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Aims: It has been reported that activation of the sympathetic nervous system and increase in plasma
norepinephrine (NE) levels are observed in patients with pulmonary hypertension (PH). γ-Aminobutyric
acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system and suppresses
peripheral sympathetic neurotransmission. This study investigated whether chronic treatment with GABA
prevents the development of monocrotaline (MCT)-induced PH. To elucidate the relationship between
the development of PH and sympathetic nerve activity, hemodynamic parameters, cardiac functions, and
plasma NE concentrations as well as cardiac endothelin-1 (ET-1) contents of MCT-induced PH rats were
evaluated with or without GABA treatment.
Main methods: Rats were injected with MCT (60 mg/kg) or saline subcutaneously and these rats were
randomly divided into GABA (500 mg/kg/day for 4 weeks)- or vehicle-treated groups, respectively.

Key finding: MCT-treated rats had higher right ventricular systolic pressures, right ventricle-to-left ventricle
plus septum weight ratios, pulmonary arterial medial thickening, and plasma NE levels than those of
saline-injected rats. MCT-induced alternations were significantly attenuated by treatment with GABA. In
MCT-induced PH rats with or without GABA treatment, plasma NE levels were positively correlated with
right ventricular systolic pressure. Right ventricular endothelin-1 (ET-1) contents were increased by MCT
injection, but these increments were not affected by treatment with GABA.
Significance: These results suggest that plasma NE levels play an important role in the development of MCT-
induced PH in rats and that GABA exerts a preventive effect against MCT-induced PH by suppressing the
sympathetic nervous system but not the cardiac ET-1 system.
© 2012 Elsevier Inc. All rights reserved.
Introduction

Pulmonary hypertension (PH) is characterized by elevated pulmo-
nary arterial pressure, pulmonary arterial remodeling, and right ventric-
ular hypertrophy. Among the types of PH, idiopathic PH has an especially
poor prognosis and is difficult to manage clinically (Simonneau et al.,
2009). Multiple factors are involved in the pathogenesis of idiopathic
PH. It has been reported that activation of the sympathetic nervous
system and increases in plasma norepinephrine (NE) levels are observed
in patients with PH and the experimental animal model of PH in rats
(Ciarka et al., 2010; Bogaard et al., 2010). In animals, α/β-adrenergic
receptor blockers, such as carvedilol and arotinolol, are known to pre-
vent the development of monocrotaline (MCT)-induced PH (Usui et al.,
l and Molecular Pharmacology,
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2006; Ishikawa et al., 2009). Chemical sympathectomy has also been
shown to reduce right ventricular hypertrophy induced by MCT in rats
(Tucker et al., 1983). These findings suggest that the sympathetic ner-
vous system plays an important role in the development of PH in both
humans and animals. However, precisemechanisms underlying the con-
tribution of the sympathetic nervous system and/or plasma NE in the
pathogenesis of PH remain to be clarified.

γ-Aminobutyric acid (GABA) serves as a major inhibitory neuro-
transmitter within the central nervous system (Curtis and Johnston,
1974), and it is also found in peripheral tissues (Jessen et al., 1979).
Treatment with GABA plays an important role in the modulation of
cardiovascular functions (Gillis et al., 1980) by acting not only within
the central nervous system but also within the peripheral tissues
(Defeudis et al., 1981; Defeudis, 1982). In the paraventricular nucleus
of the hypothalamus, GABAA and GABAB receptors are involved in
tonic regulation of sympathetic outflow and modulate cardiac func-
tion (Wang et al., 2009). Moreover, GABA reportedly modulates vas-
cular tone via suppression of NE release in the isolated rabbit ear
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artery, rat kidney, rat mesenteric arterial bed, and the pulmonary ar-
tery of cats through stimulation of prejunctional GABA receptors
(Manzini et al., 1985; Fujimura et al., 1999; Hayakawa et al., 2002;
Starke andWeitzell, 1980). These findings indicate that GABA inhibits
peripheral sympathetic neurotransmission. Thus, GABA may prevent
the development of PH by suppressing activation of the sympathetic
nervous system.

The aim of the present study is to investigate whether GABA pre-
vents the development of MCT-induced PH in rats. Moreover, the pos-
sible involvement of alterations in plasma NE levels and cardiac
endothelin-1 (ET-1) contents in GABA's action was evaluated.

Materials and methods

Animals

Male Sprague–Dawley rats (220–250 g, 8 weeks old, Japan SLC,
Shizuoka, Japan) were used in this study. Animals were housed in a
light-controlled room with a 12-hour light/dark cycle and were
allowed access to food and water ad libitum. Animals were main-
tained at the Departmental Animal Care Facility of Osaka University
of Pharmaceutical Sciences in accordance with recommendations of
the Declaration of Helsinki. Experimental protocols and animal care
methods were approved by the Experimental Animal Research Com-
mittee of Osaka University of Pharmaceutical Sciences. Rats were ran-
domized to MCT (60 mg/kg) or 0.9% saline subcutaneous injection
and further separated to distilled water- or GABA (500 mg/kg/day
for 4 weeks, given in drinking water)-treatment groups. This protocol
resulted in the creation of four groups: saline-injected rats given dis-
tilled water (vehicle group), MCT-injected rats given distilled water
(MCT group), saline-injected rats treated with oral GABA (vehicle+
GABA group), and MCT-injected rats treated with oral GABA (MCT+
GABA group). The dose and administration method of GABA were
based on the previous studies (Sasaki et al., 2006, 2007).

Separately, time-course experiments using the MCT group and
MCT+GABA group to examine time-dependent alterations of pathol-
ogy were also performed.

Experimental protocol

Four weeks after injection of MCT or saline, each rat was artificial-
ly ventilated under anesthesia with sodium pentobarbital (40 mg/kg,
i.p.). A polyethylene catheter, connected to a pressure transducer,
was inserted into the right carotid artery to measure systolic arterial
blood pressure and heart rate recorded by a polygraph system (RM
6000, Nihon Koden, Tokyo, Japan). Another polyethylene catheter
was inserted into the right jugular vein to measure right ventricular
systolic pressure. A 18-gauge needle was inserted into the abdominal
aorta for blood sampling to determine plasma NE concentrations. The
heart and lungs were excised, weighed, and used for morphometric
analysis. A portion of the right ventricle was frozen separately to
determine the ET-1 content.

In separate experiments, animals were sacrificed every week to
examine the time-course changes of pathology.

Histological studies

Excised left lungs were processed for light microscopic observation
according to standard procedures (Nishida et al., 2004a). Lungs were
fixed in phosphate-buffered 10% formalin, chopped into small pieces,
embedded in paraffin, cut into 3-μm slices, and stained using the
Elastica-van-Gieson technique. Pulmonary arteries were identified as
vessels with two clearly defined elastic laminae, with a layer of smooth
muscle cells between the two laminae. The external diameter and me-
dial wall thickness were measured for 15 to 20 muscular arteries (in
size ranges of 50–100 and 100–150 μm in external diameter) per lung
section. For each artery, the percent wall thickness was calculated
using the following formula: percent wall thickness=(medial thick-
ness×2)/(external diameter)×100. Wall thickness was determined
using an image analyzer (AE-6905C, ATTO, Tokyo, Japan).
ET-1 measurement

ET-1 was extracted from the right ventricle, as described else-
where (Fujita et al., 1995; Nishida et al., 2004b). Briefly, right ventric-
ular tissue was homogenized in 4 ml of ice-cold organic solution
(chloroform/methanol, 2:1, including 1 mM N-ethylmaleimide). Ho-
mogenates were left overnight and 0.09% trifluoroacetic acid was
then added. Homogenates were centrifuged and the supernatant
was stored. Aliquots of the supernatant were diluted 1/10 with
0.09% trifluoroacetic acid solution and applied to Sep-Pak C18 car-
tridges. Eluates were dried in a centrifugal concentrator, and the
dried residue was reconstituted in assay buffer for radioimmunoas-
say. The clear solution was subjected to radioimmunoassay.
NE measurement

NE was extracted from plasma by the alumina absorption method,
and NE concentration was measured by high-performance liquid
chromatography with an amperometric detector (HTEC-500: Eicom,
Kyoto, Japan), as previously reported (Hayashi et al., 1991).
Drugs

Monocrotaline and GABA were obtained from Sigma Chemicals
(St. Louis, MO, USA). All other chemicals were purchased from Nacalai
Tesque (Kyoto, Japan) and Wako Pure Chemical (Osaka, Japan).
Statistical analysis

Each value represents the mean±S.E.M. For statistical analysis, we
used a one-way analysis of variance followed by the Tukey–Kramermul-
tiple comparisons. Differences were considered significant at Pb0.05.
Results

Body, heart, and lung weight, and systemic hemodynamics

Results of the body, heart, lung weights and systemic hemodynam-
ics 4 weeks after MCT treatment are shown in Table 1. MCT treatment
did not affect systolic arterial pressure or heart rate. MCT-induced PH
was evaluated by measuring right ventricular systolic pressure. MCT
treatment produced significant increases in right ventricular systolic
pressure (Pb0.01). Daily administration of GABA for 4 weeks attenuat-
ed increases in right ventricular systolic pressure (Pb0.05). There was
no significant difference in right ventricular systolic pressure between
the vehicle group and vehicle+GABA group. Body weight gain in the
vehicle group was significantly greater than that in the MCT group.

MCT-induced right ventricular hypertrophy was evaluated by mea-
suring right ventricle-to-left ventricle plus septum weight ratio. MCT
induced an increase in the right ventricle-to-left ventricle plus septum
weight ratio, whereas right ventricular hypertrophy was suppressed
by administration of GABA for 4 weeks (Pb0.05). There was no differ-
ence in the right ventricle-to-left ventricle plus septumweight ratio be-
tween the vehicle group and vehicle+GABA group. Lung weight-to-
body weights were higher in animals who received an MCT injection
than in vehicle-treated animals (Pb0.01). The change in lung weight-
to-bodyweightwas not suppressed byGABA.MCT treatment did not af-
fect left ventricle or septum weight-to-body weight.



Table 1
Comparative data on body, heart, and lung weights, hemodynamics, medial thickness,
RV ET-1 content, and plasma norepinephrine levels.

Vehicle MCT

Drug (−) GABA (−) GABA

BW (g) 385±8** 393±4 331±4 329±7
RV/BW (g/kg) 0.55±0.03** 0.48±0.05 0.90±0.04 0.76±0.02*
LV+S/BW (g/kg) 1.75±0.03 1.97±0.04 1.85±0.02 1.95±0.07
Heart/BW (g/kg) 2.44±0.05** 2.54±0.03 2.94±0.07 2.91±0.08
Lung/BW (g/kg) 3.90±0.09** 4.06±0.17 6.15±0.25 6.16±0.18
RV/LV+S 0.32±0.01** 0.24±0.03 0.49±0.02 0.39±0.01*
SBP (mm Hg) 128±3 114±7 116±5 122±5
HR (beat/min) 418±15 359±40 408±14 350±27
RVSP (mm Hg) 30±2** 21±4 57±3 43±3*
Medial thickness (%)
b50–100 μm>

15±2** 14±1 30±2 22±1**

Medial thickness (%)
b100–150 μm>

15±1** 14±2 25±2 19±1**

RV ET-1 content
(ng/g tissue)

0.09±0.01 0.06±0.02 0.15±0.03 0.14±0.01

Plasma norepinephrine
concentration (pg/ml)

176±34** 175±12 262±24 131±13**

MCT: monocrotaline, SBP: systolic blood pressure, HR: heart rate, RVSP, right ventricu-
lar systolic pressure, BW: body weight, RV: right ventricular, LV: left ventricular, S: sep-
tum. ET-1: endothelin-1, medial wall thickness (%) of small pulmonary arteries:
external diameters 50–100 mm and 100–150 mm.
Values represent the mean±S.E.M. (n=6–8). *Pb0.05, **Pb0.01 compared with MCT+
vehicle.

vehicle 

50 µm

MCT 

Fig. 1. Representative micrographs of small pulmonary arteries. MCT-induced increases in th
ment. There was no difference between vehicle group and vehicle+GABA group.
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Lung vascular morphology, right ventricular ET-1 content, and plasma
NE concentrations

The lung vascular morphology of MCT-treated rats revealed signif-
icantly larger medial thicknesses of pulmonary arteries, with diame-
ters that ranged from 50 to 100 μm and 100 to 150 μm, than the
lungs of vehicle-treated animals (Table 1). MCT-induced increases
in the medial thickness of the pulmonary arteries were significantly
suppressed by GABA treatment (Pb0.01, respectively). There was no
difference between vehicle groups and the vehicle+GABA group.
Representative micrographs of each group were shown in Fig. 1. In
addition, right ventricular ET-1 contents tended to be increased
4 weeks after MCT treatment, irrespective of GABA administration.
On the other hand, plasma NE levels were significantly elevated by
treatment with MCT, and this elevation was abolished by GABA ad-
ministration (Table 1).

Time-course changes in right ventricular systolic pressure, right ventric-
ular hypertrophy, pulmonary arterial medial thickening and plasma NE
concentrations

Time-course changes in right ventricular systolic pressure and
plasma NE concentrations are shown in Fig. 2. Right ventricular sys-
tolic pressure was gradually increased after the MCT injection, and
these increments were markedly suppressed by daily treatment
with GABA. Plasma NE levels also increased gradually after the MCT
injection. These increases in plasma NE levels were completely sup-
pressed by administration of GABA. Furthermore, similar time-
course changes in right ventricular hypertrophy and pulmonary arte-
rial medial thickening were observed (Figs. 3 and 4).
vehicle + GABA 

MCT + GABA 

e medial thickness of the pulmonary artery were markedly suppressed by GABA treat-
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Fig. 2. Time-course changes in right ventricular systolic pressure (left panel) and plasma NE concentration (right panel). Each column and bar represent the mean±S.E.M. (n=5).
*Pb0.05, **Pb0.01, compared with vehicle, and #Pb0.05, ##Pb0.01, compared with MCT at the same week.
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In the MCT and MCT+GABA groups, there was a positive correla-
tion between plasma NE concentrations and right ventricular systolic
pressure (r=0.6541, y=4.3986+123.71, Pb0.01; Fig. 5), thereby
suggesting that changes in plasma NE concentrations are closely re-
lated to the pathogenesis of MCT-induced PH.
Time-course changes in right ventricular ET-1 content

Time-course changes in right ventricular ET-1 content in the MCT
group exhibited a gradual increase, compared with the vehicle group
(MCT: 0.09±0.02, 0.10±0.02, 0.12±0.01, 0.15±0.03 ng/g tissue for
1–4 weeks, respectively vs. vehicle: 0.10±0.01), although it is statis-
tically not significant. These increases in right ventricular ET-1 content
were not suppressed by daily administration of GABA (0.09±0.01,
0.11±0.01, 0.13±0.01, 0.14±0.01 ng/g tissue for 1–4 weeks, respec-
tively) (Fig. 6).
MCT

MCT + GABA 

vehicle 

0

0.2

R
V

/L
V

+
S

0.4

0.6

0 1 2 3 4
(weeks)

##

**

Fig. 3. Time-course changes in the right ventricle-to-left ventricle plus septum weight
ratio. Each column and bar represent the mean±S.E.M. (n=5). **Pb0.01, compared
with vehicle, and ##Pb0.01, compared with MCT at the same week.
Discussion

Multiple factors, such as vasoconstriction, remodeling of pulmo-
nary vessels, and thrombosis are involved in the pathogenesis of PH
(Simonneau et al., 2009). Sympathetic nerve activity is also one of
the important causal factors of development of PH (Usui et al.,
2006; Ishikawa et al., 2009; Tucker et al., 1983). In an animal model
of PH, the activity of the sympathetic nervous system is markedly in-
creased and neurohumoral derangements participate in excessive
muscularization and fibrosis of the pulmonary artery (Faber et al.,
2007).

GABA is one of the major inhibitory neurotransmitters in the cen-
tral nervous system. Intracerebroventricular injection of GABA modu-
lated cardiovascular functions in chronic heart failure via suppression
of sympathetic nerve activity (Wang et al., 2009). Moreover, system-
ically administered GABA could reduce blood pressure in both spon-
taneously hypertensive rats and human subjects by inhibiting NE
release from sympathetic nerve fibers and by decreasing peripheral
sympathetic nerve activity (Kimura et al., 2002; Hayakawa et al.,
2004; Yamakoshi et al., 2007; Li and Pan, 2010). However, it is unclear
whether chronic treatment with GABA prevents the development of
MCT-induced PH.

In the present study, we demonstrated that GABA treatment sup-
pressed MCT-induced right ventricular hypertrophy, PH, pulmonary
arterial hypertrophy, and elevations in plasma NE levels, thereby in-
dicating that GABA effectively prevented the development of MCT-
induced PH. Moreover, it has been reported that increases in plasma
NE levels are observed in PH patients and animal models (Ciarka et
al., 2010; Bogaard et al., 2010). The neuronal reuptake of NE was im-
paired in MCT-induced PH (Kimura et al., 2007), and continuous ad-
ministration of NE promoted cardiac hypertrophy and augmented the
decreased cardiac function in congestive heart failure rats (Kimura et
al., 2010), indicating that the spillover of NE by increasing sympathetic
nerve activity aggravates cardiac hypertrophy and cardiac dysfunction.
Thus, we investigated time-course changes ofMCT-treated rats to eluci-
date the relationship between plasma NE levels and development of
PH. MCT-treated rats showed time-dependent increases in right ven-
tricular systolic pressure, right ventricular hypertrophy, pulmonary
arterial medial thickening, right ventricular ET-1 content, and plasma
NE levels. On the other hand, GABA treatment markedly suppressed
elevated plasma NE levels and pulmonary hypertensive lesions in
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MCT-induced PH rats. Although the elevated right ventricular ET-1 con-
tent was not decreased by GABA treatment, plasma NE levels positively
correlatedwith right ventricular systolic pressure, suggesting that alter-
ations in plasma NE concentrations play an important role in the devel-
opment of MCT-induced PH in rats and cardioprotective effects of
GABA.

The blood–brain barrier is impermeable to GABA (Kuriyama and
Sze, 1971), and intravenous or intraperitoneal administration of
GABA is due to its actions within the peripheral tissues. It has been
reported that GABA is able to modulate vascular tone by suppressing
NE release in the isolated rabbit ear artery and rat kidney (Manzini et
al., 1985; Monasterolo et al., 1996; Fujimura et al., 1999). GABA has
antihypertensive effects due to its inhibition of NE release from sym-
pathetic nerves via presynaptic GABAB receptors (Hayakawa et al.,
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2002). Recently, we found that intravenous injection of GABA pre-
vented the development of ischemia/reperfusion-induced acute kidney
injury by suppressing enhanced renal sympathetic nerve activity during
ischemia and increased NE overflow from renal sympathetic nerve
endings (Kobuchi et al., 2009). Interestingly, these actions were abol-
ished by intracerebroventricular injection of a GABAB receptor antago-
nist (Kobuchi et al., 2011). It has been reported that the concentration
of GABA in the cerebrospinal fluid is increased by intravenous infusion
of GABA (Awadi et al., 2006). Taken together, it seems likely that
peripherally-administered GABA exerts its action through not only the
decreasing effect on NE release from sympathetic nerve endings but
also the suppression of central sympathetic outflow. However, at pre-
sent, the precise mechanisms, sites, and receptor subtypes underlying
the GABA-induced decreasing effect on plasma NE concentrations of
MCT rats cannot be determined.

ET-1 plays an important role in the progression of PH (Michel et
al., 2003), and both selective ETA and nonselective ETA/ETB receptor
antagonists are currently available for the treatment of PH patients.
In MCT-treated rat PH models, ET-1 mRNA expression and ET-1
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peptide levels are elevated in the right ventricle (Giaid et al., 1993;
Miyauchi et al., 1993; Nishida et al., 2004b). It has been reported
that the preventing effects of nonselective ETA/ETB receptor antago-
nists against the development of MCT-induced PH are accompanied
by decreases in sympathetic nerve activity (Uchino et al., 2008) and
plasma NE levels (Clozel et al., 2006). Although there is no direct ev-
idence of the relationship between the ET-1 system and sympathetic
nervous system in the pathogenesis of PH, ET receptor antagonists may
improve the progression of PH by suppressing the ET-1-enhanced sym-
pathetic nervous system. However, in the present study, it was noted
that GABA treatment suppressed MCT-induced elevations in plasma
NE levels in PH rats without affecting right ventricular ET-1 contents,
suggesting the absence of a direct relationship between the ET-1 system
and sympathetic nervous system in the pathogenesis of MCT-induced
PH. Further studies are needed to clarify the precisemechanisms under-
lying the beneficial effect of GABA against MCT-induced PH in rats.

Conclusion

Chronic treatment with GABA exerts a preventative effect on the
development of MCT-induced PH, pulmonary arterial remodeling,
and right ventricular hypertrophy, at least in part, via the suppression
of the sympathetic nervous system but not the cardiac ET-1 system.
However, wemust keep in mind that this study is just a basic and pre-
liminary research and that further investigations are required to
apply these findings in a clinical setting.
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