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Aims:Maternal inflammation is a risk factor for preterm birth, and premature infants are often exposed to
supplemental oxygen as a life-sustaining therapy. While more immature neonates are surviving, rates of
neurodevelopmental impairment are not improving. We developed a novel mouse model with clinically relevant
exposures to test the hypothesis that systemicmaternal inflammationwith transient neonatal hyperoxia exposure
will induce a phenotype similar to diffuse periventricular leukomalacia (PVL) like that observed in premature
human infants.
Main methods: Timed-pregnant C3H/HeN mice received intraperitoneal injections of lipopolysaccharide (LPS) or
saline on embryonic day 16. Newborn pupswere placed in room air (RA) or 85% oxygen (O2) for 14 days, followed
by 14 days in RA recovery. Oligodendroglial and microglial populations were evaluated at 14 and 28 days.
Key findings: Brainweight to bodyweight ratioswere lower inmice exposed to LPS. Oligodendrocyte numberswere
decreased significantly in the cerebral cortex and hippocampus in groups exposed to LPS or LPS/O2 at 14 days, and
persisted in the cerebral cortex at 28 days for LPS/O2mice. At day 14, cleaved caspase 3was increased and numbers
of microglia were elevated in the cerebral cortex and hippocampus of LPS/O2 animals.

Significance: These data indicate that combining systemic maternal LPS and neonatal hyperoxic exposure impairs
myelination, and suggests that this novel mouse model may represent a subtle, diffuse form of periventricular
white matter injury that could provide a clinically relevant platform for further study of perinatal brain injury.
© 2013 Elsevier Inc. All rights reserved.
Introduction

Advances in neonatal care have resulted in smaller and more imma-
ture babies surviving the perinatal period. However, adverse neurologic
outcomes remain a significant consequence of premature birth, with as
many as 25–50% of very low birth weight (VLBW) babies, born weighing
less than 1500 g, experiencing some degree of neurodevelopmental im-
pairment (Robertson et al., 2007; Volpe, 2009a; Allen, 2008). Historically,
cerebral palsy was a major defining factor of adverse neurologic out-
comes from the perinatal period. However, it is increasingly recognized
that long term impairments related to brain injury in preterm neonates
represent a spectrum of type and severity, involving mechanisms
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outside of classic intraventricular hemorrhage or cystic periventricular
leukomalacia (PVL) (Back, 2006; Volpe, 2009b). This shift is encapsulated
by descriptions of non-cystic PVL, characterized by diffuse periventricular
white matter injury in the cerebrum involving a constellation of damage
to vulnerable premyelinating oligodendrocytes, microglial activation,
astrogliosis, and neuronal injury (Back, 2006; Volpe et al., 2011; Volpe,
2011).

Translational science including investigation of animal models is
necessary to understand the mechanisms and develop preventive and
treatment strategies for perinatal brain injury in preterm infants
(Kinney and Volpe, 2012). Such animal models need to show brain
pathology consistentwith that seen in human neonates and should be in-
duced by clinically relevant stimuli. While existing animal models have
studied the impact of neonatal hypoxia–ischemia, chorioamnionitis, neo-
natal infection, and neonatal hyperoxia on brain development and injury
(Burd et al., 2012; Boksa, 2010; Back et al., 2002;Hagberg et al., 2002), the
effects of combined exposures have been reported only recently
(Brehmer et al., 2012).
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Maternal inflammation and infection are risk factors for both
preterm birth and subsequent cerebral palsy (Burd et al., 2012;
Horvath et al., 2012; Soraisham et al., 2013). Systemic maternal in-
flammation in the absence of chorioamnionitis or other infection is
commonly seen inmothers with chronic disease, obesity, preeclampsia,
and diabetes (Schmatz et al., 2010). Animal studies have demonstrated
thatmultiple infectious and inflammatory stimulimay induce a range of
effects on the developing brain (Rousset et al., 2006, 2008; Debillon
et al., 2000; Normann et al., 2009). Premature neonates commonly
require ventilator support and supplemental oxygen therapy at a time
when decreased antioxidant capacities make them most vulnerable to
oxidative stress. Injurious effects of hyperoxic conditions on the devel-
oping brain have been reported in existing animal studies (Gerstner
et al., 2008; Yis et al., 2008; Ramani et al., 2013; Zaghloul et al., 2012;
Sifringer et al., 2012).

In this study, we investigated a novel mouse model of maternal sys-
temic lipopolysaccharide (LPS) administration followed by transient
neonatal hyperoxia exposure. Prior work in our laboratory indicates
that this model is well suited to examining the effects of neonatal in-
flammation on developing systems.Wehave observed an inflammatory
lung phenotype similar to severe bronchopulmonary dysplasia (Velten
et al., 2010, 2012; Rogers et al., 2009) as well as significant functional
and structural alterations in cardiac development that persist into adult-
hood (Velten et al., 2011).

The combination of systemic maternal inflammation and neonatal
hyperoxia has overwhelming potential for injury in the neonatal
brain during a critical developmental period. However, the neuropa-
thology after these combined exposures has not been elucidated,
even though it is one of the most common courses experienced by
VLBW infants in Neonatal Intensive Care Units worldwide. Our hy-
pothesis was that the combination of systemic maternal inflamma-
tion and transient neonatal hyperoxia exposure would result in
patterns of injury consistent with pathologic changes observed in
preterm infants.
Materials and methods

Animal model

Animal study protocols were approved by the Institutional Animal
Care and Use Committee at the Research Institute at Nationwide
Children's Hospital, Columbus, OH. Adult C3H/HeN mice (8–10 weeks
old) were purchased from Harlan Sprague Dawley (Indianapolis, IN).
Mice were housed in our facility for at least 7 days prior to breeding.
Male and females were paired, and the presence of a vaginal plug was
designated as embryonic day 1 (E1). On E16, dams received intraperito-
neal injections of LPS (serotype 0111:B4, catalog no. 437627; Calbiochem,
Gibbstown, NJ) in saline (approximately 0.1 mL), or saline only. The LPS
dose (80 μg/kg) was chosen based on preliminary studies that consis-
tently resulted in a viable litter (Velten et al., 2010). Newborn mice
from saline- or LPS-injected dams were pooled and redistributed ran-
domly (yielding mixed litters of 6 to 7 pups) to the two dams in sepa-
rate cages within 24 h of birth. One litter of pups was exposed to 85%
Table 1
Antibodies for immunohistochemistry analyses.

Antibody Clone Dilutio

CNPase (oligodendrocytes) 11-5B mouse anti-human 1:800
MBP (oligodendrocytes, myelin) 7H11 mouse anti-human 1:200
Iba-1 (microglia, macrophages) Rabbit anti-human polyclonal 1:1000
GFAP (reactive astrocytes) Rabbit anti-guinea pig polyclonal Predilu

All antibodieswere dilutedwith AntibodyDiluent, catalog# S3022, Dako, Carpentaria CA. Abbrev
Iba-1—ionizing calcium-binding adaptor molecule 1; GFAP—glial fibrillary acidic protein.
oxygen (O2) for 14 days in a Plexiglas chamberwhichwas regularly cal-
ibrated (chamber calibrated every other day with an Oxygen Analyzer,
Hudson RCI, model 5577) while the litter of pups from the correspond-
ing maternal E16 treatment was maintained in room air (RA) for the
same period. Day 1 was defined as the first 24 h of O2 or RA exposure.
Litters were either sacrificed at day 14 (after hyperoxia exposure) or
maintained in RA for 14 days of recovery and sacrificed at day 28. In
this fashion, four treatment groups were created: saline/RA, saline/O2,
LPS/RA, and LPS/O2. To avoid oxygen toxicity in the dams and reduce
confounding maternal effects between groups, the nursing dams from
the same E16 treatment groups were rotated between their RA and O2

litters every 24 h.

Histology processing

At days 14 and 28, two animals from each litter were anes-
thetized with intraperitoneal administration of ketamine/xylazine
(150 mg/kg:15 mg/kg, respectively). Whole-body perfusion was
performed with ice cold saline followed by freshly prepared ice cold
neutral buffered 4% paraformaldehyde. Brains were removed immedi-
ately and immersed in fresh fixative for 24 h, then washed 3× in phos-
phate buffered saline (PBS) and transferred into PBSuntil processed and
embedded into paraffin blocks. Coronal sections cut serially at 4 μm
were placed on positively charged slides and then either stained with
hematoxylin and eosin to evaluate general tissue architecture or labeled
by indirect immunohistochemistry to examine the distribution of
selected cell populations (Table 1). All immunohistochemical methods
were visualized with a polymer detection system and the chromogen
3,3′-diaminobenzidene (DAB; kit DS9800; Leica Microsystems, Buffalo
Grove, IL). Sections were counterstained with hematoxylin.

Glial cell counts

For both days 14 and28, oligodendrocyte andmicroglial countswere
performed on selected brain regions (cerebral cortex, hippocampus) of
the middle cerebrum at the level of the internal capsule and thalamus.
Intracortical oligodendrocytes, defined by their immunoreactivity with
2′, 3′ cyclic nucleotide 3′ phosphodiesterase (CNPase), and microglia,
identified by their immunoreactivity with ionizing calcium-binding
adaptor molecule 1 (Iba1), were counted between the cingulum and
rhinal fissure in four non-overlapping high-power fields (i.e., 100×).
Additionally, tissue counts were performed on hippocampal neurons
within the dentate gyrus in two non-overlapping high-power fields.
Microglial cell bodies were also quantified in four non-overlapping
high-power fields in the cerebral cortex and hippocampus. All counts
were performed by a single investigator (oligodendrocytes by KMH,
microglia by AEG) for consistency.

Caspase 3 expression

Whole brains were extracted from randomly selected pups (2 per
litter) at postnatal days 3, 7, and 14. Whole brains were selected as
the sample due to the small size of the brains at the early time points,
n Antigen
retrieval

Catalog
#

Supplier

Citrate ab6319 Abcam, Cambridge, MA
Citrate NCL-MBP Leica Microsystems, Buffalo Grove IL
EDTA PP290-AA Biocare Medical, Concord, CA

te None RB-087-R7 Thermo LabVision, Kalamazoo MI

iations: CNPase—2′, 3′ cyclic nucleotide 3′ phosphodiesterase;MBP—myelin basic protein;
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which precluded regional microdissection. Specimens were frozen in
liquid nitrogen and maintained at −80 °C until analyses. Frozen
whole brains were homogenized, and protein concentrations were de-
termined by Bradford assay. For western blots, proteins were separated
on SDS-PAGE gels and transferred to PVDF membranes, which were
then probed with rabbit monoclonal anti-cleaved caspase 3 primary
antibody (catalog# 9664; Cell Signaling, Boston,MA) at a 1:500 dilution.
Antibody binding was detected using anti-rabbit secondary antibody
(catalog #170-6515, Bio-Rad Laboratories, Hercules, CA) at 1:12,000
and then developed using enhanced chemiluminescence (ECL Prime
Western Blotting Detection, GE Healthcare, UK). Expression levels
were quantified using Image Quant Software, Version 5.0 (Molecular
Dynamics, Sunnyvale, CA). The density of the band for the protein was
normalized to the density of β-actin protein (catalog# ab6276;
Abcam, Cambridge, MA).
Statistics

Statistical analyses were performed by two-way analysis of variance
(ANOVA) followed by least significant difference (LSD) or Tukey's tests
(corrected for multiple analyses). All data are presented as
means ± standard error of the mean (SEM), and the results of the
two-way ANOVA are indicated. Significance was defined as p b 0.05.
All analyses were performed with GraphPad PRISM 5 (La Jolla, CA).
Results

Brain and body weight growth patterns differ after LPS or O2 exposures

At 14 days, hyperoxia exposure caused a modest decrease in body
weight with preservation of brain weight (Table 2) leading to an effect
of hyperoxia on the brain:body weight ratios (Table 2). At day 28,
after 14 days in RA recovery, there was “catch-up” growth of the body
weight in the saline/O2-exposed group and even greater gain in the
LPS/O2 group. There was evidence of excessive weight gain in the
mice exposed to LPS which resulted in brain to body weight ratios
that were lower in the LPS-treated groups than in the saline-treated
groups at day 28 (Table 2).
Gross pathological changes were not observed across treatment groups

Hematoxylin and eosin stained brain sections were evaluated at
days 14 and 28. These sections were examined for gross pathological
changes including infarction, focal areas of necrosis, cyst formation,
significant hemorrhage, or parenchymal abnormalities visible at low
magnification. Noovert neuropathological abnormalitieswere observed
in any of the treatment groups at either time point (data not shown).
Table 2
Brain weights and brain to body weight ratios.

Treatment N Day 14†

Litters
d14/d28

Pups
d14/d28

Brain weight†

g
Body weight+,†

g
Brai

Saline/RA 6/5 11/10 0.44 ± 0.01 8.56 ± 0.11 5.01
Saline/O2 6/5 11/10 0.41 ± 0.01# 8.05 ± 0.15*,# 5.28
LPS/RA 4/4 9/7 0.46 ± 0.01 9.55 ± 0.20* 4.77
LPS/O2 4/4 9/7 0.42 ± 0.02 8.33 ± 0.47# 5.15

Aneffect of LPS (+); effect of O2 (†); and interaction betweenLPS andO2 (‡)were indicated by tw
*different than saline/RA; #different than LPS/RA; ^different than saline/O2.
Abbreviations: LPS = lipopolysaccharide, O2 = hyperoxia, RA = room air.

a Data are expressed as g/100 g animal.
Cortical early myelinating oligodendrocyte cell number persistently
decreased after LPS and O2

Numbers of CNPase-positive cortical oligodendrocytes were de-
creased by both LPS and O2 exposures. At 14 days, cortical oligodendro-
cytes were fewer in LPS/RA and saline/O2 and LPS/O2 compared to
saline/RA (Fig. 1A and C). The lower numbers of cortical oligodendro-
cytes persisted at 28 days in the LPS/O2 group compared to LPS/RA
and saline/RA (Fig. 1B and D). Qualitatively, staining with myelin basic
protein (MBP, a marker of mature myelinating oligodendrocytes) at
28 days was reflective of the quantitative results from CNPase
(Fig. 1E). The intensity of staining and progression of myelination
from the corpus callosum through the neocortex was decreased in
LPS- and O2-treated groups at 28 days, and was most pronounced in
the hyperoxia groups.

Hippocampal early oligodendrocytes decreased at 14 days

Numbers of CNPase-positive hippocampal oligodendrocytes in the
dentate gyrus were significantly decreased by treatment with LPS and
O2. At 14 days, hippocampal oligodendrocytes were decreased in the
LPS-treated groups compared to the saline-treated groups, with the
lowest numbers in the LPS/O2-treated group (Fig. 2A and C). Following
the 14-day RA recovery, at day 28 there was no significant difference in
hippocampal oligodendrocyte numbers (Fig. 2B and D).

Combined LPS/O2 exposure increased cleaved caspase 3 levels

Cleaved caspase 3 levels measured by western blot in whole brain
homogenates were similar across treatment groups at day 3 and day 7
(data not shown). At day 14, increased levels of cleaved caspase 3
were observed in the LPS/O2 treatment group (Fig. 3).

Microgliosis, but not astrocytosis, observed at 14 days after combined
LPS/O2 exposure

Pups exposed to LPS and O2 had increased numbers of Iba1-positive
microglia in both the cerebral cortex (Fig. 4 A and C) and the hippocam-
pus at day 14 (Fig. 4 B and D) compared to all other groups. However,
numbers of Iba1-positive cells were no longer elevated in either region
by day 28 (data not shown). Qualitative analysis of sections stained for
GFAP-positive astrocytes showed no differences among treatment
groups at either day 14 or 28 (data not shown).

Discussion

The complex interaction between thematernal environment and fetal
development directly influences the spectrum of neurodevelopmental
deficits in VLBW infants (Kinney et al., 2012). Those neonates who
Day 28

n:body weighta,† Brain weight+

g
Body weight+

g
Brain:body weighta,+

± 0.05 0.44 ± 0.01 13.94 ± 0.59 3.16 ± 0.11
± 0.17# 0.43 ± 0.02# 13.39 ± 0.61# 3.24 ± 0.14*,#

± 0.08 0.47 ± 0.02 16.88 ± 0.82* 2.64 ± 0.10*
± 0.17 0.46 ± 0.01 16.64 ± 0.40*,^ 2.77 ± 0.08*,^

o-wayANOVA, p b 0.05. LSDpost hoc analyses indicated the following significantfindings:



Fig. 1.Oligodendrocyte numbers are decreased in the cerebral cortex by treatmentwith LPS and/or O2. A and B, representative images of saline/RA, saline/O2, LPS/RA and LPS/O2 treatment
groups, labeled with CNPase as a marker for early myelinating oligodendrocytes, are shown (100×). C and D, labeled cortical oligodendrocyte cell bodies were counted per high-power
field in the cerebral cortex between the cingulum and rhinal fissure. Significant effect of LPS and an effect of O2 were indicated by two-way ANOVA at both day 14 and day 28,
p b 0.05, n = 2–4 litters, n = 1–2 pups per treatment group. LSD post hoc analyses indicated: *different than saline/RA; #different than LPS/RA; ^different than saline/O2. Arrowheads
provide orientation toward the white matter at the base of the cortex. Small arrows identify representative CNPase-positive cell bodies.
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experience seemingly benign hospital courses are still at risk for impaired
neurodevelopment, despite normal-appearing routine head ultrasonog-
raphy (El-Dib et al., 2010). Our findings in this study demonstrate a
pattern of cellular injury consistent with aspects of diffuse PVL as de-
scribed in human neonates. The phenotype is subtle compared to others'
previously described, enhancing the potential for clinical relevance of our
model.

In examination of the brain:body ratios, there were lower brain
weights associated with the 14 days of hyperoxic exposure, thus lead-
ing to increased ratios in the O2-treated groups at day 14 (Table 2).



Fig. 2. Oligodendrocyte numbers are decreased in the dentate gyrus of the hippocampus by treatment with LPS and/or O2. A and B, representative images of saline/RA, saline/O2, LPS/RA
and LPS/O2 treatment groups, labeledwith CNPase as amarker for early myelinating oligodendrocytes, are shown (100×). C andD, labeled hippocampal oligodendrocyte cell bodieswere
counted per high-power field in the dentate gyrus. Significant effect of LPS and an effect of O2 were indicated by two-way ANOVA at day 14, p b 0.05, n = 2–4 litters, n = 1–2 pups per
treatment group. LSD post hoc analyses indicated: *different than saline/RA; #different than LPS/RA; ^different than saline/O2. No statistical differences were indicated at day 28.
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Unexpectedly at day 28, after 14 days of room air recovery, the brain:
body weight ratios were lower as a result of a significant increase in
body weight in the LPS-exposed groups, independent of O2 exposure.
These findings suggest a lasting effect of the maternal inflammatory
response. Velten et al. reported that birth weights of LPS-exposed
pups were decreased compared to those of saline controls. In the
same study, bodyweights of LPS/O2 exposed animals were significantly
lower than those of saline/RA controls at 8 weeks of age, when impaired
cardiac function was identified (Velten et al., 2012). Based upon these
combined findings, we could speculate that the LPS-exposed pups de-
velop metabolic disturbances related to intrauterine growth restriction
associated with maternal inflammation, an aspect of this model that
will require further investigation.

The complexity of understanding and preventing brain injury in
VLBW infants requires a translational and comprehensive approach
(Kinney and Volpe, 2012). As such, several animal models have been
developed that vary in insult type, timing, and severity. Current models
provide a system for studying one ormore of the pathophysiologic com-
ponents of human PVL or graymatter injurywhich include loss of oligo-
dendrocyte progenitors, impaired myelination, increased microglial
activation, varying degrees of focal necrosis, reactive astrocytosis, neu-
ronal injury, and a range of functional deficits (Kinney and Volpe,
2012; Burd et al., 2012; Boksa, 2010; Hagberg et al., 2002). Similar to
other animalmodels examining LPS or hyperoxia as single interventions
(Burd et al., 2012; Boksa, 2010; Gerstner et al., 2008;Wang et al., 2006),
our work also found decreased numbers of cortical and hippocampal
early myelinating oligodendrocytes with persistently impaired
myelination at 28 days (Figs. 1 and 2). In contrast to neuropathologic
studies of human PVL and existing animal models, we did not identify
significant macro or microscopic foci of necrosis nor astrocytosis or
glial scarring, suggesting a more subtle pattern of white matter injury.
Thesefindingsmaybedue to a less severe insult in ourmodel, or possibly
the timing of the interventions and analysis precluded us fromobserving
additional abnormalities that may be present either prior to the conclu-
sion of the hyperoxic exposure at day 14 or further into adulthood.
Understanding the functional implications of exposure to maternal
inflammation and neonatal hyperoxia in the setting of a diffuse histo-
pathological injury could further enhance the clinical relevance of this
model.

The additive effect of maternal inflammation with hyperoxia expo-
sure on oligodendrocyte cell populations was particularly impressive
in the LPS/O2 treatment group. While apparent recovery of both early
CNPase-positive oligodendrocytes and MBP-positive cell numbers
were appreciated at 28 days compared to 14 days after maternal LPS
exposure alone, this recovery was not seen in the combined LPS/O2

exposure group. Recovery of oligodendrocyte cell number has been re-
ported in animal models of PVL. Back et al. showed a loss of oligoden-
drocyte progenitors soon after hypoxic–ischemic injury, followed by

image of Fig.�2


Fig. 4. Immunohistochemical staining and quantification of cortical and hippocampalmicroglia. A, representative images of saline/RA, saline/O2, LPS/RA and LPS/O2, treatment groups of at
day 14 are shown (100×). B, cortical and hippocampal microglial cell bodies were counted per high-power field in the cingulum and rhinal fissure and the dentate gyrus, respectively. A
significant effect of LPS was observed by two-way ANOVA, p b 0.05, n = 2–4 litters, n = 3–4 pups per treatment group. LSD post hoc analyses indicated: *different than saline/RA.

Fig. 3.Cleaved caspase 3 protein levelswere elevated in thebrains of animals exposed to LPS,with orwithout O2. Proteins fromwhole brainhomogenates obtained fromsaline/RA, saline/O2,
LPS/RA andLPS/O2 treatment groups at day 14were analyzed for cleaved caspase 3 bywestern blot. An effect of O2 andan interaction betweenO2 and LPSwere indicated at both days 14 and
28 by two-way ANOVA, p b 0.05, n = 2–4 litters, n = 1–2 pups per treatment group. LSD post hoc analyses indicated: *different than saline/RA; #different than LPS/RA; ^different than
saline/O2.

169A.E. Graf et al. / Life Sciences 94 (2014) 164–171

image of Fig.�4
image of Fig.�3


170 A.E. Graf et al. / Life Sciences 94 (2014) 164–171
increased oligodendrocyte cell number but persistently impaired
myelination, suggesting amaturational or functional defect of remaining
oligodendrocytes (Back et al., 2002). This may suggest that prolonged
exposure to hyperoxia during a critical period in development induces
further cell death rather than allowing for a reactive oligodendrogliosis.
A model of systemic neonatal inflammation (LPS on day 3) and 24 hour
hyperoxia exposure (day 6) has been reported by Brehmer et al. (2012).
In comparison to the model presented here, there was an increase in
caspase 3 protein associated with hyperoxia and a decrease in MBP
after single LPS or O2 or combined exposure. In contrast to our findings
associated with maternal inflammation and 14 days of neonatal
hyperoxic exposure, they observed a “protective effect” of LPS exposure
on early oligodendrocyte survival and report an increase in oligodendro-
cyte apoptosis with O2 exposure alone. These data suggest that while
hyperoxia induces cell death, LPS exposure may impair oligodendro-
cyte maturation (Brehmer et al., 2012). Both effects would impair
myelination as evidenced by the decrease inMBP. The differences be-
tween models may be related to both the timing of LPS administration
and contribution of maternal inflammatory response, as well as the
difference in length of hyperoxic exposure. The finding that hyperoxia
is associated with increased oligodendrocyte cell death would also sup-
port the lack of recovery seen at 28 days after combined LPS/O2 exposure.

Asmentioned, one possiblemechanism for the decrease in oligoden-
drocytes in LPS/O2-treated mice is apoptosis. To examine this possibili-
ty,western blots for cleaved caspase 3 protein levelswere performed on
whole brain homogenates at early time points (Fig. 3). The increased
level of caspase 3 in the LPS/O2-exposed mice up to day 14 indicates
that a substantial amount of apoptosis was taking place, and that the
combined exposures had a more profound effect on apoptosis than
either the LPS or O2 exposures alone. This observation, indicating ongoing
cell loss during the hyperoxic period, could explain the persistence of
decreased oligodendrocyte numbers in the cerebral cortex even after a re-
covery period in roomair. It is important to note that, because of the small
brain size at early time points, caspase 3 protein levels were determined
from whole brain homogenates. Analyses of specific brain regions may
reveal areas of increased vulnerability and are the subject of ongoing
investigation.

Another potential mechanism for the decrease in oligodendrocytes
is the increased numbers of microglia present in both the cerebral
cortex and hippocampus at day 14 (Fig. 4) in LPS/O2 exposed pups.
Microglia are present in abundance during critical periods in the de-
veloping brain (Volpe, 2011) and would be activated by the inflam-
matory stimuli imposed in this model. Although these cells do not
persist after room air recovery, their presence and increased activation
during early critical developmental stagesmay contribute to the decrease
in oligodendrocyte numbers either by causing direct injury with release
of reactive oxygen and nitrogen species and inflammatory cytokines,
or by indirectly altering the neural microenvironment in such a fashion
as to impair oligodendrocyte survival and maturation (Kaur and Ling,
2009; Pang et al., 2010; Kaindl et al., 2008).

The decreased numbers of cortical and hippocampal oligodendro-
cytes and transient microgliosis that we observe in our model align
with recent descriptions of ‘encephalopathy of prematurity’ (Volpe,
2009b). The finding of persistently impaired myelination may be in
part related to recent reports in themagnetic resonance imaging litera-
ture in which former premature infants continue to exhibit decreased
cerebral volumes into early childhood and adulthood (Dyet et al.,
2006; Nosarti et al., 2002). Oligodendrocytes are immature and suscep-
tible to injury at 23 to 32 weeks in a human infant (Back, 2006). In the
current experiment, the timing of the maternal and neonatal interven-
tions represents a comparable period in mouse brain development
(Clancy et al., 2001). Thus, the clinical relevance of our novel “two-hit”
model, LPS in utero combined with subsequent postnatal hyperoxia, is
compelling in a biological sense and offers a plausible representation
of the pathophysiology observed inVLBWhuman infants. The two stimuli
recapitulate a common clinical scenario and are associatedwithhistologic
neuropathology that is subtlewhen compared to existingmodels. Further
study of this novel model may add insight into the complex interactions
between thematernal environment, fetal brain development, and inflam-
matory insults during critical periods. In the future, this model could
potentially be used as a platform to investigate novel preventive and ther-
apeutic strategies to improve neurodevelopmental outcomes in VLBW
survivors.

Conclusion

Vulnerable premature infants often experience multiple inflamma-
tory insults perinatally, including maternal inflammation or infection,
followed by neonatal oxygen exposure as a life-saving medical inter-
vention. In the current animal model, exposure antenatally to maternal
inflammation and subsequent neonatal hyperoxia results in significant
alterations of glial cell populations in the developing mouse brain.
Further interrogation of this model may provide a mechanism to identify
preventive and therapeutic targets.
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