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Keywords: Aims: PECAM-1 is an abundant endothelial cell surface receptor that becomes highly enriched at endothelial
PECAM-1 cell-cell junctions, where it functions to mediate leukocyte transendothelial migration, sense changes in shear
Glycosylation and flow, and maintain the vascular permeability barrier. Homophilic interactions mediated by the PECAM-1
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extracellular domain are known to be required for PECAM-1 to perform these functions; however, much less is
understood about the role of its cytoplasmic domain in these processes.

Main methods: CRISPR/Cas9 gene editing technology was employed to generate human endothelial cell lines
that either lack PECAM-1 entirely, or express mutated PECAM-1 missing the majority of its cytoplasmic domain
(ACD-PECAM-1). The endothelial barrier function was evaluated by Electric Cell-substrate Impedance Sensing,
and molecular mobility was assessed by fluorescence recovery after photobleaching.

Key findings: We found that ACD-PECAM-1 concentrates normally at endothelial cell junctions, but has the
unexpected property of conferring increased baseline barrier resistance, as well as a more rapid rate of recovery
of vascular integrity following thrombin-induced disruption of the endothelial barrier. Fluorescence recovery
after photobleaching analysis revealed that ACD-PECAM-1 exhibits increased mobility within the plane of the
plasma membrane, thus allowing it to redistribute more rapidly back to endothelial cell-cell borders to reform
the vascular permeability barrier.

Significance: The PECAM-1 cytoplasmic domain plays a novel role in regulating the rate and extent of vascular
permeability following thrombotic or inflammatory challenge.

1. Introduction maintaining endothelial barrier integrity following thrombotic or in-

flammatory challenge — a function that has been demonstrated both in

Platelet endothelial cell adhesion molecule (PECAM-1, CD31) is a
130-kDa member of the immunoglobulin (Ig) superfamily that is ex-
pressed on the surface of hematopoietic progenitor cells, leukocytes,
and platelets, and is highly enriched at the intercellular junctions of
confluent endothelial cell monolayers [2,37,39]. PECAM-1 is comprised
of a 118-residue cytoplasmic domain, a 19-residue transmembrane
domain, and an extracellular domain containing six Ig homology do-
mains, the amino terminal two of which mediate PECAM-1/PECAM-1
homophilic interactions [43,51,52]. Extracellular domain-mediated
homophilic binding is critical for concentrating PECAM-1 at endothelial
cell-cell junctions [50,55], where it plays an important role in

vivo [9,17,21,32,33] and in vitro [30,35,45].

The PECAM-1 cytoplasmic domain is encoded by eight exons [27],
is largely unstructured [42], and carries out multiple functions in en-
dothelial cells. Specifically, it is required for PECAM-1 to (1) function as
part of a mechanosensory complex [11,13,26,54] (2) confer cytopro-
tection in response to proapoptotic stimuli [4,16,19], and (3) interact
with other junctional adhesion proteins and cytoskeletal molecules
[5-7,22,23,54]. Studies of fusion proteins that contain the PECAM-1
extracellular Ig domains, but transmembrane and cytoplasmic domains
of ICAM-1, have demonstrated that the PECAM-1 cytoplasmic domain is
not required for its border localization [50,55]. Little is known,
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however, about the influence of the PECAM-1 cytoplasmic domain on
barrier integrity in endothelial cells.

We employed CRISPR/Cas9 gene editing technology to generate a
series of novel human endothelial cell lines that either lack PECAM-1
entirely, or express a mutant form of PECAM-1 missing the majority of
its cytoplasmic domain. These were then used to examine whether the
PECAM-1 cytoplasmic domain regulates endothelial barrier function
and, if so, how. Our results demonstrate that loss of the PECAM-1 cy-
toplasmic domain does not affect its ability to concentrate at the bor-
ders of confluent endothelial cells, but unexpectedly enhances its ability
to maintain and restore endothelial junctional integrity after challenge.
These results suggest that the ability of PECAM-1 to move freely within
the plane of the plasma membrane is controlled by its cytoplasmic
domain, which in turn determines the efficiency with which endothelial
cells are able to establish and maintain their vascular permeability
barrier.

2. Results

2.1. Creation of PECAM-1-deficient and PECAM-1 cytoplasmic domain-
deleted human immortalized endothelial cell lines

Previous studies examining the function of the PECAM-1 cyto-
plasmic domain have been carried out using murine NIH3T3 cells
[1,15], monkey Cos7 cells [1], Chinese hamster ovary cells [55],
murine L-cells [1,51], murine brain endothelioma cells [54,55], bovine
aortic endothelial cells [54], and human mesothelioma cells [50]. Al-
though these cell lines grow as adherent monolayers that allow PECAM-
1, via diffusion trapping, to concentrate at cell-cell junctions, potential
cytoplasmic and/or plasma membrane partners likely vary widely be-
tween each of these cell lines and authentic human endothelial cells.
Because such components may provide an important context for the
function of the PECAM-1 cytoplasmic domain, we used CRISPR/Cas9
technology to edit the PECAM-1 gene in human endothelial cells in situ
to produce two novel immortalized cell lines: one in which PECAM-1 is
missing completely (KO-PECAM-1 iHUVECs), and one in which only the
PECAM-1 cytoplasmic domain has been deleted (ACD-PECAM-1 iHU-
VECs). A schematic diagram depicting sequences of the guide RNAs
(gRNAs) used to create these cell lines, and the approximate location of
their corresponding target sites in the PECAM-1 gene, is shown in
Fig. 1. KO-PECAM-1 iHUVECs were produced by transducing iHUVECs
with a lentiviral vector encoding the Cas9 nuclease and gRNA 1
(Fig. 1B) to create an insertion/deletion mutation resulting in a pre-
mature stop codon within PECAM-1 exon 1. ACD-PECAM-1 iHUVECs
were created using a lentiviral vector encoding Cas9 and gRNAs 10
(Fig. 1C) and 16 (Fig. 1D), resulting in deletion of the cytoplasmic
domain bounded by exons 10 through 16. The cysteine residue that
becomes palmitoylated [47], as well as positively charged R and K re-
sidues that constitute the stop transfer sequence immediately inside the
inner face of the plasma membrane, were intentionally left in place to
prevent slippage of the transmembrane domain into and out of the lipid
bilayer.

2.2. Deletion of the PECAM-1 cytoplasmic domain does not affect the
ability of PECAM-1 to localize at endothelial cell-cell borders

Flow cytometry, employing monoclonal antibodies (mAbs) PECAM-
1.3 and 235.1, which are specific for amino and C-termini of the
PECAM-1, respectively (depicted in Fig. 1), was used to verify that KO-
PECAM-1 iHUVECs lacked PECAM-1 expression, while the ACD-
PECAM-1 iHUVECs expressed the extracellular, but not cytoplasmic,
domain of PECAM-1. As expected, wild-type iHUVECs bound both
mAbs (Fig. 2A), ACD-PECAM-1 bound only mAb PECAM-1.3 (Fig. 2B),
while KO-PECAM-1 iHUVECs bound neither (Fig. 2C). Confocal mi-
croscopy was then employed to assess the ability of wild-type PECAM-1
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Fig. 1. Strategy used to generate PECAM-1 knockout and cytoplasmic domain-deleted
iHUVEC cell lines. (A) Schematic of PECAM-1 showing the locations of antibody binding
sites for mAb PECAM-1.3, specific for PECAM-1 IgD1, and mAb 235.1, specific for the C-
terminus of the PECAM-1 cytoplasmic domain. (B) Guide RNA (gRNA) sequence (orange
bar) and the protospacer adjacent motif (PAM) sequences (blue) used to introduce an
insertion/deletion in exon 1 of the PECAM-1 gene to generate a PECAM-1-deficient
iHUVEC line (KO-PECAM-1). (C-D) Sequence of the gRNAs that frame the PECAM-1
cytoplasmic domain used to generate an iHUVEC line expressing PECAM-1 lacking its
cytoplasmic domain (ACD-PECAM-1). The approximate location of the binding sites of the
gRNA relative to their location in exons 1, 10 and 16 are shown schematically in orange in
panel A. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

(Fig. 2D-F) and ACD-PECAM-1 (Fig. 2G-I) to become concentrated at
endothelial cell-cell junctions. Reconstruction of the Z-axis in each of
these micrographs demonstrates that ACD-PECAM-1 localizes to en-
dothelial intercellular junctions to the same extent as does WT-PECAM-
1, and both forms are largely absent from the apical surface in confluent
endothelial cell monolayers.

2.3. The PECAM-1 cytoplasmic domain regulates baseline barrier function
and the rate of restoration of endothelial cell junctional integrity following
disruption by thrombin

Previous studies have shown the importance of PECAM-1 extra-
cellular domain-mediated homophilic binding in the establishment and
maintenance of the vascular barrier [30,35,45], but little is known
about the contribution of the PECAM-1 cytoplasmic domain to en-
dothelial cell barrier function. Electric Cell-substrate Impedance Sen-
sing (ECIS) technology, which can monitor subtle changes in en-
dothelial cell barrier function in real-time [20], was used to determine
whether the PECAM-1 cytoplasmic domain plays a role in regulating
vascular permeability. iHUVEC cell lines expressing WT-, ACD-, or KO-
PECAM-1 were plated on gold electrodes to form confluent monolayers,
and thrombin was used to disrupt junctional integrity. As shown in
Fig. 3, KO-PECAM-1 iHUVECs had poorer baseline barrier resistance,
and exhibited a significantly slower rate of recovery of endothelial cell
barrier function following thrombin challenge, than did endothelial
cells expressing wild-type PECAM-1, as expected. In contrast, ACD-
PECAM-1 iHUVECs exhibited tighter baseline resistance and a faster
rate and extent of recovery of barrier restoration, suggesting that the
cytoplasmic domain of PECAM-1 regulates its ability to contribute to
the endothelial cell permeability barrier.
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Fig. 2. Characterization of CRISPR-generated iHUVEC cell
lines. Flow cytometric data showing the binding of mAbs
PECAM-1.3 and 235.1 to wild-type iHUVECs (panel A),
ACD-PECAM-1 iHUVECs (panel B), and knockout PECAM-1
iHUVECs (panel C). Note the comparable surface expression
levels of PECAM-1 in the WT and ACD iHUVEC cell lines,
but absence of cytoplasmic tail in the ACD iHUVEC line.
(D-I) Confocal fluorescence microscopy showing combined
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2.4. Deletion of PECAM-1 cytoplasmic domain enhances the mobility of
PECAM-1 within the plane of the endothelial cell plasma membrane

To account for the observation that cytoplasmic domain-deleted
PECAM-1 forms tighter baseline barriers that are able to be restored
more quickly following thrombotic or inflammatory challenge, we
constructed lentiviruses encoding wild-type- and ACD-PECAM-1 fused
to green fluorescent protein (GFP), and transduced them into PECAM-1-
deficient iHUVECs. Flow cytometric and confocal microscopic analysis
confirmed that both constructs were expressed to a similar degree on
the cell surface (Fig. 4), and capable of concentrating at cell-cell borders
(Fig. 4 inset). To examine the possibility that the cytoplasmic domain
restricted the mobility of PECAM-1 within the plane of the endothelial
cell plasma membrane, we subjected confluent monolayers of these
cells to fluorescence recovery after photobleaching (FRAP) analysis. A
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projection images (Panels D and G), as well as re-
presentative cross-sectional images (denoted by white
lines) of representative z-planes (Panels E, F, H, and I) in
iHUVEC cells expressing either WT-PECAM-1 or ACD-
PECAM-1. Note that absence of the PECAM-1 cytoplasmic
domain does not affect its ability to concentrate at en-
dothelial cell-cell borders. Scale bar = 20 um.
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high intensity laser was used to photobleach cell-cell junctional regions
with similar intensities of PECAM-1 staining, after which the rate of
recovery of fluorescence, which reports the migration of GFP-tagged
molecules into the photobleached region, was quantified using confocal
microscopy. As shown in Fig. 5, GFP-ACD-PECAM-1 had a higher rate of
diffusion within the plasma membrane compared to GFP-WT-PECAM-1.

3. Discussion

PECAM-1 is a cell adhesion and signaling receptor expressed on the
surface of platelets and leukocytes, and is also the most abundant cell
surface molecule on endothelial cells. PECAM-1 becomes highly con-
centrated at endothelial cell junctions via diffusion trapping — a passive
process in which PECAM-1 molecules, diffusing laterally within the
lipid bilayer of the plasma membrane, come into contact with PECAM-1
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Fig. 3. Absence of the PECAM-1 cytoplasmic domain confers enhanced baseline barrier function and faster restoration of endothelial cell junctional integrity following thrombin
challenge. (A) ECIS analysis of the endothelial cell permeability barrier under resting and stimulated conditions of iHUVECs expressing WT and ACD forms of PECAM-1. The lines display
the mean + s.d. of the resistance () over time. The dashed box indicates the time frame used to calculate the rate of recovery. N = 10 for the WT and KO-PECAM-1 iHUVEC lines, and
15 for the ACD-PECAM-1 cell line. (B) Modeled barrier function (Rb) of data shown in panel A. (C) Linear regression analysis of the resistance curves showing the mean * s.d. of the
slope from the nadir immediately after thrombin challenge to a point near full recovery. Statistics were carried out using one-way ANOVA analysis. *P < 0.05; **P < 0.01;
***p < 0.001. Note the increased baseline barrier resistance as well as the enhanced rate of barrier recovery following thrombin stimulation of iHUVECs expressing ACD-PECAM-1.
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Fig. 4. Generation of iHUVEC cell lines expressing full-
length and ACD forms of human PECAM-1 fused to GFP.
Lentiviral constructs encoding fusion proteins comprised of
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molecules on adjacent cells, interact homophilically in trans, and be-
come “trapped” at the cell junction, where they embellish the perme-
ability barrier [50]. While the presence of PECAM-1 at endothelial cell-
cell borders has been known to contribute to junctional integrity
for > 20 years [17], and that its absence results in increased vascular
permeability under conditions of inflammatory, mechanical, or
thrombotic stress [9,21,32,33], the precise mechanism by which
PECAM-1 contributes to junctional integrity, both under steady-state
conditions and following barrier disruption, is incompletely under-
stood.

Recent studies examining the barrier properties of endothelial cells,
and other validated model cell systems that express mutant forms of
PECAM-1 have begun to shed light on the molecular requirements for
PECAM-1 to contribute to endothelial cell junctional integrity.
Privratsky et al. knocked down expression of PECAM-1 in three dif-
ferent endothelial cell lines using siRNAs, and found, using ECIS tech-
nology, that loss of PECAM-1 resulted in both markedly reduced
baseline barrier resistance, as well as a significantly decreased capacity
to re-establish the endothelial cell permeability barrier following
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thrombin challenge [45]. Cells expressing a mutant form of PECAM-1
containing a single K89A mutation in Ig domain 1 known to abolish
homophilic binding [40] exhibited poor barrier resistance properties,
similar to those of cells expressing no PECAM-1 at all, demonstrating
the importance of PECAM-1-mediated homophilic binding to junctional
integrity. Lertkiatmongkol et al. have recently shown that a sialic acid-
containing glycan emanating from N25 reinforces dynamic endothelial
cell-cell interactions by stabilizing the PECAM-1 homophilic binding
interface [30].

The importance of the PECAM-1 cytoplasmic domain in PECAM-1-
mediated barrier functions has been less well studied. Cells expressing a
mutant form of PECAM-1 in which functionally important im-
munoreceptor tyrosine-based inhibitory motif (ITIM) tyrosine residues
had been mutated to phenylalanine exhibited normal baseline barrier
resistance and restored vascular barrier integrity at a rate indis-
tinguishable from cell expressing wild-type PECAM-1 [45], demon-
strating that ITIM-mediated cellular signaling downstream of PECAM-1-
mediated homophilic binding plays no discernable role in supporting the
endothelial cell permeability barrier. Whether other structural or

Fig. 5. Fluorescence recovery after photobleaching (FRAP)
analysis of the lateral mobility of PECAM-1 within the
plane of the plasma membrane. GFP-positive cells that had
formed well-defined cell-cell junctions were subjected to
FRAP analysis as described in Materials and Methods.
Representative images of iHUVECs expressing wild-type
(panel A) and ACD-PECAM-1 (panel B) fused to GFP are
shown at the indicated time points before and after laser-
induced photobleaching. Photobleached areas are marked
by white circles. (C) Normalized fluorescence intensity of
GFP-WT-PECAM-1 (red) and GFP-ACD-PECAM-1 (blue) in
the photobleached areas over time following photo-
bleaching. (D) The diffusion coefficients for wild-type and
ACD-PECAM-1 were calculated from the FRAP images using
ImageJ. Data are expressed as the mean * the standard
deviation of seven independent experiments. Significant
**P < 0.01. Scale
bar = 20 um. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web
version of this article.)

t=150s
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functional features of the cytoplasmic domain might play a role in
PECAM-1-mediated contributions to barrier function, however, were not
examined.

In the present investigation, we employed CRISPR/Cas9 gene
editing technology to remove exons 10-16 of the PECAM-1 gene in
human endothelial cells (Fig. 1) so that we could examine the effects of
deleting the cytoplasmic domain on both baseline and dynamic cell
permeability barrier function. Editing the PECAM-1 gene in situ has the
advantage of not affecting gene expression levels (Fig. 2A-C), while
retaining the cellular and molecular regulatory context in which
PECAM-1 is normally expressed. Consistent with previous studies em-
ploying cell lines transfected with cDNAs encoding PECAM-1 isoforms
either lacking the cytoplasmic domain [15] or containing an irrelevant
cytoplasmic domain [50,55], absence of the PECAM-1 cytoplasmic
domain had no effect on the ability of PECAM-1 to, with time, localize
to cell-cell borders (Figs. 2D-I1 and 4 insets). When the kinetics of
PECAM-1 receptor mobility were quantitatively examined using FRAP
analysis of GFP-tagged forms of PECAM-1 with or without a cyto-
plasmic tail, however, we found that PECAM-1 receptors missing their
cytoplasmic domain diffused more rapidly within the plane of the
plasma membrane (Fig. 5) — a property that manifests itself functionally
by conferring both improved baseline barrier resistance and a faster
rate of re-establishing a permeability barrier following its disruption by
thrombin (Fig. 3). Taken together, these data suggest that the PECAM-1
cytoplasmic domain, perhaps via ITIM-independent interactions with
one or more as yet unidentified cytosolic binding partners, functions as
a previously unrecognized point of regulation by restraining PECAM-1
receptor mobility within the plane of the plasma membrane and the
subsequent homophilic interactions that are important for forming the
endothelial cell permeability barrier.

Cytoplasmic domains have been shown to regulate the function and
subcellular location of many cell adhesion molecules, including vas-
cular endothelial cadherin [28], integrins [10,34,41], selectins [25],
CD44 [31], as well as other Ig superfamily CAMs [8,44,48], often via
their association with one or more elements of the actin or membrane
cytoskeleton. The removal of the p-catenin-binding domain within the
cytoplasmic tail of VE-cadherin has been reported to result in dis-
organization of adherens junctions and hyperpermeability of vascular
endothelial cells [36]. Similarly, calpain-mediated cleavage of N-cad-
herin showed reduced cell-cell adhesion [24], while calpain cleavage of
E-cadherin is involved in tumor progression [53,57]. Thus, deletion of
the cytoplasmic domain of cadherins results in distinctly different cell
biological effects than does deletion of the PECAM-1 cytoplasmic do-
main. Su et al. has shown that the decreased barrier function could be
attributed to the increased degradation of VE-cadherin after the trun-
cation [49]. Although, as important components at intercellular junc-
tions, PECAM-1 and cadherins share some similarities in terms of
structure and functions, cadherins and PECAM-1 are quite distinct in
their lateral border localization and detergent extractability [3], re-
flecting differences in their mode of association with the cytoskeleton.
As for PECAM-1, Ayalon et al. reported > 20 years ago that a propor-
tion of PECAM-1 is associated with the Triton-insoluble cytoskeleton in
endothelial cells [3], and there are numerous reports that PECAM-1
may be linked to the cytoskeletal adapter molecules, 3 and y catenin
[5-7,22,23], though this has not been universally observed [29]. Wong
et al. reported that PECAM-1 can be associated in cis with the integrin
avB3 [55], which is in turn associated with the actin cytoskeleton. In
stimulated platelets, PECAM-1 may be linked to the actin cytoskeleton
through the cytosolic adaptor protein, moesin [18], and in endothelial
cells under conditions of fluid shear stress with the intermediate fila-
ment protein vimentin [12]. Whether these or other cytoskeletal pro-
teins associate with PECAM-1 to restrict its mobility under resting or
shear conditions, or in response to endothelial cell injury should be a
fascinating topic for future investigations.
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4. Conclusions

These results demonstrate that, in the absence of its cytoplasmic
domain, PECAM-1 is freer to diffuse within the plane of the plasma
membrane, migrate to, and become concentrated at endothelial cell-cell
junctions, where it engages in homophilic interactions that establish
and maintain barrier function. Whether other mechanisms may account
for regulation of endothelial barrier function by the truncation of
PECAM-1’s cytoplasmic domain remains an intriguing question, the
elucidation of which will have important implications for under-
standing the pathological processes in vascular permeability disorders.

5. Materials and methods
5.1. Antibodies

Domain-specific mouse anti-human PECAM-1 monoclonal anti-
bodies (mAbs) used in this study include: 235.1 (specific for the C-
terminal 15 amino acids), and PECAM-1.3 (specific for Ig Domain 1),
and have been previously described [38,56]. Normal mouse IgG and
secondary antibodies were purchased from Thermo Fisher Scientific
(Waltham, MA). Alexa Fluor® 647-labeled mAb PECAM-1.3 and Alexa
Fluor® 647-labeled mAb 235.1 were generated using a labeling kit
purchased from Thermo Fisher Scientific (Waltham, MA).

5.2. Guide RNA plasmid constructs

Guide RNAs (gRNAs) were designed using the clustered regularly
interspaced short palindromic repeats (CRISPR) Design Tool (http://
crispr.mit.edu/) to minimize off-target effects and selected to precede a
5-NGG protospacer-adjacent motif (PAM). gRNAs used in this study
were: gRNA1 forward: 5-CACCGCAGGACTCCAAGCCACATCG-3’, re-
verse: 5-AAACCGATGTGGCTT-GGAGTCCTGC-3’; gRNA10 forward:
5’-CACCGAGATGCCAGTGGAAATGTCC-3’, reverse: 5-AAACGGACATT
TCCACTGGCATCTC-3’; gRNA16 forward: 5-CACCGTTGTCGCTAC-
AGAGAACGGA-3’, reverse: 5-AAACTCCGTTCTCTGTAGCGACAAC-3'.
Oligos were annealed and cloned into the BsmBI site of the Cas9 ex-
pression plasmid lentiCRISPR v2 (#52961, Addgene, Cambridge, MA)
following a previously described protocol [46].

5.3. Cell lines and transduction

Cell culture reagents were obtained from Mediatech (Manassas, VA)
unless otherwise specified. Immortalized human umbilical vein en-
dothelial cells i(HUVEC, generated by transducing HUVECs with the
recombinant retrovirus LXSN16 E6/E7) and PEC02 cells (generated by
transducing iHUVECs with a lentivirus expressing a PECAM1-specific
siRNA PECO02 - [45]) were maintained in RPMI1640 medium (Media-
tech), 10% FBS (Sigma, St Louis, MO), 5% human AB serum (Gemini,
West Sacramento, CA), 100 U/ml penicillin, 100 pg/ml streptomycin,
and 0.5 mg/ml endothelial cell growth supplement (Corning, Corning,
NY) as previously described [45].

5.4. Generation of a PECAM-1-deficient immortalized HUVEC line

Lentiviruses were generated and titrated by the Viral Vector Core
Facility at the Blood Research Institute. iHUVECs cells were plated on
24-well plates one day before transduction, and transduced with gRNA1
lentiviral particles at an MOI of 5 in iHUVECs media containing 0.8 pug/
ml polybrene. After 48 h, media containing puromycin (0.5 pg/ml) was
added. Transduced cells were stained with 30 ug/ml Alexa Fluor 647-
labeled mAb PECAM-1.3 and sorted by flow cytometry (ARIA-IITu Cell
Sorter, BD Biosciences, San Jose, CA) for PECAM-1 negative cells. KO-
PECAM-1 endothelial cells were maintained in iHUVEC medium
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containing puromycin.
5.5. Generation of ACD-PECAM-1 iHUVEC cell line

iHUVECs were plated on 24-well plates one day before transduction,
and then transduced with a 1:1 mixture of gRNA10 and gRNA16 len-
tiviral particles at an MOI of 5 in iHUVECs media containing 0.8 pg/ml
polybrene. Forty-eight-hours post-transduction, puromycin (0.5 pg/ml)
was added to the medium. Cells were sorted as single cells into in-
dividual wells of 96-well plates 15 to 18 days post-puromycin selection.
HUVECs in which PECAM-1 had been knocked down using an siRNA
(PECO02 cells [45]) were used as feeder cells. Three weeks later, clones
were stained by 30 pg/ml Alexa Fluor 647-labeled mAb PECAM-1.3 and
sorted by flow cytometry to obtain a PECAM-1-positive population, and
puromycin was introduced into the medium for 48 h to further remove
the feeder cells.

5.6. Characterization of endothelial cell lines by flow cytometry

Flow cytometric analysis of WT-, ACD-, or KO-PECAM-1 iHUVECs
was performed using a BD Cytofix/Cytoperm™ (BD Biosciences, San
Jose, CA) according to the manufacturer's directions. Briefly, Alexa
Fluor® 647-labeled mAb PECAM-1.3 (30 ug/ml) was used in surface
staining, and Alexa Fluor® 488-labeled mAb 235.1 (30 ug/ml) was used
in intracellular staining. Flow cytometry was performed using a Becton-
Dickenson LSRII (BD Biosciences, San Jose, CA). Flow cytometry data
were analyzed using FlowJo software (Tree Star Inc., Ashland, OR).

5.7. Confocal microscopy

Cells were plated at a density of 2 x 10°/well on gelatin-coated
slide chambers (BD Biosciences) at least 24 h before staining. Wells
were rinsed with DPBS, cells fixed with 2% paraformaldehyde for
20 min, and then permeabilized with ice-cold 0.5% Triton X-100 for
2 min, and blocked with PBS containing 3% BSA. Monolayers were then
incubated with mAb PECAM-1.1 (10 pg/ml) at room temperature for
1 h. Binding was detected using Alexa Fluor 647 anti-mouse IgG
(Invitrogen) and images were obtained using a FluoView FV1000 multi-
photon emission microscope (Olympus, Center Valley, PA). Cross sec-
tional reconstruction was accomplished with MetaMorph (Molecular
Devices, Inc., Nashville, TN) workstation to combine the entire Z series
into a stacked projection.

5.8. ECIS measurements of endothelial barrier function

Cells were grown to confluence on gold electrodes that had been
coated with 0.1% gelatin (Invitrogen, Carlsbad, CA) for an hour at 37 °C
and subjected to Electric Cell-substrate Impedance Sensing (ECIS)
analysis using an ECIS Z-Theta Instrument (Applied Biophysics, Troy,
NY). To measure PECAM-1-mediated endothelial cell barrier function,
cells were grown in 400 pl of iHUVEC medium on 8W10E + electrode
arrays until forming a tight monolayer. After stimulating cells with 1
unit of human thrombin (Sigma-Aldrich, St. Louis, MO), endothelial
barrier disruption and restoration were measured in real time and
continuously recorded at multiple frequencies and modeled with ECIS
software (Applied Biophysics, Troy, NY) to obtain the barrier function
parameter, Rb, which is expressed as the average basal electrical re-
sistances (in Q cm?).

5.9. Generation and characterization of endothelial cell lines expressing
GFP-PECAM-1 chimeric proteins

A silent mutation was introduced into the PAM sequence corre-
sponding to guide 1 in PECAM-1 ¢DNA using QuikChange II site-directed
mutagenesis (Agilent Technologies, Santa Clara, CA) in order to protect it
from CRISPR/Cas9 using the following oligonucleotide primers: (1) Fwd,
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5-GGTGGGCCCAAGGGGCGACCATGTGGCTTGGAGTC-3"; (2) Rev., 5-
GACTCCAAGC-CACATGGTCGCCCCTTGGGCCCACC-3’ (silent mutation
sites are underlined). Mutated full-length human PECAM-1 or ACD
PECAM-1 was inserted into the backbone plasmid pLenti CMV GFP Neo
(Addgene # 17447) using an In-Fusion® HD Cloning Kit (Clontech,
Laboratories, Inc., Mountain View, CA) to generate a GFP-PECAM-1
chimeric protein. A linker sequence was inserted between GFP and the
mutated WT-PECAM-1 or ACD-PECAM-1. The primers for GFP-WT-PE
chimeric protein were: forward, 5-GGTGGCGGAGGCTCTCAAGAAAA
CTCTTTCA-CAATCAACAG-TGTT-3’; reverse, 5-GAGGTTGATTGTC
GACCTAAGTTCCATCAAGGG-AGCCTT-3". The primers for GFP-ACD-
PECAM-1 chimeric protein were: forward, 5-GGTGG-CGGAGGCT
CTCAAGAAAACTCTTTCACAATCAACAGTGTT-3; reverse, 5’-GAGGTTG-
ATTGTCGACCTACTTGGCCTTGGCTTTCCTCA-3’. KO-PECAM-1 cells
were seeded in 24-well plates and transduced with lentiviral particles
containing GFP-WT-PECAM-1 or GFP-ACD-PECAM-1 at an MOI of 5 in
0.8 ug/ml polybrene-containing iHUVEC media. Transduced cells were
further selected by addition of 0.5 mg/ml G418 48 h post-transduction.
Cell lines were sorted for Alexa Fluor 647-labeled mAb PECAM-1.3-po-
sitive expression.

5.10. Fluorescence recovery after photobleaching (FRAP)

Cells were plated on a 60 mm-diameter dish (Celltreat, Pepperell,
MA) and cultured for at least 24 h until cell monolayers had reached
confluence. FRAP experiments were designed and performed as pre-
viously described [14] using an FV1000 laser-scanning confocal mi-
croscope (Olympus, Tokyo, Japan) with a 100 X objective lens. GFP
fluorescence was imaged by excitation with a 488-nm laser at 37 °C
with 5% CO,, using an Air-Therm-H heater (World Precision Instrument,
Sarasota, FL). The region of interest at cell-cell contacts was selected
and bleached for 300 ms using a 405 nm laser. Fluorescence intensity
was monitored continuously and images were acquired until recovery
reached a plateau using the FluoView-ASW-10 version 04.02.02.09
software (Olympus, Tokyo, Japan). The fluorescence intensity of the
bleached region was corrected for photobleaching and normalized to
prebleaching fluorescence intensity by ImageJ (NIH, Bethesda, MD).
This algorithm allows computation of the diffusion coefficient of the
fluorescent probes (2D random walk). Prism 5 software (GraphPad
Software, San Diego, CA) was used for plotting the data and statistical
analysis.

5.11. Statistical analysis

Statistical analysis was performed using GraphPad Prism 5 software
(GraphPad Software, La Jolla, CA). Data were analyzed by one-way
ANOVA followed by Holm-Sidak's multiple-comparisons test. Multiple
comparisons tests were only applied when a significant difference was
determined in the ANOVA (P < 0.05). Results are expressed as
mean * S.D.
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