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RLeptin, a peptide hormone produced by adipose tissue, acts in brain centers that control critical physiological
functions including metabolism, breathing and cardiovascular function. The importance of leptin for respiratory
control is evident by the fact that leptin deficient mice exhibit impaired ventilatory responses to carbon oxide
(CO2), which can be corrected by intracerebroventricular leptin replacement therapy. Leptin is also recognized
as an important link between obesity and hypertension. Humans and animal models lacking either leptin or
functional leptin receptors exhibit many characteristics of the metabolic syndrome, including hyperinsulinemia,
insulin resistance, hyperglycemia, dyslipidemia and visceral adiposity, but do not exhibit increased sympathetic
nerve activity (SNA) and have normal to lower blood pressure (BP) compared to lean controls. Even though pre-
vious studies have extensively focused on the brain sites and intracellular signaling pathways involved in leptin
effects on food intake and energy balance, the mechanisms that mediate the actions of leptin on breathing and
cardiovascular function are only beginning to be elucidated. This mini-review summarizes recent advances on
the effects of leptin on cardiovascular and respiratory control with emphasis on the neural control of respiratory
function and autonomic activity.

© 2015 Published by Elsevier Inc.
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Obesity is a major public health problem worldwide. The genesis of
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is an endocrine tissue producing several active substances, such as
interleukin-6, tumor necrosis factors-α, adiponectin and leptin, which
modulate many physiological functions. In this review, we focus on
the cardiorespiratory actions of leptin.

Leptin circulates freely in the plasma and crosses the blood–brain
barrier via a saturable receptor-mediated transport system [64] to
enter central nervous system centers (CNSs) where it regulates neural
pathways that control appetite [37], sympathetic nerve activity (SNA)
and thermogenesis [58,75]. In addition, previous studies have suggested
that leptin stimulates chemorespiratory responses [4,6,45].

Leptin receptors (LRs) belong to the class I cytokine receptor super-
family [50,83]. Alternative splicing of the LR gene generates 6 leptin
receptor isoforms, termed fromOb-Ra to Ob-Rf, which have an identical
extracellular N-terminal. Ob-Re is the only soluble receptor form, prob-
ably binding circulating leptin and affecting its stability and availability
[32,88]. Four of the remaining 5 isoforms have short C-terminal do-
mains and are considered to be mainly involved in endocytosis and
transport of leptin across the blood–brain barrier [3]. The isoform Ob-
Rb, however, has a long intracellular domain and is essential formediat-
ing leptin's intracellular signal transduction [84].

The hypothalamic arcuate nucleus (ARC) was initially considered
the main site of leptin actions, however, increasing evidences sug-
gest that leptin acts on a more extensive brain network (Grill 2006).
For example, functional LRs are present in the nucleus of the solitary
tract (NTS) [43,60], an important center involved in cardiorespiratory
function.

Stimulation of LR by leptin activates janus tyrosine kinases (JAK), es-
pecially JAK2 [33]. In the central nervous system (CNS), leptin increases
the activity of JAK2 to trigger three major intracellular pathways:
1) phosphorylation of tyrosine (Tyr) residue 1138 to recruit latent
signal transducers and activators of transcription 3 (STAT3) to the LR-
JAK2 complex, resulting in the phosphorylation and nuclear transloca-
tion of STAT3 to regulate transcription; 2) insulin receptor substrate
(IRS2) phosphorylation which activates phosphatidylinositol 3-kinase
(PI3K) which appears to be involved in regulating rapid non-genomic
events affecting neuronal activity and neuropeptide release; and
3) Tyr985 phosphorylation which recruits the tyrosine phosphatase
(SHP2) to activate ERK (MAPK). Although the roles of these intracellular
signaling pathways in mediating the various actions of leptin are the
subject of intense investigation, especially on appetite behavior [27],
their importance in SNA and breathing control is only beginning to be
elucidated.

Strong evidence shows that leptin requires activation of the brain
melanocortin system, including activation of proopiomelanocortin
(POMC) neurons and melanocortin 4 receptors (MC4R) to exert most
of its effects on blood pressure (BP) and ventilatory function [5,21,72].
Thus, the focus of this mini-review is on the brain circuits and potential
mechanisms that mediate the effects of leptin on respiratory function
and cardiovascular regulation.
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Leptin and central chemoreception

Accumulated evidence suggests a role for leptin in control of breath-
ing. Initial studies evaluating the ventilatory responses to CO2 in leptin-
deficient (ob/ob) mice demonstrated impairment of breathing function
in thesemice [68,82]. This attenuated hypercapnic ventilatory response
observed in ob/ob mice was improved after 3 days of systemic leptin
administration suggesting an important stimulatory effect of leptin on
breathing [68]. In addition, a study performed in anesthetized rats
showed that acute systemic infusion of leptin (for 90 min) elicited a
long-lasting increase in the amplitude of phrenic nerve discharge that
remained elevated for over 1 h after terminating the leptin infusion
[11].Moreover, we demonstrated that 4th ventricle leptin administration
Please cite this article as: M. Bassi, et al., Control of respiratory and cardiov
j.lfs.2015.01.019
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for 3 days also enhanced the ventilatory responses to CO2 indicating that
the central action of leptin facilitates the central chemoreflex [4].

In order to better understand the CNSmechanisms activated by lep-
tin that modulate chemosensory control of ventilation, previous studies
investigated the effects of leptin administration into specific medullary
brain areas involved with breathing control. Leptin administration into
the NTS, a primary site of peripheral chemorespiratory afferents of the
brainstem of anesthetized rats increased respiratory motor output and
ventilatory response to CO2 potentially via inhibition of the Hering–
Breuer reflex [44,45]. It was hypothesized that elevated PaCO2 reduces
the effectiveness of the Breuer–Hering modulation of respiratory pat-
tern that facilitates elimination of CO2 (as described by [63]) and that
the stimulatory effect of leptin on chemoreflex responses may depend
on a reduction of the effectiveness of Breuer–Hering reflex.

Leptin injections into the NTS also attenuate the cardiovagal compo-
nent of the baroreceptor reflex [1] andpotentiate the sympathoexcitatory
responses evoked by the activation of the chemoreflex [14]. In addition,
systemic administration of leptin increases c-fos expression in the neu-
rons of the caudal NTS that express LR [29]; Elmiquist et al., 1998; [37],
indicating that leptinmay activateNTS neurons involvedwith the cardio-
respiratory reflex.

In addition to its effects in the NTS, leptin may also contribute to the
chemoreflex by acting in the ventral surface of the medulla where
several nuclei involved in breathing control are located. For instance,
administration of leptin for 3 consecutive days into the rostral ventro-
lateral region of the medulla increased baseline ventilation and hyper-
capnic ventilatory response in ob/ob mice [5]. Although multiple
mechanisms involved in chemoreception at level of the ventral surface
of the medulla have been described including modulation of gluta-
matergic neurons of the retrotrapezoid nuclei (RTN) [40] and purinergic
glial cells that release adenosine 5´-triphosphate (ATP) in response to
CO2 stimulation [66,87], the mechanisms by which leptin contributes
to the chemoreflex is still unclear and remains an important area for
investigation.

Involvement of melanocortin system in mediating leptin's effects on
ventilation

Leptin depolarizes POMC neurons leading to the release of alpha-
melanocyte stimulating hormone (α-MSH) which, in turn, activates
the MC3/4R located in several hypothalamic nuclei as well as in the
brainstem [17,65].

Only a few studies have examined the participation of the
melanocortin system in mediating the effects of leptin on ventilation.
Polotsky et al. [72] investigated the ventilatory responses of obese
agouti yellow mice, a model that overexpresses the agouti protein
which inhibits MC3/4R. They reported that agouti yellowmice exhibited
attenuated ventilatory responses to CO2 but a normal ventilatory re-
sponse to hypoxia, suggesting that the melanocortin system may play
an important role inmediating the ventilatory responses to hypercapnia.

We found that chronic central MC3/4R antagonism for 6 days re-
duced the ventilatory response to hypercapnia in rats and abolished
leptin's ability to increase baseline ventilation. Our data suggest that
the effects of leptin on ventilation depend on the activation of the
brain-melanocortin system. We also demonstrated attenuated ventila-
tory responses to CO2 in mice with LR deficiency specifically in POMC
neurons, reinforcing the concept that leptin-induced improvement of
ventilatory function is mediated by the brain melanocortin system [5].

Besides the CNS action of leptin in modulating ventilation, leptin
has an important role in controlling bronchial diameter [2,10,47,78].
Previous studies showed that the absence of leptin action is the main
cause of increased airway resistance present in obese leptin-deficient
(ob/ob)mice and leptin receptor-deficient (db/db)mice [2]. It is impor-
tant to note that leptin administration in trachea rings evoked no chang-
es in the bronchial diameter [67] whereas intracerebroventricular
(i.c.v.) administration of leptin for 5 days decreased airway resistance
ascular functions by leptin, Life Sci (2015), http://dx.doi.org/10.1016/
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[2]. These findings suggest that the effects of leptin on airway resistance
may also be mediated by leptin's actions on the CNS. Moreover, leptin-
induced modulation of respiratory resistance appears to be indepen-
dent of the brain melanocortin system since mice lacking MC3/4R
exhibit normal airway resistance [2].

Leptin and peripheral control of breathing function

In addition to leptin's CNS action to modulate respiratory function,
previous studies suggest direct effects of leptin on peripheral tissues
involved with ventilatory control, including arterial chemoreceptors
and lung tissue [16,38,62]. Leptin appears to be secreted by various
epithelial tissues including bronchial epithelial cells (BECs) and type II
pneumocytes [85] and high levels of LRs have been observed in proxi-
mal airwaybiopsies [85]where leptin is thought tomodulate inflamma-
tory response [56].

Peripheral chemoreceptors localized predominantly within the
carotid bodies also present LR isoform b in type-1 cells [73]. These
cells play an integral role in detecting changes in PO2 by transducing
this chemical signal to sensory afferent neurons within the petrosal
(PG) and nodose (NG) ganglia to trigger brainstem autonomic reflex
pathways [31]. Previous studies demonstrated that not only carotid
body glomus cells express LR, but that LRs are also present in neurons
within both the PG and NG [62]. In the same study intravenous injec-
tions of leptin were shown to induce phosphorylation of signal trans-
ducer and activator of transcription 3 (pSTAT3), fos and Fra-1 within
carotid body cells, similar to the response produced by hypoxia. Taken
together, these observations also point toward a potential contribution
of leptin in the peripheral chemoreflex response.

Breathing disorders and impairment of leptin function in humans

Increased leptin levels have been reported in obese subject's leading
to a state of leptin resistance. In obese patients, high concentrations
of serum leptin are associated with reduced respiratory drive and im-
paired hypercapnic responses inmen andwomen, suggesting resistance
to the effects of leptin on respiratory function [8,55,70]. However,
hypoxemia stimulates leptin secretion [39], suggesting that leptin resis-
tance and hyperleptinemia might be caused by hypoventilation. In sup-
port of this concept, patients with obstructive sleep apnea syndrome
(OSAS) who have high levels of leptin presented normal plasma leptin
levels after nasal continuous positive airway pressure (NCPAP), sug-
gesting that once the hypoxemia is corrected, leptin levels return to
normal [12,71]. Similar results were found in patients with obese
hypoventilation syndrome (OHS) who used non-invasive ventilation.
The reduction of the leptin levels after the treatment in this case appears
to be independent of any change in body weight [89].

Obesity-induced breathing disorders also lead to cardiovascular
complications, including arrhythmias and hypertension. Hypoxia,
resulting from obstructive apneic episodes, is a potent stimulator of
SNA via a complex reflex mechanism that alters heart rate and BP.
During the apneic episode, the combination of hypoxia and an absence
of airflow result in carotid body chemoreceptor stimulation, leading to
reflex bradycardia via vagal afferents [18,19]. However, in the presence
of airflow, in the postapneic ventilation phase, a tachycardia occurs due
to the inhibition of parasympathetic outflow and unopposed sympa-
thetic outflow to the heart [51]. The long-term effects of OSA are not
well understood, although autonomic nervous system dysregulation
with chronic sympathetic activation and development of systemic
hypertension are usually present.

Leptin may contribute to the development of hypertension caused
by hypoxia. As mentioned, hypoxia increases leptin release from adipo-
cytes. Chronic leptin infusion raises BP due to the activation of renal
sympathetic nerve activity [41]. This effect of hyperleptinemia on BP
seems opposite to the resistance to leptin's anorexic and respiratory
Please cite this article as: M. Bassi, et al., Control of respiratory and cardiov
j.lfs.2015.01.019
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Leptin and cardiovascular function

Leptin regulates sympathetic outflow and blood pressure

Leptin not only plays a role in the modulation of breathing and
regulation of SNA to tissues involved in the breathing process but also
modulates SNA to other organs, some of which contribute to the regula-
tion of BP. For instance, acute intravenous or i.c.v. administration of
leptin increased SNA to the brown adipose tissue, kidneys and adrenal
gland in lean rats [28,42]. Acute hyperleptinemia also increases muscle
SNA, as assessed by microneurography [54]. Chronic infusions of leptin
to produce increases in circulating leptin levels comparable to those
found in severe obesity evoked sustained increases in BP that can be
completely prevented by α and β adrenergic receptor blockade [9].
Leptin-mediated increases in BP are gradual and occur over several
days, indicating a slow-acting mechanism consistent with the modest
increases in renal SNA and increased renal tubular sodium reabsorption
[79]. Although the chronic hypertensive effects of leptin in lean animals
are modest, they are more significant when taking into account the
accompanying marked decreases in food intake and weight loss which
would normally tend to lower SNA and BP.

A major role for leptin in contributing to increased BP also comes
from the studies of Lim and colleagues who showed that increases in
BP and renal SNA in obese rabbits fed with a high fat diet were attenuat-
ed by acute (90 min) i.c.v. administration of a selective leptin receptor
antagonist [53]. Thus, blockade of the actions of endogenous leptin
lowers BP in obese animals, further supporting the concept that leptin,
at physiological concentrations, can cause chronic increases in BP, at
least in experimental animals, and may contribute to obesity induced
hypertension. Moreover, mice with leptin deficiency (ob/ob mice) are
extremely obese and have many metabolic abnormalities, including
insulin resistance, hyperinsulinemia, and dyslipidemia which have
been suggested to raise BP. However, mice with leptin deficiency are
not hypertensive and tend to have lower BP and reduced SNA compared
to lean control mice [23,57]. Similar findings are observed in humans
with leptin deficiency who also exhibit early-onset morbid obesity and
many characteristics of the metabolic syndrome but these individuals
usually are not hypertensive and do not have evidence of increased
SNA [69]. In fact, humanswith leptin genemutation showpostural hypo-
tension and attenuated renin-angiotensin-aldosterone system responses
to upright posture [69]. Collectively, these observations support a role for
leptin as a link between obesity, increased SNA and elevated BP.

The effects of leptin to increase SNA and BP however are partially
counterbalanced by metabolic actions of leptin. For example, leptin de-
creases appetite and increases energy expenditure which tend to reduce
adiposity and cause rapid weight loss, at least in lean subjects who are
sensitive to the metabolic effects of leptin. These effects would tend to
reduce BP. In addition, leptin also stimulates endothelial-derived nitric
oxide (NO) formation, at least in subjects with normal endothelial func-
tion. Frühbeck [30] showed, for example, that acute infusion of leptin
increased serum NO concentrations and after the inhibition of NO syn-
thesis leptin significantly raised BP. After SNA blockade, however, acute
leptin infusion reduced BP [30]. Blockade of NO synthesis also greatly
exacerbated the chronic effects of leptin to raise BP and heart rate (HR)
[49]. Thus, to the extent that obesity causes endothelial dysfunction
and impaired NO formation, one might expect greater leptin-mediated
increases in BP than in lean subjects, especially if obesity does not induce
resistance to the SNA responses to leptin.Moreover, if obesity is associat-
ed with resistance to the anorexic effects of leptin with preserved effects
on SNA, as previously suggested [59], this would amplify the hyperten-
sive effects of leptin since the effects of leptin to cause weight loss and
associated decreases in BP might be attenuated.
ascular functions by leptin, Life Sci (2015), http://dx.doi.org/10.1016/
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Leptin acts in different brain regions to regulate SNS activity and blood
pressure

High levels of leptin receptormRNAand protein are expressed in the
forebrain, especially in the ventromedial hypothalamus, arcuate nucle-
us and dorsomedial areas of the hypothalamus, as well as in vasomotor
centers of the brainstem [29,59]. Although the brain centers that
mediate leptin's action on SNA and BP have not been precisely mapped,
hypothalamic centers as well as certain extra-hypothalamic regions
(e.g. brainstem, subfornical organ— SFO) appear to be important inme-
diating the effects of leptin on SNA and BP [59]. Acutemicroinjections of
leptin into the ARC increase SNA to the kidneys and to brown adipose
tissue (BAT) [74], while site specific ARC deletion of LRmarkedly atten-
uates the rise in renal and BAT SNAevoked by leptin, suggesting that the
ARC is an important site for leptin-mediated modulation of SNSA to
several tissues [74]. In fact, deletion of leptin receptors only in POMCneu-
rons, which comprise an important portion of the neuronal types within
the ARC, prevents the rise in BP evoked by chronic hyperleptinemia [24,
25]. Other nuclei in the hypothalamus have also been implicated in the
effects of leptin on SNA. The ventromedial and dorsomedial hypothala-
mus, for example, appear to contribute to leptin-mediated increases in
SNA to the kidneys, skeletal muscle and BAT [59].

Extra-hypothalamic regions may also play a role in mediating
leptin's effect on SNA. Microinjection of leptin into the NTS in the
brainstem increases renal SNA and acutely raised BP [58]. Additionally,
intracarotid injection of leptin excited presympathetic neurons of the
rostral ventrolateralmedulla (RVLM) increasing the renal SNA, suggest-
ing that leptin has a direct action on ventral centers of themedulla [91].
Young and colleagues [90] showed that mice with specific deletion of
LR in SFO neurons had normal BAT SNA responses to systemic or i.c.v.
administration of leptin but did not exhibit the expected increase
in renal SNA. Collectively, these studies suggest that leptin may act on
several brain regions in concert to regulate SNA.

Intracellular signaling and specific CNS areas that may mediate differential
control of cardiovascular and metabolic functions by leptin

Deletion of STAT3 specifically in POMC neurons attenuated leptin's
ability to raise BP but had only minor effects on leptin's actions on
food intake and energy expenditure [27,34].
U
N
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Fig. 1. Schematic representation of the hypothesized brain site where leptin regulates appetite,
(PVN) paraventricular nucleus and (LH) lateral hypothalamus. Brainstem: (NTS) nucleus of th
nuclei, (RTN/pFRG) retrotrapezoid/parafacial respiratory group, (RVL) rostral ventrolateral nuc
and caudal ventral respiratory column. RSNA, renal sympathetic nerve activity, POMC, pr
melanocortin 4 receptor.
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Previous acute studies also indicate that the IRS2–PI3K pathwaymay
contribute to leptin's effect on SNA and BP. For instance, pharmacologi-
cal blockade of PI3K abolished the acute effects of leptin to increase
renal SNA [76]. To our knowledge, however, no long-term studies
have tested whether chronic blockade of the IRS2–PI3K pathway abol-
ishes or attenuates the long-term effects of sustained hyperleptinemia
to increase SNA and BP. Deletion of IRS2 in the entire CNS causes only
moderate obesity and slight hyperphagia associated with normal an-
orexic and weight loss responses to leptin [7,13]. These observations
suggest that IRS2–PI3K signaling contributes modestly to body weight
regulation but maymediate, at least in part, the action of leptin on SNA.

The SHP2–MAPK pathway has been shown to participate in energy
balance and metabolism as neuronal deletion of SHP2 causes obesity
associated with hyperphagia and diabetes [48]. Chronic effects of
hyperleptinemia to increase BP were attenuated in mice with forebrain
deletion of SHP2 [26] suggesting that SHP2 signalingmay also be impor-
tant inmediating the effects of leptin on SNA and BP. Further studies are
needed, however, to assess the role of these pathways in mediating the
chronic effects of leptin on renal SNA and BP in obesity.

Role of the CNS melanocortin system in mediating the effects of leptin on
SNS activity and BP regulation

Although the precise intracellular events and brain regions bywhich
leptin regulates body weight homeostasis and cardiovascular function
are not completely understood, strong evidence shows that leptin re-
quires activation of the brain melanocortin system, including activation
of POMC neurons and MC4R, to exert most of its effects on renal SNA
and BP regulation [21,81]. Activation of LR in POMC neurons is critical
for leptin's ability to increase SNA and BP [24,25], while activation of
MC4R using synthetic agonists increases renal SNA, BP andHR in exper-
imental animal models as well as in humans ([21,35,46]; Sayk et al.,
2010). Furthermore, micewith whole bodyMC4R deficiency are hyper-
phagic and obese, and havemany characteristics ofmetabolic syndrome
including hyperglycemia, hyperinsulinemia, visceral adiposity and dys-
lipidemia despite markedly elevated blood leptin levels, but are also
completely unresponsive to the effects of leptin to increase renal SNA
and raise BP [77,81]. In addition, mutations in POMC or MC4R genes
lead to severe early-onset obesity and dysregulation of appetite in
humans who, despite pronounced obesity, exhibit reduced BP, HR and
energy expenditure, blood pressure and breathing. Hypothalamus: (ARC) arcuate nucleus,
e solitary tract, (DMV) dorsal motor nucleus vagus, (7 N) facial nucleus, (NA) ambiguous
lei, (BötC) Bötzinger nuclei, (preBötC) pre-Bötzinger complex and (rVRC and cVRG) rostral
oopiomelanocortin neurons, α-MSH, α-melanocyte stimulating hormone and MC4R,
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24-h urinary catecholamine excretion, lower prevalence of hyperten-
sion, and reduced SNA in response to acute stress [35,36]. Taken togeth-
er, these studies strongly suggest that a functional MC4R is necessary
for obesity and hyperleptinemia to increase SNA and cause hyperten-
sion. Although previous studies suggest that MC4R in the PVN and pre-
ganglionic sympathetic neurons in the brainstemmodulate SNA and BP
[52,80], additional long-term studies are needed to examine the brain
regions where MC4R regulates SNA and cardiovascular function.

Perspectives and conclusion

In this review we highlight recent advances on leptin's role in regu-
lating cardiorespiratory physiology. Leptin has emerged as a multifunc-
tional peptide able to not onlymediate energy balance, but also regulate
cardiovascular and respiratory functions. Although the precise mecha-
nism by which leptin exerts it effects on respiratory and cardiovascular
functions are still under investigation, strong evidence suggests an im-
portant involvement of the CNS and the brain melanocortin system.

Leptin has a stimulatory effect on ventilatory response to CO2 and
these responses are likely mediated by leptin's action in hypothalamic
and brainstem nuclei (Fig. 1). In the hypothalamus, leptin's effect
on ventilation appears to be mediated by the melanocortin system.
However, the role of the melanocortin system in contributing to the
brainstem (e.g. NTS and rostral ventrolateral medulla) actions of leptin
on ventilatory function has not been investigated.

In addition to its effects on respiratory function, leptin also plays an
important role on cardiovascular regulation and is an important link
between excess weight gain and increased SNA and hypertension.
Although the precise mechanisms by which leptin regulates SNA and
BP are still unclear and represent an area of intense investigation, strong
evidence suggests a critical role of the brain melanocortin system and
the activation of LR in various areas of the CNS including forebrain
(e.g. hypothalamus) as well as brainstem centers (Fig. 1). Therefore,
future investigations are needed to unravel the areas of the brain and
signaling pathways by which the leptin–melanocortin system affects
respiratory and cardiovascular functions.
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