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Aims: Aging is a major risk factor for carotid artery disease and stroke. Endothelin-1 (ET-1) and angiotensin II
(Ang II) are important modifiers of vascular disease, partly through increased activity of NADPH oxidase and
vasoconstrictor prostanoids. Since the renin–angiotensin and endothelin systems become activated with age,
we hypothesized that aging affects NADPH oxidase- and prostanoid-dependent contractions to ET-1 and Ang II.
Main methods: Carotid artery rings of young (4 month-old) and old (24 month-old) C57BL6 mice were
pretreated with the NO synthase inhibitor L-NAME to exclude differential effects of NO. Contractions to ET-1
and Ang II were determined in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat
or the thromboxane-prostanoid receptor antagonist SQ 29,548. Gene expression of endothelin and angiotensin
receptors was measured by qPCR.
Key findings: Aging reduced ET-1-induced contractions and diminished ETA but increased ETB receptor gene
expression levels. Gp91ds-tat inhibited contractions to ET-1 in young and to a greater extent in old animals,
whereas SQ 29,548 had no effect. Ang II-induced contractions were weak compared to ET-1 and unaffected by
aging, gp91ds-tat, and SQ 29,548. Aging had also no effect on AT1A and AT1B receptor gene expression levels.
Significance: Aging in carotid arteries decreases ETA receptor gene expression and responsiveness to ET-1, which
nevertheless becomes increasingly dependent upon NAPDH oxidase activity with age; responses to Ang II
and gene expression of its receptors are however unaffected. These findings suggest that physiological aging
differentially regulates functional responses to G protein-coupled receptor agonists and the signaling pathways
associated with their activation.
© 2014 The Authors. Published by Elsevier Inc.© 2014 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Aging is a main risk factor for the development of carotid artery ath-
erosclerosis and its clinical consequences such as stroke and dementia,
and the associated social burden of disability and cognitive impairment
becomes increasingly important as people live longer (Gorelick et al.,
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2011). Arterial stiffening is a hallmark of the vascular aging process,
which is characterized by dysregulated production of collagen, elastin
and other structural proteins of the vascularwall, aswell as by increased
vascular tone (Zieman et al., 2005). Vasoconstrictor mediators that
are involved in the physiology of vascular aging include endothelin-1
(ET-1) and angiotensin II (Ang II) (Zieman et al., 2005; Barton, 2010),
which facilitate vascular smooth muscle cell proliferation, fibrosis and
remodeling (Kohan et al., 2011; Mehta and Griendling, 2007), thus fur-
ther promoting atherosclerosis and arterial stiffening (Zieman et al.,
2005; Kohan et al., 2011;Mehta andGriendling, 2007). In fact, increased
expression of ET-1 (Barton et al., 1997a; Goettsch et al., 2001) and Ang II
(Wang et al., 2003) has been found in carotid and other arteries of
otherwise healthy aged animals. Furthermore, inhibiting the action of
e CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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either ET-1 (Ortmann et al., 2004) or Ang II (Mukai et al., 2002; Basso
et al., 2007; Benigni et al., 2009) has been proven effective in partially
counteracting the deleterious effects resulting from physiological
aging in the cardiovascular system.

ET-1 is the predominant isoform of three distinct isopeptides consti-
tutively secreted by endothelial and other vascular cells (Kohan et al.,
2011), and the most potent endogenous vasoconstrictor known
(Yanagisawa et al., 1988). Ang II is the major bioactive peptide of the
renin–angiotensin system and is produced both systemically and locally
within the vascular wall (Mehta and Griendling, 2007). ET-1 and Ang II
induce vascular effects by activating specific G protein-coupled recep-
tors, endothelin ETA/ETB and angiotensin AT1/AT2 receptors, respective-
ly, resulting in the activation of similar signaling pathways (Kohan et al.,
2011; Mehta and Griendling, 2007). Moreover, Ang II stimulates vascu-
lar production of ET-1 (Barton et al., 1997b) and causes hypertrophic re-
modeling, which can be prevented by blocking ETA receptors (Moreau
et al., 1997), indicating that both vasoactive systems functionally inter-
act. Reactive oxygen species (ROS) produced by NAPDH oxidase as well
as cyclooxygenase (COX)-derived vasoconstrictor prostanoids are part
of the complex signaling network stimulated by ET-1 (Kohan et al.,
2011) and Ang II (Mehta and Griendling, 2007; Mukai et al., 2002;
Ohnaka et al., 2000). Moreover, increased expression of NAPDH oxidase
and COX, as well as the augmented vascular activity of ROS and
prostanoids, has been demonstrated to occur with vascular aging
(Mukai et al., 2002; Oudot et al., 2006; Donato et al., 2007; Shi et al.,
2008; Wong et al., 2009).

Despite the important clinical and economic complications that arise
from carotid artery disease (Gorelick et al., 2011), physiological effects
of aging in this vascular bed are poorly understood. In the common
carotid artery of adultmice, basal nitric oxide (NO) production is partic-
ularly high (Crauwels et al., 2000), and NO-mediated vasodilator
responses are only slightly impaired with aging compared to other vas-
cular beds (Modrick et al., 2012). Whether aging of carotid arteries also
affects contractile responses to ET-1 and Ang II is unknown, although
both contractile peptides have been implicated in age-dependent vas-
cular stiffening and disease (Zieman et al., 2005; Kohan et al., 2011;
Mehta and Griendling, 2007). Because the vascular activity of NADPH
oxidase-derived ROS and vasoconstrictor prostanoids is regulated by
ET-1 and Ang II (Kohan et al., 2011; Mehta and Griendling, 2007;
Mukai et al., 2002; Ohnaka et al., 2000) and increases with aging
(Mukai et al., 2002; Oudot et al., 2006; Donato et al., 2007; Shi et al.,
2008; Wong et al., 2009), we hypothesized that these pathways are in-
tegral to the age-dependent alterations in responsiveness to ET-1 and
Ang II. We therefore set out to investigate the role of NADPH oxidase
and COX-derived prostanoids in ET-1- and Ang II-mediated contractility
of common carotid arteries from young and old healthy mice. In addi-
tion, we determined gene expression levels of the receptors for ET-1
and Ang II as well as selected NADPH oxidase proteins.
Materials and methods

Materials

ET-1 was from American Peptide (Sunnyvale, CA, USA), and Ang II
was from MP Biomedicals (Solon, OH, USA). The thromboxane-
prostanoid (TP) receptor antagonist [1S-[1α,2α(Z),3α,4α]]-7-[3-[[2-
[(phenylamino)carbonyl]hydrazino] methyl]-7-oxabicyclo[2.2.1]hept-
2-yl]-5-heptenoic acid (SQ 29,548) (Ogletree et al., 1985) and the NO
synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) were
from Cayman Chemical (Ann Arbor, MI, USA), and the NADPH
oxidase-selective inhibitor gp91ds-tat (Rey et al., 2001) was from
Anaspec (Fremont, CA, USA). All other drugs were from Sigma-Aldrich
(St. Louis, MO, USA). Stock solutions were prepared according to the
manufacturer's instructions, and diluted in physiological saline solution
(PSS, composition in mmol/L: 129.8 NaCl, 5.4 KCl, 0.83 MgSO4, 0.43
Please cite this article as: Meyer MR, et al, Endothelin-1 but not angiotens
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NaH2PO4, 19 NaHCO3, 1.8 CaCl2, and 5.5 glucose; pH 7.4) to the required
concentrations before use.

Animals

Male mice (C57BL6, Harlan Laboratories, Indianapolis, IN) were
sacrificed at 4 (mean body weight 31.2 ± 1.2 g, young) and 24 (mean
body weight 30.8 ± 1.1 g, old) months of age by intraperitoneal injec-
tion of sodium pentobarbital (2.2 mg/g body weight). Animals were
kept at the University of New Mexico Animal Resource Facility on a
12 hour light–dark cycle and received standard rodent chow and
water ad libitum. All procedures were approved by the University of
New Mexico Institutional Animal Care and Use Committee and carried
out in accordance with the National Institutes of Health Guide for the
Care and Use of Laboratory Animals.

Isolated vessel preparation

Immediately after sacrifice, common carotid arteries were isolated,
excised, and carefully cleaned of adherent connective tissue and fat in
cold (4 °C) PSS under a dissectingmicroscope. Arterieswere transferred
to organ chambers of aMulvany–Halpernmyograph (620MMultiWire
Myograph System, DanishMyo Technology, Aarhus, Denmark) contain-
ing PSS, and mounted by threading two 25 μm tungsten wires through
the vessel lumen and securing each wire to a mounting jaw. Each jaw
was connected either to a micropositioner or to a force transducer for
recording of isometric tension using a PowerLab 8/35 data acquisition
system and LabChart Pro software (AD Instruments, Colorado Springs,
CO, USA).

Vascular function experiments

Arteries were allowed to equilibrate for 30min in PSS (37 °C, pH 7.4,
bubbled with 21% O2, 5% CO2 and balanced N2), and stretched stepwise
until the optimal passive tension for generating force during isometric
contraction was reached. After equilibrating for an additional 45 min,
functional integrity of the vascular smooth muscle was confirmed by
repeatedly exposing vessels to KCl (PSS with equimolar substitution of
60 mmol/L potassium for sodium). These reference contractions were
comparable between groups (7.2± 0.4mN and 7.9± 0.3mN in carotid
arteries from young and old animals, respectively). Vessels were then
incubated with the NO synthase inhibitor L-NAME (300 μmol/L for
30 min) to unmask contractile effects of ET-1 and Ang II (Widmer
et al., 2006; Kretz et al., 2006), and to exclude ETB or AT2 receptor-
stimulated NO release (Kohan et al., 2011; Mehta and Griendling,
2007) as well as potential differences in NO bioavailability between
age groups (Barton, 2010; Seals et al., 2011) that would complicate
analysis of agonist-mediated contractions. A subset of arterieswas addi-
tionally incubated with the NADPH oxidase-selective inhibitor gp91ds-
tat (3 μmol/L) (Rey et al., 2001) or the TP receptor antagonist SQ 29,548
(1 μmol/L) (Ogletree et al., 1985) for 30 min. Thereafter, responses to
cumulative concentrations of ET-1 (0.1–100 nmol/L) or to Ang II
(100 nmol/L) were recorded. A single concentration of Ang II that elicits
a maximal contraction was chosen because in mouse arteries the
contractile response to Ang II is not sustained but undergoes rapid
desensitization with a complete loss of tension within minutes (Kretz
et al., 2006).

Quantitation of carotid artery gene expression levels

Total RNA was extracted from carotid arteries and reverse tran-
scribed as described (Meyer et al., 2012). Quantitative PCR was per-
formed using SYBR Green-based detection of amplified gene-specific
cDNA fragments on a 7500 FAST real-time PCR System (Applied
Biosystems, Carlsbad, CA, USA) with the following sets of primers: 5′-
GAA GGA CTG GTG GCT CTT TG-3′ (forward) and 5′-CTT CTC GAC GCT
in II contributes to functional aging in murine carotid arteries, Life Sci
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Table 1
Area under the curve (AUC), maximal responses (Emax), and pD2 values of endothelin-1-
induced contractions. Responses were obtained in young (4 months) and old (24 -

months) mice in the presence and absence of the NADPH oxidase-selective inhibitor
gp91ds-tat (3 μmol/L) or the TP receptor antagonist SQ 29,548 (1 μmol/L). Values were
calculated by fitting of dose–response curves (DeLean et al., 1978). AUC is expressed as ar-
bitrary units (AU). ⁎p b 0.05 vs. untreated; †p b 0.01 vs. young mice (n = 4–6).

Inhibitor AUC (AU) Emax (%KCl) pD2 (−log mol/L)

Young
Untreated 40.3 ± 5.4 26.2 ± 3.8 8.54 ± 0.02
gp91ds-tat 21.1 ± 4.5⁎ 15.3 ± 3.4⁎ 8.38 ± 0.03
SQ 29,548 45.5 ± 8.6 30.7 ± 4.4 8.43 ± 0.10

Old
Untreated 10.4 ± 2.1† 8.9 ± 1.8† 8.02 ± 0.07†

gp91ds-tat 3.7 ± 1.3⁎† 3.4 ± 1.1⁎† 7.85 ± 0.15†

SQ 29,548 7.1 ± 2.1† 6.3 ± 1.7† 7.89 ± 0.09†
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GTT TGA GG-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine ETA receptor (GenBank ID: BC008277); 5′-CGG
TAT GCA GAT TGC TTT GA-3′ (forward) and 5′-CAC CTG TGT GGA TTG
CTC TG-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine ETB receptor (GenBank ID: BC026553); 5′-GCG
GTC TCC TTT TGA TTT CC-3′ (forward) and 5′-CAA AGG GCT CCT GAA
ACT TG-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine AT1A receptor (GenBank ID: NM_177322.3); 5′-
TAT TTT CCC CAG AGC AAA GC-3′ (forward) and 5′-TGT TGC TTC CTT
GTC CCT TG-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine AT1B receptor (GenBank ID: NM_175086.3); 5′-
CCA GCA CTA TGT GTA CAT GT-3′ (forward) and 5′-TCA ATG GGG AAC
ATC TCC TT-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine p47phox (GenBank ID: NM_010876.3); and 5′-TTC
ACC ACC ATG GAG AAG GC-3′ (forward) and 5′-GGC ATG GAC TGT
GGT CAT GA-3′ (reverse) for amplification of a specific cDNA fragment
encoding for murine GAPDH (GenBank ID: NM_008084), which served
as the house-keeping control. Relative gene expression was calculated
based on the 2−ΔCT method (Livak and Schmittgen, 2001).

Data calculation and statistical analyses

Contractions are expressed as percentage of the maximal contrac-
tion to KCl (60 mmol/L). Area under the curve (AUC), EC50 values
(as negative logarithm, pD2) and maximal effects (Emax) were calculated
by curve fitting as described by DeLean et al. (1978). Data was analyzed
using two-way analysis of variance (ANOVA) followed by Bonferroni's
post-hoc test, or unpaired Student's t-test as appropriate (Prism version
5.0 for Macintosh, GraphPad Software, San Diego, CA, USA). Values
are expressed as the mean± SEM of independent experiments; n equals
the number of animals used. A p value of b0.05 was considered
significant.

Results

Effect of aging on contractions to ET-1 and Ang II in the common carotid
artery

We first examined whether aging affects contractions induced by
ET-1 and Ang II in arteries of mice at 4 months (young) and 24 months
(old) of age. Contractions to ET-1 (100 nmol/L) were markedly greater
in vessels from young compared to old mice (3-fold difference, 26 ± 4%
KCl vs. 9 ± 2% KCl, n = 4–6, p b 0.01, Fig. 1). This age-dependent
decrease in contractility was associated with reduced sensitivity to
ET-1 (pD2 values) in arteries from old mice (p b 0.01 vs. young mice,
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Fig. 1. Effect of aging on contractions to endothelin-1 and angiotensin II in the carotid
artery. Responses to equimolar concentrations (100 nmol/L) of endothelin-1 (ET-1,
left panel) and angiotensin II (Ang II, right panel) were determined in arteries from
young (4 months) and old (24 months) mice. *p b 0.01 vs. young animals; †p b 0.05 vs.
ET-1 (n = 4–6).
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Table 1). Furthermore, aging diminished ETA receptor gene expression
levels by 62%, whereas ETB receptor gene expression levels increased
by 79% (n = 3–4, p b 0.05 vs. young mice, Fig. 2A).

Compared to ET-1-induced responses, contractions to equimolar
concentrations of Ang II (100 nmol/L) were 7-fold and 3-fold weaker
in vessels from young and old mice, respectively (n = 4–6, p b 0.05,
Fig. 1). Moreover, unlike responses to ET-1, aging neither affected Ang
II-induced contractions (Fig. 1) nor gene expression levels of the AT1A
receptor (26 ± 8 AU vs. 28 ± 15 AU, n=4, p= n.s.) or the AT1B recep-
tor (5 ± 1 AU vs. 5 ± 1 AU, n = 3–4, p = n.s.).

Age-dependent role of NADPH oxidase in ET-1-induced contractions

We next determined whether contractions to ET-1 and Ang II
involve the vascular activity of NADPH oxidase and COX-derived vaso-
constrictor prostanoids, both of which increase with aging (Mukai
et al., 2002; Oudot et al., 2006; Donato et al., 2007; Shi et al., 2008;
Wong et al., 2009) and can be stimulated by ET-1 and Ang II (Kohan
et al., 2011; Mehta and Griendling, 2007; Mukai et al., 2002; Ohnaka
et al., 2000). In youngmice, inhibition of NADPH oxidase using its selec-
tive inhibitor gp91ds-tat (3 μmol/L) (Rey et al., 2001) reduced contrac-
tions to ET-1 (from 26 ± 3% KCl to 15 ± 3% KCl, n= 4, p b 0.05, Fig. 3A
and Table 1). This effect was even more pronounced in old mice
(from 8 ± 1% KCl to 3 ± 1% KCl, n = 6, p b 0.01, Fig. 3A and Table 1).
Analysis of paired vascular rings from the same mouse treated with
and without gp91ds-tat revealed that inhibition of NADPH oxidase re-
duces ET-1 (100 nmol/L)-induced contractions by 36 ± 12% in young
animals and by 70±5% in old animals (n=4, p b 0.05, Fig. 3B), indicat-
ing that ET-1-dependent contractions are increasingly dependent upon
functional NAPDH oxidase with aging. Similarly, gene expression levels
of p47phox, an adaptor protein of the NADPH oxidase complex whose
interaction with Nox1/Nox2 is required for stimulus-induced ROS
production but prevented by gp91ds-tat treatment, increase with age
by 2-fold (n = 3–4, p b 0.05, Fig. 2B). Gene expression levels of the
transmembrane scaffolding protein p22phoxwere unchanged in arteries
from young and old mice (not shown).

In contrast to NADPH oxidase activity, inhibition of vasoconstrictor
prostanoid signaling using the selective TP receptor antagonist SQ
29,548 (1 μmol/L) (Ogletree et al., 1985) did not affect ET-1-induced
contractions independent of age (Fig. 3A and Table 1). Moreover, inhibi-
tion of NAPDH oxidase activity or TP receptor signaling had no effect on
the contractile responses to Ang II in arteries from either young or old
mice (Fig. 4).

Discussion

The present study demonstrates that physiological aging in the mu-
rine common carotid artery is associatedwithdecreased responsiveness
to ET-1, which however increasingly depends on functional NADPH
in II contributes to functional aging in murine carotid arteries, Life Sci
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Fig. 2. Age-dependent changes in gene expression levels of ETA and ETB receptors (A) and the NAPDH oxidase adaptor protein p47phox (B) in the carotid artery. Gene expression levels in
young (4 months) and old (24 months) mice were determined by quantitative PCR and are expressed as arbitrary units (AU). *p b 0.05 vs. young animals; †p b 0.05 vs. ETA (n = 3–4).
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oxidase activity with advancing age. Surprisingly, aging had no effect
on contractility to Ang II, which was also independent of NAPDH oxi-
dase activity, regardless of age. This finding was unexpected since
both ET-1 and Ang II activate similar signaling pathways, functionally
interact in the vasculature (Barton et al., 1997b; Moreau et al., 1997),
and have been implicated in age-dependent atherosclerosis progres-
sion, vascular stiffening and disease (Zieman et al., 2005; Kohan et al.,
2011; Mehta and Griendling, 2007). It is therefore likely that aging dif-
ferentially regulates responses to vasoactive agonists and the signaling
pathways involved, lending further support to the hypothesis that
age-dependent functional changes may not be uniform throughout
the vascular system. This is in line with studies in humans demonstrat-
ing that the initiation, rapidity of development, and phenotypic expres-
sion of atherosclerotic plaques vary greatly between different arteries
depending on location, hemodynamics and arterial wall structure
(Dalager et al., 2007). Accordingly, individual factors may explain why
the common carotid artery is less susceptible to atherosclerotic plaque
development than the bifurcation and the curved terminal part of the
internal carotid artery (Dalager et al., 2007; Solberg and Eggen, 1971).

There is limited information on whether and how physiological
aging affects the regulation of vascular tone in carotid arteries, both
in humans and in animals. Compared to other vascular beds, murine
common carotid arteries are characterized by particularly high NO bio-
availability (Crauwels et al., 2000). Moreover, endothelium-dependent
NO-mediated dilation as well as endothelial NO synthase expression
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are mostly preserved in old mice at 24 months of age (Modrick et al.,
2012), and only start to deteriorate as the animals age further
(Durrant et al., 2009; Fleenor et al., 2012). Although these findings are
consistent with maintained NO bioavailability even at an advanced
age, the present study now demonstrates profound age-dependent
alterations in contractile responses to ET-1, suggesting that aging differ-
entially regulates the activity of endothelial vasoactive factors known
to be associated with age-dependent functional vascular injury and dis-
ease development (Barton, 2010; Seals et al., 2011; Dalager et al., 2007;
Solberg and Eggen, 1971).

Aging is associatedwith increased local concentrations of ET-1 in the
vascular wall of carotid arteries and other vascular beds (Barton et al.,
1997a; Goettsch et al., 2001). It has been suggested that increased for-
mation of the constrictor peptide and its activity within the local vascu-
lar microenvironmentmay negatively affect receptor responsiveness or
down-stream signaling pathways (Kohan et al., 2011) that potentially
lead to the reduced constrictor response to exogenous ET-1 in aged ar-
teries as observed in the present and in previous studies (Barton et al.,
1997a; Ishihata et al., 1991; Shipley and Muller-Delp, 2005). Indeed,
we found that not only the sensitivity to ET-1 but also ETA receptor
gene expression levels in carotid arteries decline with aging. Interest-
ingly, we also observed an age-dependent increase in gene expression
levels of the ETB receptor, which generally mediates the release of
the vasodilators prostacyclin and NO (Kohan et al., 2011), although
the latter pathway has been inhibited by L-NAME in our study.
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Fig. 4. Age-dependent, angiotensin II-induced contractions and inhibition of NADPH oxi-
dase activity or TP receptor signaling in the carotid artery. Contractions to angiotensin II
(Ang II, 100 nmol/L) in young (4 months) and old (24 months) mice were determined
in the presence and absence of the NADPH oxidase-selective inhibitor gp91ds-tat
(3 μmol/L) or the TP receptor antagonist SQ 29,548 (1 μmol/L; n = 4–7).
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Oxygen-derived free radicals have been implicated as playing a caus-
ative role in age-dependent endothelial cell dysfunction (Barton, 2010;
Seals et al., 2011). In line with this concept, we observed that ET-1-
induced contractions increasingly depend on superoxide-generating
NAPDH oxidase activity with aging. Among other sources, such as
uncoupled endothelial NO synthase, xanthine oxidase, andmitochondrial
ROS formation (Barton, 2010; Seals et al., 2011), increased expression
as well as basal and substrate-stimulated activity of NADPH oxidase
has been associated with enhanced oxidative stress during vascular
aging (Oudot et al., 2006; Donato et al., 2007; Durrant et al., 2009;
Takenouchi et al., 2009). The present study extends these findings by
demonstrating that ET-1-induced vascular NADPH oxidase activity, as
well as gene expression of p47phox, an adaptor protein of the NADPH ox-
idase complex, increases in common carotid arteries of aged mice. ET-1
has previously been found to stimulate vascular superoxide production
by NADPH oxidase under healthy conditions (Li et al., 2003; Loomis
et al., 2005) as well as in the presence of hypertension (Li et al., 2003)
and atherosclerosis (Cerrato et al., 2012). Moreover, ET-1-induced con-
tractions in rat aorta and renal arteries are sensitive to apocynin
(Loomis et al., 2005; Just et al., 2008); the latter finding may have to be
interpreted with caution, since apocynin, depending on the concentra-
tion used, can also act as a NAPDH oxidase-independent ROS inhibitor
due to potent antioxidant and other effects (Brandes et al., 2010). Here,
we used the selective NAPDH oxidase inhibitor gp91ds-tat (a 9-amino
acid peptide from gp91 linked to an 11-amino acid cell-penetrating tat
peptide of HIV) that prevents the assembly of Nox1 and Nox2 with
p47phox, which is necessary for full activation of NADPH oxidase (Rey
et al., 2001; Brandes et al., 2010). Our results thus not only indicate that
vascular responses to ET-1 are indeed NADPH oxidase-dependent and
mediated by the inducible Nox1 and/or Nox2 isoforms, but also that the
increased vascular p47phox gene expression levels with aging may be
functionally relevant for the enhanced NADPH oxidase activity induced
by ET-1.

COX-dependent formation of vasoconstrictor prostanoids is impor-
tantly involved in the regulation of vascular tone, both as endothelium-
dependent contracting factor (EDCF) (Shi et al., 2008; Wong et al.,
2009; Traupe et al., 2002) and as adipose-derived contracting factor
(ADCF) released from perivascular adipose (Meyer et al., 2013). Similar
to the amplified generation of ROS, the vascular activity of COX-derived
vasoconstrictor prostanoids increases with vascular aging in certain
species (Barton, 2010; Seals et al., 2011). In the aorta of hamsters, TP
receptor-mediated contractions in response to prostaglandin F2α
increase in old compared to young animals (Wong et al., 2009), and
enhanced responses to vasoconstrictor prostanoids in the aorta of
aged rats are augmented due to increased ROS formation (Shi et al.,
2008). Moreover, prostanoid-dependent TP receptor activation can
Please cite this article as: Meyer MR, et al, Endothelin-1 but not angiotens
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increase vascular ROS production by NADPH oxidase (Zhang et al.,
2011; Bayat et al., 2012). Although endothelium-dependent contrac-
tions to vasoconstrictor prostanoids are highly potent in carotid arteries
from adult mice (Traupe et al., 2002), we found that inhibition of pros-
tanoid signaling using a selective TP receptor antagonist did not affect
contractions to ET-1, independent of age. Taken together, these findings
suggest that TP receptor activation is not involved in the age-dependent
increased contribution of NAPDH oxidase to ET-1-mediated responses,
and that ET-1 selectively activates distinct signaling pathways in carotid
arteries that are associated with functional aging.

We have previously shown that contractile responses to Ang II in
murine common carotid arteries of adult mice are weak even following
acute inhibition of NO production and that contractions undergo rapid
desensitization (Kretz et al., 2006). Although the renin–angiotensin sys-
tem has been implicated in age-dependent impaired endothelium-
dependent relaxation (Mehta and Griendling, 2007; Mukai et al.,
2002) and despite the fact that aging substantially increases Ang II-
mediated concentrations in the aorta from nonhuman primates
(Wang et al., 2003), we unexpectedly observed that in carotid arteries,
Ang II-induced contractions as well as gene expression of the two
isoforms of the rodent AT1 receptor that mediate constrictor effects of
Ang II, AT1A and AT1B (Mehta and Griendling, 2007), remain unaffected
by aging. Unlike other vascular beds (Mehta and Griendling, 2007;
Mukai et al., 2002; Kawada et al., 2004; Pfister et al., 2011), responses
of the common carotid artery to Ang II were also independent of func-
tional NADPH oxidase and TP receptor signaling, suggesting that Ang
II-dependent regulation of carotid artery tone in mice is maintained
even at advanced age. The tachyphylaxis of the weak responses to Ang
II poses a limitation to the current study since it did not allow study of
the arteries' sensitivity to Ang II. Furthermore, the activation of other
signaling pathways such as phospholipases C and D (Mehta and
Griendling, 2007) may underlie the weak constrictor response to Ang
II in murine common carotid arteries.
Conclusions

The present study provides evidence that the physiological aging
process has pronounced and differential effects on functional responses
to G protein-coupled receptor agonists and the signaling pathways
associated with their activation. In carotid arteries, we observed
substantial age-dependent changes in the responsiveness to ET-1 that
partly involved NAPDH oxidase-dependent pathways, whereas func-
tional responses to Ang II as well as prostanoid signaling remained
unaffected by aging.

Age-dependent increases in vascular tone, as well as induction of
vascular smoothmuscle cell proliferation, fibrosis and remodeling in re-
sponse to both ET-1 and Ang II have been implicated in atherosclerosis
progression and vascular stiffening (Zieman et al., 2005; Barton, 2010;
Kohan et al., 2011; Mehta and Griendling, 2007). Pharmacologic inhibi-
tion of the renin–angiotensin system has been proven effective in the
prevention of stroke and dementia in hypertensive patients (Gorelick
et al., 2011). Moreover, observational studies have shown that carotid
artery intima–media thickness (IMT) positively correlates with plasma
ET-1 concentrations in hypertensive (Katona et al., 2006; Skalska and
Grodzicki, 2010) and in diabetic (Migdalis et al., 2000) patients, and
that carotid artery IMT is positively associated with plasma ET-1 levels
in young women with polycystic ovary syndrome (Orio et al., 2004).
Supporting the findings of the present study, the relationship between
plasma ET-1 concentration and carotid artery IMT also appears to be de-
pendent on plasma antioxidant capacity (Skalska and Grodzicki, 2010),
suggesting that the deleterious vascular effects of ET-1 are partly ROS-
mediated. Whether interfering with the vascular activity of ET-1 can
prevent age-induced carotid artery disease and the increased risk for
stroke and cognitive impairment associated with it awaits future
studies.
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