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In this paper we express the class of the structure sheaves of the closures of Deligne–
Lusztig varieties as explicit double Grothendieck polynomials in the first Chern 
classes of appropriate line bundles on the ambient flag variety. This is achieved by 
viewing such closures as degeneracy loci of morphisms of vector bundles.
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1. Introduction

The goal of this paper is to compute, through the use of universal polynomials, the fundamental classes of 
the closures of Deligne–Lusztig varieties in K0(Fln), the Grothendieck ring of vector bundles. These locally 
closed subvarieties of the flag varieties defined over fields of positive characteristic were introduced in [5] by 
Deligne and Lusztig and play a fundamental role in the representation theory of finite groups of Lie type 
[18]. Recently, in [12], Kim gave a formula which expresses their Chow ring fundamental class in terms of 
Schubert classes and, in the special case of flag varieties of type A, he was able to rewrite this expression 
using double Schubert polynomials.

These universal polynomials in two sets of variables indexed by the symmetric group {Sw(x, y)}w∈S∞

were introduced by Lascoux and Schützenberger in [15,13]. Later, in [7], Fulton used them to describe 
the fundamental classes of the degeneracy loci of morphisms of vector bundles in the Chow ring CH∗. 
This result turned out to have analogues in K0 (due to Buch [2]) and, in characteristic 0, connective 
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K-theory CK∗ [10]. The latter functor, originally introduced by Levine and Morel [17], is a refinement of 
the other two. The articles [2] and [10] respectively describe the degeneracy loci in K0 and CK∗ through 
the double Grothendieck polynomials {Gw(x, y)}w∈S∞ of Lascoux–Schützenberger [14,16] and the double 
β-polynomials {H(β)

w (x, y)}w∈S∞ of Fomin–Kirillov [6].
Given this state of affairs, it seems natural to wonder whether Kim’s result can be interpreted within the 

framework of degeneracy loci so that it generalises to both K0 and CK∗. This is indeed the case.

Theorem 1.1. Let Fln denote the full flag variety of quotient flags of An
K and Qn−1 � · · · � Q1

be its associated universal flag of quotient bundles. Here K is an algebraic closure of the field Fq. Set 
Mi := Ker(Qi � Qi−1). Then, for every permutation w ∈ Sn the fundamental class of the closure of the 
Deligne–Lusztig variety X(w), as an element of CK∗(Fln), is given by

[
X(w)

]
CK

= H(−β)
ww0

(
q � c1(Mi), c1(M∨

n+1−j)
)

for i, j ∈ {1, . . . , n}. Here H(β) stands for the double β-polynomial of Fomin–Kirillov, w0 is the longest 
permutation and the formal multiplication � is given by

q � x =
q∑

i=1

(
q

i

)
xi(−β)i−1,

where β ∈ CK−1(SpecK). By respectively setting β equal to 0 and 1, one obtains analogous formulas for 
the Chow ring and for the Grothendieck ring of vector bundles:

i)
[
X(w)

]
CH

= Sww0

(
q · c1(Mi), c1(Mn+1−j)

)
; ii)

[
OX(w)

]
K0

= Gww0

(
1 − [M∨

i ]q, 1 − [Mn+1−j ]
)
.

While i) recovers Kim’s formula, ii) appears to be new. It is worth stressing that our method has the 
advantage of highlighting the geometric picture and it does not rely on [12]. We expect to be able to apply 
it to the Deligne–Lusztig varieties of the other classical groups as well. In these cases the formulas should 
involve Grothendieck analogues of the double Schubert polynomials of Ikeda–Mihalcea–Naruse [11].

The paper is structured as follows. Section 2 is devoted to the definition of Deligne–Lusztig varieties, 
which we then relate to degeneracy loci. In section 3 we provide a quick review of connective K-theory and 
prove two statements that will be needed in section 4 for the proof of the main result.

Acknowledgements. This research was conducted in the framework of the research training group GRK 
2240: Algebro-Geometric Methods in Algebra, Arithmetic and Topology, which is funded by the DFG. Both 
authors would like to thank Ulrich Goertz for his helpful comments on an earlier version of this work.

Notations and conventions. Throughout this paper k will represent the field Fq, where q = pm for some 
prime number p ∈ N and some exponent m ∈ N, while K will denote its algebraic closure. We will denote 
by SmK the category of smooth schemes over SpecK.

2. Recollections on Deligne–Lusztig varieties and degeneracy loci

2.1. Deligne–Lusztig varieties

Let us begin by recalling the notion of Frobenius endomorphism. For a scheme X defined over Spec k
the absolute Frobenius, denoted F : X → X, is defined in such a way that its associated morphism of 
topological spaces is just the identity and the map between the structure sheaves raises every section to the 



T. Hudson, D. Peters / Journal of Pure and Applied Algebra 224 (2020) 106335 3
q-th power. If we consider the base change of F to the algebraic closure, we obtain the relative Frobenius 
Frel : X → X. Let us begin with the following elementary lemma.

Lemma 2.1. Let L be a line bundle defined over the k-scheme X and denote by L and X the schemes obtained 
by base change to K. Then one has

F ∗
relL � L

⊗q
.

Proof. If we consider SpecK×Spec k X =: X pr2−→ X, the morphism arising from the base change to K, then 
we have the following identifications.

F ∗
relL = F ∗

rel(pr∗2L) = (pr2 ◦ Frel)∗L = (F ◦ pr2)∗L = pr∗2(F ∗L) � pr∗2(L⊗q) = (pr∗2L)⊗q = L
⊗q

They follow from the functoriality of pullbacks of bundles and the known fact that pulling back a line bundle 
along the absolute Frobenius morphism raises it to the q-th tensor power. �

Our interest in Frel is due to the role it plays in the definition of Deligne–Lusztig varieties, a family of 
locally closed subsets of flag varieties. More precisely, for every positive integer n we consider the variety 
Fln, which parametrises the full flags 0 ⊂ U1 ⊂ · · · ⊂ Un−1 ⊂ An

K of the n-th affine space, where Ui is a 
vector space of dimension i. Please notice that both the affine space and the flag variety will be viewed as 
schemes over the algebraically closed field K.

In view of the identification between Fln and B, the set of all Borel subgroups of GLn(K), we can 
subdivide Fln × Fln by making use of the Bruhat decomposition of B × B. Conjugation by elements of 
GLn(K) defines an action on B and the orbits of the corresponding diagonal action on B × B are indexed 
by the symmetric group Sn, the Weyl group of GLn(K). In other words, to every w ∈ Sn ⊆ GLn(K) we 
associate O(w), the orbit of (B, wBw−1), and one says that two Borel subgroups B and B′ are in relative 
position w whenever (B, B′) ∈ O(w). Since no confusion can arise, O(w) will also denote the corresponding 
orbit inside of Fln × Fln. As it is customary to do, we will write w0 for the longest element of Sn, the 
permutation which completely reverses the order.

Let us now consider ΓFrel
: Fln → Fln × Fln, the graph morphism of Frel. For every w ∈ Sn, we define 

the Deligne–Lusztig variety associated to w by setting

X(w) := Γ−1
Frel

(O(w)).

2.2. Degeneracy loci

We now recall some basic facts concerning degeneracy loci of maps of vector bundles. Let X ∈ SmK be 
a smooth scheme over which is given a morphism h : E → F of vector bundles of respective ranks e and f . 
For every integer choice of 0 ≤ r ≤ min{e, f}, we can construct the degeneracy locus

Dr(h) :=
{
x ∈ X | rank

(
h(x) : E(x) → F (x)

)
≤ r

}
.

Its scheme structure is given by regarding it as the zero scheme Z(∧r+1h), where ∧r+1h is interpreted as a 
section of the bundle Hom(∧r+1E, ∧r+1F ). We will also consider the following open subset

D◦
r(h) :=

{
x ∈ X | rank

(
h(x) : E(x) → F (x)

)
= r

}
= Dr(h) \Dr−1(h).

Both constructions can be generalised to the case of bundles with flags. Assume that E is endowed with 
a full flag of subbundles E• = (E1 ↪→ · · ·Ee−1 ↪→ E) and, similarly, that F comes equipped with a full flag 
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of quotient bundles F• = (F � Ff−1 � · · · � F1). Then, to every function r : {1, . . . , f} ×{1, . . . , e} → N, 
we can associate the subscheme

Ωr(E•, F•, h) :=
⋂
i,j

Dr(j,i)(hi,j),

where hi,j stands for the composition Ei ↪→ E → F � Fj . In a similar fashion we can also define 
Ω◦

r(E•, F•, h).
We will now consider some important examples, in which we will always set h = id.

Example 2.2. Let X be the flag variety Fln associated to the affine space An
K and let U• be the tautological 

flag of subbundles of An
K := Fln × An

K . Every point x ∈ Fln represents a full flag of vector spaces inside 
An

K obtained by considering the following restrictions

U1(x) ↪→ · · · ↪→ Un−1(x) ↪→ An
K = An

K(x).

Let us denote this flag by U•, by Q• the flag of quotient bundles An
K/U• and by A•

K the flag of trivial 
subbundles associated to a chosen point x̃ ∈ Fln. For every permutation w ∈ Sn one considers the function 
rw : {1, . . . , n}2 → N given by

rw(j, i) := {l ≤ j | w(l) ≤ i}.

In this particular setting the degeneracy loci Ωw := Ωrw(A•
K , Q•, idFln) turn out to be reduced and recover 

the Schubert varieties, while Ω◦
w := Ω◦

rw(A•
K , Q•, idFln) become the Schubert cells (for details see [7, Lemma 

6.1]). It is worth pointing out that with this definition one has l(w) = codimK(Ωw, Fln), where the length 
function l counts the number of inversions of the permutation w. To be more specific, the comparison with 
the notations used in [8, Sections 2.2, 2.3] is given by Ωw = Xww0 = Yw0ww0 .

Example 2.3. The previous example can be generalised as follows. Let V → X be a vector bundle of 
rank n over a smooth base and V• a full flag of subbundles. As for the flag variety, the associated flag 
bundle π : F� V → X comes equipped with the tautological flag U• of subbundles of π∗V and with the 
quotient flag Q•. The generalisation of Schubert varieties and Schubert cells is then obtained by setting 
Ωw := Ωrw(π∗V•, Q•, idF� V ) and Ω◦

w := Ω◦
rw(π∗V•, Q•, idF� V ).

Example 2.4. Let us consider a special case of the previous example. Take An
K → Fln as the given vector 

bundle V → X and U• as the reference flag V•. In this case F� V is given by Fln × Fln
pr1→ Fln and it is 

easy to check that the Bruhat decomposition can be described in terms of Schubert cells. More precisely, 
one has O(w) = Ω◦

rww0
(pr∗1U•, Q•, idF� V ).

3. Connective K-theory

The goal of this section is to provide a brief overview of connective K-theory and extend to positive 
characteristic a result of [10] which describes the fundamental classes of the Schubert varieties of flag 
bundles.

Connective K-theory, denoted CK∗ : Smop
K → R∗, is a contravariant functor from the category of smooth 

schemes to graded rings. It refines the Chow ring CH∗ and the Grothendieck group of vector bundles K0. 
Through the years several alternative definitions of CK∗ have been proposed. The first, which requires 
the base field k to satisfy resolution of singularities, is due to Levine–Morel [17] who defined it, by using 
algebraic cobordism, as the universal oriented cohomology theory with multiplicative formal group law. In [3]
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Cai proposed another definition, based on the Gersten complex, which can be used in every characteristic. 
It is worth mentioning that his theory is actually bigraded, but it contains CK∗ as its geometric part. 
Later, in [4], Dai–Levine proposed yet another construction of CK∗ for schemes over perfect fields, in the 
context of motivic homotopy theory. Finally, Anderson modified Cai’s definition to build a refined oriented 
Borel–Moore functor which returns CK∗ as its associated operational cohomology theory. This approach 
was introduced by Anderson in [1, Appendix A] to describe fundamental classes of degeneracy loci and as 
a consequence it is the most suited to our needs.

We will now illustrate the main features of connective K-theory. Although CK∗ is a contravariant functor 
it also admits push-forward morphisms g∗ for proper maps, exactly as CH∗ and K0. These satisfy some 
expected properties of functorial nature and are compatible with pull-back morphisms f∗ through a base 
change formula whenever f and g are transverse. By combining these two operations one is able to define 
the first Chern class operator associated to a line bundle L → X. If s denotes the zero section, then one 
sets c̃1(L) := s∗s∗ : CK∗(X) → CK∗−1(X) with the first Chern class c1(L) being the evaluation of this 
operator on the fundamental class [X]CK := 1CK∗(X). Since CK∗ satisfies the projective bundle formula, 
it is possible to use Grothendieck’s method to obtain Chern classes for arbitrary vector bundles. These 
satisfy the same formal properties of their counterparts in CH∗ (e.g. the Whitney sum formula and various 
compatibilities with f∗ and g∗) with one important exception: it is no longer true that c1 is linear with 
respect to the tensor product of line bundles. Instead, one has

c1(L⊗M) = c1(L) ⊕ c1(M) := c1(L) + c1(M) − βc1(L)c1(M),

where β ∈ CK−1(Spec k) is identified with the push-forward of the fundamental class of P 1 to the point. 
Actually, as pointed out in [1, Appendix A.2], the coefficient ring of CK∗ is isomorphic to Z[β]. Notice that 
our sign convention for β agrees with that of [17], while it is opposite to that of [1]. The class β also plays 
a central role in relating CK∗ with CH∗ and K0. In fact, setting it equal to 0 allows one to recover the 
Chow ring, while making it invertible returns the Grothendieck ring. To be more precise one has functorial 
isomorphisms

CK∗(X)/(β) � CH∗(X) and (CK∗(X))[β−1] � K0(X) ⊗Z Z[β, β−1].

We finish this section with two results that will be used in the main proof. For the first, let us notice 
that in the language of [17], the operation ⊕ should be viewed as the formal group law associated to CK∗. 
Its formal inverse is then given by


x := − x

1 − βx
,

so that (
x) ⊕ x = 0. In a similar spirit, one can define a formal multiplication n � x by formally adding n
times the same element x. Since for every line bundle L one has

c1(L⊗n) = n� c1(L),

the following formula will allow us to express the first Chern class of tensor powers of line bundles.

Lemma 3.1. For every n ∈ N one has

n� x =
n∑

i=1

(
n

i

)
xi(−β)i−1.
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Proof. The proof is by induction and the statement holds trivially for n = 0, 1. For the induction step we 
have

(n + 1) � x = x⊕ (n� x) = x + (n� x) − βx(n� x)

= x +
n∑

i=1

(
n

i

)
xi(−β)i−1 +

n∑
j=1

(
n

j

)
xj+1(−β)j

= (n + 1)x +
n∑

i=2

(
n

i

)
xi(−β)i−1 +

n∑
i=2

(
n

i− 1

)
xi(−β)i−1 + xn+1(−β)n

= (n + 1)x +
n∑

i=2

(
n + 1
i

)
xi(−β)i−1 + xn+1(−β)n =

n+1∑
i=1

(
n + 1
i

)
xi(−β)i−1. �

The following result, which is the positive characteristic counterpart of [10, Proposition 4.11], expresses 
the fundamental classes of the Schubert varieties of a full flag bundle in terms of the double β-polynomials 
of Fomin–Kirillov [6]. These are polynomials in 2n variables with coefficients in Z[β] which unify the double 
Schubert and Grothendieck polynomials of Lascoux–Schützenberger.

Proposition 3.2. Let V be a rank n vector bundle endowed with a full flag of subbundles V• over the smooth 
scheme X. Consider the associated full flag bundle π : F� V → X and Q•, its universal flag of quotient 
bundles. For every w ∈ Sn, the fundamental class of the Schubert variety Ωw is given by

[Ωw]CK = H(−β)
w

(
c1(Mi), c1

(
π∗(L∨

j )
))

,

where H(−β)
w stands for the double β-polynomial associated to w and we set Li := Vi/Vi−1 and Mi :=

Ker (Qi → Qi−1).

Proof. Although it requires some preliminary verifications, the proof is essentially an adaptation of the one 
for CH∗ given in [7] by Fulton and later generalised to any oriented cohomology theory in [10]. First one 
verifies that, as a ring, CK∗(F� V ) is isomorphic to CK∗(X)[x1, . . . , xn] modulo the ideal generated by 
the elements ei(x) − ci(V ) with i ∈ {1, . . . , n} and ei(x) being the i-th elementary symmetric function. As 
pointed out in [9, Theorem 2.6], such isomorphism holds as long as CK∗ satisfies the projective bundle 
formula, which it does (see [3, Theorem 6.3]).

The second step consists in verifying that the push-pull operators π∗
i πi∗ on CK∗(F� V ) coincide with 

φi, the β-divided difference operators of Fomin–Kirillov. Here πi : F� V → F� ̂iV is the projection onto the 
partial flag bundle in which the i-th flag has been forgotten. Since F� V

πi−→ F� ̂iV can be viewed as the 
projective bundle of a vector bundle of rank 2, πi∗ is completely determined by the images of 1 and xi. By 
making use of [1, Appendix A.1, § Chern classes (c)] one can easily check that on these elements the two 
operators actually coincide.

These preliminary facts being checked, we can move on to the actual proof, which is by induction on the 
length of w0w. First one verifies the formula for the longest element w0, whose associated Schubert variety 
is isomorphic to the base scheme X. Since Ωω0 can be described as the zero scheme of a regular section of 
a bundle, in view of [1, Appendix A.2, § Chern classes] the fundamental class [Ωw0 ]CK is given by the top 
Chern class of the bundle in question. More precisely, one has

[Ωw0 ]CK =
∏

i+j≥n

c1(Mi ⊗ π∗(L∨
j )) =

∏
i+j≥n

c1(Mi) ⊕ c1(π∗(L∨
j )) = H(−β)

w0

(
c1(Mi), c1

(
π∗(L∨

j )
))

.

Finally, for the inductive step one considers a minimal decomposition of w0w into elementary transposi-
tions si1si2 · · · sil to which we associate the l-tuple I = (i1, . . . , il). Recall that every such tuple gives rise to 
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RI , a desingularisation of Ωw known as Bott–Samelson resolution. In view of the recursive construction of 
RI

ϕI−→ F� V (see [8, Appendix C] for details) and of the known compatibilities of pushforward and pullback 
maps for transverse morphisms, we have

ϕI∗[RI ]CK = π∗
il
πil∗ · · ·π∗

i1πi1∗[Ωw0 ]CK = φil · · ·φi1H
(−β)
w0

(
c1(Mi), c1

(
π∗(L∨

j )
))

= H(−β)
w

(
c1(Mi), c1

(
π∗(L∨

j )
))

,

where the last step follows from the inductive definition of double β-polynomials. To finish the proof one 
observes that, since Schubert varieties have rational singularities, the left hand side of the preceding equation 
actually coincides with [Ωw]CK (see [1, Remark 1.2]). �
4. Main result

Theorem 4.1. Let Fln be the variety of full flags contained in An
K and Q• = (Qn−1, . . . , Q1) its universal 

flag of quotient bundles. For i ∈ {1, . . . , n} set Mi := Ker(Qi � Qi−1), where Qn = An
K and Q0 = 0. Then, 

for every w ∈ Sn we have that, as an element of CK∗(Fln), the fundamental class of the closure of the 
Deligne-Lusztig variety X(w) is given by

[
X(w)

]
CK

= H(−β)
ww0

(q � c1(Mi),
c1(Mn+1−j))

for i, j ∈ {1, . . . , n}. Here H(−β)
ww0 stands for the double β-polynomial associated to ww0 (with w0 being the 

longest permutation), while

q � c1(Mi) =
q∑

j=1

(
q

j

)
c1(Mi)j(−β)j−1 and 
 c1(Mn+1−j) = − c1(Mn+1−j)

1 − βc1(Mn+1−j)
.

Proof. Let us begin by recalling that X(w) coincides with the union of all the X(v) for v ≤ w in the Bruhat 
order and that the same holds for O(w) as well. As a consequence one has that Γ−1

Frel
(O(w)) = X(w) and, 

since both varieties have the same codimension in the respective ambient spaces, the fundamental class of 
X(w) can be computed as the pullback Γ∗

Frel
[O(w)]. Now we want to interpret ΓFrel

: Fln → Fln×Fln using 
the universal property of Fln × Fln, which we view as the flag bundle F� An

K as explained in Example 2.4. 
With our conventions it parametrises the full flags of quotient bundles of the trivial bundle An

K . It is easy 
to see that ΓFrel

corresponds precisely to the full flag F ∗
relQ• or, in other words, that with the notations of 

Example 2.4 one has Γ∗
Frel

Q• = F ∗
relQ•. To summarise, we have the following chain of equalities

[
X(w)

]
CK

= Γ∗
Frel

[
O(w)

]
CK

= Γ∗
Frel

[Ωww0(A
n
K)]CK = Γ∗

Frel
H(−β)

ww0

(
c1(M ′

i), c1
(
pr∗1(Uj/Uj−1)∨

))
= H(−β)

ww0

(
c1(Γ∗

Frel
M ′

i)
)
, c1

(
Γ∗
Frel

pr∗1(Uj/Uj−1)∨
))

= H(−β)
ww0

(
c1
(
F ∗
relMi

)
, c1

(
(Uj/Uj−1)∨

))
,

where the second step uses Proposition 3.2 and each M ′
i is the line bundle Ker(Qi � Qi−1) arising from 

the universal flag Q• over Fln × Fln. To finish the proof it now suffices to make use of Lemma 2.1 and 
Lemma 3.1:[

X(w)
]
CK

= H(−β)
ww0

(
c1(M⊗q

i ), c1(M∨
n+1−j)

)
= H(−β)

ww0

(
q � c1(Mi),
c1(Mn+1−j)

)
. � (1)

By specialising our formula to the Chow ring and to the Grothendieck ring, we obtain the following 
corollary, the first formula of which recovers the first case of [12, Proposition 6.2].
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Corollary 4.2. Under the hypothesis of Theorem 4.1, we have the following formulas, respectively describing 
the Chow ring fundamental class 

[
X(w)

]
CH

and the class of the structure sheaf OX(w):

i)
[
X(w)

]
CH

= Sww0

(
q · c1(Mi), c1(Mn+1−j)

)
; ii)

[
OX(w)

]
K0

= Gww0

(
1 − [M∨

i ]q, 1 − [Mn+1−j ]
)
.

Proof. The statement for CH∗ follows directly from that of CK∗ by setting β = 0 and recalling that 
H

(0)
w (x, y) = Sw(x, −y). To obtain the second formula we consider the middle equation of (1) and set 

β = 1. Since H(−1)
w (x, y) = Gw(x, y), one gets

[
OX(w)

]
K0

= Gww0

(
c1(M⊗q

i ), c1(M∨
n+1−j)

)
and the statement then follows from the well known fact that in the Grothendieck ring of vector bundles 
one has c1(L) = 1 − [L∨] for all line bundles. �
Remark 4.3. The sign mismatch between the corresponding formulas of Corollary 4.2 and [12, Proposi-
tion 6.2] is due to different conventions for the generators of CH∗(Fln) which ultimately arise from dual 
constructions of Fln. The two formulas coincide provided one makes the change of variables xi �→ −xn+1−i.
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