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A B S T R A C T

Atherosclerosis is a disease in which lipid-laden plaques are developed inside the vessel walls of arteries. The
immune system is activated, resulting in inflammation and oxidative stress. Endothelial cells (ECs) are activated,
arterial smooth muscle cells (SMCs) proliferate, macrophages are activated, and foam cells are developed,
leading to dysfunctional ECs. Epigenetic regulatory mechanisms, including DNA methylation, histone mod-
ifications, and microRNAs are involved in the modulation of genes that play distinct roles in several aspects of
cell biology and physiology, hence linking environmental stimuli to gene regulation. Recent research has in-
vestigated the involvement of DNA methylation in the etiopathogenesis of atherosclerosis, and several studies
have documented the role of this mechanism in various aspects of the disease. Regulation of DNA methylation
plays a critical role in the integrity of ECs, SMC proliferation and formation of atherosclerotic lesions. In this
review, we seek to clarify the role of DNA methylation in the development of atherosclerosis through different
mechanisms.

1. Introduction

Atherosclerosis is considered to be the primary cause of numerous
cardiovascular diseases [1]. These disorders have been the predominant
cause of mortality in the past decade [2]. During the development of
atherosclerosis, slow and dynamic modifications in the cellular and
molecular composition of vessel walls occur, resulting in atherosclerotic
plaques [3]. Atherosclerosis is a complex disorder that is associated
with the accumulation of lipids in the vessel walls, stimulation of the
immune system, development of inflammatory responses (with the re-
lease of mediators, such as tumor necrosis factor (TNF)-α and inter-
leukin (IL)-1), oxidative stress, development of oxidized low-density
lipoproteins (ox-LDLs), activation of ECs, proliferation of arterial SMCs,
stimulation of macrophage and promotion of foam cells, and finally

endothelial dysfunction [4–9].
Among the epigenetic regulatory mechanisms, DNA methylation is

of critical importance [10]. Research investigating abnormalities of
DNA methylation in atherosclerotic patients has identified a particular
profile of DNA methylation and proposed various pathways and genes
in the etiopathogenic mechanism of the disease (Table 1) [33]. In this
article, we summarise the recent findings concerning abnormalities of
DNA methylation, and their roles in the pathogenesis and progression of
atherosclerosis.

2. Mechanobiology of atherosclerosis

Atherosclerosis is a complex disorder, and several contributing
factors have been implicated with its development [34]. The strongest
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risk factors are smoking, hyperlipidemia, male gender, diabetes, obe-
sity, sedentary lifestyle, and aging. Hyperlipidemia has been reported to
be the critical risk factor, and low lipid levels are associated with a
decreased risk for the disease regardless of other risk factors [35]. It is
important to note that coronary artery disease (CAD) may also develop
in individuals lacking the known risk factors [36]. Genetic variations
have partially explained the cumulative risk factors for CAD, and hy-
perlipidemia is partially explained by genetics (International Con-
sortium for Blood Pressure Genome-Wide Association et al. [37]). En-
vironmental contributing risk factors may be epigenetically involved in
the development of atherosclerosis.

According to the ‘response to injury’ theory, atherosclerosis initially
develops at regions with injuries to the endothelium, known as en-
dothelial dysfunction which is characterized by decreased levels of ni-
tric oxide (NO) in the vessel wall and enhanced generation of

angiotensin II (ANGII), thromboxane, and endothelin 1 (ET1) [38].
Reduced generation of NO results in apoptosis of EC [39] and increased
ANGII [40]. In arteries, lipid retention is characterized by slow thick-
ening of the intimal layer resulting from the accumulation of modified
LDL in the extracellular region of the sub-intimal layer [41,42].
Monocytes are recruited to the affected region and become macro-
phages, which engulf the excessive LDL and develop to foam cells, re-
sulting in the generation of lesions [43]. Upon local injury, the SMC of
vessel wall lose their function and begin to proliferate, leading to ob-
struction of the arterial lumen. Modified SMCs secrete mediators and
thereby trigger growth of the lesion. Infiltration of immune cells leads
to a local inflammatory condition. Atherosclerosis is usually regarded as
an inflammatory condition, and enhanced inflammatory cytokines in
the blood may be useful in the prediction of complications, such as
plaque rupture, fibrosis, thrombosis, and calcification of vessel wall

Table 1
Atherosclerosis-specific genes modulated via DNA methylation during the disease.

Gene Involvement in Ref

Insulin like growth factor 2 (IGF-II) Cell differentiation and expansion [11]
Paired box 6 (PAX6) Cell differentiation and expansion [12]
Interferon-γ (IFN-γ) Inflammatory response [13]
Intercellular adhesion molecule 1(ICAM-I) Inflammatory response [14]
Interleukin 4 (IL-4) Inflammatory reaction [15]
Tumor protein p53 (P53) Apoptosis [16]
B-cell lymphoma 2 (BCL-2) Apoptosis [17]
Platelet derived growth factor receptor alpha (PDGF-α) SMCs proliferation [18]
Estrogen receptor alpha/beta (ERα/β) Atherosclerotic tissues remodeling [19]
Myogenic differentiation 1 (MYOD1) Atherosclerotic tissues remodeling [20]
Nitric oxide synthase 3 (eNOS) Endothelial cell remodeling [21]
Fos proto-oncogene (c-Fos) Shear stress [22]
Cadherin 1 (E-cadherin) Extracellular matrix [23]
TIMP metallopeptidase inhibitor 3 (TIMP-3) Extracellular matrix [24]
Matrix metallopeptidase (MMP)-2, MMP-7, MMP-9 Extracellular matrix [25–27]
C-C motif chemokine receptor 5 (CCR5) Inflammation [28]
Forkhead box P3 (Foxp3) Inflammation [29]
Nitric oxide synthase 2 (iNOS) Inflammation, macrophage activation [30]
15-Lipoxygenase (15-LO) Plaque development [31]
Fatty acid desaturase 2 (Fads2) Plaque development [22]
Superoxide dismutase 3 (SOD) Plaque development [32]

Fig. 1. Molecular mechanism of DNA methylation.
Reproduced from Zheng et al. [51].
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[44]. These events are accompanied by elevated levels of extracellular
mediators, such as vascular cell adhesion molecule 1 (VCAM1), inter-
cellular adhesion molecule 1 (ICAM1), Monocyte chemoattractant
protein 1 (MCP1), vascular endothelial growth factor (VEGF), and IL-8
[45,46]. Among the critical triggering factors of inflammatory re-
sponses are monocytes recruited to the vessel wall [47], modified LDL
[48], hypomethylated self-DNA [49], and Toll-like receptors (TLRs)
recognizing self RNA [50]. Inflammation seems to be present
throughout the progression of atherosclerosis, and modifications to the
methylation profile of DNA is thought to regulate the continuous state
of inflammation.

3. Mechanisms of DNA methylation

The mechanisms underlying the regulation of gene expression
through DNA methylation have previously been described (Fig. 1)
[52,53]. DNA methylation is considered as an epigenetic mechanism in
the mammalian cells that is mediated by DNA methyltransferase
(DNMT) enzymes, and S-adenosyl-methionine (SAM) acts as the donor
of methyl groups. By transfer of the methyl group (CH3) onto the C5
position of cytosines, the 5-methylcytosine (5mC) is generated [54].
Currently, five members of DNMT enzymes have been recognized that
are categorized into two major groups: maintenance DNMTs (DNMT1,
DNMT2) and de novo DNMTs (DNMT3a, DNMT3b, and DNMT3L).
While the maintenance DNMTs are involved in the methylation of the
cytosine in the hemimethylated DNA during DNA replication, the de
novo DNMT enzymes play a specific role in the methylation across the
embryonic development [55]. These enzymes have been attributed with
reciprocal activities, in which they are involved in adding and removal
of methyl groups. The methylated DNA confers a suppressed tran-
scription state that is mediated through facilitated binding of methyl-
CpG-binding domain (MBD) proteins and reduced binding of tran-
scription factors to the methylated DNA sites. In addition, DNA me-
thylation impresses the chromatin structure and causes the generation
of co-repressor complexes. On the other hand, the unmethylated DNA
confers a euchromatin structure that facilitates the binding of tran-
scription factors to the target sites, leading to gene transcription [56].

DNA hypermethylation has been reported to occur as part of the
development of numerous human disorders. In the absence of disease,
DNA hypomethylation is observed in the CpG islands located in the
promoter region of genes, while hypermethylation is seen in the CpG
islands found within the non-promoter region of genes. Global hypo-
methylation of DNA, in which there is a decreased methylation level of
DNA within the non-promoter regions, perhaps leads to a structural
alteration and chromosome instability, resulting in transcriptional ac-
tivity in undesirable sites and in normally silent (inactive) regions. That
notwithstanding, global hypermethylation of DNA may be accompanied
by downregulation of genes which suppress or protect against the de-
velopment of diseases. As an example, decreased transcription of
transposable elements, such as short interspersed nucleotide element
(ALU) and long interspersed nucleotide elements-1 (LINE-1) located
within the non-promoter sites, has been associated with the regulation
of genome integrity by means of enhanced methylation status at their
sequences [57]. In malignant diseases, a severe hypomethylation is seen
in the transposable elements, conferring DNA recombination, muta-
tions, and chromosomal instability, thereby contributing to the devel-
opment of tumors [58]. DNA hypermethylation is regarded as a critical
epigenetic signature seen in the promoter site of tumor suppressor
genes in various malignancies [59]. Considering the shared risk factors
between malignancies and atherosclerotic cardiovascular disease (CVD)
[60], it has been suggested that there might be a dysregulation in the
methylome and, therefore transcription, of the cardiovascular-related
genes (Table 1).

4. Genome-wide DNA methylation and atherogenesis

Global DNA hypermethylation of cytosines in the CpGs has been
identified in both human subjects and animal studies that was attrib-
uted to the clinical aspects of atherosclerosis [61,62]. Using genome-
wide DNA methylation sequencing, a positive correlation was found
between DNA methylation level and the grade of the atherosclerotic
lesion in the atherosclerotic human aortas [63]. Moreover, using the
methylated DNA immunoprecipitation sequencing (meDIP-seq), the
differentially methylated regions were observed in the cardiovascular
disease-associated genes in the ECs obtained from porcine aortas [64].
Such observations imply that the DNA methylation profiling can di-
vulge the biomarkers of atherosclerosis, proposing a plausible role of
DNA methylation in the progression of the disease.

5. DNA methylation abnormalities in atherosclerosis

5.1. Oxidative stress and DNA methylation in atherosclerosis

Oxidative stress is controlled in the body by maintaining a balance
between the daily production of reactive oxygen species (ROS) and the
systems which remove antioxidants. Under normal physiological con-
ditions, a balance exists between ROS generation and enzymatic and
non-enzymatic antioxidant factors, which are involved in reducing or
scavenging the ROS [65]. Dysfunction of the mechanisms which re-
move antioxidants, or increased generation of ROS can result in a redox
imbalance [66]. It has been demonstrated that prolonged oxidative
stress can lead to aging and a range of disorders, including cancers,
inflammation, cardiovascular disorders, and infectious diseases
[67–69]. Furthermore, investigations have shown that oxidative stress
during the development of atherosclerosis can modify the methylation
status of DNA [70–72]. These observations followed the findings in
tumor cells, that oxidative stress is associates with substantial altera-
tions in methylation [73]. Early investigations indicated an association
between 8-hydroxyguanine (8-OHdG) (a marker of ROS) and inverse
alterations of DNA methylation [74]. In addition, it was reported that
oxidative damage of guanines through 8-OHdG in the parental DNA
strand would allow normal copying of methylation profile through
pathways involved in the maintenance of DNA methylation; however
oxidative damage of guanines via 8-OHdG in the newly copied DNA
strand could suppress the methylation of DNA [75]. It has been re-
ported that ROS, especially hydrogen peroxide (H2O2), can alter the
methylation profile of DNA. H2O2 was shown to be able to change the
DNA methylation through the facilitation of DNA methyltransferase1
(DNMT1) binding to chromatin [76]. During atherosclerosis, ROS
production can alter makers of DNA methylation. Furthermore, in-
creased methylation of the superoxide dismutase 2 (SOD2) gene, leads
to its suppression and has been reported to result in SMC proliferation.
Treatment with the DNMT inhibitor 5-azacytidine (5-azaC) caused
upregulation of SOD2 expression and decreased SMC proliferation. The
hypermethylation of SOD2, which causes decreased expression of
SOD2, can stimulate the Hypoxia-inducible factor 1-alpha (HIF-1α);
hence the methylation status of this gene is important for the devel-
opment of atherosclerotic lesions. [19]. Little is known about the in-
volvement of oxidative stress in the alteration of DNA methylation
during atherosclerotic lesion development. That notwithstanding, due
to an evident impact of oxidative stress on the modulation of DNA
methylation, and considering the fact that atherosclerosis is associated
with chronic oxidative stress, it has been suggested that global mod-
ifications of DNA methylation may occur during atherosclerosis.

5.2. DNA methylation during aging and atherosclerosis

Investigations have revealed that the severity of clinical presenta-
tions due to atherosclerosis is associated with aging [77,78]. In addi-
tion, it has been shown that the expression level of several genes
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undergoes remarkable alterations as we age, although the mechanisms
underlying these changes are not completely understood. However, it is
evident that the aging process is accompanied by an alteration in the
extent of DNA methylation [79]. Moreover, in vitro experiments have
demonstrated that the continuous passaging of normal fibroblast leads
to hypomethylation of DNA [80,81]. Additionally, aged tissues have
been observed to have a similar DNA hypomethylation pattern [82–84].
Among the important genes that have been indicated to undergo a
hypomethylation during aging are Estrogen receptor alpha (ERα),
BMP/retinoic acid-inducible neural-specific 1 (BRINP1), E-cadherin,
insulin-like growth factor-2 (IGF-2), P15, c-Fos, PAX6, c-Myc, versican,
myogenic differentiation 1 (MYOD1), HIC ZBTB transcriptional re-
pressor 1 (HIC1) [85]. Several genes that had previously been specu-
lated to be methylated solely during tumor developments have recently
been observed to be among the age-related methylation alteration
genes. Clearly, aging is the primary cause of hypermethylation during
malignancies [85]. Furthermore, it has been reported that the methy-
lation of the gene coding for ERα in heart muscle occurs as a result of
aging [86]. In vitro evaluation of the methylation status of SMCs de-
monstrated that there was a remarkable divergence in the extent of
methylation of the gene coding for ERα in tissues obtained from an
infant (19%) and an adult (99%) cadaver [87]. Hence, aging-associated
alteration in the DNA methylation is not exclusively seen in the tumors,
but might be critically involved in other age-related disorders including
atherosclerosis. In spite of aging-associated global hypomethylation,
gene-specific hypermethylation has also been observed that may result
in an increased rate of mutations and DNA instability [88]. Thus, it
seems that aging is accompanied by alteration in the DNA methylation
of several genes that might also be involved in the cardiovascular
system, and therefore, etiopathogenesis of atherosclerosis.

5.3. DNA methylation and inflammation in atherosclerosis

Atherosclerosis is an inflammatory condition, in which there is a
systemic increased level of cytokines and recruitment of circulating
leukocytes, especially monocytes to the endothelium. Monocytes reside
in the sub-endothelial layer, and development into macrophages, and
alter, foam cells.

A chronic inflammatory condition has been reported to stem par-
tially from modifications in methylation status (Fig. 2). It has been
shown that inflammation might be connected to a hypermethylated
status of DNA and that DNA hypermethylation was related to increased
mortality in patients with atherosclerosis-related disorders [89]. A
global DNA methylation investigation demonstrated a strong associa-
tion between an altered DNA methylation profile, and inflammation
[90]. In addition, altered methylation and expression of cytochrome C
oxidase subunit II (Cox-II) has been associated with inflammation in
cardiovascular disease. It has been reported that Cox-II is linked with
the progression of atherosclerosis, and its transcription may be trig-
gered through pro-inflammatory mediators, including TNF-α. In addi-
tion, a negative correlation was identified between Cox-II protein and
mRNA expressions and DNA methylation status. The authors suggested
a link between the epigenome and the regulation of the expression of
Cox-II [91]. It has been established that downregulation of cycloox-
ygenase-2 (COX-2) expression in subjects at high-risk and treated with
aspirin may confer a protective role against the development of ather-
othrombosis [92]. However, when the beneficial contribution of COX-2
inhibitors is assessed, it is necessary to consider the multifaceted as-
pects of the prostanoid biology as well as the important role of the COX-
2-derived prostaglandin I2 (PGI2) in the regulation of systemic hemo-
dynamics that may lead to inadequate circulatory volume.

It has been reported that an inflammatory state during athero-
sclerosis may alter the DNA methylation of NF-κB coding gene and,
therefore, result in altered signaling and the production of further in-
flammatory mediators that may contribute to the development of
atherosclerosis [93].

Comparison of genome-wide DNA methylation of 440,292 CpG sites
between human monocytes, naïve macrophages, activated macro-
phages with a pro-inflammatory phenotype or an anti-inflammatory
state, and monocyte-derived foam cells indicated differences in me-
thylation level between these cells. Moreover, DNA methylation highly
different during monocyte-to-macrophage differentiation, that was
limited to single CpGs or very short regions, and co-localized with
lineage-specific enhancers [94]. These data show that localized mod-
ulation of DNA methylation at regulatory regions plays a role in cell
differentiation, hence implying the involvement of DNA methylation in
pathologic cell differentiation during cardiovascular disorders. Ad-
ditionally, DNA methylation status of M1/M2 macrophage polarization
markers was evaluated in CAD patients, resulting in the identification of
differently methylated STAT1, STAT6, MHC2, IL12b, iNOS, JAK1, JAK2
and SOCS5 genes [95].

5.4. DNA methylation and modulation of SMCs during atherosclerosis

During the development of atherosclerosis, inflammatory mediators
cause stimulation of SMCs, and their proliferation leads to plaque de-
velopment. Moreover, activated SMCs generate numerous extracellular
matrix components and produce a fibrous cap on the lesion [96]. The
high rate of oxidized phospholipids may result in an expansion of
vascular SMC (VSMC) [97–100]. Given that the VSMCs have critical
roles in the development of atherosclerotic plaques, control of VSMC
biology could present a promising approach to the management of
atherosclerosis. Differentiation and proliferation of VSMCs occur early
in the development of atherosclerotic lesions, and the developing pla-
ques are maintained by the fibrous cap to generate a stable mass [100].
Using whole-genome shotgun bisulfite sequencing, Zaina et al. in-
dicated that the atherosclerotic portion of the aorta was hypermethy-
lated in numerous genomic loci. Moreover, high-density DNA methy-
lation microarray led to the recognition of genes involved in the
function of endothelial cells as wells SMCs [101]. Matrix metallopro-
teinases (MMPs) have been reported to be associated with VSMC
biology and the progression of atherosclerosis. MMP-9 was reported to
play a role in the migration of VSMCs to other organs [25–27]. In spite
of MMP-9 involvement in the development of primary lesions during
atherosclerosis, this enzyme can also play a role in the prevention of the
development of end-stage lesions in the process of atherosclerosis
[102,103]. It has been shown that VSMCs take part in the promotion of
cholesterol influx, reduced rate of efflux, and development of foam cells
during the early stages of development of atherosclerotic lesions. Fur-
thermore, VSMCs undergo a process of senescence and programmed cell
death that may be involved in the progression of atherosclerosis.

Reports have indicated that SMCs may develop altered expression of
several genes and proteins during atherosclerosis. Profiling of the gene
expression signature in the SMCs has demonstrated that several genes
are underlying a transcriptional modulation of the epigenetic me-
chanisms, especially DNA methylation [104,105]. These genes have
been observed to participate in the differentiation and phenotypic al-
teration of SMCs as well as the migration of these cells, leading to the
development of vascular complications. A number of these genes that
play a role in the differentiation of SMCs are regulated via DNA me-
thylation. These include SMC-specific SM22α, platelet-derived growth
factor (PDGF), serum response factor (SRF), ERα, and ERβ [106]. An-
imal studies into the proliferation of intimal SMCs indicated a global
hypomethylation of DNA [32].

Moreover, investigations conducted on ApoE−/− mice as well as
human atherosclerotic lesions demonstrated that there was a hypo-
methylated state of the genomic DNA [107]. A low DNMT activity, as
well as global hypomethylation of DNA, was reported during pro-
liferation and phenotypic differentiation of SMCs in vitro [108,109].
Alterations in DNA methylation affect the SMC phenotype via the ex-
tracellular matrix, which in turn results in vascular calcification [110].

In vitro experiments on human aortic smooth muscle cells and rat
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aortic rings to evaluate the phenotypic difference of VSMCs triggered by
high phosphate indicated that high phosphate level was associated with
increased DNMT activity and methylation of the promoter region of
SM22α. This resulted in a gain of the osteoblast transcription factor
Cbfa1 by VSMCs. The demethylating compound procaine led to de-
clined DNMT activity and inhibited methylation of the SM22α, which
culminated in an increase in SM22α transcription and less calcification
of VSMCs. Therefore, methylation of SM22α is critical in VSMC calci-
fication [106], and might offer a pathologic pathway in atherosclerosis
or CVD by impairing VSMC normal physiology.

The ten-eleven-translocation (TET) family has been implicated in
modulation of the extent of DNA methylation [111]. TET proteins,
containing TET1–TET3, possess DNA demethylation activity through
oxidizing 5-methylcytosine (5mC) and generating 5-Hydro-
xymethylcytosine (5hmC). In vitro treatment of human VSMCs with 5-
azacitidine (5-azaC), which is a DNA methylation inhibitor agent, re-
sulting in the overexpression of MMP1, implying to the regulation of
MMP1 in VSMCs through methylation [112]. In addition, 5-azaC was
reported to inhibit the expansion and migration of SMCs in the airway
by altering the methylation of PDGF as well by enhancing the con-
tractile potential of SMCs [18]. These observations established a notion
that DNA methylation of SMC might be involved in the progression of
atherosclerosis. In general, DNA hypomethylation culminates in the
expansion and migration of SMCs, eventuating in the expedition of
plaque generation (Fig. 2).

5.5. DNA methylation and elevated homocysteinemia (eHcy) during
atherosclerosis

Homocysteine (Hcy), is a non-classic sulfur-containing amino acid
that is produced during the process of methionine metabolism. Hcy
plays a physiologic function in DNA metabolism through methylation
[113]. Methionine is converted to S-adenosylmethionine (SAM), which
is the major donor of the methyl group for DNA methyltransferase
enzymes. By losing methyl groups, SAM is converted to S-adenosylho-
mocysteine (SAH), which is a strong competitive inhibitor for

methyltransferase enzymes. SAH hydrolysis leads to the generation of
adenosine and Hcy [114]. Under normal physiological conditions, Hcy
levels in plasma range from 5 μM to 15 μM [115]. It has been reported
that elevated levels of Hcy, by modulation of the DNA methylation
level, is a predisposing risk factor for the progression of atherosclerosis
and plays a role in the proliferation of VSMCs as well as endothelial
dysfunction. Dysregulated levels of DNA methylation, alongside with
elevated levels of Hcy, has been observed in patients with CVD [116].
Reduced methylation of Alu and LINE-1 elements was reported upon
incubation of VSMCs with high doses of Hcy, which increased DNMT
function, increased SAH levels, and reduced SAM levels [117]. It was
also observed that incubation of VSMCs with different doses of Hcy
resulted in the decreased methylation and increased expression of
PDGF, hence increasing the expansion of VSMC [118,119]. It has been
shown that Hcy might impress the ER, which has been implicated in the
pathogenesis of atherosclerosis. It was reported that there was a posi-
tive association between estrogen receptor 1 (ESR1) gene prompter me-
thylation level and the intensity of plaque lesions in atherosclerosis
[120]. Studies have documented that elevated levels of Hcy may con-
tribute to the onset of atherosclerosis development through mechan-
isms such as the proliferation of VSMC, stimulation of immune system,
and oxidative stress [121,122]. It was also reported that incubation of
monocytes with Hcy promoted the methylation of DNA in the promoter
region Peroxisome proliferator-activated receptor alpha (PPARA) and
PPAR gamma (PPARG) genes, culminating in a decreased levels of genes
translation and transcription. Furthermore, there were a decrease and
increase in the SAM and SAH levels, respectively. Such observations
suggest that PPARA and PPARG gene methylations are stimulated
through Hcy that might confer an important tool in the progression of
atherosclerosis, proposing a potential therapeutic target for amelior-
ating Hcy-triggered atherosclerotic lesions [123]. Elevated level of Hcy
was shown to result in DNA hypomethylation in the genes implicated in
the atherosclerosis pathogenesis like Cyclin A, which plays a role in the
inhibition of cell cycle progression as well as the endothelial re-
modeling. Furthermore, elevated concentrations of Hcy resulted in
decreased activity of DNMT1; nonetheless, upregulation of DNMT1

Fig. 2. DNA methylation regulation of pathogenic pathways during atherosclerosis.
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reversed the inhibitory effects of Hcy on Cyclin A transcription and
growth inhibition of EC. As a consequence, hypomethylation of Cyclin A
through elevated levels of Hcy may be a critical mechanism that is
responsible for EC proliferation ultimately leading to progression of
atherosclerosis [124].

Circulating concentrations of cholesterol might also be regulated by
Hcy. It was reported that clinically important levels of Hcy (100 mM)
resulted in increased serum levels of cholesteryl ester, free cholesterol,
and total cholesterol. Incubation of 100 mM of Hcy with human
monocytes resulted in underexpression of apolipoprotein E (ApoE)
[125]. Elevated levels of Hcy was shown to regulate DNA hy-
permethylation of ApoE and, therefore, its expression in atherosclerotic
lesions [126].

Elevated levels of Hcy may contribute to the abnormal deposition of
lipid in the proximal aorta, a manifestation mirroring the progress of
atherosclerosis [127]. Furthermore, Hcy might alter the methylation
state of genes involved in cholesterol efflux [128]. Elevated levels of
Hcy may promote a global hypomethylation of DNA and, therefore,
modulate the expression profile of genes implicated in atherosclerosis
[114,129]. That notwithstanding, the exact molecular mechanisms
underlying the DNA methylation modulation by Hcy and the associa-
tion between the global DNA methylation and regulation of athero-
sclerosis-specific genes are not fully understood. Further investigations
to resolve these issues may lead to the identification of novel ther-
apeutic targets to treat atherosclerosis induced by Hcy.

6. Therapeutic potential of controlling DNA methylation in the
treatment of atherosclerosis

Although relatively little is known concerning the DNA methylation
alterations during atherosclerosis, several promising results in the field
of pharmacoepigenetics have been obtained from preclinical studies
and clinical trials. In a phase III trial, it was reported that apabetalone,
which is an inhibitor of bromodomain and extra-terminal proteins
(BET, a histone modification reader), resulted in elevated circulating
concentrations of HDL, reduced CRP level, and upregulation of ApoAI,
that was accompanied by fewer cardiovascular events in the patients
[130]. In addition, several agents that target epigenetic regulators are
now in preclinical or clinical assessments to treat cancers and may have
applications in the treatment of cardiovascular events. It has been re-
ported that Decitabine (5-aza-dC) can stimulate the expression of ESR1
and ESR2 in tumor cells and that it plays a role in maintaining the
stability of anti-inflammatory phenotype in the ECs obtained from a
mouse model of atherosclerosis [131]. Furthermore, decitabine was
reported to be involved in the amelioration of atherosclerosis by re-
pressing the recruitment and activation of monocytes and other im-
mune cells [132].

7. Conclusions

Although the knowledge on the role of epigenetics in the patho-
genesis of atherosclerosis is in infancy, the involvement of alterations of
DNA methylation is indisputable. Additionally, other epigenetic reg-
ulatory mechanisms, including histone modifications and microRNAs,
play critical roles in the etiology and pathogenesis of atherosclerosis.
These epigenetic regulatory mechanisms present a promising approach
to the treatment of atherosclerosis. However, to date, there is little
evidence relating to the treatment of atherosclerosis by modulation of
DNA methylation. Additional research is needed into the environmental
stimuli of DNA methylation pattern as well as the molecular mechan-
isms underlying these methylation alterations implicated in ather-
ogenesis. A more detailed understanding of the mechanisms by which
abnormalities of DNA methylation result in atherosclerosis would allow
the development of diagnostic biomarkers and efficient therapies. Of
note, there is evidence suggesting that statins, as the major class of
drugs used for the treatment of atherosclerotic cardiovascular disease,

can affect epigenetic events including DNA methylation [133–135].
This finding may imply that epigenetic effects of statins can explain, at
least in part, the putative anti-atherosclerotic as well as the wide range
of pleiotropic activities described for these drugs [136–141]. Finally,
future investigations may be directed toward epi-drugs, such as those
that inhibit the DNMT enzymes, in order to treat atherosclerosis.
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