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0. Introduction

In this article, ring means commutative ring with a unity and domain means commutative integral 
domain. If A is a domain then Frac(A) is its field of fractions. If k is a field then a k-domain is a domain 
that is also a k-algebra, and an affine k-domain is a k-domain that is finitely generated as a k-algebra. If 
B is a ring, a derivation D : B → B is locally nilpotent if for each x ∈ B there exists n ∈ N such that 
Dn(x) = 0. The set of locally nilpotent derivations D : B → B is denoted LND(B). The Makar-Limanov 
invariant ML(B) of B and the “field” Makar-Limanov invariant FML(B) of B are defined by:

ML(B) =
⋂

D ∈ LND(B)

kerD and FML(B) =
⋂

D ∈ LND(B)

Frac(kerD),
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where in the second case B is assumed to be a domain and the intersection is taken in FracB. If k is a field 
of characteristic zero and B is a k-domain then k ⊆ ML(B) ⊆ FML(B).

When locally nilpotent derivations are used for studying the structure of a domain B of characteristic zero, 
one typically pays attention to ML(B), or to FML(B), or to an individual ker(D) for some D ∈ LND(B). 
The present article proposes to refine this idea and to consider, in a systematic way, all rings and fields 
AΔ =

⋂
D∈Δ kerD and KΔ =

⋂
D∈Δ Frac(kerD), where Δ can be any subset of LND(B). The lattices 

A (B) =
{
AΔ | Δ ⊆ LND(B) 

}
and K (B) =

{
KΔ | Δ ⊆ LND(B) 

}
are defined at the beginning of 

Section 1 and are used throughout the article.
One of the guiding principles in this area is the idea that if an affine k-domain B admits many locally 

nilpotent derivations then B should be close to being rational over k. A brief review of the history of this 
idea is given in Section 2, together with a clarification of some issues related to the problematic status 
of certain claims that have been published with invalid proofs. Some of the results given in Section 2 are 
stronger than the statements that are being repaired or revisited, and others are altogether new. The results 
numbered 2.1, 2.2, 2.3 and 2.6 are particularly interesting.

Sections 1 and 3 are mostly devoted to establishing the properties of A (B) and K (B) needed in the rest 
of the article. In fact Section 1 presents only the small amount of theory that is needed in Section 2 (A (B)
and K (B) play only a minor role in Section 2) and Section 3 contains a more extensive study of the two 
lattices.

Section 4 applies the ideas developed in the previous sections to affine k-domains B, where k is any 
field of characteristic zero (most results are still interesting when k is assumed to be algebraically closed). 
Having new invariants of rings allows the formulation of new questions, some of which can be answered. 
Theorem 4.8 is a general result (for B normal) about chains A0 ⊂ A1 ⊂ · · · ⊂ An of elements of A (B)
satisfying trdeg(Ai : Ai−1) = 1 for all i; the case where B is a UFD (Corollary 4.9) has a particularly pleasant 
statement. Under certain assumptions regarding factoriality and units of B, Theorem 4.14 gives information 
about the elements A of A (B) satisfying trdegk(A) ≤ 2. Theorem 4.11 answers the following natural 
question. For simplicity, assume that k is algebraically closed. It is known that the condition FML(B) = k
implies that B is unirational—but not necessarily rational—over k. Can one formulate a condition on the 
locally nilpotent derivations of B that would imply rationality? Theorem 4.11 implies (in particular) that 
if there exists a chain A0 ⊂ A1 ⊂ · · · ⊂ An of elements of A (B) satisfying n = dimB, then B is rational 
over k.

Section 5 explains how the general results of Section 4 apply to certain special classes of algebras that 
include in particular all forms of k[n], all stably polynomial algebras over k, and all exotic Cn.

Notations. To the notations and conventions already introduced in the above text, we add the following. 
We write ⊆ for inclusion, ⊂ for strict inclusion, \ for set difference, and we agree that 0 ∈ N. If A is a 
ring and n ∈ N, A[n] denotes a polynomial ring in n variables over A; if k is a field, k(n) denotes the field 
of fractions of k[n]. We write trdegK(L) or trdeg(L : K) for the transcendence degree of a field extension 
L/K. If A ⊆ B are domains, the transcendence degree of B over A is defined to be that of FracB over 
FracA, and is denoted trdegA(B) or trdeg(B : A). If A is a ring then A∗ is its group of units, dimA is the 
Krull dimension of A, and if a ∈ A then Aa = S−1A where S = {1, a, a2, . . . }. If R ⊆ A are domains then 
AR = S−1A where S = R \ {0} (note that AR is an algebra over the field RR = Frac(R)).

1. Preliminaries

This Section presents the material that is needed in Section 2. Gathering this material here will enable 
us to go through Section 2 without interrupting the flow of the discussion. We begin by recalling some basic 
facts about locally nilpotent derivations. For background on this topic, we refer the reader to any of [32], 
[10] or [4].
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1.1. Let B be a domain of characteristic zero. Let D ∈ LND(B) \ {0} and A = kerD.

(i) The ring A is factorially closed in B, i.e., the implication xy ∈ A ⇒ x, y ∈ A is true for all x, y ∈ B\{0}. 
It follows that A∗ = B∗ and hence that if k is any field included in B then k ⊆ A. Moreover, if B is a 
UFD then so is A.

(ii) The Slice Theorem asserts that if Q ⊆ B and s ∈ B is such that D(s) ∈ B∗ then B = A[s] = A[1]. 
(Refer to [33, Prop. 2.1] for this result.)

(iii) Clearly, there exists s ∈ B satisfying D(s) �= 0 and D2(s) = 0. If Q ⊆ B then for any such s we have 
Ba = Aa[s] = A

[1]
a , where we set a = D(s).

(iv) If we define K = FracA then BA = K [1] and FracB = K(1); in particular, K is algebraically closed in 
FracB. (The notation BA is defined at the end of the introduction.)

(v) If f ∈ B satisfies f | D(f), then D(f) = 0.

The following concepts play a major role in this article.

1.2 Definition. Let B be a domain of characteristic zero. Given a subset Δ of LND(B), define AΔ =⋂
D∈Δ kerD and KΔ =

⋂
D∈Δ Frac(kerD), where the first intersection is taken in B and the second in 

FracB (in particular, A∅ = B and K∅ = FracB). Then define the two sets

A (B) =
{
AΔ | Δ ⊆ LND(B)

}
and K (B) =

{
KΔ | Δ ⊆ LND(B)

}
.

We view these as posets: (A (B), ⊆) and (K (B), ⊆). Note that A (B) is a nonempty set of subrings of B; 
its greatest element is B and its least element is ML(B). Similarly, K (B) is a nonempty set of subfields of 
FracB whose greatest element is FracB and whose least element is FML(B). For each n ∈ N, define

An(B) =
{
A ∈ A (B) | trdegA(B) = n

}
and Kn(B) =

{
K ∈ K (B) | trdegK(FracB) = n

}
.

Observe that A0(B) = {B}, K0(B) = {FracB},

A1(B) =
{

kerD | D ∈ LND(B) \ {0}
}

and K1(B) =
{

Frac(kerD) | D ∈ LND(B) \ {0}
}
.

The set A1(B) is sometimes denoted KLND(B) (but not in this article). Also keep in mind that, when 
n > 1, the elements of Kn(B) are not necessarily the fields of fractions of those of An(B).

1.3 Definition. Let B be a domain of characteristic zero. One says that B is rigid if A1(B) = ∅ (or 
equivalently LND(B) = {0}), and that B is semi-rigid if |A1(B)| ≤ 1.

Remark. Given a domain B of characteristic zero, B is not semi-rigid ⇔ |A1(B)| > 1 ⇔ |K1(B)| > 1 ⇔
trdeg(B : ML(B)) > 1 ⇔ trdeg(Frac(B) : FML(B)) > 1.

We now define a set A ∗
1 (B) which is closely related to A1(B). Note that A ∗

1 (B) is defined for any integral 
domain B, of any characteristic. The notation BA is defined at the end of the Introduction.

1.4 Definition. Given a domain B, we define A ∗
1 (B) to be the set of subrings A of B such that A is 

algebraically closed in B and BA = (AA)[1].

1.5 Lemma. Let B be a domain.

(a) If A1, A2 ∈ A ∗
1 (B) and A1 ⊆ A2 then A1 = A2.

(b) If A ∈ A ∗
1 (B) then B ∩ Frac(A) = A and A is factorially closed in B. Consequently, if k is a field 

included in B then k ⊆ A for all A ∈ A ∗
1 (B).
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(c) If charB = 0 then A1(B) ⊆ A ∗
1 (B). If moreover B is not semi-rigid then |A ∗

1 (B)| > 1.
(d) If charB = 0, A ∈ A ∗

1 (B) and B is finitely generated as an A-algebra, then A ∈ A1(B).

Proof. Assertions (a) and (b) are clear and (c) follows from 1.1(iv). For (d), write K = AA and choose 
t ∈ B such that BA = K[t] = K [1]. Since B is finitely generated as an A-algebra, there exists r ∈ A \ {0}
such that the K-derivation r d

dt : K[t] → K[t] maps B into itself. Let D : B → B be the restriction of r d
dt , 

then D ∈ LND(B), D �= 0 and D(x) = 0 for all x ∈ A. As trdegA(B) = 1 and A is algebraically closed 
in B, we have ker(D) = A, so (d) is proved. �
1.6 Definition. The height of a poset (X, �) is the supremum of the set of n ∈ N for which there exists a 
sequence x0 ≺ x1 ≺ · · · ≺ xn with x0, . . . , xn ∈ X. We write ht(X) for the height of (X, �) and we regard 
ht(X) as an element of N ∪ {∞}.

1.7 Lemma. Let B̃ be the normalization of a noetherian Q-domain B.

(a) Each D ∈ LND(B) has a unique extension to a locally nilpotent derivation D̃ : B̃ → B̃.
(b) Given a subset Δ of LND(B), define Δ̃ =

{
D̃ | D ∈ Δ 

}
⊆ LND(B̃) and consider KΔ̃ ∈ K (B̃) and 

AΔ̃ ∈ A (B̃). Then KΔ̃ = KΔ and AΔ̃ ∩B = AΔ for all Δ ⊆ LND(B).
(c) K (B) ⊆ K (B̃).
(d) For each A ∈ A (B), define Δ(A) =

{
D ∈ LND(B) | A ⊆ ker(D) 

}
. Then A �→ A

Δ̃(A)
is an injective 

order-preserving map A (B) → A (B̃).
(e) htA (B) ≤ htA (B̃) and htK (B) ≤ htK (B̃).

Proof. Part (a) is well known (Seidenberg’s Theorem implies that each D ∈ LND(B) extends (uniquely) to a 
derivation D̃ : B̃ → B̃; then Vasconcelo’s Theorem implies that D̃ is locally nilpotent). To prove (b), consider 
D ∈ LND(B) \ {0}; with K = Frac(kerD) and K̃ = Frac(ker D̃), we have K ⊆ K̃ ⊆ FracB and (by 1.1(iv)) 
FracB = K(1) = K̃(1), so K = K̃. This shows that for all D ∈ LND(B) we have Frac(ker D̃) = Frac(kerD), 
and of course we also have ker(D̃) ∩ B = ker(D); it follows that KΔ̃ = KΔ and AΔ̃ ∩ B = AΔ for all 
Δ ⊆ LND(B), so (b) is true. Assertion (c) follows from (b). It is clear that A �→ A

Δ̃(A)
is a well defined 

order-preserving map A (B) → A (B̃); this map is injective because, by (b), we have A
Δ̃(A)

∩B = AΔ(A) = A

for all A ∈ A (B); so (d) is true. Since there exists an order-preserving injective map A (B) → A (B̃), we 
get htA (B) ≤ htA (B̃); htK (B) ≤ htK (B̃) follows from (c), so we are done. �
1.8 Lemma. Let K be a field and v : K∗ → G a valuation of K, where (G, +, ≤) is a totally ordered abelian 
group. Consider the field K(x1, . . . , xn) = K(n) and let Zn × G be endowed with the lexicographic order. 
Then there exists a valuation v̂ : K(x1, . . . , xn)∗ → Zn ×G such that v̂(xi) = (δi,1, . . . , δi,n, 0) for 1 ≤ i ≤ n

(where δi,j is the Kronecker delta) and v̂(a) = (0, . . . , 0, v(a)) for all a ∈ K∗.

Proof. First consider the case n = 1. Note that K(x) = K(1) is a subfield of K((x)). Given f ∈ K(x)∗, we 
may write f =

∑∞
i=m aix

i with ai ∈ K for all i and am �= 0; then we define v̂(f) = (m, v(am)). Details 
left to the reader. For the general case, we note that K(x1, . . . , xn) = K(x2, . . . , xn)(x1) and argue by 
induction. �
1.9 Definition. Let k be a field, k̄ its algebraic closure and R a k-domain.

(a) We say that R is rational over k if FracR is a purely transcendental extension of k. We say that R is 
unirational over k if there exists a field F such that k ⊆ FracR ⊆ F and F is a purely transcendental 
extension of k.
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(b) We say that R is geometrically rational (resp. geometrically unirational) over k if k̄ ⊗k R is a domain 
and is rational (resp. unirational) over k̄.

(c) We say that R is absolutely factorial if both R and k̄ ⊗k R are unique factorization domains.

Remark. The terms defined in parts (a) and (b) of Definition 1.9 may be used when R is a field, but we 
avoid using “absolutely factorial” for a field.

2. Locally nilpotent derivations and rationality

The literature devoted to locally nilpotent derivations and rationality contains a few claims that have 
been published with invalid proofs. Because those claims are directly at the center of the subject of the 
present article, we feel that it is necessary to provide proofs for them before we can go forward with this 
investigation. It is the aim of this section to provide such proofs. In some cases we strengthen the claim 
being considered, and in one case (Proposition 2.1(a)) we give a simpler proof for a result whose published 
proof seems to be correct. We organize this discussion more or less in the form of a historical account, but 
our goal is not to be exhaustive from the historical point of view; we simply want to cover the topics that 
require clarification.

Early work in this area was influenced by the question whether the implication

ML(B) = k =⇒ B is rational over k (1)

is true or false, where it is assumed that B is an affine k-domain and that k is an algebraically closed field 
of characteristic zero. The implication was known to be true when dimB ≤ 2 but the general case remained 
open for several years. Then Liendo showed that, for every integer d ≥ 3, there exists a counterexample B to 
implication (1) with dimB = d (cf. [18, Lemma 4.4]). In [23, Ex. 1.22], Popov showed that for every integer 
d ≥ 3 there exist counterexamples with dimB ≥ d and such that the variety SpecB is smooth. In both 
cases (Liendo and Popov), understanding the counterexamples requires familiarity with some sophisticated 
geometry. As far as we know, no simple proof has been circulated for such examples. Our first result gives 
counterexamples to (1) and the proof of part (a) is particularly simple.

2.1 Proposition. Let K/k be a finitely generated extension of fields of characteristic zero.

(a) There exists an affine k-domain B satisfying

FracB = K(2), ML(B) = k and K ∈ K (B).

(b) There exists a normal affine k-domain B satisfying

FracB = K(2), ML(B) = k′ and K ∈ K (B)

where k′ is the algebraic closure of k in K.

Proof. (a) Choose r1, . . . , rm such that K = k(r1, . . . , rm) and choose x, y such that K(x, y) = K(2). Let 
B = k[x, y, r1x, r1y, r2x, r2y, . . . , rmx, rmy] ⊆ K[x, y]. Then B is an affine k-domain such that FracB =
K(x, y) = K(2) and B ∩K = k. Consider the K-derivations δ1 = y ∂

∂x and δ2 = x ∂
∂y of K[x, y]. Note that 

δ1 and δ2 are locally nilpotent and map B into itself. Let D1, D2 : B → B be the restrictions of δ1, δ2
respectively, then D1, D2 ∈ LND(B) and ker(D1) ∩ ker(D2) = B ∩K = k, so ML(B) = k. It is easy to see 
that K = Frac(kerD1) ∩ Frac(kerD2), so K ∈ K (B).
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(b) Let B = k[x, y, r1x, r1y, r2x, r2y, . . . , rmx, rmy] be the ring defined in the above paragraph and let 
B̃ be the normalization of B. Then B̃ is a normal affine k-domain and Frac(B̃) = Frac(B) = K(2). It is also 
clear that K ∈ K (B̃), because K ∈ K (B) ⊆ K (B̃) (see Lemma 1.7). So, to prove the claim, it suffices to 
show that

ML(B̃) = k′. (2)

Since B̃ is normal, we have k′ ⊆ B̃ and consequently k′ ⊆ ML(B̃) by 1.1(i). To prove that ML(B̃) ⊆ k′, 
consider α ∈ ML(B̃) \ {0}. Then α ∈ K is clear (because K ∈ K (B̃)) and it suffices to show that α is 
algebraic over k. So it’s enough to check that v(α) ≥ 0 for every valuation v of K/k.

Consider an arbitrary valuation v : K∗ → G of K over k. Recall that Frac B̃ = K(x, y) = K(2). By 
Lemma 1.8, there exists a valuation v̂ : K(x, y)∗ → Z2 × G satisfying v̂(x) = (1, 0, 0), v̂(y) = (0, 1, 0) and 
v̂(a) = (0, 0, v(a)) for all a ∈ K∗. As α ∈ K∗, we have v̂(α) = (0, 0, v(α)). We have v̂(ξ) ≥ (0, 0, 0) for each 
ξ ∈ k ∪ {x, y, r1x, r1y, r2x, r2y, . . . , rmx, rmy}, so v̂(ξ) ≥ (0, 0, 0) for all ξ ∈ B and hence for all ξ ∈ B̃. 
As α ∈ B̃, (0, 0, 0) ≤ v̂(α) = (0, 0, v(α)), so v(α) ≥ 0. Since this is true for every valuation v of K/k, α is 
algebraic over k. This proves (2), and completes the proof of the Proposition. �

Proposition 2.1(a) implies the last assertion of [18, Thm 4.2]; however the proof given in [18] is much 
more complicated than this one. Also note that Proposition 2.1(b) gives us normal counterexamples to (1)
in every dimension ≥ 3. More precisely:

(∗) If k is a field of characteristic zero and d ≥ 3 is an integer, then there exists a normal affine k-domain 
B such that dimB = d, ML(B) = k and B is not unirational (hence not rational) over k.

Indeed, let K be a finitely generated extension of k such that trdegk(K) = d − 2, K is not unirational over 
k and k is algebraically closed in K.1 Applying Proposition 2.1(b) to K/k gives a domain B satisfying the 
requirements of (∗).

The following implication is also considered in [18], for a field k of characteristic zero and an affine 
k-domain B:

dimB ≥ 2 and ML(B) = k =⇒ FracB = K(2) for some extension field K of k. (3)

In fact the first part of [18, Thm 4.2] asserts that (3) is true. However, the proof given in [18] is based 
on the following false statement: if D1, D2 ∈ LND(B) \ {0} satisfy ker(D1) �= ker(D2), then FracB has 
transcendence degree 2 over Frac(kerD1) ∩Frac(kerD2) (examples show that this transcendence degree can 
be larger than 2). A different proof of implication (3) is given in [9], but it is also invalid. More precisely, 
implication (3) would follow from [9, Cor. 3.2], which is itself a consequence of [9, Prop. 3.1]. However, the 
proof of [9, Prop. 3.1] is faulty: one has two subfields KGa

X×P1 and KX of a field KX×P1 and one has to 
prove the inclusion KGa

X×P1 ⊆ KX ; it is claimed that the inclusion is proved, but in fact the argument only 
proves that KGa

X×P1 is isomorphic to a subfield of KX , which is not sufficient for the proof to be valid.2
Nevertheless, the following result ascertains that implication (3) is true (the implication follows from 

Corollary 2.3). Recall that a field extension L/E is said to be ruled (one also says that L is ruled over E) 
if there exists a field F such that E ⊆ F ⊆ L and L = F (1).

1 For instance, let F be the field of fractions of k[u, v]/(v2 − u(u2 − 1)) (where k[u, v] = k[2]) and set K = F (d−3).
2 I discussed these issues with the authors of [18] and [9] and they agree that the problems that I am pointing out make their 

proofs invalid. At the time of those discussions, I didn’t know how to fix [18, Thm 4.2]; Corollary 2.3 occurred to me a year later. 
Corollary 2.3 implies that the statement of [18, Thm 4.2] is true, but implies nothing about [9, Prop. 3.1]. I don’t know if the 
statement of [9, Prop. 3.1] is true or false.
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2.2 Proposition. Let k be a field and B a k-domain such that trdegk(B) < ∞ and |A ∗
1 (B)| > 1. Then the 

following hold.

(a) For each A ∈ A ∗
1 (B), we have k ⊆ A and Frac(A) is ruled over k.

(b) There exists a field K satisfying k ⊆ K ⊆ FracB and FracB = K(2).

Proof. In (a), the fact that k ⊆ A follows from Lemma 1.5. To prove the other part of (a), consider distinct 
elements A1, A2 of A ∗

1 (B), let Fi = FracAi (i = 1, 2) and let us prove that F1 is ruled over k. Choose 
s1, s2 ∈ B such that (for each i) BAi

= Fi[si] = F
[1]
i . Let v be the valuation of FracB = F1(s1) over F1

that satisfies v(s1) = −1, and let v0 be the valuation of F2 obtained by restricting v. If κ (resp. κ0) denotes 
the residue field of v (resp. of v0) then we have the field extensions κ/κ0/k. Since FracB = F

(1)
2 , the Ruled 

Residue Theorem [22, Lemma 2.3] implies that the extension κ/κ0 is either ruled or algebraic. Note that 
A2 � A1 (see Lemma 1.5) and choose b ∈ A2 \ A1. Let d be the degree of b ∈ B ⊆ F1[s1] as a polynomial 
in s1; then d > 0, otherwise b ∈ F1 ∩B = A1 (by Lemma 1.5), which is not the case. So v(b) = −d < 0; as 
b ∈ F ∗

2 , v0(b) is defined and v0(b) = v(b) < 0. So v0 is not the trivial valuation on F2; since trdegk(B) < ∞, 
it follows that trdegk(κ0) < trdegk(F2). Now trdegk(F2) = trdegk(B) − 1 = trdegk(F1) = trdegk(κ), the 
last equality because κ is k-isomorphic to F1, so we obtain trdegk(κ0) < trdegk(κ), showing that κ/κ0 is not 
algebraic. So κ/κ0 is ruled, and consequently κ/k is ruled. Since F1 is k-isomorphic to κ it follows that F1 is 
ruled over k. This proves (a). (Remark: the proof that F1 is ruled is inspired by that of Theorem 2.5 of [7].)

For (b), choose A ∈ A ∗
1 (B); then (a) implies that there exists K such that k ⊆ K ⊂ Frac(A) and 

Frac(A) = K(1). Since Frac(B) = (FracA)(1), (b) follows. �
2.3 Corollary. Let k be a field of characteristic zero and B a k-domain. If trdegk(B) < ∞ and B is not 
semi-rigid then the following hold.

(a) For each D ∈ LND(B), Frac(kerD) is ruled over k.
(b) There exists a field K satisfying k ⊆ K ⊆ FracB and FracB = K(2).

Proof. We have A1(B) ⊆ A ∗
1 (B) by Lemma 1.5, so |A ∗

1 (B)| > 1, so the claim follows from Proposi-
tion 2.2. �

It follows from Corollary 2.3 that the statement of [18, Thm 4.2] is true, despite the fact that the proofs 
of it given in [18] and [9] are flawed. Note that Liendo presented his result in the form of a birational 
characterization of affine k-varieties X satisfying ML(X) = k. That is an interesting viewpoint, so let us 
reformulate our results as follows:

2.4 Corollary. Let L/k be a finitely generated extension of fields of characteristic zero such that trdegk L ≥ 2. 
Then the following are equivalent:

(a) There exists an affine k-domain B satisfying ML(B) = k and FracB = L;
(b) there exists an affine k-domain B that is not semi-rigid and satisfies FracB = L;
(c) there exists a field K satisfying k ⊆ K ⊆ L and L = K(2).

Proof. Implication (a)⇒(b) is trivial. Implications (b)⇒(c) and (c)⇒(a) follow, respectively, from Corol-
lary 2.3(b) and Proposition 2.1(a). �

It is in Liendo’s thesis that the definition of FML(B) was first proposed, together with the conjecture 
that FML(B) = k implies rationality of B over k. Then Arzhantsev, Flenner, Kaliman, Kutzschebauch, 
Zaidenberg [1, Prop. 5.1] and Popov [25, Thm 4] proved:
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2.5 Theorem. If k is an algebraically closed field of characteristic zero and B is an affine k-domain satisfying 
FML(B) = k, then B is unirational over k.

Remark. Suppose that k and B satisfy all assumptions of Theorem 2.5 and let n = dimB. Then one can 
show that B ⊆ k[n], which is stronger than B being unirational over k. See Theorem 4.5.

Observe that Theorem 2.5 does not answer the question whether the implication

FML(B) = k =⇒ B is rational over k (4)

is true or false, where k is an algebraically closed field of characteristic zero and B is an affine k-domain. 
It is well known that (4) is true when dimB ≤ 2, even without assuming that k is algebraically closed 
(see Corollary 2.6(a)). On the other hand, Popov [24, Thm 2] showed that there exist affine k-domains B
satisfying FML(B) = k, B is not stably rational over k and SpecB is a smooth variety, and any such B is a 
counterexample to (4). As these examples of Popov all satisfy dimB ≥ 263168,3 it is interesting to discuss 
what happens for small values of dimB ≥ 3.

Result [18, Thm 5.6] asserts that implication (4) is true when dimB ≤ 3, but the proof given there is 
invalid for several reasons. (One of the reasons is that the proof of [18, Thm 5.6] uses [18, Lemma 5.4], 
whose proof is faulty: on the first line of page 3665, it is not true that L ∩ Frac(ker ∂) = k together with 
Lemma 1.3(i) imply that Frac(ker ∂) = k(x1, . . . , xn).)

We now prove that implication (4) is true at least up to dimension 4:

2.6 Corollary. Let k be a field of characteristic zero and B an affine k-domain satisfying FML(B) = k.

(a) If dimB ≤ 2 then B is rational over k.
(b) If dimB ≤ 4 and k is algebraically closed then B is rational over k.

Proof. Let n = dimB. We may assume that n ∈ {2, 3, 4}, otherwise the result is trivial (in fact part (a) 
is well known, but we include a proof of the case n = 2 because it is short). By Corollary 2.3, there exists 
a field K such that k ⊆ K ⊆ FracB and FracB = K(2). If n = 2 then we must have K = k (because 
FML(B) = k implies that k is algebraically closed in FracB), so FracB = k(2). Assume that n ∈ {3, 4} and 
that k is algebraically closed. By Theorem 2.5, Frac(B) is unirational over k, so K/k is unirational. If n = 3
then K = k(1) by the Generalized Lüroth Theorem; if n = 4 then K = k(2) by Castelnuovo’s Theorem (for 
instance Remark 6.2.1, p. 422 of [14]). So in all cases we have K = k(n−2), so FracB = K(2) = k(n). �
3. Properties of AAA (B) and KKK (B)

Most of this section is devoted to establishing the basic properties of the posets A (B) and K (B)
introduced in Definition 1.2. The results obtained here are used in the subsequent sections. At the end 
of the present section we introduce another invariant of rings, lndrk(B), also defined in terms of locally 
nilpotent derivations.

3.1 Lemma. If B is a domain of characteristic zero then each element of A (B) is factorially closed in B
and each element of K (B) is algebraically closed in FracB. In particular, FML(B) is algebraically closed 
in FracB.

3 In the smallest example of Popov, SpecB is a quotient of SL513 by a finite subgroup.
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Proof. By paragraph 1.1, if D ∈ LND(B) then ker(D) is factorially closed in B and Frac(kerD) is alge-
braically closed in FracB. The result follows. �
Remark. Throughout the article we make tacit use of the following fact, which is a consequence of 
Lemma 3.1: if R, A ∈ A (B) satisfy R ⊂ A then trdegR(A) > 0, and similarly, if K, L ∈ K (B) satisfy 
K ⊂ L then trdegK(L) > 0 (recall that “⊂” means strict inclusion).

3.2 Lemma. Let B be a domain of characteristic zero.

(a) Let D ∈ LND(B) and let D′ ∈ Der(FracB) be the unique extension of D to a derivation of FracB. 
Then Frac(kerD) = kerD′.

(b) We have B ∩KΔ = AΔ for all subsets Δ of LND(B). In particular, B ∩ FML(B) = ML(B).
(c) Given A ∈ A (B), define Δ(A) =

{
D ∈ LND(B) | A ⊆ kerD

}
. Then KΔ(A) ∈ K (B) and B ∩

KΔ(A) = A.
(d) The maps f : K (B) → A (B), K �→ B ∩K and g : A (B) → K (B), A �→ KΔ(A) are well defined and 

f ◦ g is the identity map of A (B). In particular, f is surjective and g is injective.

Proof. (a) We may assume that D �= 0, otherwise the claim is trivial. Let L = FracB and K = Frac(kerD); 
then L = K(1) by 1.1. If a, a′ ∈ kerD (a′ �= 0) then D′(a/a′) = (D(a)a′ − aD(a′))/(a′)2 = 0, showing that 
K ⊆ kerD′. If the inclusion K ⊆ kerD′ is strict then L is algebraic over kerD′ (because L = K(1)), so 
D′ = 0, contradicting D �= 0. So K = kerD′.

(b) By assertion (a), we have B ∩ Frac(kerD) = kerD for each D ∈ LND(B). So

B ∩KΔ = B ∩
⋂

D∈Δ Frac(kerD) =
⋂

D∈Δ(B ∩ Frac(kerD)) =
⋂

D∈Δ ker(D) = AΔ.

(c) If A ∈ A (B) then B ∩KΔ(A) = AΔ(A) by (b) and AΔ(A) = A is clear.
Assertion (d) follows. �

Remark. (K (B),⊆)
f

(A (B),⊆)
g

are order-preserving maps between posets.

3.3 Lemma. For any domain B of characteristic zero we have ht
(
A (B)

)
≤ ht

(
K (B)

)
.

Proof. By Lemma 3.2, there exists an injective order-preserving map (A (B), ⊆) → (K (B), ⊆). So 
ht

(
A (B)

)
≤ ht

(
K (B)

)
. �

The following shows that the maps f, g of Lemma 3.2 are not necessarily bijective, even when B is a 
normal domain.

3.4 Example. Let k be a field of characteristic zero and consider the subalgebra B = k[x, y, tx, ty] of 
k[x, y, t] = k[3]. Then B is normal (define a Z-grading k[x, y, t] =

⊕
n∈ZRn by declaring that k ⊆ R0, 

x, y ∈ R1 and t ∈ R−1; then B =
⊕

n≥0 Rn, so B is integrally closed in k[x, y, t], so B is normal). Define 
D1, D2, D3 ∈ LND(B) by D1 = y ∂

∂x , D2 = x ∂
∂y and D3 = ∂

∂t . We have k(y, t), k(x, t), k(x, y) ∈ K (B)
(these are Frac(kerDi) for i = 1, 2, 3), so k(x), k(y), k(t) ∈ K (B) and FML(B) = k. Note that k(t) and k
are distinct elements of K (B) that have the same image under the map f of Lemma 3.2, so f, g are not 
bijective.

Also note that f, g do not necessarily preserve transcendence degree, even when B is normal and f, g are 
bijective (see Example 3.9). However, the next result states that if B is a UFD then f, g are isomorphisms 
of posets (K (B),⊆) (A (B),⊆) and preserve transcendence degree.
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3.5 Lemma. Let B be a UFD of characteristic zero. Consider the maps f and g of Lemma 3.2.

(a) For any subset Δ of LND(B), we have Frac(AΔ) = KΔ. In particular, Frac
(
ML(B)

)
= FML(B).

(b) The map g : A (B) → K (B) satisfies g(A) = Frac(A) for all A ∈ A (B).
(c) The maps f and g are bijective and inverse of each other. Moreover, if K ∈ K (B) and A ∈ A (B)

satisfy f(K) = A and g(A) = K then trdegK(FracB) = trdegA(B).

Proof. (a) Consider a subset Δ of LND(B). It is clear that Frac(AΔ) ⊆ KΔ, so let us prove the reverse 
inclusion. Let ξ ∈ KΔ. Write ξ = u/v with u, v ∈ B, v �= 0, and gcd(u, v) = 1.

Let D ∈ Δ. The extension D′ ∈ Der(FracB) of D satisfies ker(D′) = Frac(kerD) ⊇ KΔ � ξ, so 
0 = D′(u/v) = vD(u)−uD(v)

v2 , so vD(u) = uD(v). Since u | vD(u) and gcd(u, v) = 1 we have u | D(u), so 
D(u) = 0 by 1.1(v); similarly, v | D(v), so D(v) = 0. This shows that u, v ∈ ker(D), and this holds for an 
arbitrary D ∈ Δ. So u, v ∈ AΔ and hence ξ ∈ Frac(AΔ). This proves that Frac(AΔ) = KΔ. It follows that 
Frac

(
ML(B)

)
= FML(B).

(b) If A ∈ A (B) then g(A) = KΔ(A) = Frac(AΔ(A)) = Frac(A), where the middle equality follows 
from (a).

(c) Let K ∈ K (B); then K = KΔ for some Δ; then K = KΔ = Frac(AΔ) = g(AΔ) shows that g is 
surjective. As f ◦ g = id, f and g are bijective and inverse of each other. The equality trdegK(FracB) =
trdegA(B) follows from Frac(A) = g(A) = K. �
3.6 Notation. For a domain B of characteristic zero, we define

TA (B) =
{
n ∈ N | An(B) �= ∅

}
and TK (B) =

{
n ∈ N | Kn(B) �= ∅

}
.

3.7 Remark. Let B be a domain of characteristic zero. Clearly, the order-preserving maps
(K (B),⊆) (A (B),⊆) of Lemma 3.2 restrict to bijections Kn(B) An(B) for each n ∈ {0, 1} (see 
the last part of Definition 1.2). By Lemma 3.5, if B is a UFD then these maps restrict to bijections 
Kn(B) An(B) for all n ∈ N, and consequently TA (B) = TK (B).

3.8 Lemma. Let B be a domain of characteristic zero. If |TK (B)| ≤ 3 then the following hold.

(a) The order-preserving maps (K (B),⊆) (A (B),⊆) of Lemma 3.2 are isomorphisms of posets.4
(b) If |TK (B)| = 1 then TA (B) = {0} = TK (B).
(c) If |TK (B)| = 2 then TA (B) = {0, 1} = TK (B).
(d) If |TK (B)| = 3 then TA (B) = {0, 1, n} and TK (B) = {0, 1, m} where 1 < m ≤ n.

Proof. We may assume that |TK (B)| = 3, otherwise all claims are trivial. Then TK (B) = {0, 1, m} where 
m = trdeg(Frac(B) : FML(B)) > 1. It follows that ht(K (B)) = 2, so Lemma 3.3 gives ht(A (B)) ≤ 2. Let 
n = trdeg(B : ML(B)) ≥ m, then TA (B) ⊇ {0, 1, n}. If TA (B) �= {0, 1, n} then choose i ∈ TA (B) \ {0, 1, n}
and Ai ∈ Ai(B). Note that 1 < i < n and that there exists A1 ∈ A1(B) such that Ai ⊂ A1. Then 
ML(B) ⊂ Ai ⊂ A1 ⊂ B is a chain in A (B), which contradicts ht(A (B)) ≤ 2. Thus TA (B) = {0, 1, n}. It 
follows that we have the disjoint unions

K (B) = K0(B) ∪ K1(B) ∪ Km(B) and A (B) = A0(B) ∪ A1(B) ∪ An(B)

where Km(B) = {FML(B)} and An(B) = {ML(B)} are singletons. We noted in Remark 3.7 that the maps 
K (B) A (B) restrict to bijections K0(B) A0(B) and K1(B) A1(B) , and clearly they also restrict 

4 We are not claiming that they preserve transcendence degree.
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to bijections Km(B) = {FML(B)} {ML(B)} = An(B) , so the maps K (B) A (B) are bijective and 
we are done. �

The following shows that the maps f, g of Lemma 3.2 do not necessarily preserve transcendence degree, 
even when B is normal and f, g are bijective.

3.9 Example. Let K/C be the function field of a non-rational complex algebraic curve. By Proposition 2.1(b), 
there exists a normal affine C-domain B satisfying Frac(B) = K(2) (so dimB = 3), ML(B) = C and 
K ∈ K (B). Since K/C is not unirational, it follows that B is not unirational over C, so FML(B) �= C

by Theorem 2.5. Consequently, FML(B) = K and hence TK (B) = {0, 1, 2}. By Lemma 3.8, f and g are 
bijective. Since FML(B) ∩ B = ML(B), we get f(K) = K ∩ B = C, so the map f does not preserve 
transcendence degree.

From here to the end of this section, we study how A (B) and K (B) behave under various operations. 
The first operation that we consider is localization, and we restrict ourselves to a special type of localization. 
For the notation AR, see the end of the Introduction.

3.10 Lemma. Let B be a domain of characteristic zero and R ∈ A (B).

(a) For each A ∈ A (B) satisfying R ⊆ A, we have AR ∈ A (BR). Moreover, the map

{
A ∈ A (B) | R ⊆ A

}
→ A (BR), A �→ AR

is injective and preserves transcendence degree.
(b) ML(BR) = RR.
(c)

{
K ∈ K (B) | R ⊆ K

}
⊆ K (BR).

(d) If RR ∈ K (B) then FML(BR) = RR.

Proof. Straightforward, and probably well known. �
Next, we study how A (B) and K (B) behave under an algebraic extension of the base field. We first 

recall some well-known facts (3.11, 3.12 and 3.13).

3.11 Lemma. Let k be a field of characteristic zero and B a k-domain. The following are equivalent:

(a) k is algebraically closed in Frac(B).
(b) K ⊗k B is a domain for every extension field K of k.
(c) k̄ ⊗k B is a domain, where k̄ is the algebraic closure of k.

3.12 Lemma. Consider a tensor product of rings

S S ⊗R T

R T

where we assume that all homomorphisms are injective.

(a) Suppose that S is a free R-module and that there exists a basis E of S over R such that 1 ∈ E. Then 
S ∩ T = R.
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(b) If R, S, T and S⊗R T are domains, and if (sj)j∈J is a family of elements of S which is a transcendence 
basis of FracS over FracR, then (sj ⊗ 1)j∈J is a transcendence basis of Frac(S ⊗R T ) over FracT .

(c) If R, S, T and S ⊗R T are domains then trdegT (S ⊗R T ) = trdegR S.

3.13. Let B be an algebra over a field k of characteristic zero and let D ∈ LND(B). Let k̄ be any field 
extension of k and define B̄ = k̄ ⊗k B. Applying the functor k̄ ⊗k ( ) : k-Mod → k̄-Mod to D gives a 
k̄-linear map D̄ : B̄ → B̄, given by D̄(λ ⊗ b) = λ ⊗D(b) for all λ ∈ k̄ and b ∈ B. It is easily verified that 
D̄ ∈ LND(B̄), so we have a well-defined set map D �→ D̄ from LND(B) to LND(B̄). If D ∈ LND(B) and 
A = kerD, then ker(D̄) = k̄ ⊗k A because k̄ ⊗k ( ) is an exact functor.

3.14 Lemma. Let k be a field of characteristic zero, B be a k-domain and k̄ an algebraic extension of k such 
that B̄ = k̄ ⊗k B is a domain.

(a) trdegk̄(B̄) = trdegk B.
(b) If ML(B) = k then ML(B̄) = k̄, and if FML(B) = k then FML(B̄) = k̄.
(c) Each D ∈ LND(B) has a unique extension D̄ ∈ LND(B̄). Every subset Δ of LND(B) determines a 

subset Δ̄ of LND(B̄) defined by Δ̄ =
{
D̄ | D ∈ Δ 

}
. We have

k̄ ⊗k AΔ = AΔ̄ ∈ A (B̄) and k̄ ⊗k KΔ = KΔ̄ ∈ K (B̄)

for every subset Δ of LND(B).
(d) The maps A (B) → A (B̄) (A �→ k̄⊗kA) and K (B) → K (B̄) (K �→ k̄⊗kK) are injective and preserve 

transcendence degree:

trdeg(B : A) = trdeg(B̄ : k̄ ⊗k A) for all A ∈ A (B),

trdeg(Frac(B) : K) = trdeg(Frac(B̄) : k̄ ⊗k K) for all K ∈ K (B).

(e) The following diagram is commutative:

K (B̄)
f̄

A (B̄)

K (B)
f

k

A (B)

a

where f(K) = B ∩K, f̄(L) = B̄ ∩ L, k(K) = k̄ ⊗k K and a(A) = k̄ ⊗k A.

Proof. Given any A ∈ A (B) and K ∈ K (B), we may consider the commutative diagrams:

k̄ k̄ ⊗k A k̄ ⊗k B k̄ ⊗k FracB

k A B FracB

k̄ k̄ ⊗k K k̄ ⊗k FracB

k K FracB

(a) (b)

(5)

Since all k-modules are flat, all homomorphisms in diagrams (5a) and (5b) are injective. Since k̄⊗kFracB =
(k̄ ⊗k B) ⊗B FracB is a localization of the domain k̄ ⊗k B, k̄ ⊗k FracB is a domain and consequently all 
rings in the above diagrams are domains. Since k̄ is integral over k, all vertical arrows in (5a) and (5b) 
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are integral homomorphisms and in particular k̄ ⊗k FracB and k̄ ⊗k K are fields. Since k̄ ⊗k FracB is a 
localization of k̄ ⊗k B, we have

k̄ ⊗k FracB = Frac(k̄ ⊗k B).

Lemma 3.12(c) gives trdegk̄(k̄ ⊗k B) = trdegk(B), so assertion (a) is proved.
Each D ∈ LND(B) extends uniquely to three derivations:

D̄ ∈ LND(k̄ ⊗k B), D′ ∈ Derk(FracB), and D̄′ ∈ Derk̄(k̄ ⊗k FracB).

The assignment D �→ (D̄, D′, D̄′) is well defined, and we shall use these notations throughout the proof 
below. Note that Frac(kerD) = kerD′ and Frac(ker D̄) = ker D̄′ for all D ∈ LND(B), by Lemma 3.2. We 
also point out that D̄′(a ⊗ x) = a ⊗D′(x) for all a ∈ k̄ and x ∈ FracB.

Choose any subset Δ ⊆ LND(B). Define the subset Δ̄ of LND(k̄ ⊗k B) as in the statement of assertion 
(c). We claim that the subring k̄ ⊗k AΔ of k̄ ⊗k B is equal to AΔ̄ and that the subfield k̄ ⊗k KΔ of 
k̄ ⊗k FracB = Frac(k̄ ⊗k B) is equal to KΔ̄. To see this, we choose a basis (λi)i∈I of k̄ over k. Recall that 
if R is a ring and k ⊆ R ⊆ FracB then (λi)i∈I is a basis of k̄ ⊗k R over R.

Consider β ∈ k̄ ⊗k B and write β =
∑

i∈I0
λi ⊗ bi with I0 a finite subset of I and bi ∈ B for all i ∈ I0. 

Then β ∈ AΔ̄ if and only if for each D ∈ Δ we have 0 = D̄(β) =
∑

i λi ⊗ D(bi), if and only if for each 
D ∈ Δ and i ∈ I0 we have D(bi) = 0, if and only if all bi belong to AΔ, if and only if β ∈ k̄ ⊗k AΔ. This 
shows that k̄ ⊗k AΔ = AΔ̄.

Consider ξ ∈ k̄⊗k FracB and write ξ =
∑

i∈I0
λi ⊗ xi with I0 a finite subset of I and xi ∈ FracB for all 

i ∈ I0. Then ξ ∈ KΔ̄ if and only if for each D ∈ Δ we have ξ ∈ Frac(ker D̄) = ker(D̄′), if and only if for each 
D ∈ Δ we have 0 = D̄′(ξ) =

∑
i λi ⊗D′(xi), if and only if for each D ∈ Δ and i ∈ I0 we have D′(xi) = 0, 

if and only if all xi belong to 
⋂

D∈Δ ker(D′) =
⋂

D∈Δ Frac(kerD) = KΔ, if and only if ξ ∈ k̄ ⊗k KΔ. This 
shows that k̄ ⊗k KΔ = KΔ̄. This proves (c).

In particular the two set maps of part (d) are well defined. The fact that A (B) → A (B̄) (resp. K (B) →
K (B̄)) is injective follows from the fact that (k̄⊗kA) ∩B = A in diagram (5a) (resp. (k̄⊗kK) ∩FracB = K in 
diagram (5b)), which itself follows from Lemma 3.12(a). Lemma 3.12(c) gives trdeg(B : A) = trdeg(k̄⊗kB :
k̄ ⊗k A) and trdeg(Frac(B) : K) = trdeg(k̄ ⊗k Frac(B) : k̄ ⊗k K), so (d) is proved.

If ML(B) = k then k ∈ A (B), so (c) implies that k̄⊗k k ∈ A (B̄), i.e., k̄ ∈ A (B̄) and hence ML(B̄) = k̄. 
Similarly, if FML(B) = k then k ∈ K (B), so k̄ ⊗k k ∈ K (B̄), so FML(k̄ ⊗k B) = k̄. This proves (b).

(e) Let Δ be a subset of LND(B). Then f̄(k(KΔ)) = f̄(k̄ ⊗k KΔ) = f̄(KΔ̄) = KΔ̄ ∩ B̄ = AΔ̄ and 
a(f(KΔ)) = a(KΔ ∩B) = a(AΔ) = k̄ ⊗k AΔ = AΔ̄, so f̄(k(KΔ)) = a(f(KΔ)). �

Our next goal is to describe the relation between K (B) and K (K[B]), where K is any element of 
K (B) and K[B] is the K-subalgebra of Frac(B) generated by B. Here, the reader should keep in mind that 
replacing B by K[B] is neither a localization nor a tensor product.

3.15 Lemma. Let k be a field of characteristic zero, B an affine k-domain, and K ∈ K (B). Consider the 
subring B = K[B] of FracB. Then B is an affine K-domain, dimB = trdegK(FracB), FML(B) = K, and {
L ∈ K (B) | K ⊆ L 

}
⊆ K (B).

Proof. It is clear that B is an affine K-domain and that, consequently, dimB is equal to the transcendence 
degree of Frac(B) = Frac(B) over K.

Let Δ be the largest possible subset of LND(B) satisfying K = KΔ; namely,

Δ =
{
D ∈ LND(B) | K ⊆ Frac(kerD)

}
. (6)
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Let D ∈ Δ. Then D has a unique extension D′ ∈ Der(FracB); as kerD′ = Frac(kerD) ⊇ K by 
Lemma 3.2, we have in fact D′ ∈ DerK(FracB). As D′(K) = {0} ⊆ B and D′(B) = D(B) ⊆ B ⊆ B, it 
follows that D′(B) ⊆ B. Let D′′ : B → B be the restriction of D′. Consider the subring

Nil(D′′) =
{
x ∈ B | ∃r>0 D′′r(x) = 0

}
of B and note that K ⊆ ker(D′′) ⊆ Nil(D′′) and B ⊆ Nil(D) ⊆ Nil(D′′); it follows that Nil(D′′) = B and 
hence that D′′ ∈ LND(B). We also have ker(D) ⊆ ker(D′′) ⊆ ker(D′) = Frac(kerD) by Lemma 3.2, so 
Frac(kerD′′) = Frac(kerD).

We showed that each D ∈ Δ extends to some (necessarily unique) D′′ ∈ LND(B) satisfying 
Frac(kerD′′) = Frac(kerD).

Consider L ∈ K (B) such that K ⊆ L, and choose Δ1 ⊆ LND(B) such that L = KΔ1 . Because of 
(6), we have Δ1 ⊆ Δ. Consequently, each D ∈ Δ1 has a unique extension D′′ ∈ LND(B) satisfying 
Frac(kerD′′) = Frac(kerD). Now

L =
⋂

D∈Δ1

Frac(kerD) =
⋂

D∈Δ1

Frac(kerD′′) ∈ K (B),

showing that 
{
L ∈ K (B) | K ⊆ L 

}
⊆ K (B). It follows that K ∈ K (B) and hence that K ⊇ FML(B). 

As B∗ ⊆ FML(B), we have K ⊆ FML(B) and hence FML(B) = K. �
The LND-rank. Given a domain B of characteristic zero, we proceed to define an element lndrk(B) of 
N ∪ {∞} that we call the LND-rank of B. Paragraph 3.16 and Lemma 3.16.1 are preliminaries to the 
definition of lndrk(B). The reader should keep in mind that all quantities considered below (namely supSr, 
supSf , dimL SpanL(LNDB), lndrk(B), ht(A (B)) and ht(K (B))) are regarded as elements of N ∪{∞}. In 
other words, all infinite cardinals are denoted ∞ and we do not distinguish between them.

3.16. Let B be a domain of characteristic zero. Let L = FracB and K = FML(B), and recall that DerK(L)
is a vector space over L of dimension trdegK(L). Each element of LND(B) has a unique extension to an 
element of DerK(L), so we may regard LND(B) as a subset of DerK(L). Let SpanL(LNDB) denote the 
subspace of DerK(L) spanned (over L) by the set LND(B). Let us also consider the set Sr of all n ∈ N

satisfying:

(∗) there exist D1, . . . , Dn ∈ LND(B) and b1, . . . , bn ∈ B such that the n × n matrix (Di(bj)) has nonzero 
determinant in B,

and the set Sf of all n ∈ N satisfying:

(∗∗) there exist D1, . . . , Dn ∈ LND(B) and b1, . . . , bn ∈ FracB such that the n × n matrix (Di(bj)) has 
nonzero determinant in FracB

where, in (∗∗), the same notation is used for the element Di of LND(B) and its unique extension to an 
element of DerK(L). The subscripts ‘r’ and ‘f ’ in the notations Sr and Sf stand for the words ‘ring’ and 
‘field’ respectively. Then:

3.16.1 Lemma. supSr = supSf = dimL SpanL(LNDB).

Proof. It is clear that Sr ⊆ Sf , so supSr ≤ supSf .
Let n ∈ Sf , and let us prove that n ≤ dimL SpanL(LNDB). We may assume that n ≥ 1. Pick 

D1, . . . , Dn ∈ LND(B) and x1, . . . , xn ∈ FracB such that det(Dixj) �= 0. Now consider a1, . . . , an ∈ L
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such that D =
∑n

i=1 aiDi ∈ DerK(L) is the zero derivation; then

(
a1 · · · an

)( D1x1 ··· D1xn

...
...

Dnx1 ··· Dnxn

)
=

(
Dx1 · · · Dxn

)
=

(
0 · · · 0

)
,

so (a1, . . . , an) = (0, . . . , 0), since det(Dixj) �= 0. This shows that D1, . . . , Dn are linearly independent over 
L, so n ≤ dimL SpanL(LNDB). It follows that supSf ≤ dimL SpanL(LNDB).

Suppose that n ∈ N satisfies n ≤ dimL SpanL(LNDB), and let us prove that n ∈ Sr. We may assume that 
n ≥ 1. Pick D1, . . . , Dn ∈ LND(B) linearly independent over L. For each x ∈ B, let δx = (D1x, . . . , Dnx) ∈
Bn ⊆ Ln; then define

U = SpanL

{
δx | x ∈ B

}
and U⊥ =

{
v ∈ Ln | 〈v, δx〉 = 0 for all x ∈ B

}
,

where for v = (a1, . . . , an), v′ = (a′1, . . . , a′n) ∈ Ln we define 〈v, v′〉 =
∑n

i=1 aia
′
i. We claim that U⊥ = {0}. 

Indeed, consider (a1, . . . , an) ∈ U⊥. Define D =
∑n

i=1 aiDi ∈ DerK(L). Then for each x ∈ B we have 
D(x) =

∑n
i=1 aiDix = 〈(a1, . . . , an), δx〉 = 0, so D|B = 0 and hence D = 0. Since D1, . . . , Dn are linearly 

independent over L, we obtain (a1, . . . , an) = (0, . . . , 0). Thus U⊥ = {0} and consequently U = Ln. So 
we can choose x1, . . . , xn ∈ B such that δx1 , . . . , δxn

is a basis of Ln. Then det(Di(xj)) �= 0, showing that 
n ∈ Sr. It follows that dimL SpanL(LNDB) ≤ supSr, so the Lemma is proved. �
3.17 Definition. Let B be a domain of characteristic zero. By the LND-rank of B, denoted lndrk(B), we 
mean the element supSr = supSf = dimL SpanL(LNDB) of N ∪ {∞} (see Lemma 3.16.1).

3.18 Proposition. For any domain B of characteristic zero, we have

ht
(
A (B)

)
≤ ht

(
K (B)

)
≤ lndrk(B) ≤ trdeg

(
Frac(B) : FML(B)

)
.

Proof. We have ht
(
A (B)

)
≤ ht

(
K (B)

)
by Lemma 3.3.

Suppose that n ∈ N and K0, . . . , Kn ∈ K (B) are such that K0 ⊂ · · · ⊂ Kn (where ‘⊂’ is strict inclusion). 
For each i = 0, . . . , n, define Δi =

{
D ∈ LND(B) | Ki ⊆ Frac(kerD) 

}
. Then KΔi

= Ki for all i. We also 
have Δ0 ⊃ · · · ⊃ Δn, so we may choose Di ∈ Δi−1 \ Δi for each i ∈ {1, . . . , n}. Let D′

i ∈ Der(FracB) be 
the unique extension of Di and note that kerD′

i = Frac(kerDi) by Lemma 3.2. Since Di /∈ Δi, we have 
Ki � Frac(kerDi) = kerD′

i and hence we may choose bi ∈ Ki such that D′
i(bi) �= 0. For each j such that 

0 ≤ j < i we have Di ∈ Δi−1 ⊆ Δj so D′
i(bj) = 0. This shows that the n × n matrix (D′

i(bj)) is upper 
triangular with nonzero entries on the diagonal, so n ∈ Sf and hence n ≤ supSf = lndrk(B) (notation as 
in 3.16). So ht

(
K (B)

)
≤ lndrk(B).

As in 3.16, let L = FracB and K = FML(B). Since lndrk(B) is the dimension of the subspace 
SpanL(LND(B)) of the L-vector space DerK(L), we have lndrk(B) ≤ dimL DerK(L) = trdegK(L) =
trdeg

(
Frac(B) : FML(B)

)
, as desired. �

Remark. There exist affine domains B for which ht
(
A (B)

)
< trdeg

(
Frac(B) : FML(B)

)
, i.e., at least one 

of the inequalities of Proposition 3.18 is strict. See Remark 4.13.

4. Applications

We apply the theory developed in Sections 1–3 to study domains of characteristic zero. This section is 
subdivided into unnumbered subsections, each one beginning with a title.
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Preliminaries.

4.1. The following are some of the known facts that we use in this section.

(a) Let A be a domain containing a field k and such that trdegk(A) = 1. If A is contained in some affine 
k-domain, then A is finitely generated as a k-algebra.

(b) Suppose that k ⊆ A ⊆ B, where k is a field, B is a normal affine k-domain, and A is a factorially 
closed subring of B such that trdegk(A) ≤ 2. Then A is finitely generated as a k-algebra.

(c) Let A ⊂ B be integral domains, where B is finitely generated as an A-algebra. Suppose that S−1B =
(S−1A)[1] where S is a multiplicative set of A satisfying the following condition: each element of S is a 
product of units of A and of prime elements p of A such that
(i) p is a prime element of B.
(ii) A ∩ pB = pA.
(iii) A/pA is algebraically closed in B/pB.
Then B = A[1].

(d) Let k be a field of characteristic zero and B a normal affine k-domain such that ML(B) = k and 
trdegk(B) = 2. Then FracB = k(2) and each element of A1(B) is a k[1].

(e) Let k be a field, R a k-algebra and n ≤ 2 a natural number. If there exists a separable field extension 
K/k such that K ⊗k R = K [n], then R = k[n].

Proof. Refer to [21, Lemma 1.39] for (a), to [15] and [29] for (e), and (for instance) to [16, 5.3.6, p. 82] for 
(d). Statement (c) can be derived from the proof of Theorem 2.3.1 of [27]. For (b), consider K = FracA
and note that [36] implies that K ∩B is finitely generated as a k-algebra; since A is factorially closed in B
we have K ∩B = A, so (b) follows. �

The following simple observation is also needed:

4.2 Lemma. Let k be a field of characteristic zero and B an absolutely factorial k-domain. Then each element 
of A (B) is absolutely factorial.

Proof. Let k̄ be the algebraic closure of k. Let A ∈ A (B). Both B and B̄ = k̄⊗kB are UFDs, and we have 
A ∈ A (B) and (by Lemma 3.14) k̄ ⊗k A ∈ A (B̄); thus, by Lemma 3.1, A (resp. k̄ ⊗k A) is a factorially 
closed subring of B (resp. of B̄). As a factorially closed subring of a UFD is a UFD, it follows that A and 
k̄ ⊗k A are UFDs. Consequently, A is absolutely factorial. �

We begin with a straightforward consequence of Theorem 2.5 and Corollary 2.6:

4.3 Corollary. Let k be a field of characteristic zero and B an affine k-domain satisfying FML(B) = k.

(a) B is geometrically unirational over k.
(b) If dimB ≤ 4 then B is geometrically rational over k.
(c) If dimB ≤ 2 then B is rational over k.

Proof. Let k̄ be the algebraic closure of k and B̄ = k̄ ⊗k B. The condition FML(B) = k implies that 
k is algebraically closed in FracB (Lemma 3.1), so B̄ is a domain by Lemma 3.11. By Lemma 3.14, 
dim B̄ = dimB and FML(B̄) = k̄. It follows from Theorem 2.5 that B̄ is unirational over k̄, i.e., (a) is true. 
Assertion (b) follows by applying Corollary 2.6(b) to B̄, and (c) is a reiteration of Corollary 2.6(a). �
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A generalization of Theorem 2.5. In this subsection we state a result from [6] that describes what becomes of 
Theorem 2.5 when k is not assumed to be algebraically closed. We also give some immediate consequences 
of that result. We begin by introducing some notations.

4.4 Definition. Let k be an arbitrary field and B an affine k-domain. Write κ(p) = Bp/pBp for each 
p ∈ SpecB and let n = dimB. Define

Xk(B) = set of all prime ideals p of B satisfying κ(p) ⊗k B ⊆ κ(p)[n]

where the notation κ(p) ⊗k B ⊆ κ(p)[n] is an abbreviation for the sentence: there exists an injective homo-
morphism of κ(p)-algebras from κ(p) ⊗kB to a polynomial ring in n variables over κ(p). We say that Xk(B)
has nonempty interior if some nonempty open subset of SpecB is included in Xk(B).

The following is a consequence of Theorem 3.8, Corollary 1.13 and Corollary 3.10 of [6].

4.5 Theorem. Let k be a field of characteristic 0 and B an affine k-domain. Let n = dimB. If FML(B) = k
then the following are true.

(a) Xk(B) has nonempty interior.
(b) Frac(B) ⊗k B ⊆ (FracB)[n].
(c) The following conditions are equivalent:

(i) B ⊆ k[n].
(ii) k-rational points are dense in SpecB.
(iii) B is unirational over k.

(d) If k is algebraically closed or n ≤ 2 then B ⊆ k[n].

The next result gives information about the field extensions Frac(B)/K with K ∈ K (B). It is a simple 
application of Theorem 4.5 in conjunction with Lemma 3.15.

4.6 Corollary. Let k be a field of characteristic zero, B an affine k-domain and K ∈ K (B). Let n =
trdegK(FracB) and let B = K[B] be the K-subalgebra of FracB generated by B.

(a) FML(B) = K and XK(B) has nonempty interior.
(b) There exists a finite extension K ′/K such that B ⊆ K ′[n] and K ′ ⊗K Frac(B) ⊆ K ′(n). In particular, 

Frac(B)/K is geometrically unirational.
(c) If Frac(B)/K is unirational then B ⊆ K [n].
(d) If n ≤ 4 then Frac(B)/K is geometrically rational.
(e) If n ≤ 2 then Frac(B) = K(n) and B ⊆ K [n].

Proof. By Lemma 3.15, B is an affine K-domain satisfying dimB = n and FML(B) = K. So Theorem 4.5
implies that (a) is true.

(b) By (a), there exists a dense open subset U of SpecB such that

κ(p) ⊗K B ⊆ κ(p)[n] for every p ∈ U (where κ(p) = Bp/pBp).

Pick any maximal ideal p of B such that p ∈ U , and define K ′ = κ(p) = B/p. Then K ′ is a finite extension 
of K and B ⊆ B ⊆ K ′ ⊗K B ⊆ K ′[n]. As K ′ ⊗K Frac(B) = K ′ ⊗K Frac(B) is a localization of K ′ ⊗K B, we 
have K ′ ⊗K Frac(B) ⊆ K ′(n). As this implies that Frac(B)/K is geometrically unirational, this proves (b).
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(c) By Theorem 4.5, Frac(B)/K is unirational ⇔ B ⊆ K [n]. As Frac(B) = Frac(B) and B ⊆ B, assertion 
(c) follows.

(d) If n ≤ 4 then Corollary 4.3 implies that B is geometrically rational over K, i.e., that Frac(B)/K is 
geometrically rational.

(e) Suppose that n ≤ 2. Since dimB = n, Corollary 2.6(a) gives Frac(B) = K(n) and Theorem 4.5(c) 
gives B ⊆ K [n]. Since Frac(B) = Frac(B) and B ⊆ B, (e) follows. �
4.7 Remark. Let k be a field of characteristic zero, B an affine k-domain and K ∈ K2(B). Then 
Corollary 4.6(e) implies that Frac(B) = K(2) and B ⊆ K [2]. However, there does not necessarily ex-
ist an embedding B → K [2] which extends to an isomorphism Frac(B) → K(2). For instance, let 
B = R[x, y, v]/(xy − v2 − 1), where R[x, y, v] = R[3]. Then FML(B) = R ∈ K2(B), so Frac(B) = R(2)

and B ⊆ R[2]. However, by paragraph 4.1 of [3], B cannot be birationally embedded in R[2].

Extensions of rings belonging to A (B). Assuming that B is normal, we give some results on ring extensions 
R ⊂ A such that R, A ∈ A (B) and trdegR(A) = 1. The main result is:

4.8 Theorem. Let k be a field of characteristic zero and B a normal affine k-domain. Consider a chain 
A0 ⊂ · · · ⊂ An (n ≥ 1) of elements of A (B) satisfying trdeg(Ai : Ai−1) = 1 for all i ∈ {1, . . . , n}. Assume 
that

Frac(An) ∈ K (B) or Frac(An−1) ∈ K (B). (∗)

Then Frac(Ai−1) ∈ K (B) and Ai−1 ∈ A ∗
1 (Ai) for all i ∈ {1, . . . , n}, and in particular

FracAn = (FracA0)(n).

Remarks.

(1) Assumption (∗) is satisfied whenever trdeg(B : An) ≤ 2. (Indeed, this is clear if trdeg(B : An) < 2, so 
let us assume that An ∈ A2(B). There exists A ∈ A1(B) such that An ⊂ A. Then Frac(A) ∈ K (B), so 
the sequence An ⊂ A satisfies (∗); applying the Theorem to An ⊂ A shows that Frac(An) ∈ K (B).)

(2) For each i such that Ai is finitely generated as an Ai−1-algebra, we get Ai−1 ∈ A1(Ai) by Lemma 1.5.

For the proof of the Theorem, we need the following facts:

4.8.1 Lemma. Let k be a field of characteristic zero and B a normal affine k-domain. For each R ∈ A (B), 
Frac(R) is algebraically closed in Frac(B).

Proof. We have ML(BR) = RR by Lemma 3.10 so RR is factorially closed (hence integrally closed) in BR. 
Since BR is normal, RR is algebraically closed in Frac(B). �
4.8.2 Lemma. Let k be a field of characteristic zero and B a normal affine k-domain satisfying FML(B) = k. 
If R ∈ A (B) and trdegk(R) = 1 then R = k[1].

Proof. Let k̄ be the algebraic closure of k, R̄ = k̄ ⊗k R and B̄ = k̄ ⊗k B. Arguing as in the proof of 
Corollary 4.3, we find that B̄ is a domain and that FML(B̄) = k̄, so Theorem 4.5 implies that B̄ ⊆ k̄[n] for 
some n; thus R̄ ⊆ k̄[n]. We have trdegk̄(R̄) = 1 by Lemma 3.12(c). Since R is a factorially closed subring of 
the normal domain B, R is normal; as chark = 0, it follows that R is geometrically normal and hence that 
R̄ is normal (cf. [30, Tag 037Y]). Then Zaks’ Theorem [35] implies that R̄ = k̄[1]. By 4.1(e), it follows that 
R = k[1]. �
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4.8.3 Lemma. Let k be a field of characteristic zero and B a normal affine k-domain. Consider a ring 
extension R ⊂ A where R, A ∈ A (B) and trdegR(A) = 1. The following implications are true:

AA ∈ K (B) =⇒ RR ∈ K (B) =⇒ R ∈ A ∗
1 (A).

Proof. Assume that AA ∈ K (B) and let Δ(R) =
{
D ∈ LND(B) | R ⊆ kerD

}
and K = KΔ(R) ∈ K (B). 

Then K ∩ B = R and RR ⊆ K ⊆ AA. Since A � K ∩ B, we have K �= AA, so K is algebraic over RR. As 
RR is algebraically closed in FracB by Lemma 4.8.1, we get RR = K. This shows that AA ∈ K (B) implies 
RR ∈ K (B).

Now suppose that RR ∈ K (B) and write K = RR. Since R is algebraically closed in A, in order to show 
that R ∈ A ∗

1 (A) it suffices to show that AR = K [1]. Lemma 3.10 gives FML(BR) = K and AR ∈ A (BR). 
As BR is normal and trdegK(AR) = 1, we obtain AR = K [1] by Lemma 4.8.2. �
Proof of Theorem 4.8. The result follows from Lemma 4.8.3 by induction on n. �

We derive some consequences of Theorem 4.8. The first one is particularly satisfactory:

4.9 Corollary. Let k be a field of characteristic zero and B a factorial affine k-domain. Suppose that A0 ⊂
· · · ⊂ An is a chain of elements of A (B) satisfying n ≥ 1 and trdeg(Ai : Ai−1) = 1 for all i ∈ {1, . . . , n}. 
Then Ai−1 ∈ A ∗

1 (Ai) for all i ∈ {1, . . . , n}. In particular, FracAn = (FracA0)(n).

Proof. We have Frac(An) ∈ K (B) by Lemma 3.5, so this follows from Theorem 4.8. �
4.10 Corollary. Let B be a normal affine domain over a field k of characteristic zero. Suppose that A, R, R′ ∈
A (B) satisfy

• R �= R′, R ∪R′ ⊆ A and trdeg(A : R) = 1 = trdeg(A : R′);
• {RR, R′

R′} ⊆ K (B) or AA ∈ K (B).

Then FracA = (FracR)(1) and FracR is ruled over k.

Proof. We have R, R′ ∈ A ∗
1 (A) by Lemma 4.8.3 (or by Theorem 4.8), so |A ∗

1 (A)| > 1; the desired conclusion 
follows from Proposition 2.2. �
Maximal height. Theorem 4.8 can be used to study the situation where the height of A (B) is maximal, i.e., 
htA (B) = dimB. The main result is:

4.11 Theorem. Let k be a field of characteristic zero, B an affine k-domain and k′ the algebraic closure of 
k in Frac(B). Then k′ is a finite extension of k and the following hold.

(a) htA (B) ≤ htK (B) ≤ n, where n = dimB.
(b) If ht K (B) = n then FML(B) = k′.
(c) If htA (B) = n then FML(B) = k′, Frac(B) = k′(n) and B ⊆ k′[n].

Proof. It is clear that k′/k is finite. We have htA (B) ≤ htK (B) ≤ n by Proposition 3.18, so (a) is true. 
Proposition 3.18 also implies that ht K (B) ≤ trdeg(FracB : FMLB) ≤ n, so if ht K (B) = n then FML(B)
is an algebraic extension of k, so FML(B) = k′ since FML(B) is algebraically closed in Frac(B). So (b) is 
true.
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To prove (c), assume that htA (B) = n. Note that FML(B) = k′ by (b), so what has to be shown is:

Frac(B) = k′(n) and B ⊆ k′[n]
. (7)

We first consider the case where B is normal and k is algebraically closed in FracB. Since htA (B) = n, 
we may consider a chain A0 ⊂ · · · ⊂ An of elements of A (B). Then

An = B, A0 = k and trdeg(Ai : Ai−1) = 1 for all i ∈ {1, . . . , n}.

Note that Frac(An) ∈ K (B), so Theorem 4.8 implies that FracAn = (FracA0)(n), i.e., FracB = k(n). We 
have already noted that FML(B) = k′ = k; this together with FracB = k(n) implies that B ⊆ k[n] by 
Theorem 4.5. This proves (7) in the special case.

For the general case, consider the normalization B̃ of B and observe that dim B̃ = dimB = n. Note that 
k′ ⊆ B̃; so B̃ is a normal affine k′-domain and k′ is algebraically closed in Frac(B̃). We have htA (B) ≤
htA (B̃) by Lemma 1.7 and htA (B̃) ≤ n by Proposition 3.18, so htA (B̃) = n. By the special case, it 
follows that Frac(B̃) = k′(n) and B̃ ⊆ k′[n]; so Frac(B) = k′(n) and B ⊆ k′[n]. This proves (7), so we are 
done. �
4.12 Remark. We saw in Section 2 that the condition FML(B) = k does not imply that B is rational over 
k, even when k is algebraically closed. So it is natural to ask whether one can find a condition on the 
locally nilpotent derivations of B that implies rationality. Theorem 4.11 gives an affirmative answer to this 
question. Indeed, if we assume that k is algebraically closed in Frac(B) (which is a necessary condition for 
B to be rational over k) then the implication

htA (B) = dimB =⇒ B is rational over k and B ⊆ k[n]

is true by Theorem 4.11(c).

4.13 Remark. Let k be a field of characteristic zero and B an affine k-domain. If FML(B) = k and B is not 
rational over k then Theorem 4.11 implies that

ht
(
A (B)

)
< trdeg

(
Frac(B) : FML(B)

)
,

i.e., at least one of the inequalities of Proposition 3.18 is strict. Such rings B exist: see the discussion about 
implication (4), in Sec. 2.

Absolutely factorial domains. As another application of Theorem 4.8 (or more precisely, of Corollary 4.9), 
we shall now prove the following:

4.14 Theorem. Let B be an affine domain over a field k of characteristic zero and suppose that B is absolutely 
factorial. Let n = dimB.

(a) If A ∈ An−2(B) and R ∈ An−1(B) satisfy R ⊂ A, then A = R[1].
(b) Suppose that (k̄⊗kB)∗ = k̄∗, where k̄ is the algebraic closure of k. Then R = k[1] for all R ∈ An−1(B).

Some preparation is needed for the proof.

4.14.1 Definition. Let B be a ring, D ∈ LND(B) and A = kerD.

(a) The set pl(D) = D(B) ∩A is an ideal of A, called the plinth ideal of D.
(b) We say that D is tight if D(B) ⊆ pl(D)B.
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4.14.2 Remark. Let B be a domain of characteristic zero, D ∈ LND(B) and A = kerD. If B = A[1], then D
is tight. (Indeed, write B = A[t]; then D = a d

dt for some a ∈ A, so D(B) = aB and pl(D) = aA.)

4.14.3 Lemma. Let B be an algebra over a field k of characteristic zero, let D ∈ LND(B) and A = kerD. 
Let k̄ be any field extension of k and define B̄ = k̄⊗k B and Ā = k̄⊗k A. Define D̄ ∈ LND(B̄) as in 3.13.

(a) pl(D̄) = pl(D)Ā.
(b) Given any ideal J of B, we have D(B) ⊆ J if and only if D̄(B̄) ⊆ JB̄.
(c) D is tight if and only if D̄ is tight.

Proof. (a) Recall from 3.13 that ker(D̄) = Ā. To prove that pl(D)Ā ⊆ pl(D̄), we have to show that 
1 ⊗a ∈ pl(D̄) for all a ∈ pl(D). Let a ∈ pl(D); then a = D(b) for some b ∈ B, so D̄(1 ⊗b) = 1 ⊗D(b) = 1 ⊗a, 
so 1 ⊗ a ∈ Ā ∩ D̄(B̄) = pl(D̄).

For the reverse inclusion, consider α ∈ pl(D̄) and let us prove that α ∈ pl(D)Ā. Let (λi)i∈I be a basis 
of k̄ over k. We have α = D̄(β) for some β ∈ B̄. Write β =

∑
i λi ⊗ bi (bi ∈ B), then 0 = D̄2(β) =∑

i λi ⊗D2(bi), so D2(bi) = 0 for all i, so D(bi) ∈ pl(D) for all i. It follows that α = D̄(β) =
∑

i λi ⊗ ai
where ai = D(bi) ∈ pl(D) for all i. Then α =

∑
i(1 ⊗ ai)(λi ⊗ 1) ∈ pl(D)Ā.

(b) Let T : k-Mod → k̄-Mod denote the functor k̄ ⊗k ( ), and note that T is faithfully exact. Applying 

T to 0 → J
j−−→ B

π−−→ B/J → 0 shows that kerT (π) = imT (j), and since imT (j) = JB̄, we obtain 
kerT (π) = JB̄. On the other hand we have D̄(B̄) = imT (D), so D̄(B̄) ⊆ JB̄ ⇔ imT (D) ⊆ kerT (π) ⇔
T (π ◦ D) = T (π) ◦ T (D) = 0 ⇔ π ◦ D = 0, the last step by faithful exactness of T . So D̄(B̄) ⊆ JB̄ ⇔
D(B) ⊆ J .

(c) Let J = pl(D)B. By (a) we have pl(D̄)B̄ =
(
pl(D)Ā

)
B̄ =

(
pl(D)B

)
B̄ = JB̄, so D̄ is tight ⇔

D̄(B̄) ⊆ pl(D̄)B̄ = JB̄ ⇔ D(B) ⊆ J ⇔ D is tight, where we used (b) for the equivalence in the middle. �
4.14.4 Lemma. Let B be an affine domain over a field k of characteristic zero. Assume that dimB = 2 and 
that B is absolutely factorial. Then the following hold.

(a) B = A[1] for all A ∈ A1(B).
(b) If |A1(B)| > 1 then B = k[2].

Proof. (a) Let A ∈ A1(B). As A is absolutely factorial by Lemma 4.2, it is a UFD. It is also an affine 
k-domain by 4.1(a), and is one-dimensional, so A is a PID.

First consider the case where k is algebraically closed. We have S−1B = (S−1A)[1] with S = A \ {0}. We 
know that A is a k-affine PID, so if p is an irreducible element of A then A/pA = k, so A/pA is algebraically 
closed in B/pB; since A is factorially closed in B, p is prime in B and A ∩ pB = pA; thus B = A[1] follows 
from 4.1(c).

Now consider the general case. Choose an irreducible5 D ∈ LND(B) such that kerD = A. Since A
is a PID, we have pl(D) = aA for some a ∈ A \ {0}. Let k̄ be the algebraic closure of k and consider 
B̄ = k̄ ⊗k B, Ā = k̄ ⊗k A and D̄ ∈ LND(B̄) as in 3.13. By Lemma 3.14, we have Ā = ker D̄ ∈ A1(B̄)
where B̄ is a k̄-affine UFD of dimension 2, so B̄ = Ā[1] by the preceding paragraph. Then D̄ is tight by 
Remark 4.14.2, so Lemma 4.14.3 implies that D is tight, so D(B) ⊆ aB. Since D is irreducible it follows 
that a ∈ B∗, so D(B) ∩B∗ �= ∅ and hence B = A[1] by the Slice Theorem (1.1). This proves (a).

(b) Suppose that A1, A2 are distinct elements of A1(B). Then B = A
[1]
1 = A

[1]
2 , so by [2, Thm 3.3] we 

have that A1 is a polynomial ring in one variable over the algebraic closure k′ of k in A1. Since k̄ ⊗k B is 

5 A derivation D : B → B is irreducible if B is the only principal ideal I of B such that D(B) ⊆ I.
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a domain, it follows from 3.11 that k is algebraically closed in FracB, so k′ = k. Thus A1 = k[1] and hence 
B = k[2]. �
Proof of Theorem 4.14. (a) Suppose that A ∈ An−2(B) and R ∈ An−1(B) satisfy R ⊂ A. Since B is 
normal, A is k-affine by 4.1(b). Since B is a UFD, Corollary 4.9 implies that R ∈ A ∗

1 (A), so R ∈ A1(A) by 
Lemma 1.5. By Lemma 4.2, A is absolutely factorial. So Lemma 4.14.4(a) gives A = R[1].

(b) Consider R ∈ An−1(B). Then R is k-affine by 4.1(a) and absolutely factorial by Lemma 4.2. Thus 
R̄ = k̄⊗k R is a 1-dimensional k̄-affine UFD and hence a localization of k̄[1]. The fact that B̄∗ = k̄∗ implies 
that R̄∗ = k̄∗, so R̄ = k̄[1], so 4.1(e) gives R = k[1]. �
A sample of applications. The results of the above paragraphs can be applied in a variety of situations. To 
demonstrate some of the techniques, we give a sample of three propositions.

4.15 Proposition. Let k be an algebraically closed field of characteristic zero and B a factorial k-domain 
satisfying FML(B) = k. Let n = dimB and suppose that n ≥ 5. Then B is rational over k in each of the 
following cases:

(a) There exists a chain An−2 ⊂ · · · ⊂ A3 ⊂ A2 with Ai ∈ Ai(B) for all i ∈ {2, . . . , n − 2}.
(b) There exist distinct An−3, A′

n−3 ∈ An−3(B) and a chain An−4 ⊂ · · · ⊂ A2 ⊂ A1 satisfying Ai ∈ Ai(B)
for all i ∈ {1, . . . , n − 4} and An−3 ∪A′

n−3 ⊆ An−4.

Proof. In each of cases (a) and (b), it suffices to show that there exists a field K satisfying

k ⊂ K ⊂ FracB and FracB = K(n−2). (8)

Indeed, we know from Theorem 2.5 that B is unirational over k, so if (8) is true then K/k is unirational, 
so K = k(2) by Castelnuovo’s Theorem (Remark 6.2.1, p. 422 of [14]). So it is clear that (8) implies that B
is rational. Let us prove (8).

In case (a), there exists A1 ∈ A1(B) satisfying A2 ⊂ A1; applying Corollary 4.9 to the chain An−2 ⊂
· · · ⊂ A1 ⊂ B shows that FracB = (FracAn−2)(n−2), so K = FracAn−2 satisfies (8).

In case (b), applying Corollary 4.9 to the chain An−3 ⊂ An−4 ⊂ · · · ⊂ A1 ⊂ B shows that FracB =
(FracAn−3)(n−3), and applying Corollary 4.10 to An−3 ∪ A′

n−3 ⊆ An−4 implies that there exists a field K
such that k ⊂ K ⊂ FracAn−3 and FracAn−3 = K(1); then K satisfies (8) and we are done. �
4.16 Proposition. Let k be a field of characteristic zero and B an affine k-domain. Suppose that B is 
absolutely factorial, dimB = 3 and |A1(B)| > 1. Then B is geometrically rational over k.

Proof. We first prove the case where k is algebraically closed. Since B is a UFD, Lemma 3.5 implies that 
FML(B) = Frac(A) where we define A = ML(B). Since |A1(B)| > 1, we have A = k or A ∈ A2(B). If 
A = k then FML(B) = Frac(A) = k, so Frac(B) = k(3) follows from Corollary 2.6. If A ∈ A2(B) then 
(by 4.1(a) and Lemma 4.2) A is a 1-dimensional k-affine UFD, so SpecA is a factorial curve and hence 
is rational. Thus FML(B) = FracA = k(1). As FML(B) ∈ K2(B), we have Frac(B) = (FML(B))(2) by 
Corollary 4.6(e), so Frac(B) = k(3). The special case is proved.

For the general case, let k̄ be the algebraic closure of k and B̄ = k̄ ⊗k B. Note that B̄ is a UFD and an 
affine k̄-domain, and that dim B̄ = 3 and |A1(B̄)| > 1 by Lemma 3.14. Since the Proposition is true when 
k is algebraically closed, B̄ is rational over k̄; so B is geometrically rational. �
4.17 Remark. Let L/K be a function field of one variable, where K is a field of characteristic zero and is 
algebraically closed in L. Let K ′ be an algebraic extension of K. Then L′ = K ′ ⊗K L is a field, L′/K ′ is 
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a function field of one variable, K ′ is algebraically closed in L′ and L/K and L′/K ′ have the same genus.
(Indeed, L′ is a domain by Lemma 3.11, and since it is integral over L, it must be a field; so L′/K ′ is a 
function field of one variable. We have L′ = K ′L, so Proposition III.6.1 and Theorem III.6.3 of [31] give the 
last two claims.)

4.18 Proposition. Let k be a field of characteristic zero and B an affine k-domain satisfying dimB = 3 and 
ML(B) = k. Also assume that k̄ ⊗k B is a domain which is not rational over k̄, where k̄ is the algebraic 
closure of k. Then the following hold, where we set F = FML(B):

(a) Frac(B) = F (2), B ⊆ F [2], and F is the function field of a curve of positive genus over k.
(b) TA (B) = {0, 1, 3}, TK (B) = {0, 1, 2}, and the maps (K (B),⊆) (A (B),⊆) of Lemma 3.2 are 

isomorphisms of posets.
(c) B is not a UFD.

Proof. Corollary 4.6(d) implies that Frac(B)/F is geometrically rational, and the hypothesis that k̄ ⊗k B

is not rational over k̄ implies that Frac(B)/k is not geometrically rational; so F �= k. Since k̄ ⊗k B is a 
domain, k is algebraically closed in Frac(B) by Lemma 3.11. Since F �= k, this implies that trdegk(F ) ≥ 1. 
On the other hand, ML(B) = k implies that trdegF (FracB) > 1, so trdegF (FracB) = 2 and hence 
TK (B) = {0, 1, 2}. Thus assertion (b) follows from Lemma 3.8. Since TA (B) �= TK (B), B is not a UFD 
by Remark 3.7. We have FracB = F (2) and B ⊆ F [2] by Corollary 4.6(e). It is clear that F/k is the 
function field of a curve C over k, and we note that k is algebraically closed in F . If C has genus 0 then (by 
Remark 4.17) k̄ ⊗k F = k̄(1), and since FracB = F (2) this implies that Frac(k̄ ⊗k B) = k̄(3), contradicting 
the hypothesis. So C has positive genus. �
5. Some interesting classes of algebras

This section is an elaborate remark whose aim is to explain how our results apply to certain interesting 
classes of algebras. We define two classes Cs(k) ⊂ C(k) of k-algebras (for any field k of characteristic zero) 
and then go on to develop two themes:

• The class Cs(k) is large enough to contain many interesting algebras. Paragraph 5.3 recalls the definitions 
of three classes of algebras that attract much attention from researchers, and shows that those three 
classes are included in Cs(k). Lemma 5.2 shows that C(k) and Cs(k) are closed under certain operations, 
which also supports the claim that those classes are large.

• Some strong results about A (B) are valid for all members B of C(k) or Cs(k). The assumptions con-
tained in the definition of C(k) are suitable for applying the results of Section 4, and doing so gives 
Corollary 5.5. The nonsingularity requirement in the definition of Cs(k) allows us to obtain Theorem 5.7.

5.1 Definition. Given a field k of characteristic zero, let C(k) be the class of k-algebras B satisfying

B̄ is an affine k̄-domain, is a UFD and satisfies B̄∗ = k̄∗

where k̄ denotes the algebraic closure of k and B̄ = k̄ ⊗k B. Let Cs(k) be the class of k-algebras B that 
satisfy

B belongs to C(k) and Spec(B̄) is a nonsingular variety over k̄.

5.2 Lemma. Let k be a field of characteristic zero, k̄ its algebraic closure, and B a k-algebra.

(a) k[n] ∈ Cs(k) for all n ∈ N.
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(b) k̄ ⊗k B ∈ C(k̄) ⇐⇒ B ∈ C(k) and k̄ ⊗k B ∈ Cs(k̄) ⇐⇒ B ∈ Cs(k).
(c) For each m ∈ N, B[m] ∈ C(k) ⇐⇒ B ∈ C(k) and B[m] ∈ Cs(k) ⇐⇒ B ∈ Cs(k).

Proof. Assertion (a) is trivial. Since C(k) and Cs(k) are defined in terms of the properties of B̄ = k̄ ⊗k B, 
assertion (b) is trivial. For (c), we first note that k̄ ⊗k B[m] = B̄[m]; so B[m] ∈ C(k) is equivalent to B̄[m]

being a UFD and (B̄[m])∗ = k̄∗, which is equivalent to B̄ being a UFD and B̄∗ = k̄∗, which is equivalent to 
B ∈ C(k). To prove B[m] ∈ Cs(k) ⇔ B ∈ Cs(k), there only remains to verify that Spec(B̄[m]) is nonsingular 
if and only if Spec(B̄) is nonsingular; this is well known (and can be checked via the Jacobian criterion [14, 
p. 31]). So (c) is proved. �
5.3. Recall the definitions of the following three interesting classes of algebras.

5.3.1. Let k be a field of characteristic zero and n a positive integer. A k-algebra B is called a form of k[n]

if there exists a field extension K/k such that K ⊗k B = K [n] (or equivalently, if k̄⊗k B = k̄[n] where k̄ is 
the algebraic closure of k). It is known (see 4.1(e)) that the implication

if B is a form of k[n] then B = k[n] (9)

is true when n ≤ 2 but it is an open question to determine the truth value of (9) when n ≥ 3.

5.3.2. Let k be a field of characteristic zero. A k-algebra B is called a stably polynomial algebra over k if 
there exist m, n ∈ N such that B[m] = k[m+n]. It is known that the implication

if B is a stably polynomial algebra over k then B = k[n] for some n ∈ N (10)

is true when dimB ≤ 2 (see [11], [28] for the case dimB = 2), but it is an open question to determine the 
truth value of (10) when dimB ≥ 3.

5.3.3. An exotic Cn is a nonsingular affine C-variety that is diffeomorphic to R2n as a real manifold but is 
not isomorphic to Cn as an algebraic C-variety (refer to [34] for background on this topic). It follows from 
[26] that there are no exotic C2, but examples are known of exotic Cn for all n ≥ 3. Let us now adopt the 
following definition: an exotic C[n] is an affine C-domain B such that the complex affine variety X = SpecB
is an exotic Cn. That is, B is an exotic C[n] if and only if it is an affine C-domain, B �= C[n], and SpecB
is a nonsingular C-variety which, when viewed as a real manifold, is diffeomorphic to R2n.

5.3.4 Proposition. If k is a field of characteristic zero then Cs(k) contains all stably polynomial algebras 
over k and all forms of k[n] for all n. Moreover, Cs(C) contains all exotic C[n] for all n.

Proof. Lemma 5.2 implies that Cs(k) contains all stably polynomial algebras over k and all forms of k[n] for 
all n. Let B be an exotic C[n]. By definition, B is an affine C-domain and SpecB is a nonsingular C-variety. 
We thank M. Zaidenberg for pointing out to us that B∗ = C∗ by [12, Cor. (1.20;1)]. By [13, Thm 1], B is 
a UFD. So B belongs to Cs(C). �
5.4 Lemma. Let k be a field of characteristic zero. If B ∈ C(k) then B is an affine k-domain, is absolutely 
factorial and satisfies B∗ = k∗.

Proof. Let B ∈ C(k) and let k̄ be the algebraic closure of k. Since B̄ = k̄ ⊗k B is an affine k̄-domain, it 
follows that B is an affine k-domain (this is left to the reader). Since B̄ is a noetherian UFD with B̄∗ = k̄∗, 
it follows that B is a UFD with B∗ = k∗ (this claim seems to belong to folklore; we provide a proof in the 
Appendix, see Lemma 6.2). �
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We now apply the results of Sec. 4 to the class C(k).

5.5 Corollary. Let k be a field of characteristic zero and B ∈ C(k). Let n = dimB.

(a) R = k[1] for all R ∈ An−1(B).
(b) If A ∈ An−2(B) and R ∈ An−1(B) satisfy R ⊂ A, then A = R[1] = k[2].
(c) Let A0 ⊂ · · · ⊂ Am (m ≥ 1) be a chain in A (B) satisfying trdeg(Ai : Ai−1) = 1 for all i ∈ {1, . . . , m}. 

Then Ai−1 ∈ A ∗
1 (Ai) for all i ∈ {1, . . . , m}, and in particular FracAm = (FracA0)(m).

(d) If dimB = 3 and A2(B) �= ∅ then Frac(B) = k(3).
(e) If dimB = 3 and B is not semi-rigid then B is geometrically rational over k.

Proof. Lemma 5.4 implies that B is absolutely factorial, and (k̄ ⊗k B)∗ = k̄∗ by definition of C(k); so (a)
and (b) are immediate consequences of Theorem 4.14. Part (c) follows from Corollary 4.9. To prove (d), 
assume that dimB = 3 and that R ∈ A2(B); then there exists A ∈ A1(B) such that R ⊂ A; then A = k[2]

by (b), so Frac(B) = (FracA)(1) = k(3). Part (e) follows from Proposition 4.16. �
We need to introduce another class of k-algebras, sometimes known under the name of “special 

Danielewski surfaces” (whence the letter “D” in the notation).

5.6 Notation. Given a field k of characteristic zero, we let D(k) denote the class of k-algebras isomorphic to 
k[X, Y, Z]/(XY −ϕ(Z)) for some nonconstant polynomial in one variable ϕ(Z) ∈ k[Z] \k, where k[X, Y, Z] =
k[3]. Note that k[2] ∈ D(k).

The following is in fact a special case of a result of [5]. It is a very intriguing fact, and it is interesting to 
state it here in the context of the class Cs(k).

5.7 Theorem. Let k be a field of characteristic zero and B ∈ Cs(k).
Then BR ∈ D(RR) for all R ∈ A2(B).

To prove the Theorem, we need the notion of smoothness.

5.7.1. Following [19, Def. 28.D], we say that a ring homomorphism f : R → S is smooth (or that S is 
smooth over R) if f is formally smooth for the discrete topologies on R and S. Explicitly, this means that 
f is smooth if and only if for every commutative diagram (11-i)

(i) C
q

C/N

R

u

f
S

v

(ii) C
q

C/N

R

u

f
S

vv′

(11)

where C is a ring, N is an ideal of C satisfying N2 = 0 and q is the canonical epimorphism of the quotient 
ring, there exists at least one ring homomorphism v′ : S → C that makes diagram (11-ii) commute. We 
stress that our terminology for smoothness agrees with those of [19] and [5]. We need the following properties 
of smoothness:

(a) Let k be a field, let k′ and A be k-algebras and let A′ = k′ ⊗k A. Then A is smooth over k if and only 
if A′ is smooth over k′.

(b) Let k be an algebraically closed field and B an affine k-domain. Then B is smooth over k if and only 
if SpecB is a nonsingular algebraic variety over k.
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Proof of (a) and (b). Assertion (a) is a special case of [19, 28.O]. For assertion (b) one needs to show that 
k → B is smooth if and only if Bm is a regular local ring for every maximal ideal m of B; this follows from 
the three results in [30] identified by the tags 00TN, 00TC and 00TS. (Caution: What we call ‘smooth’ here 
is called ‘formally smooth’ in [30].) �
5.7.2 Lemma. Given a field k of characteristic zero and a k-algebra B,

B belongs to Cs(k) ⇐⇒ B belongs to C(k) and B is smooth over k.

Proof. Let k̄ be the algebraic closure of k and B̄ = k̄⊗kB. By 5.7.1(b), B ∈ Cs(k) is equivalent to “B ∈ C(k)
and B̄ is smooth over k̄,” which by 5.7.1(a) is equivalent to “B ∈ C(k) and B is smooth over k.” �
Proof of Theorem 5.7. Let B ∈ Cs(k). By Lemmas 5.4 and 5.7.2, B is a geometrically integral affine 
k-domain, is a UFD, and is smooth over k; so B belongs to the class N(k) of k-domains defined in [5]. Thus 
Cs(k) is included in N(k). Now [5, Thm 4.1] is the following statement:

Suppose that B is a localization of a ring belonging to the class N(k). If K is a field such that K ⊂ B, 
trdegK B = 2 and ML(B) = K, then B ∈ D(K).

So for any B ∈ N(k) and R ∈ A2(B), we have BR ∈ D(RR) (because trdeg(BR : RR) = 2 and, by 
Lemma 3.10, ML(BR) = RR). The claim follows. �

We conclude by giving a partial result related to the following open question: if k is a field of characteristic 
zero and B is a form of k[3] which is not rigid, does it follow that B = k[3]?

5.8 Proposition. Let k be a field of characteristic zero and B a form of k[3]. Suppose that D1, D2 ∈ LND(B) \
{0} satisfy D1 ◦D2 = D2 ◦D1 and ker(D1) �= ker(D2).

Then B = k[3] and ker(D1) ∩ ker(D2) = k[v] for some variable v of B.

5.8.1. The proof of the Proposition uses the following known facts.

(a) Let K/k be an extension of fields of characteristic zero, let B be a k-algebra and let f ∈ B. Suppose 
that K ⊗k B = K [3] and that f is a variable of K ⊗k B. Then B = k[3] and f is a variable of B. (This 
is [8, Prop. 2.8].)

(b) Let k be a field of characteristic zero and v ∈ B = k[3]. If S−1B = k(v)[2] where S = k[v] \ {0}, then v
is a variable of B. (This is a special case of [8, Thm 3].)

Proof of Proposition 5.8. Let R = ker(D1) ∩ ker(D2). The assumptions on D1, D2 imply that D2 maps 
ker(D1) into itself and that the restriction d2 ∈ LND(kerD1) of D2 is not the zero derivation. Since 
R = ker d2, it follows that trdeg(B : R) = 2 and hence that R ∈ A2(B). So R = k[1] by Corollary 5.5. 
Choose v ∈ B such that R = k[v].

Let k̄ denote the algebraic closure of k, B̄ = k̄ ⊗k B = k̄[3] and D̄1, D̄2 ∈ LND(B̄) the extensions of 
D1, D2. Then ker(D̄1) ∩ ker(D̄2) = k̄ ⊗k R = k̄[v]. It follows that the k̄(v)-domain B = B̄k̄[v] has a pair of 
commuting derivations δ1, δ2 ∈ LND(B) satisfying ker δ1 ∩ ker δ2 = k̄(v) (δi is obtained by localizing D̄i). 
As is well known, this implies that B = k̄(v)[2] (see for instance [20, Prop. 3.2]). Then 5.8.1(b) implies that 
v is a variable of B̄. It then follows from 5.8.1(a) that B = k[3] and that v is a variable of B. �
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6. Appendix

We provide a proof for Lemma 6.2, which seems to belong to folklore.

6.1 Lemma. Let A be an algebra over a field k, let K/k be an algebraic Galois extension and write G =
Gal(K/k) and AK = K ⊗k A. For each θ ∈ G, let θ̃ : AK → AK be the A-automorphism of AK given by 
θ̃(λ ⊗ a) = θ(λ) ⊗ a (λ ∈ K, a ∈ A). If b is an element of AK satisfying

∀θ∈G ∃λ∈K∗ θ̃(b) = λb (12)

then there exists λ ∈ K∗ such that λb ∈ A.

Proof. We may assume that b �= 0. Choose a field E satisfying k ⊆ E ⊆ K (so A ⊆ AE ⊆ AK), b ∈ AE and 
E/k is finite Galois. For each τ ∈ Gal(E/k), let τ̃ ∈ AutA(AE) be its extension; we claim that

∀τ∈Gal(E/k) ∃λ∈E∗ τ̃(b) = λb. (13)

Indeed, let τ ∈ Gal(E/k). Then τ extends to θ ∈ G, which extends to θ̃ ∈ AutA(AK). By assumption we 
have θ̃(b) = λb for some λ ∈ K∗. Since θ̃(b) = τ̃(b), we get τ̃(b) = λb. To prove that λ ∈ E∗, it suffices 
to show that ω(λ) = λ for all ω ∈ Gal(K/E) (because K/E is Galois). Consider ω ∈ Gal(K/E) and the 
corresponding ω̃ ∈ AutAE

(AK); then τ̃(b) = ω̃(τ̃(b)) = ω(λ)ω̃(b) = ω(λ)b because τ̃(b) and b belong to AE

and hence are fixed by ω̃. So ω(λ)b = τ̃(b) = λb, where ω(λ), λ ∈ K∗ and b �= 0; so ω(λ) = λ. This shows 
that λ ∈ E∗ and hence that (13) is true.

So it suffices to prove the special case of the Lemma where K/k is a finite Galois extension. Observe that 
the λ in (12) is uniquely determined by θ (because b �= 0). Thus, for each θ ∈ G = Gal(K/k), there exists 
a unique αθ ∈ K∗ satisfying θ̃(b) = αθb. It follows that

ασ◦τ = ασ σ(ατ ) for all σ, τ ∈ G, (14)

i.e., that 
{
αθ

}
θ∈G

is a 1-cocycle of G in K∗. Because K/k is finite Galois we have H1(G, K∗) = 1 by [17, 
Thm 10.1, p. 302], so 

{
αθ

}
θ∈G

is a 1-coboundary, i.e., there exists μ ∈ K∗ satisfying αθ = θ(μ)/μ for all 
θ ∈ G. Then θ̃(μ−1b) = μ−1b for all θ ∈ G. As 

{
x ∈ AK | ∀θ∈G θ̃(x) = x 

}
= A, it follows that μ−1b ∈ A, 

as desired. �
6.2 Lemma. Let k be a field and A a k-algebra. Suppose that there exists an algebraic Galois extension K/k
such that K ⊗k A is a noetherian UFD with (K ⊗k A)∗ = K∗. Then A is a noetherian UFD with A∗ = k∗.

Proof. Let AK = K⊗kA. Since A∗
K = K∗ and (by Lemma 3.12(a)) K∩A = k, we have A∗ = k∗. Since AK is 

noetherian and faithfully flat over A, A is noetherian. Let p be a height 1 prime ideal of A and let a1, . . . , an
be a generating set for p. Let b be the gcd of a1, . . . , an in AK . Then bAK is the least element of the set of 
principal ideals J of AK that satisfy pAK ⊆ J , and consequently every A-automorphism of AK must map 
bAK to itself. So for each θ ∈ Gal(K/k), there exists λ ∈ A∗

K = K∗ satisfying θ̃(b) = λb. By Lemma 6.1, 
there exists λ ∈ K∗ such that λb ∈ A; so we might as well assume that b ∈ A. Since AK is integral over A, 
there exists a height 1 prime ideal q of AK such that q ∩A = p. We have q = qAK for some prime element 
q of AK and a1, . . . , an ∈ q, so q | ai in AK (for each i); so b ∈ q and hence p ⊆ bAK ∩ A ⊆ q ∩ A = p, i.e., 
bAK ∩ A = p. The principal ideal I = bA of A satisfies I = IAK ∩ A = bAK ∩ A = p, so p is a principal 
ideal of A. So A is a UFD. �
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