studied the role of
NADPH oxidase function in age-dependent contractions to ET-1.
Main methods: Renal arteries and abdominal aortas from young and old C57BL6 mice (4 and 24 months of age)
were prepared for isometric forcemeasurements. Contractions to ET-1 (0.1–100 nmol/L)were determined in the
presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). To exclude age-
dependent differential effects of NO bioactivity between vascular beds, all experiments were conducted in the
presence of the NO synthase inhibitor L-NAME (300 μmol/L).
Key findings: In young animals, ET-1-induced contractions were 6-fold stronger in the renal artery than in the
aorta (p b 0.001); inhibition of NADPH oxidase by gp91ds-tat reduced the responses to ET-1 by 50% and 72%
in the renal artery and aorta, respectively (p b 0.05). Aging had no effect on NADPH oxidase-dependent and
-independent contractions to ET-1 in the renal artery. In contrast, contractions to ET-1 were markedly reduced
in the aged aorta (5-fold, p b 0.01 vs. young) and no longer sensitive to gp91ds-tat.
Significance: The results suggest an age-dependent heterogeneity of NADPH oxidase-mediated vascular contrac-
tions to ET-1, demonstrating an inherent resistance to functional changes in the renal artery but not in the aorta
with aging. Thus, local activity of NADPH oxidase differentiallymodulates responses to ET-1with aging in distinct
vascular beds.

© 2013 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Endothelin-1 (ET-1) is the predominant isoform of three distinct
isopeptides constitutively secreted by endothelial and other vascular
cells, and the most potent endogenous vasoconstrictor known
(Yanagisawa et al., 1988; Kohan et al., 2011). The renal artery is partic-
ularly sensitive to ET-1 (Clozel & Clozel, 1989; Pernow et al., 1989;
Widmer et al., 2006), and an increase in renal artery tone may lead to
reduced kidney perfusion and subsequent activation of the renin–
angiotensin system,which contributes to the ET-1-dependent regulation
of basal vasomotor tone and blood pressure (Kohan et al., 2011; Haynes
& Webb, 1994; Barton & Shaw, 1997). However, ET-1 also induces
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vascular oxidative stress, inflammation and remodeling (Amiri et al.,
2004, 2008). Indeed, ET-1 contributes to vascular stiffening and calcifi-
cation with aging, which are all major independent cardiovascular risk
factors and associated with cardiovascular complications such as
myocardial infarction, stroke, and renal injury (Zieman et al., 2005).

ET-1 activates two G protein-coupled receptors, ETA and ETB (Kohan
et al., 2011). In the vascular wall, smooth muscle cells predominantly
express ETA receptors to mediate vasoconstriction, although contrac-
tions in response to ETB receptor activation have also been reported
for some vascular beds (Kohan et al., 2011). However, ETB receptors
are predominantly found on endothelial cells, where their activation
results in the release of the vasodilators nitric oxide (NO) and prostacy-
clin; moreover, ETB receptors are important for ET-1 clearance (Kohan
et al., 2011). ET-1 acts in concert with other endothelium-derived
contracting factors to balance the activity of endothelium-derived
relaxing factors (Feletou & Vanhoutte, 2006). However, vascular aging
impairs endothelial cell function favoring the production of contracting
factors, including ET-1 (Barton, 2010; Seals et al., 2011). We have previ-
ously shown that aging increases circulating ET-1 levels, functional
PH oxidase-mediated contractions to endothelin with vascular aging,
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endothelin converting enzyme activity in the aorta, as well as ET-1
expression in conduit and renal arteries of otherwise healthy, normo-
tensive animals (Barton et al., 1997; Goettsch et al., 2001). Accordingly,
aging augments endothelial ET-1 expression (Donato et al., 2009) and
ET-1-dependent vascular tone in human arteries (Van Guilder et al.,
2007; Thijssen et al., 2007; Westby et al., 2011). These findings point
towards an increase in ET-1 bioactivity with vascular aging, as also
evidenced from the increased exocytotic ET-1 release in aged endothe-
lial cells (Goel et al., 2010).

Many of the detrimental effects of vascular aging have been attributed
to the increased generation of oxygen-derived free radicals, particularly
superoxide (Barton, 2010; Seals et al., 2011; Oudot et al., 2006; Donato
et al., 2007). Although reactive oxygen species can stimulate ET-1 pro-
duction, ET-1 on the other handmay also induce superoxide generation
by activating NADPH oxidase (Pollock & Pollock, 2005). In young rats,
ET-1 enhances NADPH oxidase activity in carotid arteries (Li et al.,
2003), and induces contractions of renal arteries and aorta that are
partly mediated by NADPH oxidase-derived superoxide (Loomis et al.,
2005; Just et al., 2008). Moreover, activation of vascular NADPH oxidase
is likely involved in impaired endothelium-dependent vasodilation and
vascular remodeling due to ET-1 overproduction in transgenic mice
(Amiri et al., 2004). Likewise, NADPH oxidase has been identified as
an important source of ET-1 stimulated superoxide production in
mammary arteries and saphenous veins of patients with coronary
artery disease (Cerrato et al., 2012). These findings suggest that gener-
ation of NADPH oxidase-derived superoxide may contribute to the
ET-1-dependent regulation of vascular homeostasis in physiology and
disease.

It is however not known whether vascular aging affects contractile
responses to ET-1 mediated by NADPH oxidase. Given the physiological
importance and high sensitivity of the renal vasculature to ET-1 (Kohan
et al., 2011; Clozel & Clozel, 1989; Pernow et al., 1989; Widmer et al.,
2006), the present study was therefore designed to determine whether
age affects ET-1-induced contractions, particularly through NADPH
oxidase, in the renal artery. Parallel experiments were conducted in
the aorta, which has previously been shown to be sensitive to ET-1-
related vascular aging (Barton et al., 1997; Goettsch et al., 2001).
Materials and methods

Materials

ET-1 was from American Peptide (Sunnyvale, CA, USA), the NADPH
oxidase-selective inhibitor gp91ds-tat (Rey et al., 2001) from Anaspec
(Fremont, CA, USA), and the NO synthase inhibitor L-NG-nitroarginine
methyl ester (L-NAME) from Cayman Chemical (Ann Arbor, MI, USA).
All other drugs were from Sigma-Aldrich (St. Louis, MO, USA). Stock
solutions were prepared according to the manufacturer's instructions,
and diluted in physiological saline solution (PSS, composition in
mmol/L: 129.8 NaCl, 5.4 KCl, 0.83 MgSO4, 0.43 NaH2PO4, 19 NaHCO3,
1.8 CaCl2, and 5.5 glucose; pH 7.4) to the required concentrations before
use.
Animals

Young and old male C57BL6 mice (4 and 24 months of age, mean
body weight 29 ± 1 g and 31 ± 1 g, respectively, Harlan Laboratories,
Indianapolis, IN)were bred and housed at the animal research facility of
the University of NewMexico Health Sciences Center. Animals had free
access to standard rodent chow and water, with a 12 hour light–dark
cycle. All procedures were approved by the University of New Mexico
Institutional Animal Care and Use Committee and carried out in accor-
dance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals.
Please cite this article as: Meyer MR, et al, Functional heterogeneity of NAD
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Isolated vessel preparation

After mice were euthanized by intraperitoneal injection of sodium
pentobarbital (2.2 mg/g bodyweight), renal arteries and the abdominal
aorta were immediately excised and transferred into cold (4 °C) PSS.
Vessels were carefully dissected free from adherent connective tissue
and fat, cut into rings 2 mm in length, and transferred to organ cham-
bers of a Mulvany–Halpern myograph (620MMulti-Channel Myograph
System, Danish Myo Technology, Aarhus, Denmark) containing PSS.
Renal artery rings were mounted using two 25 μm tungsten wires
threaded through the vessel lumen and secured to mounting jaws,
whereas abdominal aorta rings were transferred onto 200 μm stainless
steel pins. The jaws or pins were connected either to a micropositioner
or to a force transducer for the recording of isometric tension.

Vascular pharmacology studies

After equilibrating for 30 min in PSS (37 °C, pH 7.4, bubbled with
21% O2, 5% CO2 and balanced N2), vascular rings were stretched step-
wise until the optimal passive tension for generating force during
isometric contraction was reached. Vessels were equilibrated for an
additional period of 30 min (renal artery) or 45 min (abdominal
aorta), and repeatedly exposed to K+ (PSS with equimolar substitution
of 60 mmol/L potassium for sodium) to confirm vascular smooth
muscle integrity and to determine maximal contractile responses. The
role of NADPH oxidase was studied by randomly treating the left or
right renal artery as well as one of two neighboring rings of the abdom-
inal aorta with the Nox-selective inhibitor gp91ds-tat (3 μmol/L for
30 min) (Rey et al., 2001; Park et al., 2004; Miller et al., 2005).
Gp91ds-tat consists of a 9-amino acid peptide of the Nox1/Nox2
catalytic subunits of NADPH oxidase (at the interface with p47phox,
which is essential for activity) linked to the 11-amino acid HIV-tat
peptide, which facilitates cellular entry (Rey et al., 2001; Brandes
et al., 2010). After the incubation period, vessels were exposed to cumu-
lative concentrations of ET-1 (0.1–100 nmol/L) or to the predominantly
α1-adrenergic agonist phenylephrine (1 μmol/L). All experiments were
performed following inhibition of NO synthase by L-NAME (300 μmol/L
for 30 min) to unmask contractions in the aorta (Widmer et al., 2006),
and to exclude ETB receptor-stimulated NO release (Kohan et al.,
2011) as well as potential differences in NO bioavailability between
vascular beds and age groups (Barton, 2010; Seals et al., 2011).

Data calculation and statistical analyses

Data are expressed asmean ± SEM; n equals the number of animals
used. Contractions to ET-1 are given relative to K+ (60 mmol/L)-
induced responses. Fitting of dose–response curves to calculate area
under the curve (AUC), EC50 values (as negative logarithm, pD2) and
maximal responses was performed as described by DeLean et al.
(1978). Data was analyzed using two-way analysis of variance (ANOVA)
followed by Bonferroni's post-hoc test (Prism version 5.0 forMacintosh,
GraphPad Software, San Diego, CA, USA). A p b 0.05 value was consid-
ered significant.

Results

The renal artery is resistant to ET-1-related functional aging

To study the functional effects of aging on ET-1-dependent vascular
tone, we first determined contractile responses in young and old mice
(4 and 24 months of age). ET-1 induced potent contractions in the
renal artery of young animals that were 6-fold stronger compared to
the abdominal aorta (102 ± 4% vs. 18 ± 4%, n = 4–8, p b 0.001,
Fig. 1A). In the aorta, aging reduced contractions to ET-1 by 78% (from
18 ± 4% to 4 ± 1%, n = 5–8, p b 0.01, Fig. 1A), whereas there was no
change in the renal artery (102 ± 4% vs. 92 ± 8%, n = 4–5, p = n.s.
PH oxidase-mediated contractions to endothelin with vascular aging,
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Fig. 1. Effect of aging on contractions to endothelin-1 and K+ in the renal artery and abdominal aorta. Maximal effects (A) and the sensitivity (pD2 values, B) of endothelin-1-induced
contractions in young (4 months) and old (24 months) mice were calculated by fitting of dose–response curves (0.1–100 nmol/L) (DeLean et al., 1978). K+ (60 mmol/L) was utilized
to determine maximal smooth muscle contractile capacity for generating force (C). *p b 0.01 vs. young animals; †p b 0.05 vs. renal artery (n = 4–12).
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vs. young, Fig. 1A). Consistentwith thesefindings, the sensitivity to ET-1
was slightly but significantly greater in the renal artery compared to the
abdominal aorta of young and old mice (n = 4–8, p b 0.05, Fig. 1B).
Age-dependent differential effects on responses to ET-1 were likely
not due to an altered contractile function of the smooth muscle, since
the force response to K+ (60 mmol/L) in either vascular bed was unaf-
fected by aging (Fig. 1C). Taken together, these findings indicate that
responses to ET-1 in the renal artery are highly potent and resistant to
vascular aging.

Local activity of NADPH oxidase regulates ET-1-induced contractions

We next studied whether contractions to ET-1 depend on functional
NADPH oxidase with vascular aging, a condition characterized by
increased oxidative stress (Barton, 2010; Seals et al., 2011; Oudot
et al., 2006; Donato et al., 2007). In renal arteries of both young and
old animals, the NADPH oxidase-selective inhibitor gp91ds-tat (Rey
et al., 2001) potently and equally reduced ET-1-induced contractions
(50% reduction, n = 4–6, p b 0.001, Fig. 2), consistent with the pre-
served response to ET-1 with aging in this vessel. The sensitivity to
ET-1 (pD2 values) remained unaffected by gp91ds-tat (not shown).
Similarly, contractile responses to the predominantly α1-adrenergic
agonist phenylephrine (1 μmol/L) did not differ between young and
old animals (106 ± 5% vs. 102 ± 3%, n = 5, p = n.s.) and were
comparably reduced by gp91ds-tat, independent of age (25% and 22%
reduction, n = 5, p b 0.01). These findings further corroborate the ob-
servation that NADPH oxidase-dependent and -independent responses
in the renal artery are resistant to functional aging.
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In the abdominal aorta, however, inhibition of NADPH oxidase
activity in young animals reduced responses to ET-1 to the level seen in
old animals (4-fold, from 18 ± 4% to 5 ± 1%, n = 4–8, p b 0.05, Fig. 3).
In contrast, the blunted response to ET-1 in aged abdominal aortas
was unaffected by inhibition of NADPH oxidase (4 ± 1% vs. 4 ± 2%,
n = 5, p = n.s., Fig. 3), indicating that aging reduces contractions to
ET-1 in the abdominal aorta by abolishing the contribution of NADPH
oxidase.

Discussion

The present study investigated howNADPH oxidase and the physio-
logical aging process affect ET-1-dependent contractions in the renal
artery and abdominal aorta of healthymice.We show that ET-1 induces
highly potent NADPH oxidase-dependent and -independent responses
in the renal artery that are resistant to vascular aging. In contrast,
ET-1-induced contractions in the abdominal aorta are weak and further
reduced by aging due to loss of NADPH oxidase activity. These findings
are the first demonstration of an age-dependent, localized role of
NADPH oxidase in specific vascular beds that determines ET-1-
dependent arterial tone and suggest that the renal artery is resistant
to NADPH oxidase-related functional aging.

An augmented release of ET-1 and other contracting factors by
endothelial cells plays a significant role in the pathophysiology of
vascular aging (Barton, 2010; Seals et al., 2011). In addition to enhanced
vasomotor tone (Van Guilder et al., 2007; Thijssen et al., 2007; Westby
et al., 2011), age-dependent increases in the bioactivity of ET-1
have been implicated in vascular oxidative stress, inflammation and
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Fig. 3. Effect of aging on NADPH oxidase-dependent contractions to endothelin-1 (ET-1) in the abdominal aorta. Concentration-dependent responses to ET-1 were determined in young
(4 months) and old (24 months)mice in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat (3 μmol/L). Area under the curve (AUC) of ET-1-induced contrac-
tions is expressed as arbitrary units (AU). *p b 0.05 vs. untreated; †p b 0.05 vs. young animals (n = 4–8).
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remodeling (Amiri et al., 2004, 2008), which in turn promote arterial
stiffening and calcification (Zieman et al., 2005). Although ET-1-
induced contractions display a marked heterogeneity between vascular
beds and are generally less potent in mice compared to other species
(Widmer et al., 2006; Wiley & Davenport, 2004), the renal vascular
bed and particularly the main renal artery are highly sensitive to ET-1
as shown in the present and previous studies (Kohan et al., 2011;
Clozel & Clozel, 1989; Pernow et al., 1989; Widmer et al., 2006). We
now demonstrate that the potent responses to ET-1 are preserved in
old mice, suggesting that the responsiveness to ET-1 in the renal vascu-
lature, unlike the aorta, remains intact with aging. It is, however, impor-
tant to note that acute, exogenous application of ET-1 might not
necessarily reflect its chronic autocrine and paracrine actions within
the vascular microenvironment (Kohan et al., 2011). In fact, aging has
been found to increase endogenous vascular and renal ET-1 bioavail-
ability (Goettsch et al., 2001; Donato et al., 2009; Lattmann et al.,
2005), which in turn can down-regulate ETA receptor expression
(Lattmann et al., 2005; Clozel et al., 1993; Kuc & Davenport, 2000),
potentially leading to reduced responsiveness to ET-1 as observed in
other vascular beds (Barton et al., 1997; Ishihata et al., 1991; Shipley &
Muller-Delp, 2005; Modrick et al., 2012). However, the preserved,
potent contractions to ET-1 in the aged renal artery argue against such
a compensatory change in vascular ETA receptor function. Despite the
fact that the kidney already displays the greatest ET-1 concentration
of all tissues under physiological conditions (Kitamura et al., 1989)
that increases further with aging (Lattmann et al., 2005), other mecha-
nisms known to potentiate ET-1-induced responses such as cross-talk
with the renin-angiotensin or the adrenergic systems (Kohan et al.,
2011) might also contribute to the maintained high responsiveness to
ET-1 in the aged renal artery.

The finding that ET-1-induced contractions remain unaffected with
vascular aging in the renal artery but not in the abdominal aorta is
strengthened by the fact that responses are independent of NObioavail-
ability, whichmay be affected by both aging and superoxide production
(Barton, 2010; Seals et al., 2011). Thus, since all experiments were
performed in the presence of the NO synthase inhibitor L-NAME, the
observed age-dependent differences in ET-1-dependent contractility
between vascular beds are unrelated to basal or endothelin ETB
receptor-stimulated NO release as previously found in rat coronary
arterioles (Shipley & Muller-Delp, 2005). The use of the NO synthase
inhibitor also excludes potential confounding effects on vascular
reactivity resulting from altered expression levels of endothelial and
inducible NO synthase with aging (Goettsch et al., 2001). Moreover, it
is unlikely that the blunted response to ET-1 in the abdominal aorta of
aged animals was due to a non-specific decline in smooth muscle con-
tractile function, since the responsiveness to K+ did not change with
age. Furthermore, K+-induced contractions in abdominal aortas and
renal arteries varied by only 1.5-fold and thus cannot account for the
Please cite this article as: Meyer MR, et al, Functional heterogeneity of NAD
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observed marked differences in ET-1-dependent contractility between
those vascular beds.

Increased production of oxygen-derived free radicals by NADPH
oxidase, uncoupled endothelial NO synthase, and xanthine oxidase has
been implicated in the physiology of vascular aging (Barton, 2010;
Seals et al., 2011; Oudot et al., 2006; Donato et al., 2007). Since vascular
responses to ET-1 partly depend on its ability to stimulate superoxide
production by NADPH oxidase (Amiri et al., 2004; Pollock & Pollock,
2005; Li et al., 2003; Loomis et al., 2005; Just et al., 2008), we hypothe-
sized that NADPH oxidase function might, at least in part, determine
contractile responses to ET-1 with aging. In arteries of young mice, we
found that the NADPH oxidase-selective inhibitor gp91ds-tat (Rey
et al., 2001) largely reduces contractions to ET-1. Gp91ds-tat was origi-
nally designed to be a selective inhibitor for the Nox2 catalytic subunit
(Rey et al., 2001), but likely also inhibits the assembly of Nox1 due to
its high sequence homology to the Nox2 isoform (Brandes et al., 2010;
Williams & Griendling, 2007). Thus, the data from the present study
suggest that ET-1-dependent contractions depend on the activity of
the inducible, superoxide-generating Nox1 or Nox2 isoform (Brandes
et al., 2010). In line with our observations, a previous study in rats
demonstrated that apocynin attenuates ET-1-dependent reductions in
renal blood flow by 35% (Just et al., 2008), although apocynin might
not be considered a specific NADPH oxidase-specific inhibitor, since it
may also exert potent antioxidant and other effects (Brandes et al.,
2010). In the present study we now demonstrate that contractions to
ET-1 are indeed NADPH oxidase-dependent, and that the NADPH-
oxidase dependent contribution to the ET-1 response remains unaffected
by aging in the renal artery. In contrast, NADPH oxidase-dependent
contractions to ET-1 are abolished in the abdominal aorta of otherwise
healthy aged animals, indicating an age-dependent, localized role of
NADPH oxidase in the regulation of ET-1-dependent responses in the
arterial vascular tree. Of note, these findings are not inconsistent with
previous reports showing increased vascular ROS activity with aging
(Barton, 2010; Seals et al., 2011; Oudot et al., 2006; Donato et al.,
2007), since agonists other than ET-1 may differentially regulate func-
tional NADPH oxidase activity. Furthermore, alternative vascular
sources of ROS might become activated in the murine renal artery and
abdominal aorta with aging (Barton, 2010; Seals et al., 2011).

To the best of our knowledge, the present study is the first demon-
stration of a specific role of NADPH oxidase activity for the regulation
of vasomotor tone in different vascular beds. However, the underlying
mechanisms remain unclear. Different levels of expression or activity
of components of the NADPH oxidase multienzyme complex that are
sensitive to vascular aging, such as Nox2 and p47phox (Oudot et al.,
2006; Donato et al., 2007; Takenouchi et al., 2009), might contribute
to the observed heterogeneous responsiveness to ET-1 in different
vascular beds. Furthermore, activity of NADPH oxidase might be locally
regulated by factors known to contribute to oxidative stress-driven
PH oxidase-mediated contractions to endothelin with vascular aging,
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vascular aging, such as the aging-associated genes klotho (Wang et al.,
2012) and silent information regulator 1 (SIRT1) (Zarzuelo et al.,
2013), or the transcription factor JunD (Paneni et al., 2013).

Conclusions

The present study demonstrates that contractions to ET-1 in the
aorta and renal artery of healthy youngmice to a substantial degree de-
pends on NADPH oxidase activity, one of the major vascular sources of
reactive oxygen species. With aging, localized regulation of NADPH ox-
idase activity appears to determine the functional response to ET-1 in
different vascular beds. Of note, the preserved, highly potent and partly
NADPH oxidase-dependent reactivity to ET-1 in the aged renal artery
might have clinical implications. Indeed, both oxidative stress and
increased ET-1 bioactivity have been implicated in age-dependent im-
paired endothelial cell function (Barton, 2010; Seals et al., 2011),
which is associated with arterial stiffening and sclerosis (Zieman et al.,
2005), and consecutive renal injury (Zhou et al., 2008). Antagonizing
ET-1-dependent effects have previously been found to improve endo-
thelial function in individuals with early coronary artery disease
(Reriani et al., 2010), and even to reverse renal aging and glomerular vas-
cular injury (Ortmann et al., 2004). Moreover, treatmentwith an ETA re-
ceptor antagonist reduces arterial stiffness in patients with chronic
kidney disease (Dhaun et al., 2009). Thus, similar treatment strategies
might be suitable to protect from age-induced changes in the renal vas-
cular bed, such as impaired renal hemodynamics, renal arterial sclerosis
and subsequent renal ischemia that are critically involved in progres-
sive loss of kidney function with aging (Zhou et al., 2008).
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