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Abstract

Aims:. Intracardiac injection of recombinant EphrinAliRumediately following coronary artery ligation inice
reduces infarct size in both reperfused and noeffeped myocardium, but the cellular alterationisite this

phenomenon remain unknown.

Main methods. Herein, 10 wk-old B6129SF2/J male mice were exgdsecute ischemia/reperfusion
(30minl/24hrsR) injury immediately followed by iarardiac injection of either EphrinAl-Fc or IgG-Rdter 24
hrs of reperfusion, sections of the infarct maiigithe left ventricle were imaged via transmissébectron
microscopy, and mitochondrial function was assessbdth permeabilized fibers and isolated mitoahan to

examine mitochondrial structure, function, and gagcs in the early stages of repair.

Key findings: At a structural level, EphrinAl-Fc administratiprevented the I/R-induced loss of sarcomere
alignment and mitochondrial organization alongZhgisks, as well as disorganization of the cristaé loss of
inter-mitochondrial junctions. With respect to hieegetics, loss of respiratory function induced/BRywas
prevented by EphrinAl-Fc. Preservation of cardiaefergetics was not due to changes in mitochohndtizO,
emitting potential, membrane potential, ADP affmigfficiency of ATP production, or activity of theain
dehydrogenase enzymes, suggesting that EphrinAdeirectly maintains respiratory function via pression of
the mitochondrial network. Moreover, these protecgffects were lost in isolated mitochondria, Hert

emphasizing the importance of the intact cardiongy@altrastructure in mitochondrial dynamics.

Significance: Collectively, these data suggest that intracardigection of EphrinAl-Fc protects cardiac functioy
preserving cardiomyocyte structure and mitochohdi@energetics, thus emerging as a potential gerac

strategy in I/R injury.

Key words: myocardial infarction, ephrinAl, mitochondrial bizergetics, cardioprotection
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I ntroduction

Cardiovascular disease remains the number one chdsath in the US, accounting for 1 in 3 deatisually.
Heart attacks occur at a rate of one every 40 skscand incur over $12 billion in health care exgsrelone [1].
The epidemiologic, financial, and social burderoasged with acute and chronic heart conditionsypounded by
a growing aged population and numerous co-morkglittontinues to intensify the prevalence of hdiagase as a
substantial public health problem. Reperfusiortristy necessary to rescue the ischemic myocardhumit is
widely known that reperfusioper seis causative of further damage [2], which ultinhaggffects the prognosis of
patients who have survived myocardial infarctioh [Bespite the significant advances in basic redearade over
the last 40 years, treatments that can effectiradyce acute ischemic injury have yet to succdggkedhch the

clinical realm.

Mitochondrial function has been increasingly redagd as a key factor in cardiovascular diseasaaatardial
infarction [4, 5]. Several, if not all, of the maldar changes that elicit cardioprotection andtmuo after an
ischemic insult converge in the mitochondria [6aMipulation of the metabolic profile of cardiomytey during
ischemia/reperfusion (I/R) injury is currently bgiexplored as a potential strategy for mitigatibtigsue injury
[7]. However, controversy exists in the field aghe role and relative contribution of differenpasts of
mitochondrial function during I/R injury, includingjterations in substrate utilization, electromsigort, calcium
handling, and oxidative stress [4, 8, 9]. Nonetb&leecent findings on the spatio-temporal orgaioizaf the
mitochondria in cardiomyocytes supports the noti@t the maintenance of the electrical “power gttt
conforms the mitochondrial network is a key detexanit of the cardiomyocyte’s capacity to enduresahémic
insult [10]. Consequently, mitochondrial-targetedrapies are currently being developed to treeisic heart

disease and cardiomyopathy [11].

EphrinAl, a highly-conserved membrane-anchoredateceyrosine kinase ligand expressed in healthyimelas
well as human cardiomyocytes, is lost followingischemic event [12-14]. Previous work from our grdwas
shown that intracardiac injection of its recombinfamm (EphrinAl-Fc) at the time of coronary artéigation in
mice reduces infarct size, cardiomyocyte apoptesid,inflammation in both acute ischemia/reperfys&d and

chronically non-reperfused [12] myocardium. Speailly, in acute I/R we observed 46% reduction faiat size,
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complete preservation of cardiac function, and gleanin metabolic protein levels that suggested awgxut ischemic
tolerance however, the specific cellular alteratibehind these rescue effects remain unknown [IBg ability of
a terminally differentiated cardiomyocyte to witlistl an ischemic insult is inextricably linked teegetics and
cellular ultrastructure [15]. With the combinatiohelectron microscopy imaging and high-resolutiitochondrial
respirometry, the present work comprises a thorauggbchondrial phenotyping study to assess the anpf
ephrinAl-Fc (EA1) intramyocardial administration cerdiomyocyte bioenergetics in the context of ad(R

injury.

M ethods

Animals and Ethical Statement. All animal research protocols were approved byEhst Carolina University
Institutional Animal Care and Use Committee (IACUGIJowing the guidelines of the National Institatef Health
for the Care and Use of Laboratory Animals. The &&pent of Comparative Medicine at The Brody Schajol
Medicine, East Carolina University, maintained aalicare. 10-week old, male B6129SF2/J mice purchfisen
The Jackson Laboratory (stock #101045) were housademperature-controlled (22 °C) facility witli2 hr
light/dark cycle, and free access to food (standamv diet) and water. Mice were randomized sham-operated
control group (CTL; n=17), or acute ischemic injéoylowed by reperfusion containing either IgG-Fe21; 110-
HG, R&D) or EphrinAl-Fc (n=18; Sigma, E9902) (I/Rdal/R+EAL, respectively). To perform the thoracoio
mice were anesthetized with an intraperitoneaktiga of Avertin (20 mg/Kg BW) and mechanically viated
with 95% G/5% CQ. Acute ischemic injury was induced by a 30 minlasion of the left anterior descending
coronary artery (LAD). Ischemia was confirmed bsibie blanching of the tissue distal to the ocauosLigation
was immediately followed by intracardiac injectioh6pg/6uL EphrinAl-Fc or IgG-Fc into the infarcangin
(border between healthy, pink tissue and the isahesgion as evidenced by tissue pallor), as preshodescribed

and shown_(https://www.jove.com/video/2581/cororantery-ligation-intramyocardial-injection-murineetel )

[16]. Briefly, this was done using a Hamilton syggé with a 30gauge beveled sterile needle whichimgested into
the anterior wall at an angle of approximately &b&dve and to the right (toward the right ventricd&)he ligation,

advanced into the infarct margin (approx. 3mm; gdeefer Fig 3 in JOVE protocol link above and Bt al. 2011,
Fig 1), and slowly withdrawn after the injectionrténimize extrusion of the injectate that occur@a®nsequence

of contraction [16]. After closing the ribcage amdscle, administration of 1-3 drops of 0.25% miared.:10 in
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sterile saline to the muscle, and suturing the,gkine were housed in a warm chamber until thegvered sternal
recumbency and returned to the vivarium. We haegipusly found that that the injection does notseanotable
injury and the injectate is washed out after 4 baar, to save on animals and reagents, we didonatiditional in
vivo studies with IgG-Fc and ephrinAl-Fc injectioithout I/R. After 20-24 hrs of reperfusion, coiaes animals
underwent echocardiographic assessment and wesecudntly anesthetized with euthasol (100 mg/Kg BWg
after ensuring adequate sedation with negativeorespto toe-pinch, the thoracic cavity was openegéinove the
heart. Heart sections were allocated to the reseassays as shown in Figure 1. Isolated mitoctiart
permeabilized cardiac muscle fibers were obtaineah fsection #2 from the left ventricle (Figure d)assess
parameters of mitochondrial structure, functiord anergetics. No mice died but 2 mice in the IgGyfaup were

excluded due to HR below 400BPM.

Echocardiography and strain analyses. Mice were conscious and gently restrained in pruygtion on a plexiglass
board using elastic cord and wire loops on each.lidsing an MX400 22-55MHz linear-array transdu@ésvo
3100 Imaging System, VisualSonics, Toronto, Canatahdard short- and long-axis views were obtaatdte
mid-papillary level in both M- and B-mode at >20@rhes/second [17, 13, 18]. Image analysis was ipaet
offline using a speckle-tracking algorithm providegVisualSonics (VevoStrain, VisualSonics). Echrdazgraphic
images showing the parasternal long axis view (P§Lyere used to obtain LS and GLS measurementgeThr
cycles of successive R-waves were selected fokpaacking. Four endocardial points were selectethe echo
in a frame between systole and diastole. Acquisiéind analyses were performed blindly by the saaiedd

investigator. No differences in heart rate (HR) @vebserved.

Fixation. Hearts were cut into 2-3 nfroubic pieces using a sharp scalpel and fixed dgetin 3 % glutaraldehyde
and then post-fixed for one hour in 1 % osmiunobdgtte (Stevens Metallurgical) [19]. Tissues werenth
dehydrated by passage through an ethanol serie§@235, 95 and 100 %, 15 min each) and embedded i
increasing concentrations of Spurr media in eth@®P6 for 30 min, 70 % one hr, 100 % for 2 hrs) 0 for 30
min). Tissues were cut into ultrathin sections{itt) and placed on fresh plasma-etched 200hexageh ocupper

grids (Electron Microscopy Science).



136 Transmission electron microscopy. Sections were examined in a 1200 EX transmissiectron microscope (JEOL)
137 at 80-kV accelerating voltage, and images wererdmzbusing an EMSIS MegaView G3 charge-coupledagevi
138 digital camera (Munster, Germany) [19]. Approxintateine images were collected at x10,000 to maxémiz

139 coverage of broader region from each mouse (n #8/group), with each EM image depicting 24-78 wiitondria
140 (average 62; total ~500/mouse heart). Mitochondwaldimensional morphology parameters were detesthi

141 manually using ImageJ software as previously deedr[20]: 1) Mitochondrial size is reported as auef area in
142 squared micrometers, 2) mitochondrial externalmetér in micrometers, 3) the aspect ratio (AR) @spnts the
143 length-to-width ratio and is calculated as [majisaninor axis] in arbitrary units, 4) the form fac (FF) reflects
144 the branching aspect of mitochondria and is caledlas (external perimef§{4n*surface area)] in arbitrary units,
145 5) circularity and roundness, computed agdurface area/perimefgand (4*surface areaj{major axi<)

146 respectively, comprise measures of sphericity, ehatues of 1 resemble perfect spheroids in aritraits. The
147 number of electron-dense inter-mitochondrial jumasi (IMJs) was determined as in [21], as well astlimber of
148 lipid droplets.

149

150 Western Blotting. Whole left ventricles previously stored in -80WR€re homogenized in Protein Extraction Reagent
151 Type 4 (Sigma C0356), supplemented with protedsi®itor (ThermoFisher A32953) for detection of seale

152 proteins by Western blotting. Primary antibodieagtd were SERCA2 ATPase (ThermoFisher, cat. #MA),
153 GRP78/ HSPAS (ThermoFisher, cat. #PA1-16857), BédThermofisher, cat. #PA1-16857), ChChd3

154 (Thermofisher, cat. #PA 5-31578), Mfnl (ThermoFisloat. #PA5-38042), OPAL (ThermoFisher, cat. #PA1l-
155 16991), Fisl (PA 1-41082), Drpl (PA5-34768), EpAdiSantaCruz Biotechnology, cat #Sc-911), GAPDHI(C
156 Signaling, cat #2118), alpha tubulin (Invitrogeat.@138000), and phospho-alpha tubulin (Tyr272efmoFisher,
157 cat. #PA5-37831). Membranes were blotted usingeeitiouse 1gG-Fc secondary antibody (Thermo scieruit.
158 #31455) or rabbit IgG HRP-conjugated antibody (R&Btems cat. #HAF008), and the chemiluminescerstsatle
159 SuperSignal West Pico PLUS (ThermoFisher, cat. #8YiGand imaged in a ChemiDoc-ItTS2 810 Imager, UVP
160

161 Permeabilized muscle fiber bundle (PmFB) preparation. A section of the left ventricular free wall wasskcted and
162 immediately placed in ice-cold buffer X (50 mM K-BE35 mM KCI, 7.23 mM KEGTA, 2.77 mM CaKEGTA,

163 20 mM imidazole, 20 mM taurine, 5.7 mM ATP, 14.3 nplosphocreatine, and 6.56 mM Mg6H20, pH=7.1)
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for mechanical separation with fine forceps unddisaecting microscope as described elsewhere $parated
LV fiber bundles were incubated in buffer X contagn30 pug/mL saponin, for 30 min at 4 °C, and ttransferred
to buffer Z (105 mM K-MES, 30 mM KCI, 1ImM EGTA, 1M K,HPQ,, 5 mM MgCh-6H20, 0.5 mg/mL BSA,
pH=7.1) at 4 °C for 15 min. At the conclusion ddpiatory assessment, fibers were rinsed igQlkind freeze-dried

(typical dry weight 0.1 - 0.2 mg).

Mitochondrial respiratory capacity (JO,) and JH,O, emitting potential. Respiratory capacity in PmFBs or isolated
mitochondria from LV was measured by high-resolutiespirometry (O2K, OROBOROS Innsbruck, Austria),
buffer Z supplemented with 20 mM creatine monohteleand 10 M blebbistatin, at 37 °C to inhibit mgds. To
assess lipid and Krebs cycle intermediates-suppoetgpiration, substrates were sequentially adadlei following
concentrations: 18 puM Palmitoyl-carnitine, 5 mM &rgitine, 0.5 mM malate, 4 mM ADP, 10 mM pyruval®,

mM glutamate, 10 mM succinate. For experimentsgusialated mitochondria, 25 pg of total mitochoatgrotein
was usedJH,O, was measured using the Amplex UltraRed/Horserdelisbxidase fluorescence system in buffer Z
supplemented with 10 uM Amplex UltraRed (Invitrogeh U/mL horseradish peroxidase, 20 U/mL CuZn
superoxide dismutase, and 10 uM Blebbistatin. Bats collected in a Fluorolog spectrofluorometer BHBA

Jobin Yvon), at 37 °C. 10 mM succinate or 18 pMpdyl-carnitine + 5 mM L-carnitine was added falled by 1

UM 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), Mauranofin.

Determination of the mitochondrial thermodynamic force-flow relationship. As initially described by B. Glancy, et
al. and successfully implemented by others [23, Pdérmediate steady-state ratesd©f were measured at
different levels of metabolic demand (ATP/ADP ratising a progressive creatine kinase (CK) clah7&C.

With known concentrations of creatine, phosphoaneaiATP, and the CK equilibrium constant, the AABP ratio
and therefore the free energy of ATP hydrolygi€fp) can be calculated fromkGarp = AGatp° — 2.3
RT*K*2.3*10g[([PCr]K ck)/[Cr][Pi])], where AGatp® is the standardGarp (—=7.592 kcal/mol), R is the gas constant
(1.987 cal K mol™®), and T is the temperature (310 K) [23]. Mitochoabrespiration in state 4 conditions (no
ADP) was supported by 18 uM palmityl-carnitine, Mroarnitine, 5 mM pyruvate, and 2.5 mM malate,ha t
presence of 10 U/mL CK, 1.5 mM PCr, 5 mM Cr, andld ATP. Subsequent additions of PCr (2.75, 5.25,200

35 and 45 mM) progressively shifted the CK equilibr, increasing the ATP/ADP ratio and thus lowering
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respiration. Steady stafi®, was determined at each PCr concentration, fronchtwkGarp and [ADP] were
calculated.

Citrate synthase activity. Freeze-dried PmFBs utilized fd©, measurements were homogenized in CelLytic lysis
buffer (Sigma #C3228) and citrate synthase activig measured using the kit (Sigma #CS0720).

Mitochondrial isolation. Sections of the left ventricle were harvested iamdediately homogenized in
mitochondrial isolation media (0.3 M sucrose, 10 MEPES, 1 mM EGTA) containing 1 mg/mL BSA, on ice
[25]. Due to the limited amount of tissue availalidelated mitochondria from LV slices of two mieere pooled
together for each sample. Homogenates were sp@@B0aB/ 10 min/ 4 °C, and the supernatant was sgaim at
1,200 G/ 10 min/ 4 °C. The pellet was re-suspemmaaditochondrial isolation media (no BSA) for atlas
centrifugation step (1,200 G/10 min/4 °C). Thelfipellet was re-suspended in 100 puL mitochondsialdtion

medium, and protein quantification was assessetjube Pierce BCA Protein Assay Kit (Thermo Fist#28225).

Measurement of real-time mitochondrial JO, and JATP. As previously described, ATP production was folemlwia
the 1:1 stoichiometry with NADPreduction from the glucose/hexokinase/glucose-phaie dehydrogenase
enzymatic clamp [26]. The system contained 1 U/rekdkinase, 2.5 mM glucose, 5 U/mL mM glucose-phagph
dehydrogenase (G6PDH), 2.5 mM NADRNd added isolated mitochondria at 5 pg/mL i (+5 mg/mL

BSA, 1 mM EGTA, 20 mM creatine), at 37 °C. 0.2 mM5A (P1,P5-di(adenosine}pentaphosphate) was added to
inhibit adenylate kinase as an alternative non-ORBsource of ATP synthesis. Respiration was sup@dy 5

mM pyruvate, 5 mM glutamate, 5 mM succinate, aftdrOM malate. NADPH was measured by autofluorescence
(Aex = 340,Aem = 460) simultaneously with £Zonsumption using a customized system integrdlirngescence
(FluoroMax-3; Horiba Jobin Yvon, Edison, NJ) wittgh-resolution respirometry (Oroboros Oxygraph-2k,
Innsbruck, Austria) via a fiber optic cable (Fibeide Industries). Rates of ATP synthed&TP) were quantified
using an ATP titration standard curve generatatérpresence of the enzyme-coupled system andratédssbut no
mitochondria. Steady-state OXPHOS flux rat#3,(andJATP) were determined after sequential additionADP:

20 and 20QuM.

Mitochondrial membrane potential. A¥ andJO, rates were measured simultaneously as previoesigribed [27],

using the Oroboros Oxygraph-2k combined with etetgs sensitive to the membrane potential-depermmtebe



220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242
243

244

245

246

247

tetraphenylphosponium (TPP+) ang @ 37 °C. Fresh isolated mitochondria from LV \adgled at a concentration
of 50 pg protein/mL in the chamber. All experimewtere run in buffer Z supplemented with 1 mM EGamwd 20
mM creatine, in the presence of 1.5 uM carboxy#gtaside, 5 uM rotenone, 0.5 mM GDP, and 10 mM mate.
The TPP electrode was calibrated by a 6-pointtigina(1.1-1.6 pM TPB at the beginning of each experiment.
Membrane potential was progressively decreasetiétitration of malonate (complex Il inhibitor) fro0.1 to 7.5

mM. A¥ was calculated from the Nernst equation baseti@ulistribution of TPH27].

Activity of dehydrogenase enzymes. Pyruvate dehydrogenase (PDH), AKG dehydrogenak&(2H), branched
chain ketoacid dehydrogenase (BCKDH), NAD-linkedcigrate DH (ID3), malate dehydrogenase (MDH2),
glutamate dehydrogenase (GDH), trifunctional protdibeta oxidation (HADHA), NADP-linked isocitrate

dehydrogenase (IDH2) and malic enzyme (ME) wererdehed by kinetic studies in LV homogenates [24].

Metabolite analyses. Briefly, sections of the apical region of the left ventricle just below the suture were cut free
(Figure 1), blotted, and frozen in an aluminum clamp cooled in liquid nitrogen. While frozen, sections were quickly
weighed to allow normalization of metabolites to tissue mass. Nucleotides levels were determined in cardiac éssu
extracts by rapid and sensitive ultra-performaigpgd chromatography as previously described [B8iefly, slices
of the left ventricle (Figure 1A) were flash-frozemliquid nitrogen and weighed. Metabolites wex&a&cted in 20-
30 -fold excess ice-cold 0.5 N perchloric acid dapyented with 5mM EDTA with rapid glass-on-glass
homogenization. Extracts were neutralized and perate was removed by addition of ice-cold 1N KQtdla
subsequent centrifugation at 4°C. Concentratioredehine nucleotides (ATP, ADP, and AMP), and aukeni
nucleotide degradation products (IMP, adenosineniag), as well as guanosine nucleotides (GTP) were

determined by UPLC using a Waters Acquity UPLC Hsslsystem as in [28].

Satistics. Data are presented as means + SEM. Statisticajsaealere performed with one-way ANOVA, followed
by Sidak’s multiple comparisons test (* vs. CTLdaavs. I/R). Graph Pad Prism 7 was used for si@lsanalysis

and data presentation. Statistical significance seasit a P value &f0.05.



248 Results

249 EphrinAl-Fc administration during acute I/R helps preserve cardiac function.

250 Mice were randomized tosham-operated control groutfam), or acute ischemic injury induced by ligationtioé
251 left anterior descending coronary artery immedjatellowed by intramyocardial injection of 6ug/6}0f either
252 IgG-Fc (I/R) or EphrinAl-Fc (I/R+EA1) with a stezil30 gauge Hamilton syringe [16]. After a 30 miclasion,
253 the ligature was released to reperfuse the héarthoracic cavity was closed, and following reegythe animals
254 were returned to the vivarium. At 24 hrs post-igjand before sacrifice, global cardiac function atrdin was
255 assessed using M-mode and B-mode echocardiographye(1). In keeping with previously reported fingls from
256 our group [13], EAL treatment significantly impralejection fraction (+46%, ***p<0.0005) and fraatial

257  shortening (+49%, ***p< 0.0005) compared to I/Rg&-Fc. Longitudinal strain rate (LS) and globaldandinal
258  strain were significantly decreased with I/R (-7§%<0.005 vssham; -71% *** p<0.0005 vs sham), but preserved

259 by EAL (-76%, ## p<0.005 and +45%, *p<0.05 vs INR) differences in heart rate (HR) were observedchtdiac
260 index (CI; ml/min/g) was decreased in the I/R +1§Ggroup compared to control and EAL due to dee@atroke

261 volume. Administration of EA1 thus preserves cazdiaction during the critical stages of early rega4 hrs post-

Table 1.EphrinAl administration in I/R preserves cardiac function. Echocardiographic measures of LV function
and remodeling: ejection fraction, EF %, fractioglabrtening, FS %, heart rate, HR, cardiac indéx,|@hgitudinal
strain rate, LS, and global longitudinal strain,$3%. Data are expressed as means +/- SEM. * p<®®8).005

and ***<(0.0005 vssham and # p<0.05, ## p<0.005 vs I/R from one-way ANO&talysis. N = 3-4 mice/group.

Group EF (%) EXD) HR Cl S GLS

89+45 59 +2.7 588 +20 0.74 +0.07 216+3.2 -38+7.3

I/R +1gG-Fc 45 +9.7%* 27 +51%* 591 +33 0.43+0.11* -4.8+1.9% -11.4+57**
843+ 1% 53+4.6% 604+23 0.67+0.09 -20+5.8"  -21+3.6*
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At sacrifice, hearts were collected and specifitisas with respect to the ligature were allocatethe designated
experimental endpoints (depicted in Figure 1). separate cohort of mice, whole left ventricle hgermates were
used for western blotting. Unlike in previous olvsgions of longer I/R periods [12, 29], there wasreduction of
EAL protein levels in the present model of actReihjury (Figure 2A), despite a subtle reductiargene
expression (data not shown). Protein levels ofantoplasmic reticulum Eaadenosine triphosphatase-2a
SERCAZ2a, a cornerstone protein for calcium homeastiuring the cardiac cycle [30] normally decrekiseacute
ischemia and chronic heart failure [31-34], was 49%0.05) higher in I/R+EA1 compared to I/R (Fig2®),
likely contributing to preserved contractile furetiand mitigation of deleterious calcium overlo@dChd3, an
abundant scaffolding protein localized in the inm#ochondrial membrane that stabilizes protein plexes to
help maintain crista integrity and thus mitochoatifiinction [35], was 54% higher (p<0.05) with EA1
administration (Figure 2C) compared to I/R. Expi@s®f GRP78, a master chaperone sensor of ERssires
modulator of the apoptotic response [36]), was tald-higher with I/R (p<0.0005) (Figure 2D), whilshchanged
with EA1 administration relative tsham, at a remarkable 60% lower value (p<0.005) thair R counterparts.
Furthermore, Beclin-1, a protein that plays a adnmtile in cardiomyocyte autophagy and apoptosis 38], was
increased by 20% (p<0.05) with administration oflE&lative to I/R (Figure 4A). These findings suppgwevious

reports on the efficiency of EAL to reduce to canalyocyte damage and reduce infarct size [12, 13].
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295 EphrinAl-Fc administration preserves cardiomyocyte and mitochondrial ultra-structurein acute I/R.

296 Sections of the left ventricular infarct margind&ie 1) were imaged by transmission electron mgapg (TEM).
297 Representative TEM images are shown in Figure agheement with previous reports of altered mitochial
298 morphology with heart failure [39-41], the preserddel of acute I/R significantly altered mitochoiadir

299 organization and overall cellular ultra-structurgg(re 3A-C). Qualitatively, administration of EA&emed to
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prevent the sarcomere and mitochondrial disorgéinizaand loss of Z-lines alignment (Figure 3A-C).

Mitochondrial two-dimensional morphological paraserstincluding surface area, perimeter, aspect, rfatim

factor, and sphericity were quantified (Figure 3DAlIthough no statistical differences were detdctpialitatively,
overall spatial organization of mitochondria in Ek&ated mice appeared more comparable tatam mice than
the I/R group. In addition, electron-dense inteteiondrial junctions presented trending lower galwith I/R
(p=0.05 vssham) that was reversed with EA1 administration (p=6.08 I/R) (Figure 3J), and lipid droplet number

were reduced in a I/R vs I/R+EA1 comparison (p<p(@gure 3K).

Evaluation of EphrinAl-Fc-mediated effects in mitochondrial dynamics.

Mitochondrial morphology is highly dynamic and fineegulated by several key players that orchestiiasion,
fusion and mitophagy processes. Mitochondrial dyicarplay a key role in heart failure [42]. Figursibws
western blot analysis of some of the main regusatdrfission (such as Drpl and Fisl), and fusioRA® and
Mfn1l). In rat, it has been shown that high LAD liga only decreases OPAL expression levels, whikeuman
ischemic cardiomyopathy OPAL has been reportediyedesed with Mfn1/2 and Drpl levels increased [#8the
present model of acute I/R injury in mice, nonghefse proteins were changed in an I/Bhgn comparison, but
EA1 administration significantly increased levetdDopl (+22%, p<0.05) and Fis1 (34%, p<0.05) (FegdB-C),
and decreased Mfn1l levels (-51%, p<0.05) (Figureréitive to the I/R group. There were no diffaresnin OPA1

levels across all three groups (Figure 4D).
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338

339 EphrinAl-Fc administration in I/R preserves mitochondrial respiratory capacity independent of changesin H,O,
340 emitting potential.

341 Mitochondrial function plays a key role in I/R [3]. To determine the effects of EA1 administratendifferent
342 parameters of mitochondrial function such as mitmeirial respiratory capacity@,) and HO, emitting potential
343 (JH,0,), permeabilized cardiac muscle fibers (PmFBs) vpeepared from a section of the LV infarct margin
344 (Figure 1). Respiration supported by lipid subsisgpalmitoyl-carnitine) and malate was not affédig I/R +/-
345 EAL, in state 4 (no ADP) or 3 (+ADP) conditions.whver, subsequent addition of pyruvate, glutamate a

346  succinate revealed a 30% decrease (p<0.005) i 388, with I/R, which was preserved by EA1 administratio
347 (Figure 5A). Of note, addition of 0.1 pg/mL EA1 elitly into the O2K chamber, a concentration wethabthe one
348 used for intramyocardial injectioms vivo did not affectlO, acutely (data not shown). Interestingly, no charige
349 JH,O, emitting potential were detected in I/R +/- EAlat&ve to thesham group, using either palmitoyl-carnitine +

350 carnitine (Figure 5B, left panel), or succinateg{ife 5B, right panel) as substrates, and in thegmee or absence of
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the antioxidant buffering system (+BCNU/AF, spezifihibitors of glutathione and thioredoxin redses).

Importantly, mitochondrial content evaluated byatie synthase activity [44] in homogenates of drae PmFBs

utilized for JO, experiments revealed no differences among grdeigsie 5C). This suggests that the cellular

alterations behind the loss and preservation afechibndrial respiratory capacity with I/R and EA%pectively,

may not be mediated by changes in mitochondrialesdror the potential for electron leak/ROS gerienat
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EphrinAl-Fc administration in I/R preserves mitochondrial respiratory control under physiological thermodynamic
constraints.

To gather further insight into the effects of EAdmitochondrial function with I/R, sub-maximal stigestate rates
of JO, were measured at different levels of metabolic @ein(ATP/ADP ratio), using a progressive creatimase
(CK) energy clamp as [24, 23]. Briefly, using CKlange excess and known added amounts of creatine,
phosphocreatine, and ATP, the extra-mitochondridPAADP ratio can be manipulated, re-setting thadytestate
JO, with each addition of PCr. Representative tradéheexperiment for the I/R and I/R+EA1 groups stnewn in
Figure 5D. Each PCr addition shifts the CK equilibr increasing the ATP/ADP ratio, and thereforeftee energy
available from ATP hydrolysisAGarp), which can be calculated as described in the masthFigure 5E shows the
JO, vs AGatp plot, from which the line intersection at thexis represents the “static head” of the systews{m
negativeAGarp When respiration is zero), and the slope compaseeasure of the overall “conductance” of the
electron transport system (ETS, OXPHOS and ATPasged [24, 23]), an indicator of how well the syatean
adjust and respond to different levels of metabddimand. While values of static he®@,rr were unchanged
(Figure 5F), overall conductance (slopes reponegigure 5E) was decreased by 25% with I/R (p<Q.08)

preserved with EA1 administration (+124%, p<0.05).

Given that no differences were foundlid,O, emitting potential (Figure 5B) or static hea@urp [45], the
possibility of EA1 minimizing ROS emitting poteritie main driving cellular change for increaseddactance
seems unlikely. Hence, it was hypothesized that Exelrts mainly a kinetic protective effect in miboadrial
function, increasing OXPHOS conductance. To deteemihether the improved force-flow relation was thue
changes in sensitivity to ADP, ADP kinetics weralgmed (Figure 5G-H). Figure 5H shows secondaryyaigof
Figure 5G, using the Eadie-Hofstee plot where kM pp)X + Vmax. The apparent KM for ADP remained
unchanged across all three groups. However, Vmax2&&b6 lower with I/R (p<0.05), and 113% higher (&)
with EA1 administration. The lack of changes inaufiondrial content (Figure 5C) suggests that timsistently
higherJO, rates observed with EA1 administration acrossediffit levels of metabolic demand were the resuainof
increase in conductance, and not due to chang&Bhaffinity or mitochondrial content. This is sweggive of EAL

exerting protection in OXPHOS kinetics, likely thugh preservation of mitochondrial structure andaaigation.
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EphrinAl-Fc increases OXPHOS conductance without altering dehydrogenase activity, membrane potential or ATP
synthesis.

From a kinetic perspective, many parameters coadribute to the enhanced OXPHOS conductance obdevith
EA1 administration, such as activity of the dehyg#noase enzymes, any of the step-wise kinetic stepe ETC,
membrane potentiah¥’), and the rate of ATP synthesis [23]. To determitether EAL directly affects any of

these parameters, mitochondria were isolated fromfol further functional assessment.

The activity of pyruvate dehydrogenase (PDH), AKghyllrogenase (AKGDH), branched chain ketoacid
dehydrogenase (BCKDH), NAD-linked Isocitrate DH 8)Dmalate dehydrogenase (MDH2), glutamate
dehydrogenase (GDH), trifunctional protein of bexelation (HADHA), as well as the NADP-linked istreite
dehydrogenase (IDH2) were determined in whole L¥hbgenates. Activities of MDH2, IDH3 and HADHA were
not significantly affected by I/R +/- EALl. PDH, A, and GDH were downregulated with I/R compareshtim
(- 35-45%, p<0.05), but the effect was not reveilse&Al administration (Figure 6A), suggesting ttie

preservation of bioenergetics mediated by EA1 amgsnvolve the dehydrogenase enzymes.

Figure®.
A B 2 C oo
s NS s = IR —
g 100 -0-++ errroeriiiiaii i e o G 8000 p = I/R+EA1
e * q ° M = h—4 .
cs (S * « E 6000 o E 40000
25 gl : Qg -5 Ko
ES 50 % 40004 SE
RT % s © 20000
S 2 200044 & @
g °
E £ ;
= o 0-
ADP (uM)
1501 g G 2 15000
- <} 4 =3 sham
3 " NS > s 15001 5 gham g = IR NS
T T = NS ; 12501 * IR ;
; 2 g S mm /R+EA1
00 q 8 - = I/IR+EA1 =
(=] g 4 = = _ NS
S 24 1T, ; 8 & 100 ° £ 10004 £ 10000 ; .
s i 3 >=2 S o S o o
5 >3 $2 $ SNy
o ® 15} S E NS o $
o KN * * - B
2o s 2 X 504 $ 5001 9 50001 .
0 &, g 3 250 2 his HAN
i o g 1 ] H&
0 i o4 s 0 — é ol
S &0 =~  .135-140-145-150 -155 -160-165 PC/Carn ADP  Pyr  Succ
ADP ADP D) \\Q."Q' AY¥ (mV) Mal Glut

19



405

406

407

408

409

410

411

412

413

414

415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

Simultaneous, real-time rates of ATP productidhTP) and Q consumptionJO,) were determined as previously
described [26] in isolated mitochondria from LV.rBuisingly, there were no differencesJ®, (Figure 6B) or
JATP (Figure 6C) rates with I/R +/- EAL, in the abse or presence of increasing levels of ADP. Comsetly, the
efficiency of ATP production (ATP/O ratio) also ramed unchanged (Figure 6D). In accordance, nerdiffces
were detected in complex V activity (Figure 6E)atochondrial membrane potential across a widgeaf
respiratory states (Figure 6F). Metabolite analipgi®€/ PLC showed unchanged levels of the high-energy
metabolites GTP, ATP, ADP as well as their degiiadgtroducts (IMP, adenosine, adenine) acrosshitemtgroups
(Figure 7) and there was no difference in the dated energy charge (ATP + ¥ ADP/total nucleoti@&d: sham =
0.648 £ 0.015; IgG-Fc = 0.651 + 0.021; EA1 = 0.663.010). Cumulatively, these data indicate thatEA1-
mediated preservation of mitochondrial bioenergetia OXPHOS conductance is absent in the isolatganelle,

suggesting a direct link with the mitochondrialwetk ultra-structure.
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EphrinAl-Fc-mediated preservation of bioenergetics invol ves the cytoskel eton, and/or mostly impactsinterfibrillar
mitochondria.

Cytoskeletal structures such as microfilamentsraimlotubules are known to directly interact withteechondria,
and disruption of the cytoskeleton morphology angaoardial ultrastructure are associated with des@éa
myocardial function [41]. The main difference beémeesting mitochondrial respiratory capacity inflBa and
isolated mitochondria is that, in the former, mitondria is stripped from all cellular and cytoskaleomponents,
and the mitochondrial network is completely disassled into single organelles. Thus, a simple cémxperiment
was to test the sand®, protocol utilized in Figure 5A for PmFBs, in ist#d mitochondria. As shown in Figure

6G, the observed differences in mitochondita} disappeared when respiratory function was testésbiated
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mitochondria, suggesting that the protective eff@ftEA1 are potentially mediated by cytoskeletahponents.
Because several aspects of mitochondrial dynamidgunction are linked to microtubule (MT) dynam[d3-49],
we asked whether EA1 activation of Eph tyrosineakimreceptors could potentially affect the phosghtion
status ofu-tubulin, the MT protein unit. Interestingly, plpd®rylation ofa-tubulin at the Tyr272 residue was

reduced by I/R (-50%, p<0.005), but preserved &t (Figure 8), suggestive of a potential EAL targe

Figure8.
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Alternatively, EAl-mediated actions may signifidgrnimpact a sub-population of mitochondria withiret
cardiomyocyte [50]. The mitochondrial isolation pedure used in this study isolates mostly the sabkammal
mitochondria, whereas in PmFBs both subsarcoleramalinterfibrillar mitochondrial reticulum are pegged.
Both sub-types of mitochondria serve different tiots in cardioprotection [51], and interfibrillaxitochondria
have been shown to be particularly vulnerable ¢hemia [52, 53]. The fact that no differences spieatory
function were observed in the isolated organellg edso be suggestive that EA1-mediated preservation

bioenergetics mostly impacts the interfibrillar avhondria.
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Discussion

EphrinAl is one of five ligands (A1-A5) that binddhactivate nine different Eph-A transmembranediyre kinase
receptors (EphA1-A8, and A10). EphrinAl is locatize the cellular membrane of healthy cardiomyosyed
orchestrates cell positioning and survival, amotingofunctions [54]. Levels of EphrinAl are deceshs
myocardial infarction [12, 13, 29], and previousrkwérom our group has shown that intracardiac itifecof its
recombinant form, EphrinAl-Fc, at the time of cagnartery ligation in mice reduces infarct siza,diomyocyte
apoptosis, and inflammation in both reperfused 8] non-reperfused [12] myocardium. The aim of thork was
to perform a mitochondrial phenotyping assessmetiteoearly stages of post-I/R injury to explore ttellular
changes induced by EphrinAl-Fc that result in preg®on of myocardial function. By leveraging a nebdf acute
ischemia/reperfusion injury (30 min/24 hr), hereie: 1) performed measurements of the mitochondrial
thermodynamic force-flow relationship for the fitshe in a model of I/R; and 2) provide evidencatth
intramyocardial administration of ephrinAl-Fc a¢ time of coronary artery ligation protects notyonl

cardiomyocyte and mitochondrial network ultrastanet but also preserves mitochondrial bioenergetics

Mitochondrial function has been increasingly redagd as a key factor in cardiovascular diseasa@atardial
infarction [4, 5]. In heart failure, there is areegetic mismatch between metabolic demand and gulpimerous
measures of mitochondrial function have been miadailing myocardium of animal models and humanish w
reports of decreased activity Krebs cycle enzynmelraspiratory complexes, decreased levels ofG@@@, reduced
expression of F(0)F(1)-ATPase, reduction in mitowrial supercomplex assembly, increased ROS primofyct
among others extensively reviewed elsewhere [4ft@oersy in the field still exists regarding whetlor not the
energetic deficiency in HF is due to insufficienf A production by the mitochondria or defective/diefit creatine
kinase activity; a cause/effect conundrum whichtioores to elude and is further obscured by the budita
plasticity of the heart [55, 56]. Downregulationggfnes that encode for fatty acid oxidation enzyhaessbeen
previously reported in the failing heart [57] drigia metabolic switch towards glycolysis, althotigk is more
evident in late stages of HF [58]. In contrast, lthes of functional cardiomyocytes with acute IiRis the load
distribution in the heart, which may partially eajpi the lack of differences in fatty acid-suppontesgpiration
within our model. HoweverJO, was indeed lower in the presence of both fattgl acid carbohydrate substrates,

being reversed by EA1 administration. It is notedwgto mention that when the ability of the mitoodada to
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generate membrane potential and produce ATP wsiredtén the isolated organelle, no differences wbserved
betweersham and I/R (Figure 6), contradicting previous repaftsiecreased ATP synthetic efficiency [59].
Furthermore, although mitochondrial ROS productoknown to play a role in I/R injury [4], there reeno
changes in kD, production in PmFBs with I/R +/- EA1. Although tf@rmer reflects only kD, emission potential,
and not precisely $D, emission during the I/R insult, it is likely thBA1-mediated actions on mitochondrial
function are independent of ROS emission potentideed, thermodynamic assessment of the force+ibbation
revealed a decrease in OXPHOS conductance witthERwas fully reversed by EA1 administration. o o
knowledge, this is the first time these types ohmeements have been made in a model of cardidnjufy. It is
worth to keep in mind however, that the preseneplagions took place during the early stages ddirgat 24 hrs),

and thus may not be necessarily transferable ¢o saages of I/R recovery.

In the heart, the mitochondrial network is extealinconnected physically and electrically, allowiiog distribution
of nutrients and membrane potential, as well ablem@arapid signaling from damaged areas of thevogt [60,

10]. HF has been associated with fragmentatioh@ftitochondrial network, presenting reduced orljaiseze and
increased mitochondria number of compromised sirattntegrity [39]. Analysis of TEM images revedla clear
trend in interfibrillar mitochondrial disorganizati within the sarcomeres with I/R, that was pregdmwith EA1
administration (Figure 3). The primary impact oteffibrillar mitochondriaver sus the subsarcolemmal population
was evident from the finding that the changes rggbin respiration in PmFBs disappeared in theateol organelle
(Figure 6). The higher expression levels of ChCitB EA1 treatment also suggests better mitoch@hdristae
integrity and mitochondrial function. In additiathe marked increase in certain fission markers 1B2npd Fisl)
further points to a more favorable balance towéistson, which could potentially be related to enbed mitophagy
[61] and therefore prevention of apoptotic signalthough we did not evaluate activation of mitoghgathways,
this may partly explain the previously reported EAduced attenuation of apoptosis and enhanceghatyy [13].
Additionally, we observed a reduction in the acclatian of lipid droplets in EAl-treated myocardiusuggestive
of reduced lipotoxicity, however, the compositidrtteese droplets and the associated metabolic maghimust be
investigated further [62, 63]. Overall, EA1 appe@arsediate effects in the interfibrillar mitochetad network
ultra-structure, helping maintain its spatial origation within the cardiomyocytes and thus preseythe electrical

“power grid” [10, 64] to endure the ischemic insult
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The ability of a terminally differentiated cardioogyte to withstand an ischemic insult is tightlyiked to its
bioenergetics and cellular ultrastructure [65, Mitochondrial function relies heavily on the cykeseton for
structural support, localization and motility [6&]).fact, severe changes in cytoskeleton morphotoglymyocardial
ultrastructure are known to correlate with reduegecardial function and chronic heart failure (H#}].
EphrinA1-EphR signaling normally regulates sevesgects of cell differentiation, proliferation, amigration [54,
67]. Interestingly, Ephrin-EphR signaling is knotenaffect cytoskeleton dynamics, enabling cell migm and
adhesion, with emerging evidence pointing to aatirele in the regulation of actin-myosin interaci$ [68, 69].
Accompanied by remarkable preservation of OXPHQO®figs, it was evident from TEM imaging that EAdrd
a direct impact on cardiomyocyte ultra-structufée@ing sarcomere and Z-disks alignment. Thuis, jfossible

that the protective effects of EAL in mitochondb@energetics could be mediated via the cytostplet

The microtubules (MTs) are highly dynamic structuoéthe cytoskeleton that play a key role in déelision and
structural support for the cytoplasm, as well asesas railroads for cellular trafficking of prateiand organelles,
including mitochondria [70]. Several aspects ofatiitondrial shape [48], fission-fusion dynamics [&d well as
function [47] are tightly linked to MT dynamics. ¥&n EA1 is a ligand for the tyrosine kinase receptPH, an
extensive phosphorylation cascade likely triggeid modulates a complex cellular response uponnijiiRyi.
Interestingly, the phosphorylation statusietfibulin, the unit component of the microtubulgspeared to be

affected by I/R +/- EAL, thereby suggestive of ghly potential direct target of EA1 action (Fig@e

Phosphorylation ofi-tubulin at specific tyrosine residues (i.e. Ty2Rprevents its polymerization into MTs [49,
72]. A certain degree of MT dynamics may be imparfar cardiomyocyte survival under I/R stresstrassport of
mitochondria to high-risk injured cardiomyocytegyents apoptosis [73], and inhibition of MT dynasiiinders
repair after acute I/R injury in kidney [74]. Codering the EphA-R(S) are receptor tyrosine kinalsgsncreasing
phosphorylation oé-tubulin, we may speculate EA1 protects mitochaaldyioenergetics via preservation of MT

dynamics and thereby mitochondrial organization famdtion. In addition, phosphorylation of diffeten

25



552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568
569
570

571

572

573

574

575

components of the electron transport system (E&S)deen known to modulate efficiency of mitochoaidri
function [75]. EA1/EphA-induced phosphorylation paty likely targets components of the cytoskeletenvell as
the ETS to preserve mitochondrial bioenergeticsthien investigation of the EphrinAl-mediated acsiam the
cytoskeleton and mitochondrial structure/functios warranted to fully elucidate the mechanistihpatys by

which EAL limits tissue damage and preserves caffdiaction during I/R.

Conclusions

The present findings suggest administration of BAthe time of I/R protects cardiac function dureagly stages of
repair, by preservation of the mitochondrial netwstructure and bioenergetics. Current effortsdarected to
elucidating the EA1/EphA signaling pathway(s) tadt the timing of post-translational modification$
cytoskeletal components with mitochondrial functamd other cell survival processes as well as regpecific
changes in contractile function relative to thelosion. This includes the identification of the sifie EphA
receptor(s) involved, their signaling targets, o they change as a function of reperfusion ti@mce the
mechanistic pathway of action is fully elucidate#1 may emerge as a potential novel therapeutithiotreatment

of acute I/R injury to prevent heart failure.
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Figure Legends

Figure 1. Experimental M odel. Graphical representation of left anterior descegdioronary artery (LAD) ligation
depicting EA1/IgG intracardiac injection at bordene diffusing toward apex and transmurally as aglthe
allocation of hearsections to the respective experimental endpolnts. slices in the transversal plane were
collected for 1. transmission electron microscopigl) and preparation of permeabilized fibers amdiited

mitochondria, and 2. metabolite analysis using URh@ enzyme activity analyses.

Figure 2. Protein levels of EphrinAl (A), SERCAZ2a (B), chchd3 (C) and GRP78 (D) by western blotting.
Representative blots are shown in the bottom. Barsneans +/- SEM and normalized to GAPDH leve[s<6.05,
** n<0.005, and *** p<0.0005 vsham, and # p<0.05, ### p<0.0005 vs I/R from one-wayOAMA analysis. n=4

mice/group.

Figure3. EAl administration in I/R helps preserve car diomyocyte and mitochondrial 2-D ultrastructure. (A-
C) Representative transmission electron microscoM)limages from a section of left ventricle bord#arct in
sham, and I/R+/-EA1, at x12,00(A), x20,000(B), and x40,00@c) magnitude. Images captured with an EMSIS
MegaView G3 charge-coupled device digital camecale&bhars: 2 um in (A), 1 umin (B) and 0.5 umbDn. (D-1)
Analysis of morphological parameters in mitochoadgxpressed in appropriate dimensions or arbitraitg):
surface areéD), external perimetdiE), aspect ratig¢F), form factor(G), circularity(H), roundnesgl), computed
as described in methodd) Number of electron-dense inter-mitochondrial jimts, andK) lipid droplets. Bars
are means +/- SEM from averages of up to 18 imagasse, n=3 for sham, and n=4-5 for I/R +/- EA1. 005

from one-way ANOVA analysis.

Figure 4. Evaluation of mitochondrial dynamics. Western blot analysis of Beclif®), Drp1(B), Fis1(C), Opal
(D), and Mfn1(E). Representative blots are shown in the bottom. Bagsneans +/- SEM and normalized to

GAPDH levels. * p<0.05 vs sham, and # p<0.05 vsfttin one-way ANOVA analysis. n=4 mice/group.
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Figure 5. EA1 preserves mitochondrial bioenergeticsin cardiac PmFBs. (A) Mitochondrial respiratory capacity
measured in permeabilized fibers from left venériGubstrates added sequentially: 18 pM Palpmdantitine
(PC), 5 mM L-carnitine, 0.5 mM malate, 4 mM ADP, i1 pyruvate, 10 mM glutamate, 10 mM succinéB).
MitochondrialJH,O, emitting potential measured after the additiod@fnM succinate, and 1 uM BCNU + 1 um
auranufin (left panel), or 18 uM palmitoyl-carnigirb mM L-carnitine and 1 uM BCNU + 1 um auranyfight
panel).(C) Citrate synthase activity measured in homogeratdse PmFBs utilized in 3A and 3[D)
Representative creatine kinase energetic clampiRB3 from LV after I/R +/- EAL. Steady-stal®, was
measured andGurp Was calculated as described elsewhere, afteragtition of PCr [23](E) Force-flow
relationship where the slope represents conductamdehe x-intercept the static headgp atJO, = 0,
represented gF)). (G) ADP kinetics, showing data fitted to a Michaelieien function(H) Eadie-Hofstee plot of
the data presented in G, where y =z&DP)x + Vmax. Slopes (J) were not statistically different. Bars are means

+ SEM. * p<0.05, ** p<0.005 vssham and # p<0.05 vs. I/R from one-way ANOVA analy$is= 6-8 mice/group.

Figure 6. EAl-mediated protective effectsin mitochondrial bioenergetics are not detected in theisolated
organelle. (A) Enzymatic activities of key dehydrogenase enzymeésalated mitochondria. Data are expressed as
% of maximal rate value in each respective assay,mice/group(B and C) Steady-state OXPHOS flux rates of
O, consumption (B) and ATP production (C) were detead simultaneously in real-time using a glucose /
hexokinase / glucose-phosphate dehydrogenaseatspiclamp after the sequential addition of 20 260 pM
ADP. Respiration was supported by 0.5 mM malat@M pyruvate, 5 mM glutamate, 5 mM succingi®)
Resulting ATP/O ratio calculated from steady-sti#&P/JO,. (E) Mitochondrial complex V enzymatic activity
determined in isolated mitochondria. N=3 mice/gr{fdpMitochondrial membrane potential determined using
TPP probe at different respiratory states viattiiraof malonate(G) Mitochondrial respiratory capacity measured
in isolated mitochondria from LV following the sammtocol as in Figure 2A. Substrates added seligntl8

UM palmitoyl-carnitine (PC), 5 mM L-carnitine (car®.5 mM malate (Mal), 4 mM ADP, 10 mM pyruvatey(R

10 mM glutamate (glut), 10 mM succinate (succ).\éalare means + SEM, NS = no statistical differeficend. N

= 4 mice/group, with each data point representipg@ed sample from 2 mice.
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Figure 7. Levels of metabolites determined by UPL C. Guanosine triphosphate GTR), adenosine tri(B), di-
(C) and mono-phospha(®), respective ATP/ADRE) and ATP/AMP(F) ratios, adenin€G), hypoxanthingH),
IMP (1), and total nucleotidgd). Bars are means +/- SEM. No statistical differeneere detected from a one-way

ANOVA analysis. n = 9-15 mice/group.

Figure 8. EA1l administration in I/R preserves phosphorylation of a-Tubulin. Western blot analysis of
Tubulin (A) and (Tyr272) phosphorylatedTubulin (B) in LV homogenategC) Calculated px-Tubulin/ a-
Tubulin ratio from a and b. Representative bloessirown on the right. Bars are means + SEM, * px0:0

p<0.005 vs. sham and ## p<0.005, ### p<0.0005Rgrdm one-way ANOVA analysis. N = 4 mice/group.
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