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For a complex algebraic variety X, we show that triviality of the degree three 
unramified cohomology H0(X, H3) (occurring on the second page of the Bloch-Ogus 
spectral sequence [1]) follows from a condition on the integral Chow group CH2X
and the integral cohomology group H3(X, Z). In the case that X is an appropriate 
approximation to the classifying stack BG of a finite p-group G, this result states 
that the group G has no degree three cohomological invariants. As a corollary we 
show that the nonabelian groups of order p3 for odd prime p have no degree three 
cohomological invariants.

© 2019 Published by Elsevier B.V.

1. Introduction

Let G be a finite p-group of order pn, considered as an algebraic group over C. In this paper we employ 
the tools of the Bloch-Ogus spectral sequence and the motivic cohomology ring of the classifying space BG

in order to examine in detail the relationship between the Chow ring of BG and the ring of cohomological 
invariants of G in low degree. In particular, our main result is that if the cycle class map

cl : CH2BG → H4(BG,Z)

is an isomorphism, then there are no non-trivial degree three cohomological invariants of G. There has been 
a lot of progress recently in computing the Chow rings of various classes of p-groups, so we know that we 
have this isomorphism in certain cases. (See for example [9] for an excellent overview of recent progress.)

Ideally similar techniques could be employed to explicitly relate the Chow ring to vanishing of invariants 
in higher degree as well, but a more detailed computational understanding of the motivic cohomology of 
BG is necessary to extend this method to higher degrees.
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Throughout the paper, varieties X are assumed to be smooth but not necessarily projective or proper.

2. Chow groups and cohomological invariants

For any linear algebraic group G over a field k, Totaro defines the Chow groups of BG in terms of 
finite-dimensional approximations to the classifying stack BG. Suppose that V is a representation of G, and 
let S ⊂ V be the locus on which the stabilizers are non-trivial, with codimS = d. Let X = (V − S)/G be 
the quotient variety. Then

CHiBG = CHiX for i < d.

Totaro proved the existence of a sequence of such representations Vn with the codimension of Sn going to 
infinity; see [8] for a good exposition. Throughout this paper we will freely assume that we have a variety X
of this form where we have taken the representation to be of high enough dimension that X has the same 
invariants and cohomology as BG in low degree.

For a fixed base field k, let H1(−, G) denote the functor from fields over k to sets that takes K/k to 
the first nonabelian Galois cohomology set H1(K, G) (which can be thought of as isomorphism classes of 
G-torsors over K). Let Hd(−, Z/p) denote the functor that takes a field K/k to the degree d abelian Galois 
cohomology group Hd(K, Z/p). Then a degree d cohomological invariant of G is a natural transformation 
of functors

η : H1(−, G) → Hd(−,Z/p).

(See [4] for a good introduction to the theory.) For our purposes, however, this is not the most convenient way 
to think of cohomological invariants. Given a quotient variety X = (V − S)/G as above, with codimS ≥ 2, 
the generic fiber T of the map V − S → X is a versal G-torsor, meaning that any given cohomological 
invariant is actually completely defined by its value on that specific torsor (see discussion in [5]). Since T is 
defined over Spec k(X), its image under an invariant η will lie in the Galois cohomology group Hd(k(X), Z/p)
for some degree d. Hence we can identify the group of degree d cohomological invariants of G with a certain 
subset of Hd(k(X), Z/p).

In fact, we can say much more about that certain subset: Given a point x ∈ X with codim {x} = 1, we 
get a residue map

νx : Hd(k(X),Z/p) → Hd−1(k(x),Z/p),

where k(x) is the residue field of the local ring of x. If a class ηT ∈ Hd(k(X), Z/p) is the image of a versal 
torsor under an invariant, then νx(ηT ) = 0 for all such x; conversely, Totaro shows that if codimS ≥ 2, every 
class in the kernel of νx for all x does in fact define a cohomological invariant (letter to Serre, reprinted in 
[4]). Therefore we have the identification

Invd G = ker

⎛
⎝Hd(k(X),Z/p) →

∐
x∈X(1)

Hd−1(k(x),Z/p)

⎞
⎠ ,

where x ∈ X(1) ranges over all codimension one points.
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3. Bloch-Ogus spectral sequence and stable cohomology

In their 1974 paper [1], Bloch and Ogus showed that the product of residue maps considered above 
is part of a flasque resolution of the sheaf Hd on X, defined as the sheafification of the Zariski presheaf 
U �→ Hd

ét(U, Z/p). Therefore we can actually think of the kernel as a sheaf cohomology group, and we get

Invd G = H0(X,Hd).

This sheaf cohomology group appears as the E0,d
2 term of the Bloch-Ogus spectral sequence for X, which 

converges to the étale cohomology H∗
ét(X, Z/p). In the case that X = (V − S)/G as above and we take 

the base field to be C, we can in fact identify these étale cohomology groups with the group cohomology 
H∗(G, Z/p) in low degree (see e.g. [7] chapter 21).

The diagonal entries Er,r
2 are isomorphic to the mod p Chow groups CHrX ⊗ Z/p ∼= CHrBG ⊗ Z/p. 

Hence the differential δ : E0,3
2 → E2,2

2 combined with the maps to and from the abutment give an exact 
sequence:

H3(G,Z/p) → Inv3 G
δ−→ CH2BG⊗ Z/p → H4(G,Z/p).

Our basic plan of attack is to show that both the kernel and the image of δ are trivial, which forces 
Inv3 G = 0. Triviality of the image will follow immediately from the assumption on the integral Chow 
groups, since the map to H4(G, Z/p) coincides with the mod p cycle class map. We will have to work a bit 
harder to show that the kernel is trivial. The kernel of δ is precisely the classes that survive to the group 
cohomology, also known as the stable cohomology (as discussed in [2]). Hence the vanishing of this kernel is 
equivalent to the vanishing of degree three stable cohomology, which is shown for several cases of p-groups in 
[2]. We will use a somewhat different argument that makes use of the relationship of the sheaf cohomology 
groups Hr(X, Hs) with the motivic cohomology ring H∗,∗′(X, Z/p).

4. Motivic cohomology

This section summarizes a few important properties of the motivic cohomology ring H∗,∗′(X, Z/p) asso-
ciated to a variety X. We do not attempt a complete discussion of the definition of this ring here; see for 
example [10] or [6] for details. The beauty of the motivic cohomology ring for us is that it specializes for 
certain indices to both the mod p Chow groups and the étale cohomology groups. Specifically, Voevodsky 
and others have shown the following, for a smooth variety X:

Hm,n(X,Z/p) ∼=

⎧⎪⎨
⎪⎩

0 if m > 2n;
CHnX ⊗ Z/p if m = 2n;
Hm

ét (X,Z/p) if m ≤ n.

Note that the m ≤ n case here is known as the Beilinson-Lichtenbaum conjecture. Let τ denote a generator 
of H0,1(Spec(k), Z/p) ∼= Z/p; then the cup product gives a map ×τ : Hm,n(X, Z/p) → Hm,n+1(X, Z/p). 
For n < m, composing this map with the isomorphism from the Beilinson-Lichtenbaum conjecture gives a 
map

×τm−n : Hm,n(X,Z/p) → Hm,m(X,Z/p) ∼= Hm
ét (X,Z/p).

Our argument also makes use of the following long exact sequence, which relates this map to the sheaf 
cohomology groups that appear in the Bloch-Ogus spectral sequence (see [11]):
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· · · →Hm,n−1(X,Z/p) ×τ−−→ Hm,n(X,Z/p) →

Hm−n(X,Hn) → Hm+1,n−1(X,Z/p) ×τ−−→ · · ·

Finally, we will also use the fact that there is motivic cohomology with integer coefficients as well, and 
in particular there is an isomorphism

H2n,n(X,Z) ∼= CHnX.

5. Main theorem

We are now ready to state and prove our main result on the vanishing of degree three cohomological 
invariants.

Theorem 5.1. Let X be a smooth variety over SpecC satisfying the following two properties:

(i) CH2X ∼= H4(X, Z);
(ii) There is some power pn with pnH3(X, Z) = 0.

Then H0(X, H3) = 0. In particular, if X is an approximation of the classifying stack BG for an algebraic 
group G such that the above two conditions hold, then Inv3 G = 0.

Proof. The group H0(X, H3) fits into the following long exact sequence:

· · · → H3,2(X,Z/p) ×τ−−→H3,3(X,Z/p) → H0(X,H2) →

H4,2(X,Z/p) ×τ−−→ H4,3(X,Z/p) → · · · .

Therefore, we get our result if we can show that

(a) ×τ : H4,2(X, Z/p) → H4,3(X, Z/p) is injective.
(b) ×τ : H3,2(X, Z/p) → H3,3(X, Z/p) is surjective, and

The injectivity is easier to show, so we will do that first. We know that H4,2(X, Z/p) ∼= CH2X ⊗ Z/p is 
the mod p Chow group. The mod p cycle class map

c : CH2X ⊗ Z/p → H4(X,Z/p)

agrees with the change of coefficients map H4(X, Z) → H4(X, Z/p) induced by the short exact sequence

0 → Z → Z → Z/p → 0,

meaning its kernel is exactly pCH2X. This shows that c is injective. Since we can identify c with the map 
×τ2 on motivic cohomology (as discussed in e.g. [11]), we have shown (a).

For (b), denote by β the connecting homomorphism β : H3(X, Z/p) → H4(X, Z); the plan of attack is 
first to show that

ker(β) ⊆ im(×τ) ⊆ H3,3(X,Z/p) ∼= H3(X,Z/p),

and then to show that any class in H3(X, Z/p) is equivalent to a class in ker(β) mod the image of ×τ .
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The key to the first step is that, for any exponent n the short exact sequence

0 → Z/p → Z/pn+1 → Z/pn → 0

induces connecting maps on both étale cohomology and motivic cohomology:

βmot : Hn,n(X,Z/pn) → Hn+1,n(X,Z/p);

βet : Hn(X,Z/pn) → Hn+1(X,Z/p).

Under the isomorphisms from the Beilinson-Lichtenbaum conjecture, then, βet maps from Hn,n(X, Z/pn)
to Hn+1,n+1(X, Z/p). By naturality of the isomorphisms arising from the Beilinson-Lichtenbaum conjecture 
we have that

βet = ×τ ◦ βmot.

Therefore, crucially for us, im(βet) ⊆ im(×τ).
Now let x ∈ ker(β) ⊆ H3(X, Z/p). Then we can pull x back to a class x̃ ∈ H3(X, Z). By assumption, 

H3(X, Z) is pn-torsion for some n, meaning that x̃ in turn comes from a class x ∈ H2(X, Z/pn). Then we 
have x = βet(x) ∈ im(×τ) as desired.

For the general case, we now assume that β(x) �= 0 ∈ H4(X, Z). Recall that by assumption H4(X, Z) ∼=
CH2X ∼= H4,2(X, Z); we write y ∈ H4,2(X, Z) for the image of β(x) under this isomorphism. Since py = 0, 
we have y = βmot(x′) for some x′ ∈ H3,2(X, Z/p). Then β(τx′) = β(x) ∈ H4(X, Z) (where we abuse 
notation a bit by conflating τx′ and its image under the isomorphism H3,3(X, Z/p) ∼= H3(X, Z/p)). By the 
previous case, then, β(x − τx′) = 0, so x − τx′ ∈ im(×τ); therefore we also have x ∈ im(×τ) as desired. �

In the case that X = (V − S)/G is an approximation to BG as described above, with |G| = pn, we 
do automatically have that H3(X, Z) ∼= H3(G, Z) is pn-torsion, so the second condition of the theorem is 
automatically satisfied. Therefore we have shown that for finite p-groups G, if the degree two cycle class 
map is an isomorphism then G has no nontrivial degree three cohomological invariants. For example, Yagita 
proved that the cycle class map is an isomorphism in all degrees for the two nonabelian groups of order 
p3 for odd primes p [11], meaning by our result these groups have no cohomological invariants of degree 
three. As noted above, for these specific examples the vanishing of degree three cohomological invariants 
can be proved by a variety of methods (for example by using the results of [2]). In fact it is known that 
for any p-group G of order at most p4, the approximations X = (V − S)/G to BG are rational, therefore 
if X̃ is a smooth compactification of such an approximation its unramified cohomology will be trivial. 
This provides another possible method of attack: If we can show that the unramified cohomology of such 
a compactification matches that of BG in low degrees, then the vanishing of the unramified cohomology 
(equivalently, cohomological invariants) would follow.

Another interesting angle is the connection with a result of Colliot-Thélène and Voisin ([3], theorem 3.7), 
which implies that for a smooth, connected, projective variety X, condition (i) from Theorem 5.1 implies 
that

H0(X,H3(Z)) ∼= H0(X,H3),

where H3(Z) is constructed the same way as the sheaf H3 but with integer coefficients. (Specifically, con-
dition (i) implies the vanishing of the bottom row of the diagram of exact sequences at the beginning of 
section 5 of [3].) Hence in this case vanishing of the degree three unramified cohomology with finite coeffi-
cients is equivalent to the vanishing of H0(X, H3(Z)). This group is trivial in the case that X is rationally 



JID:JPAA AID:106214 /FLA [m3L; v1.261; Prn:13/09/2019; 12:38] P.6 (1-6)
6 R. Black / Journal of Pure and Applied Algebra ••• (••••) ••••••
connected, which again is a property satisfied by compactifications of the varieties X = (V − S)/G that 
we have been considering. Again, therefore, if we can construct such a compactification whose unramified 
cohomology matches that of BG, then the vanishing result follows directly. An advantage of leveraging the 
machinery of motivic cohomology is that it allowed us to work directly with the quotient variety (V −S)/G
rather than a projective variety, but exploring the connection between these results seems like an interesting 
avenue for further investigation.
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