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We investigate the algebra of a Hausdorff ample groupoid, introduced by Steinberg, 
over a commutative semiring S. In particular, we obtain a complete characterization 
of congruence-simpleness for such Steinberg algebras, extending the well-known 
characterizations when S is a field or a commutative ring. We also provide a 
criterion for the Steinberg algebra AS(GE) of the graph groupoid GE associated 
to an arbitrary graph E to be congruence-simple. Motivated by a result of Clark 
and Sims, we show that the natural homomorphism from the Leavitt path algebra 
LB(E) to the Steinberg algebra AB(GE), where B is the Boolean semifield, is an 
isomorphism if and only if E is row-finite. Moreover, we establish the Reduction 
Theorem and Uniqueness Theorems for Leavitt path algebras of row-finite graphs 
over the Boolean semifield B.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Steinberg algebras have been devised in [43] in the context of discrete inverse semigroup algebras and 
independently in [13] as a model for Leavitt path algebras. They can be seen as discrete analogs of groupoid 
C∗-algebras, which were introduced earlier (see, e.g., [39,37,20]). The concept of a Steinberg algebra en-
compasses group algebras, inverse semigroup algebras and Leavitt path algebras. In recent years, there 
has been considerable interest in Steinberg algebras and in particular regarding their simpleness (see, e.g., 
[8,10,44,12,36]).

Semirings have found their place in various branches of Mathematics, Computer Science, Physics, and 
other areas (see, for instance, [22]). There has been a substantial amount of interest in additively idempotent 
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semirings — among which the Boolean semifield, tropical semifields, and coordinate semirings of tropical 
varieties represent prominent examples — originated in several emerging areas such as Tropical Geometry 
[41,21], Tropical Algebra [24], F1-Geometry [17,15,16], the Geometry of Blueprints [31], Cryptography [32], 
Weighted automata [19], Cluster algebras [27], Mathematical Physics [30] and MV-algebras [18].

In the development of structure theories for varieties of algebras, so-called congruence-simple algebras, 
i.e., algebras possessing only two trivial congruences – the diagonal and universal ones – play a pivotal 
role as “building blocks”. In addition, some important applications of congruence-simple semirings include 
constructions of novel semigroup actions for a potential use in public-key cryptosystems (see, e.g., [32]). 
In this regard, a fundamental problem is therefore to classify congruence-simple semirings, in particular 
additively idempotent congruence-simple semirings.

Recently, there has been a number of works addressing this problem for certain special classes of semirings 
(see, e.g., [34,6,35,7,47,28,25,26]). In particular, commutative congruence-simple semirings were completely 
classified – they are exactly either fields or the Boolean semifield B (see [34,6,7]); finite congruence-simple 
semirings were classified in [35,47,28]; Katsov and the authors [25] described congruence-simple complete 
semirings, providing a method to construct additively idempotent congruence-simple infinite semirings by 
using the endomorphism semiring of semilattices; moreover, Katsov and the authors [26] gave a criterion 
for the Leavitt path algebra of a row-finite graph over a commutative semiring to be congruence-simple, 
which forms a method to construct additively idempotent congruence-simple infinite semirings based on 
directed graphs. However, the classification of congruence-simple infinite semirings in general remains to be 
an important unresolved problem, on which the present paper aims to contribute.

Motivated by the constructions of [43] and [13], we introduce and study the concept of Steinberg algebras 
of Hausdorff ample groupoids in a “non-additive” semiring setting, and investigate congruence-simpleness 
for these algebras. This semiring setup showcases interesting novel attributes of the Steinberg algebras. For 
example, contrary to the ring case, it turns out that an algebra of a finite inverse semigroup over a semiring 
is in fact not necessarily isomorphic to its associated Steinberg algebra. Also note that in our semiring 
setting, as opposed to the “additive” ring case, congruence-simpleness is not the same as ideal-simpleness, 
i.e., having only trivial ideals (see below or [25, Ex. 3.8]).

A main goal of this paper is to characterize congruence-simple Steinberg algebras of Hausdorff ample 
groupoids over a commutative ground semiring S, extending the well-known characterizations when S is a 
field or a commutative unital ring (see [8, Th. 4.1], [10, Th. 4.1, Cor. 4.6] and [44, Th. 3.5]). Furthermore, 
we describe congruence-simple Steinberg algebras AS(GE) of graph groupoids GE associated to graphs E

over a commutative semiring S, and investigate the isomorphism problem between the Steinberg algebras 
AS(GE) and the Leavitt path algebras LS(E) when S is an additively idempotent commutative semiring. 
The new constructions of additively idempotent congruence-simple infinite semirings based on Hausdorff 
ample groupoids complement well the recent constructions of congruence-simple semirings that use the 
endomorphism semiring of semilattices and Leavitt path algebras of row-finite graphs with coefficients in 
the Boolean semifield B mentioned above.

It should be emphasized that in the semiring setting we have to work on congruences which are different 
from ideals, and hence some different, novel techniques have to be applied in places. Namely, a key technique 
is first to reduce the problems to additively idempotent semirings and then use the natural order on additively 
idempotent semirings to address them. For example, Clark and Sims [14, Ex. 3.2] constructed an isomorphism 
(called the natural isomorphism) from the Leavitt path algebra LS(E) onto the Steinberg algebra AS(GE)
when S is a commutative unital ring, by using Tomforde’s Graded Uniqueness Theorem [45, Th. 5.3] which 
is based on the theory of graded algebras and homogeneous ideals. In our semiring setting, however, concepts 
like homogeneous ideal and graded quotient algebra are not well-established, and so Clark and Sims’s result 
is, in general, not true in the semiring setting — in fact, it is only true when E is a row-finite graph if S
is the Boolean semifield. We establish analogs of the Reduction Theorem [1, Th. 2.2.11] and Tomforde’s 
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Uniqueness Theorem for the Leavitt path algebras LB(E) of row-finite graphs E over the Boolean semifield 
B, using new proof techniques on congruences via the natural order.

The article is organized as follows. For the reader’s convenience, all subsequently necessary basic concepts 
and facts on semirings and Steinberg algebras over a commutative semiring are collected in Section 2. In 
Section 3, we provide a complete description of congruence-simple Steinberg algebras of Hausdorff ample 
groupoids over a commutative semiring (Theorem 3.5). In Section 4, we give a complete characterization 
of congruence-simple Steinberg algebras AS(GE) of graph groupoids GE associated to arbitrary graphs E

over a commutative semiring S (Theorem 4.3). Motivated by Clark and Sims’s result [14, Ex. 3.2], we show 
that the natural homomorphism from the Leavitt path algebra LB(E) to the Steinberg algebra AB(GE) is 
an isomorphism if and only if E is row-finite (Theorem 4.9). In order to do so, we establish the Reduction 
Theorem (Lemma 4.6) and Uniqueness Theorems (Corollaries 4.7 and 4.8) for Leavitt path algebras of 
row-finite graphs over B. Also, we show by example that the Leavitt path algebras LB(E) is, in general, 
not isomorphic to the Steinberg algebra AB(GE) (Example 4.10). This provides us with examples of addi-
tively idempotent congruence-simple semirings by using graph groupoids, which are not isomorphic to the 
corresponding Leavitt path algebras (Remark 4.12).

2. Basic concepts

2.1. Preliminaries on semirings

Recall [22] that a hemiring is an algebra (S, +, ·, 0) such that the following conditions are satisfied:

(1) (S, +, 0) is a commutative monoid with identity element 0;
(2) (S, ·) is a semigroup;
(3) Multiplication distributes over addition from either side;
(4) 0s = 0 = s0 for all s ∈ S.

A hemiring S is commutative if (S, ·) is a commutative semigroup; and a hemiring S is additively idem-
potent if a + a = a for all a ∈ S. Moreover, a hemiring S is a semiring if its multiplicative semigroup 
(S, ·) actually is a monoid (S, ·, 1) with identity element 1 �= 0. A commutative semiring S is a semifield
if (S \{0}, ·, 1) is a group. Two well-known examples of semifields are the additively idempotent two el-
ement semiring B := ({0, 1}, ∨, ∧, 0, 1), the so-called Boolean semifield, as well as the tropical semifield
T := (R ∪ {−∞}, ∨, +, −∞, 0).

As usual, given two hemirings S and S′, a map ϕ : S −→ S′ is a homomorphism if ϕ(0) = 0, ϕ(x + y) =
ϕ(x) +ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ S; and a submonoid I of (S, +, 0) is an ideal of a hemiring S

if sa and as ∈ I for all a ∈ I and s ∈ S; an equivalence relation ρ on a hemiring S is a congruence if 
(s +a, s +b) ∈ ρ, (sa, sb) ∈ ρ and (as, bs) ∈ ρ for all pairs (a, b) ∈ ρ and s ∈ S. On every hemiring S there 
are always the two trivial congruences — the diagonal congruence, �

S
:= {(s, s) | s ∈ S}, and the universal 

congruence, S2 := {(a, b) | a, b ∈ S}. Following [6], a nonzero hemiring S is congruence-simple if �
S

and S2

are the only congruences on S.

Remark 2.1. A nonzero hemiring S is congruence-simple if and only if every nonzero hemiring homomor-
phism ϕ : S −→ S′ is injective.

Proof. (=⇒). Assume that S is a congruence-simple hemiring and ϕ : S −→ S′ is a nonzero homomorphism. 
We then have that the set

ker(ϕ) := {(x, y) ∈ S2 | ϕ(x) = ϕ(y)}
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is a congruence on S. Also, since ϕ is nonzero, ϕ(x) �= 0 = ϕ(0) for some x ∈ S, and so (x, 0) /∈ ker(ϕ). From 
these observations, and since S is congruence-simple, we immediately obtain that ker(ϕ) = �

S
. Thus ϕ is 

injective.
(⇐=). Let ρ be a congruence on S which is different from the universal congruence. We then have the 

quotient semiring S/ρ is nonzero, and the natural projection mapping π : S −→ S/ρ, defined by π(s) = [s]
for all s ∈ S, is a nonzero hemiring homomorphism. By our hypothesis, π is injective, and so ρ = �

S
. This 

implies that S is congruence-simple, finishing the proof. �
We note that a ring R is congruence-simple if and only if {0} and R are the only ideals of R (i.e., it is a 

simple ring). However, this is in general not true in a semiring setting. For example, the tropical semifield T

has only the trivial ideals, but it has a proper congruence ρ defined by (x, y) ∈ ρ iff x = y or x + y �= −∞, 
for x, y ∈ T ; that means, T is not congruence-simple.

An S-semimodule over a given commutative semiring S is a commutative monoid (M, +, 0M ) together 
with a scalar multiplication (s, m) �→ sm from S ×M to M which satisfies the identities (ss′)m = s(s′m), 
s(m + m′) = sm + sm′, (s + s′)m = sm + s′m, 1m = m, s0M = 0M = 0m for all s, s′ ∈ S and m, m′ ∈ M . 
Homomorphisms between semimodules and free semimodules are defined in the standard manner.

By an S-algebra A over a given commutative semiring S we mean an S-semimodule A with an associative 
bilinear S-semimodule multiplication “ · ” on A. An S-algebra A is unital if (A, ·) is actually a monoid with 
a neutral element 1A ∈ A, i.e., a1A = a = 1Aa for all a ∈ A. For example, every hemiring is an N-algebra, 
where N is the semiring of non-negative integers; and, of course, every additively idempotent hemiring is 
a B-algebra. Homomorphisms between algebras over commutative semirings are defined in the standard 
manner.

Let S be a commutative semiring and {xi | i ∈ I} a set of independent, noncommuting indeterminates. 
Then S〈xi | i ∈ I〉 will denote the free S-algebra generated by the indeterminates {xi | i ∈ I}, whose 
elements are polynomials in the noncommuting variables xi, i ∈ I, with coefficients from S that commute 
with each variable.

Finally, let S be a commutative semiring and (G, ·, 1) a group. Then we can form the group semiring
S[G], whose elements are formal sums 

∑
g∈G agg with coefficients ag ∈ S and finite support, i.e., almost all 

ag = 0. As usual, the operations of addition and multiplication on S[G] are defined as follows
∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g and (
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
t∈G

ctt,

where ct =
∑

agbh, with summation over all (g, h) ∈ G ×G such that gh = t. Clearly, the elements of 
S := S · 1 commute with the elements of G := 1 ·G under the multiplication in S[G]. In particular, one may 
easily see that S[Z] ∼= S[x, x−1], where S[x, x−1] is the algebra of the Laurent polynomials over S.

2.2. Steinberg algebras over commutative semirings

In this subsection, we introduce the Steinberg algebra of a Hausdorff ample groupoid over an arbitrary 
commutative semiring. The construction of such an algebra is a natural generalization of the constructions of 
Steinberg algebras over commutative rings as introduced in [43] in the context of discrete inverse semigroup 
algebras, and independently in [13] as a model for Leavitt path algebras. All these constructions are crucially 
based on some general notions of groupoids that for the reader’s convenience we reproduce here.

A groupoid is a small category in which every morphism is invertible. It can also be viewed as a gener-
alization of a group which has a partial binary operation. Let G be a groupoid. If α ∈ G, s(α) = α−1α is 
the source of α and r(α) = αα−1 is its range. The pair (α, β) is composable if and only if r(β) = s(α). The 
set G(0) := s(G) = r(G) is called the unit space of G. Elements of G(0) are units in the sense that αs(α) = α

and r(α)α = α for all α ∈ G. For U, V ⊆ G, we define
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UV := {αβ | α ∈ U, β ∈ V, r(β) = s(α)} and U−1 := {α−1 | α ∈ U} .

A topological groupoid is a groupoid endowed with a topology under which the inverse map is continuous, 
and such that the composition is continuous with respect to the relative topology on G(2) := {(α, β) ∈ G2 |
r(β) = s(α)} inherited from G2. An étale groupoid is a topological groupoid G, whose unit space G(0) is 
locally compact Hausdorff, and such that the domain map s is a local homeomorphism. In this case, the 
range map r and the multiplication map are local homeomorphisms and G(0) is open in G [40].

An open bisection of G is an open subset U ⊆ G such that s|U and r|U are homeomorphisms onto an 
open subset of G(0).

Lemma 2.2 ([37, Prop. 2.2.4] and [42, Lem. 2.1]). Let G be an étale groupoid, and let U and V be compact 
open bisections of G. Then the following holds:

(1) U−1 and UV are compact open bisections,
(2) If G is Hausdorff, then U ∩ V is a compact open bisection.

An étale groupoid G is called ample if G has a base of compact open bisections for its topology.
Let G be a Hausdorff ample groupoid, and S a commutative semiring with discrete topology. We denote by 

SG the set of all continuous functions from G to S. Canonically, SG has the structure of an S-semimodule with 
operations defined pointwise. Notice that for any compact open bisection U of G, the function 1U : G −→ S, 
which denotes the characteristic function of U , is continuous with compact support, i.e., 1U ∈ SG .

Definition 2.3. Let G be a Hausdorff ample groupoid, and S a commutative semiring. Let AS(G) be the 
S-subsemimodule of SG generated by the set

{1U | U is a compact open bisection of G}.

Lemma 2.4. Let G be a Hausdorff ample groupoid with a base B of compact open bisections, and S a com-
mutative semiring.

(1) Every f ∈ AS(G) can be expressed as f =
∑n

i=1 si1Ui
, where si ∈ S\{0}, and U1, . . . , Un are mutually 

disjoint compact open bisections of G.
(2) If S is an additively idempotent commutative semiring, then there holds AS(G) = {f ∈ SG |

f has compact support} = SpanS{1B | B ∈ B}.

Proof. (1) We first note that U \ V is a compact open bisection for all compact open bisections U and V

of G. Indeed, by Lemma 2.2, U ∩V is a compact open bisection of G, and so U ∩V is clopen in G. It implies 
that U ∩V is clopen in U . Then U \V = U \ (U ∩V ) is a clopen subset of U , and hence U \V is a compact 
open bisection of G. We also note that

s1U + r1V = s1U\V + (s + r)1U∩V + r1V \U

for all s, r ∈ S, and for all compact open bisections U, V of G. From these notes and by induction, we 
immediately obtain statement (1) of the lemma.

(2) It is obvious that

SpanS{1B | B ∈ B} ⊆ AS(G) ⊆ {f ∈ SG | f has compact support}.

Let f : G −→ S be a continuous function with compact support. We then have that f(G) \ {0} is contained 
in a compact subset of the discrete space S, and so it is finite. Assume that f(G) \ {0} = {s1, . . . , sn}. 
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Then, each Ui = f−1(si) is compact open in G and f = s11U1 + . . . + sn1Un
. Since B is a base of compact 

open bisections for the topology on G, for each 1 ≤ i ≤ n, there exist elements Bi
1, . . . , B

i
k ∈ B such that 

Ui = Bi
1 ∪ · · · ∪Bi

k. Since the semiring S is additively idempotent, we immediately obtain that

1Ui
= 1⋃k

j=1 Bi
j

= 1Bi
1
+ . . . + 1Bi

k
∈ SpanS{1B | B ∈ B},

so f ∈ SpanS{1B | B ∈ B}. It implies that AS(G) = {f ∈ SG | f has compact support} = SpanS{1B | B ∈
B}, thus finishing the proof. �

We now define the convolution product on the S-semimodule AS(G) in order to make it an S-algebra.

Definition 2.5 (cf. [43, Def. 4.4]). Let G be a Hausdorff ample groupoid, and S a commutative semiring. 
The multiplication of f, g ∈ AS(G) is given, for γ ∈ G, by the convolution

(f ∗ g)(γ) :=
∑

r(β)=s(α)
γ=αβ

f(α)g(β) .

One must show that this sum is really finite and f ∗ g belongs to AS(G), which is the content of the 
following proposition.

Proposition 2.6 (cf. [43, Prop. 4.5, 4.6]). Let G be a Hausdorff ample groupoid, and S a commutative 
semiring. Then the following is true:

(1) f ∗ g ∈ AS(G) for all f, g ∈ AS(G);
(2) 1U ∗ 1V = 1UV for all compact open bisections U, V of G. In particular, if U and V are compact open 

subsets of G(0), then 1U ∗ 1V = 1U∩V ;
(3) For any compact open bisection U of G, 1U−1(γ) = 1U (γ−1) for all γ ∈ G;
(4) AS(G), equipped with the convolution, is an S-algebra.

Proof. Items (1) to (3) are proved similarly as in the proof of [43, Prop. 4.5]. For item (4), it is sufficient 
to show the associativity of convolution. However, this is a straightforward by using item (2) (or the reader 
can refer to the proof of [42, Prop. 2.4]), finishing the proof. �
Definition 2.7. Let G be a Hausdorff ample groupoid, and S a commutative semiring. We call the S-algebra 
AS(G) the Steinberg algebra of G over S.

The following examples illustrate that some well-known algebras can be viewed as Steinberg algebras.

Examples 2.8. (1) Let S be a commutative semiring, and G a group. Define a small category G with one 
object e (the identity of G) and HomG(e, e) = G, where the composition of morphisms is simply the group 
multiplication. Then G is obviously a Hausdorff ample groupoid with respect to the discrete topology, and 
it has a base of compact open bisections which are the singletons {g}. The algebra AS(G) is isomorphic to 
the group semiring S[G] by the map 1{g} �−→ g.

(2) Let S be a commutative semiring and X = {x1, . . . , xn} a finite set. Then, G := X × X is a 
groupoid with the composition and inverse defined, respectively, by (x, y)(y, z) = (x, z) and (x, y)−1 = (y, x). 
Furthermore, G is a Hausdorff ample groupoid with respect to the discrete topology, and it has a base of 
compact open bisections which are the singletons {(xi, xj)}. In this example, AS(G) is isomorphic to the 
n ×n matrix semiring Mn(S) by the map 1{(xi,xj)} �−→ Eij , where {Eij | 1 ≤ i, j ≤ n} are the matrix units 
in Mn(S).
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(3) Let S be a commutative semiring and G a discrete groupoid. It is not hard to see that

1{g} ∗ 1{h} =
{

1{gh} if r(h) = s(g),
0 otherwise,

for all g, h ∈ G. Then AS(G) is exactly the S-algebra having basis G and whose product extends that of G
where we interpret undefined products as 0.

Remark 2.9. Let G be a Hausdorff ample groupoid and let S be an additively idempotent commutative 
semiring.

(1) For all compact open subsets U , V of G there holds

1U ∗ 1V = 1UV ,

extending Proposition 2.6 (2). Indeed, by additive idempotency, for γ ∈ G the value (1U ∗ 1V )(γ) =∑
γ=αβ 1U (α)1V (β) equals 1 iff there exists α ∈ U and β ∈ V with r(β) = s(α) and αβ = γ, i.e., iff 

γ ∈ UV .
(2) If moreover the semiring S is the Boolean semifield B, there is a natural bijective correspondence 

between the Steinberg algebra AB(G) and the collection of all compact open subsets of G, given by 1U �→ U

where U ⊆ G is a compact open subset, cf. Lemma 2.4 (2). Under this bijection the Steinberg algebra 
operations correspond to the set operations

U + V := U ∪ V , U ∗ V := UV

for any compact open subsets U , V of G.

As usual, for a hemiring S a set of local units is a set F ⊆ S of idempotents in S such that, for every 
finite subset {s1, . . . , sn} ⊆ S, there exists an element f ∈ F with fsi = si = sif for all i = 1, . . . , n. Using 
Proposition 2.6 and repeating verbatim the proofs of [43, Prop. 4.11] and [11, Lem. 2.6], one obtains the 
following useful fact.

Proposition 2.10. Let G be a Hausdorff ample groupoid, and S a commutative semiring. Then there holds:

(1) (cf. [43, Prop. 4.11]) The algebra AS(G) is unital if and only if G(0) is compact; in this case, the identity 
element is 1 = 1G(0) .

(2) (cf. [11, Lem. 2.6]) A set of local units of AS(G) is given by {1U | U is a compact open subset of G(0)}.

We next present the universal property of Steinberg algebras over commutative semirings, whose proof is 
completely analogous to the one in [13, Th. 3.10] and which, for the reader’s convenience, we provide here.

Theorem 2.11 (cf. [13, Th. 3.10]). Let G be a Hausdorff ample groupoid, and S a commutative semiring. 
Let B be an S-algebra containing a family of elements {tU | U is a compact open bisection of G} satisfying:

(1) t∅ = 0;
(2) tU tV = tUV for all compact open bisections U and V ; and
(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections such that U ∪ V is a bisection.

Then, there is a unique S-algebra homomorphism π : AS(G) −→ B such that π(1U ) = tU for all compact 
open bisections U .
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Proof. First we observe that, by condition (3) and induction on n, there holds t⋃n
i=1 Ui

=
∑n

i=1 tUi
whenever 

U1, . . . , Un are mutually disjoint compact open bisections such that 
⋃n

i=1 Ui is a (compact open) bisection.
Next we show that the formula 

∑
U∈F aU1U �−→

∑
U∈F aU tU is well-defined on linear combinations of 

indicator functions, where F is a finite set of mutually disjoint compact open bisections. Assume that
∑
U∈F

aU1U =
∑
V ∈H

bV 1V ,

where each of F and H is a finite set of mutually disjoint compact open bisections. Let K = {U ∩ V | U ∈
F, V ∈ H, U ∩ V �= ∅}. Then, since G is Hausdorff, and by Lemma 2.2, every element of K is a compact 
open bisection of G. Also, for each U ∈ F and each V ∈ H, we have that U = �{W ∈ K | W ⊆ U} and 
V = �{W ∈ K | W ⊆ V }, so tU =

∑
W∈K,W⊆U tW and tV =

∑
W∈K,W⊆V tW . Hence we find that

∑
U∈F

aU tU =
∑
U∈F

∑
W∈K,W⊆U

aU tW =
∑
W∈K

( ∑
U∈F,W⊆U

aU
)
tW ,

and similarly
∑
V ∈H

bV tV =
∑
W∈K

( ∑
V ∈H,W⊆V

bV
)
tW .

Fix W ∈ K and let α ∈ W . By definition of K, for all U ∈ F , we obtain that α ∈ U if and only if W ⊆ U . 
Therefore,

∑
U∈F

aU1U (α) =
∑

U∈F, α∈U

aU =
∑

U∈F,W⊆U

aU .

Similarly, 
∑

V ∈H bV 1V (α) =
∑

V ∈H,W⊆V bV , and hence

∑
U∈F,W⊆U

aU =
∑

V ∈H,W⊆V

bV .

It follows that 
∑

U∈F aU tU =
∑

V ∈H bV tV . So there exists an S-homomorphism π : AS(G) −→ B such that 
π(1U ) = tU for all compact open bisections U . It is sufficient to show that π is multiplicative. However, this 
is straightforward by using Proposition 2.6 (2), finishing the proof. �

A major motivation for introducing Steinberg algebras has been the study of discrete inverse semigroup 
algebras [43]. An inverse semigroup is a semigroup G such that for each a ∈ G there is a unique b ∈ G

(denoted a∗) satisfying aba = a and bab = b. The idempotent elements EG in an inverse semigroup G

form a commutative idempotent semigroup, i.e., a semilattice. Moreover, any inverse semigroup G defines 
a groupoid GG by letting the unit space be EG and interpreting each a ∈ G as an invertible morphism from 
s(a) := a∗a to r(a) := aa∗, hence a−1 = a∗ and a composition ab is defined in GG iff bb∗ = a∗a.

It is shown that, in particular, for any commutative unital ring R and any finite inverse semigroup G

there is an R-algebra homomorphism

R[G] ∼= AR(GG) (†)

between the semigroup algebra of G over R and the Steinberg algebra of the groupoid GG; this isomorphism 
is established using the Möbius function on the semilattice EG. Notice that in the special case that the 
inverse semigroup is itself a semilattice G = E, the groupoid GE consists just of units and we easily see that 
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AR(GE) ∼= RE . As our last result in this section shows, the isomorphism (†) fails in the general semiring 
setup, the reason for which may be attributed to a “lack of zero sums” in general, thus illustrating an 
interesting new feature.

Proposition 2.12. Let E be a finite semilattice with |E| > 1, and let S be an additively idempotent semifield. 
Then the semigroup algebra S[E] is not isomorphic to the Steinberg algebra AS(GE) ∼= SE.

Proof. First, notice that an additively idempotent semiring S is zero-sum free, i.e., s + t = 0 implies 
s = t = 0, for any s, t ∈ S.

Now suppose that an isomorphism S[E] ∼= SE exists. Then the semigroup algebra S[E] has an identity 
1 =

∑
w∈E sww ∈ S[E], where sw ∈ S for w ∈ E. Consider the semigroup E as a finite meet-semilattice 

and let u ∈ E be any maximal element. Then 1u =
∑

w∈E swwu = u. But for all w ∈ E with w �= u we 
have wu = w ∧ u < u, since otherwise w > u whereas u is maximal. Therefore, 

∑
w �=u swwu = 0 and hence 

sw = 0 for all w �= u, as the semiring S is zero-sum free. It follows that there cannot be distinct maximal 
elements in E, whence by finiteness the meet-semilattice E has a greatest element.

We may therefore assume that the semigroup E has a neutral element e, and hence the semigroup 
algebra S[E] has an identity 1 = e. As |E| > 1 the isomorphism S[E] ∼= SE implies that there are 
idempotents f, g ∈ S[E] \ {1} such that f + g = 1. Writing f =

∑
w∈E sww and g =

∑
w∈E tww, for all 

w �= e it follows that sw + tw = 0 and hence sw = tw = 0, since the semiring S is zero-sum free. We infer 
that f = see and g = tee with se, te ∈ S multiplicatively idempotent. But then, because S is a semifield, we 
have se, te ∈ {0, 1S} so that f, g ∈ {0, 1}. This contradiction concludes the proof. �
3. Congruence-simpleness of Steinberg algebras

The main goal of this section is to present a description of the congruence-simple Steinberg algebras 
AS(G) of Hausdorff ample groupoids G over a commutative semiring S, which extends the well-known 
description when the ground commutative semiring S is either a field or a commutative unital ring (see [8, 
Th. 4.1], [10, Th. 4.1, Cor. 4.6] and [44, Th. 3.5]).

We begin by recalling some important notations of groupoids. Let G be a groupoid and let D, E be 
subsets of G(0). Define

GD := {γ ∈ G | s(γ) ∈ D} , GE := {γ ∈ G | r(γ) ∈ E} and GE
D := GD ∩ GE .

In a slight abuse of notation, for u, v ∈ G(0) we denote Gu := G{u}, Gv := G{v} and Gv
u := Gu ∩ Gv. For a 

unit u of G the group Gu
u = {γ ∈ G | s(γ) = u = r(γ)} is called its isotropy group. The isotropy subgroupoid

of G is Iso(G) :=
⋃

u∈G(0) Gu
u . A subset D of G(0) is called invariant if s(γ) ∈ D implies r(γ) ∈ D for all 

γ ∈ G; equivalently, D = {r(γ) | s(γ) ∈ D} = {s(γ) | r(γ) ∈ D}. Also, D is invariant if and only if its 
complement is invariant.

Definition 3.1 ([8, Def. 2.1]). Let G be a Hausdorff ample groupoid. We say that G is minimal if G(0) has 
no nontrivial open invariant subsets, and we call G effective if the interior of Iso(G) \ G(0) is empty.

Note that effective groupoids are related to so-called “topologically principal” groupoids, i.e., in which 
the units with trivial isotropy are dense in the unit space. Any Hausdorff ample groupoid being topologically 
principal is in fact effective, while the converse holds if the groupoid is second-countable (see [8, Lem. 3.1]).

We now describe necessary conditions for Steinberg algebras of Hausdorff ample groupoids over commu-
tative semirings to be congruence-simple.
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Proposition 3.2. If the Steinberg algebra AS(G) of a Hausdorff ample groupoid G over a commutative semir-
ing S is congruence-simple, then there holds:

(1) S is either a field or the Boolean semifield B;
(2) G is both minimal and effective.

Proof. (1) First, let us show that there are only the two trivial congruences on S. Indeed, if ∼ is a proper 
congruence on S, the natural surjection π : S −→ S := S/∼, defined by π(λ) = λ, is neither zero nor 
an injective homomorphism. For any compact open bisection U of G, we denote by tU the characteristic 
function G −→ S of U . It is clear that the collection {tU | U is a compact open bisection} of elements 
of AS(G) satisfies conditions (1), (2) and (3) of Theorem 2.11. Accordingly, there is a unique S-algebra 
homomorphism ϕ : AS(G) −→ AS(G) such that ϕ(λ1U ) = λtU for any compact open bisection U and 
λ ∈ S. Since π is not injective, there exist two distinct elements a, b ∈ S such that a = b. Fix a nonempty 
compact open bisection U . We then have a1U �= b1U and ϕ(a1U ) = atU = btU = ϕ(b1U ), and so ϕ is not 
injective. Therefore, AS(G) is not congruence-simple by Remark 2.1. Thus, the commutative semiring S is 
congruence-simple, and it follows by [34, Th. 3.2] that S is either a field or the Boolean semifield B.

(2) Assume that G(0) contains a nontrivial open invariant subset V . Let D := G(0) \ V . We then have 
that GD coincides with the restriction

G|D := {γ ∈ G | s(γ), r(γ) ∈ D}

of G to D. Thus GD is a topological subgroupoid of G with the relative topology, and its unit space is D. 
Since D is closed in G(0), and the map s : G −→ G(0) is continuous, GD = s−1(D) is closed in G, and so 
U ∩ GD is a compact open bisection of GD for any compact open bisection U of G. This implies that GD is 
a Hausdorff ample groupoid.

For any compact open bisection U of G, we denote by tU the characteristic function GD −→ S of U∩GD. It 
is obvious that the collection {tU | U is a compact open bisection} of elements of AS(GD) satisfies conditions 
(1), (2) and (3) of Theorem 2.11, by which there is a unique S-algebra homomorphism ϕ : AS(G) −→ AS(GD)
such that ϕ(λ1U ) = λtU for all compact open bisections U and λ ∈ S. Since V is a nontrivial open subset 
of G(0), there exist nonempty compact open subsets U1 and U2 of G(0) such that U1 ⊆ V and U2 ∩D �= ∅. 
This implies that ϕ(1U1) = 1U1∩GD

= 0 (since U1 ∩ GD = ∅) and ϕ(1U2) = 1U2∩GD
�= 0, so ϕ is a nonzero 

homomorphism, but not injective. Therefore, AS(G) is not congruence-simple by Remark 2.1, whence G is 
minimal.

We next show that G is effective, following essentially the proof of [8, Prop. 4.4]. Denote by F (G(0)) the 
free S-semimodule with basis G(0). Let U be a compact open bisection of G. Observe that s(α) �−→ r(α)
determines a homeomorphism from s(U) to r(U). We define a map fU : G(0) −→ F (G(0)) by

fU (x) =
{
r(α) if x = s(α) and α ∈ U,

0 otherwise,

for all x ∈ G(0). By the universal property of the free S-semimodule F (G(0)), there exists an element 
tU ∈ EndS(F (G(0))) extending fU . Now we check that

(1) t∅ = 0;
(2) tU tV = tUV for all compact open bisections U and V ; and
(3) tU + tV = tU∪V whenever U and V are disjoint compact open bisections such that U ∪V is a bisection.
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It is easy to see that each of these conditions holds for the functions fU , and so for the endomorphisms tU
as well. Then, by Theorem 2.11, there is a unique S-algebra homomorphism ϕ : AS(G) −→ EndS(F (G(0)))
such that ϕ(1U ) = tU for all compact open bisection U . The homomorphism ϕ is nonzero because tU is 
nonzero for any nonempty compact open bisection U of G.

Now suppose that G is not effective. By [8, Lem. 3.1], there exists a nonempty compact open bisection 
U ⊆ G \ G(0) such that s(α) = r(α) for all α ∈ U . It implies that U �= s(U) and tU = ts(U), and hence 
1U �= 1s(U) and

ϕ(1U ) = tU = ts(U) = ϕ(1s(U)),

showing that ϕ is not injective. Therefore, AS(G) is not congruence-simple by Remark 2.1. Thus, G is 
effective, finishing the proof. �

The following result, being a “congruence” analog of [8, Lem. 4.2] and [44, Prop. 3.3], plays an important 
role in the proof of our main result below.

Lemma 3.3. Let G be an effective Hausdorff ample groupoid and S an additively idempotent semiring. Then 
for every congruence ρ on AS(G) different from the diagonal congruence, there exists s ∈ S \{0} and a 
nonempty compact open subset W of G(0) such that (s1W , 0) ∈ ρ.

Proof. Since ρ is different from the diagonal congruence, there are elements f, g ∈ AS(G) such that f �= g

and (f, g) ∈ ρ. It is clear that AS(G) is an additively idempotent hemiring, hence AS(G) is partially ordered 
by defining a ≤ b iff a +b = b, for a, b ∈ AS(G). Now (f, f+g) = (f+f, f+g) ∈ ρ and (g, f+g) = (g+g, f+g) ∈ ρ, 
and since f �= g, either f < f + g or g < f + g. Therefore, without loss of generality, one may assume that 
f < g. Then, there exists an element α ∈ G such that f(α) < g(α). Let U be a compact open bisection of G
containing α−1, and let x := r(α) = αα−1 ∈ G(0). We have that

f ∗ 1U (x) =
∑
x=γβ

f(γ)1U (β) = f(αα−1α)1U (α−1) = f(α) ,

since the unique β ∈ U such that s(β) = s(x) = x is given by β = α−1. Similarly, g ∗ 1U (x) = g(α), and so 
f ∗ 1U (x) < g ∗ 1U (x).

Thus, there exist two elements ϑ, ψ ∈ AS(G) such that (ϑ, ψ) ∈ ρ with ϑ ≤ ψ and ϑ|G(0) < ψ|G(0) (we 
may take ϑ = f ∗ 1U and ψ = g ∗ 1U as above). Write

ϑ =
n∑

i=1
si1Ui

and ψ =
m∑
j=1

tj1Vj

where si, tj ∈ S\{0} and each of {Ui | i = 1, . . . , n} and {Vj | j = 1, . . . , m} is a set of mutually disjoint 
compact open bisections of G. Since G(0) is clopen in G by the Hausdorff property, Ui∩G(0) and Vj ∩G(0) are 
compact open subsets of G(0); that means, they are compact open bisections of G, and so, by Lemma 2.2, 
Ui \ (Ui ∩ G(0)) and Vj \ (Vj ∩ G(0)) are also compact open bisections of G. We then have that

ϑ =
n∑

i=1
si1Ui\(Ui∩G(0)) +

n∑
i=1

si1Ui∩G(0) and ψ =
m∑
j=1

tj1Vj\(Vj∩G(0)) +
m∑
j=1

tj1Vj∩G(0)

and since ϑ ≤ ψ and ϑ|G(0) < ψ|G(0) , it follows that

n⋃
Ui \ (Ui ∩ G(0)) ⊆

m⋃
Vj \ (Vj ∩ G(0)) and

n⋃
Ui ∩ G(0) ⊂

m⋃
Vj ∩ G(0).
i=1 j=1 i=1 j=1
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The set 
⋃n

i=1 Ui∩G(0) is closed in G(0) as a compact subset in a Hausdorff space, and moreover the Vj ∩G(0)

are open in G(0). Thus (Vj ∩ G(0)) \ (
⋃n

i=1 Ui ∩ G(0)) is open in G(0), and non-empty for some j0. Let 
K :=

⋃m
j=1 Vj \ (Vj ∩ G(0)) ⊆ G \ G(0) which is compact open. Then, because G is effective, and by [8, 

Lem. 3.1], there is a nonempty open subset W ⊆ (Vj0 ∩ G(0)) \ (
⋃n

i=1 Ui ∩ G(0)) such that WKW = ∅. 
Since G(0) has a base of compact open sets, we may assume that W is compact. We have

1W ∗ ϑ ∗ 1W =
n∑

i=1
si1W (Ui\(Ui∩G(0)))W + si1W∩(

⋃n
i=1 Ui∩G(0))∩W = 0,

1W ∗ ψ ∗ 1W =
m∑
j=1

tj1W (Vj\(Vj∩G(0)))W + tj1W∩(
⋃m

j=1 Vj∩G(0))∩W = tj01W .

Since (ψ, ϑ) ∈ ρ, and ρ is a congruence on AS(G), we obtain that (tj01W , 0) = (1W ∗ψ∗1W , 1W ∗ϑ ∗1W ) ∈ ρ

with tj0 ∈ S\{0}, thus finishing the proof. �
The following result, being an B-algebra analog of [8, Prop. 4.5] and [44, Prop. 3.4], provides a criterion 

for minimal Hausdorff ample groupoids. It plays an important role in the proof of the subsequent main 
results (Theorems 3.5 and 4.3).

Lemma 3.4. A Hausdorff ample groupoid G is minimal if and only if 1V generates AB(G) as an ideal for all 
nonempty compact open subsets V of G(0).

Proof. (=⇒). Assume that G is a minimal Hausdorff ample groupoid. Let V be a nonempty compact open 
subset of G(0), and I an ideal of AB(G) generated by 1V . If U is any compact open bisection of G, we must 
prove that 1U ∈ I. Let K := r(U) ⊆ G(0). We then have that K is a compact open subset of G(0). Since 
s(GV ) is a nonempty open invariant set, and G is minimal, s(GV ) = G(0), and hence K ⊆ s(GV ). Thus, 
for any u ∈ K, there exists an element αu ∈ G such that s(αu) = u and r(αu) ∈ V . For each u ∈ K, let 
Bu be a compact open bisection of G containing αu such that r(Bu) ⊆ V and s(Bu) ⊆ K. We then have 
1s(Bu) = 1B−1

u
∗ 1V ∗ 1Bu

∈ I. Since K is compact, there exists a finite subset {u1, . . . , un} of K such that 
{s(Bui

) | i = 1, . . . , n} covers K. By Lemma 2.4 (2), 1K =
∑n

i=1 1s(Bui
) ∈ I, and so 1U = 1K ∗ 1U ∈ I. It 

follows that I = AB(G).
(⇐=). Suppose that G is not minimal. Let U be a nontrivial open invariant subset of G(0). Let D := G(0)\V . 

We then have that GD coincides with the restriction G|D := {γ ∈ G | s(γ), r(γ) ∈ D} of G to D. As was 
shown in the proof of Proposition 3.2, G|D is a Hausdorff ample groupoid with unit space D, and there is a 
nonzero B-algebra homomorphism ϕ : AB(G) −→ AB(GD) such that ϕ(1B) = 1B∩GD

for any compact open 
bisection B of G. This implies that Ker(ϕ) := ϕ−1(0) is a proper ideal of AB(G). Since U is a nontrivial 
open subset of G(0), there exists a nonempty compact open subset V of G(0) such that V ⊆ U . We then 
have ϕ(1V ) = 1V ∩GD

= 0 (since V ∩ GD = ∅), and so 1V ∈ Ker(ϕ) \ {0}, and hence, by our hypothesis, 
Ker(ϕ) = AB(G), a contradiction, thus finishing the proof. �

We are now in position to provide the main result of this section, being a “semiring” analog of [8, Th. 4.1], 
[10, Th. 4.1, Cor. 4.6] and [44, Th. 3.5], characterizing the congruence-simple Steinberg algebras of Hausdorff 
ample groupoids over commutative semirings.

Theorem 3.5. The Steinberg algebra AS(G) of a Hausdorff ample groupoid G over a commutative semiring S

is congruence-simple if and only if the following conditions are satisfied:

(1) S is either a field or the Boolean semifield B;
(2) G is both minimal and effective.
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Proof. (=⇒). It follows from Proposition 3.2.
(⇐=). If S is a field, then the statement follows from [44, Th. 3.5]. Consider the case when S = B, and 

let ρ be a congruence on AB(G) which is different from the diagonal congruence. Since G is effective, by 
Lemma 3.3, there exists a nonempty compact open subset U of G(0) such that (1U , 0) ∈ ρ. Let us consider 
the ideal of AB(G) defined as follows:

I := {f ∈ AB(G) | (f, 0) ∈ ρ}.

From the observation above, I contains a nonzero element 1U with supp(1U ) = U ⊆ G(0). By Lemma 3.4, 
I = AB(G). It immediately follows that ρ = AB(G)2, whence AB(G) is congruence-simple, as desired. �
4. Steinberg algebras of graph groupoids

In this section we investigate Steinberg algebras AS(GE) of graph groupoids GE associated to arbi-
trary directed graphs E, over a commutative semiring S. We provide a complete characterization of the 
congruence-simple Steinberg algebras AS(GE) (Theorem 4.3). Motivated by Clark and Sims’s result [14, 
Ex. 3.2], we present a criterion for the natural homomorphism from the Leavitt path algebra LB(E) to the 
Steinberg algebra AB(GE) to be an isomorphism, where B is the Boolean semifield (Theorem 4.9). In order 
to do so, we establish Uniqueness Theorems for Leavitt path algebras of row-finite graphs over B (Corollar-
ies 4.7 and 4.8). Furthermore, we argue that the Leavitt path algebra LB(E) is in general not isomorphic to 
the Steinberg algebra AB(GE) (Example 4.10). All these constructions are crucially based on some general 
notions of graph theory, which for the reader’s convenience we reproduce here.

A (directed) graph E = (E0, E1, s, r) consists of two disjoint sets E0 and E1, called vertices and edges
respectively, together with two maps s, r : E1 −→ E0. The vertices s(e) and r(e) are referred to as the source
and the range of the edge e, respectively. A graph E is called row-finite if |s−1(v)| < ∞ for all v ∈ E0. A 
vertex v for which s−1(v) is empty is called a sink; a vertex v is regular if 0 < |s−1(v)| < ∞; and a vertex v

is an infinite emitter if |s−1(v)| = ∞.
A path in a graph E is a sequence p = e1 . . . en of edges e1, . . . , en with r(ei) = s(ei+1) for all 1 ≤ i ≤ n −1. 

We then say that the path p starts at the vertex s(p) := s(e1), ends at the vertex r(p) := r(en), and write 
|p| := n for its length. The vertices in E0 are considered to be paths of length 0. We denote by E∗ the set 
of all paths in E. A path p of positive length is a closed path based at the vertex v if s(p) = r(p) = v. A 
cycle based at v is a closed path p = e1 . . . en based at v for which the vertices s(e1), . . . , s(en) are distinct. 
An infinite path in E is an infinite sequence p = e1 . . . en . . . of edges in E such that r(ei) = s(ei+1) for all 
i ≥ 1. In this case, we say that the infinite path p starts at the vertex s(p) := s(e1). We denote by E∞ the 
set of all infinite paths in E.

The following construction of a groupoid GE from an arbitrary graph E can be found in [14, Ex. 2.1]. 
Let E = (E0, E1, r, s) be a graph. First let

XE := {p ∈ E∗ | r(p) is a sink or an infinite emitter} ∪ E∞.

Then the graph groupoid associated to E is defined as

GE := {(αx, |α|−|β|, βx) | α, β ∈ E∗, x ∈ XE , r(α) = s(x) = r(β)}.

The formulas (x, k, y)(y, l, z) = (x, k+l, z) and (x, k, y)−1 = (y, −k, x) define composition and inverse maps 
on GE , making it a groupoid with unit space G(0)

E = {(x, 0, x) | x ∈ XE}, which we may identify with the set 
XE . Note that the range and source maps rGE

, sGE
: GE −→ G(0)

E are defined by rGE
(x, k, y) = (x, 0, x) and 

sGE
(x, k, y) = (y, 0, y), so that we may view each (x, k, y) ∈ GE as a morphism with range x and source y.
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We next describe the topology on GE . For α, β ∈ E∗ with r(α) = r(β), and a finite subset F ⊆ s−1(r(α)), 
we let

Z(α, β) := {(αx, |α|−|β|, βx) | x ∈ XE , r(α) = s(x) = r(β)} ⊆ GE ,

Z(α, β, F ) := Z(α, β) \
⋃
e∈F

Z(αe, βe).

The sets Z(α, α, F ) constitute a base of compact open sets for a locally compact Hausdorff topology on G(0)
E

(refer to [46, Th. 2.1], [42, Th. 2.1] or [4, Cor. 2.8]). And the sets Z(α, β, F ) constitute a base of compact 
open bisections for a topology under which GE is a Hausdorff ample groupoid (refer to [9, Sec. 2.3] or [42, 
Th. 2.4]). Thus we may form the Steinberg algebra AS(GE). We should note the following properties.

Remark 4.1. Let E be an arbitrary graph and S a commutative semiring.

(1) The multiplication on AS(GE) satisfies the following:
(i) 1Z(v,v) ∗ 1Z(w,w) = δv,w1Z(v,v) for all v, w ∈ E0;
(ii) 1Z(s(e),s(e)) ∗ 1Z(e,r(e)) = 1Z(e,r(e)) = 1Z(e,r(e)) ∗ 1Z(r(e),r(e)) for e ∈ E1;
(iii) 1Z(r(e),r(e)) ∗ 1Z(r(e),e) = 1Z(r(e),e) = 1Z(r(e),e) ∗ 1Z(s(e),s(e)) for e ∈ E1;
(iv) 1Z(r(e),e) ∗ 1Z(f,r(f)) = δe,f1Z(r(e),r(e)) for all e, f ∈ E1;
(v) 1Z(v,v) =

∑
e∈s−1(v) 1Z(e,r(e)) ∗ 1Z(r(e),e) for regular vertices v ∈ E0;

where δ is the Kronecker delta.
(2) If in addition S is additively idempotent, then AS(GE) is generated by functions 1Z(α,β,F ), where 

α, β ∈ E∗ with r(α) = r(β), and F ⊆ s−1(r(α)) is finite. The finite sums of distinct elements from the 
set {1Z(v,v) | v ∈ E0} form a set of local units of the S-algebra AS(GE).

Proof. (1) It is straightforward by using Proposition 2.6 (2).
(2) Lemma 2.4 (2) immediately implies the first part, from which we easily deduce the remaining part 

using Proposition 2.6 (2). �
Our subsequent aim is to characterize the congruence-simpleness of the Steinberg algebra AS(GE) over a 

commutative semiring S. Before doing so, we need some notations and facts. Let E be an arbitrary graph. 
An edge f is an exit for a path p = e1 . . . en if s(f) = s(ei) but f �= ei for some 1 ≤ i ≤ n. A subset H of E0

is called hereditary if s(e) ∈ H implies r(e) ∈ H for all e ∈ E1. And H is called saturated if whenever v is a 
regular vertex in E0 with the property that r(s−1(v)) ⊆ H, then v ∈ H.

The following fact provides us with a criterion for the groupoid GE to be effective and minimal.

Proposition 4.2. Let E be an arbitrary graph.

(1) GE is effective if and only if every cycle in E has an exit;
(2) GE is minimal if and only if the only hereditary and saturated subsets of E0 are ∅ and E0.

Proof. (1) It may be found in [42, Prop. 2.21]; and just for the reader’s convenience, we reproduce it here.
(=⇒). Suppose that E has a cycle c without an exit. We then have that Z(cc, c) = {(ccc . . . , |c|, cc . . . )} ⊆

Iso(GE) \ G(0)
E , and thus GE is not effective.

(⇐=). Assume that every cycle in E has an exit, and let α, β ∈ E∗ be distinct paths with r(α) = r(β). 
We claim that αx �= βx for some x ∈ XE . Indeed, suppose that αx = βx for some x ∈ XE . Then x ∈ E∞

and one of α and β is a prefix of the other. We thus may assume that β = αγ for some closed path 
γ = e1 . . . ek based at r(α) = r(β). By our hypothesis and [2, Lem. 2.5], the path γ has an exit f , i.e., there 
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is 1 ≤ i ≤ k such that f �= ei and s(f) = s(ei). Let y be an arbitrary element in XE with s(y) = r(f), 
then putting z := e1 . . . ei−1fy ∈ XE we find that αz �= βz. In the other case, we let x be an arbitrary 
element in XE with r(α) = s(x) = r(β) and have that αx �= βx, thus proving the claim. Hence, there is 
an element (αx, |α| −|β|, βx) ∈ Z(α, β) such that αx �= βx. This implies that every compact open bisection 
B ⊆ GE \ G(0)

E contains an element μ such that s(μ) �= r(μ), and so GE is effective by [8, Lem. 3.1].
(2) (=⇒). Assume that GE is minimal, and let H be a nonempty hereditary and saturated subset of E0. 

We prove that H = E0. To this end, let Z :=
⋃

v∈H Z(v, v) ⊆ G(0)
E . Then U := sGE

(GZ
E) = sGE

(r−1
GE

(Z)) is a 

nonempty open invariant subset of G(0)
E (note that ∅ �= Z ⊆ U). Since G is minimal, U = G(0)

E .
Suppose that H �= E0, and let v ∈ E0 \H. Consider the following cases.
Case 1: The vertex v is a sink or an infinite emitter. Then (v, 0, v) ∈ G(0)

E = U , so there is an element 
(y, k, x) ∈ GE such that (x, 0, x) = sGE

(y, k, x) = (v, 0, v) and (y, 0, y) = rGE
(y, k, x) ∈ Z. This implies that 

x = v and y ∈ E∗ with r(y) = v and s(y) ∈ H. Since H is hereditary and s(y) ∈ H, we have v = r(y) ∈ H, 
a contradiction.

Case 2: The vertex v is regular. Since H is saturated, there exists an edge e1 ∈ s−1(v) such that r(e1) /∈ H. 
If r(e1) is either a sink or an infinite emitter, then we make a contradiction by repeating the argument 
described in Case 1, starting with r(e1), and so we may assume that r(e1) is a regular vertex. Continuing 
this process, we obtain the following possible cases. Either, we arrive after n steps at a path p = e1 . . . en
with s(p) = v and r(p) /∈ H is either a sink or an infinite emitter. Then, we produce a contradiction by 
repeating the argument described in Case 1, starting with r(p). In the other case, we obtain an infinite path 
x = e1 . . . en . . . such that s(x) = v and r(en) /∈ H for all n ≥ 1. We then have that (x, 0, x) ∈ G(0)

E , i.e., 
(x, 0, x) ∈ U , and so there exists an element (z, k, y) ∈ GE such that (y, 0, y) = sGE

(z, k, y) = (x, 0, x) and 
(z, 0, z) = rGE

(z, k, y) ∈ Z. This implies that y = x and s(z) ∈ H. Since (z, k, x) = (z, k, y) ∈ GE , there 
exist an integer n ≥ 2 and a path α ∈ E∗ such that z = αenen+1 . . . ∈ E∞. Because H is hereditary, and 
s(α) = s(z) ∈ H, we find that r(en−1) = s(en) = r(α) ∈ H, which is a contradiction.

In any case, we arrive at a contradiction, and so we infer that H = E0.
(⇐=). Suppose that E0 has only the trivial hereditary and saturated subsets. Let V be a nonempty 

compact open subset of G(0)
E , and let I be the ideal of AB(GE) generated by 1V . We claim that I = AB(GE). 

Indeed, since V is open in G(0)
E , there exist a path α ∈ E∗ and a finite subset F ⊆ s−1(r(α)) such that 

∅ �= Z(α, α, F ) ⊆ V . As Z(α, α, F ) is non-empty, there is a path β ∈ E∗ that has α as a prefix path and 
such that Z(β, β) ⊆ Z(α, α, F ) ⊆ V . Since I is an ideal of AB(GE) and by Proposition 2.6 (2), we then have 
1Z(β,β) = 1Z(β,β)∩V = 1Z(β,β) ∗ 1V ∈ I. It follows that

1Z(r(β),r(β)) = 1Z(r(β),β)Z(β,β)Z(β,r(β)) = 1Z(r(β),β) ∗ 1Z(β,β) ∗ 1Z(β,r(β)) ∈ I.

Let H := {v ∈ E0 | 1Z(v,v) ∈ I}. We have that r(β) ∈ H, and hence H �= ∅. Let e ∈ E1 with s(e) ∈ H. 
Using Remark 4.1 (1), we obtain that

1Z(r(e),r(e)) = 1Z(r(e),e) ∗ 1Z(s(e),s(e)) ∗ 1Z(e,r(e)) ∈ I,

hence r(e) ∈ H, showing that H is hereditary.
Let v be a regular vertex such that r(e) ∈ H for all e ∈ s−1(v). We then have 1Z(r(e),r(e)) ∈ I for all 

e ∈ s−1(v), and thus, by Remark 4.1 (1), 1Z(e,r(e)) = 1Z(e,r(e)) ∗ 1Z(r(e),r(e)) ∈ I for all e ∈ s−1(v), and

1Z(v,v) =
∑

e∈s−1(v)

1Z(e,r(e)) ∗ 1Z(r(e),e) ∈ I.

This implies that v ∈ H, and hence H is saturated. By our hypothesis, H = E0, and hence 1Z(v,v) ∈ H for 
all v ∈ E0, whence I = AB(GE) by Remark 4.1 (2), proving the claim. By Lemma 3.4, GE is minimal, thus 
finishing the proof. �
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Combining Theorem 3.5 and Proposition 4.2, we readily obtain a complete characterization of the 
congruence-simple Steinberg algebras AS(GE) over commutative semirings.

Theorem 4.3. Let E be an arbitrary graph and S a commutative semiring. Then, AS(GE) is congruence-
simple if and only if the following conditions hold:

(1) S is either a field, or the Boolean semifield B;
(2) The only hereditary and saturated subset of E0 are ∅ and E0;
(3) Every cycle in E has an exit.

The remainder of this section is devoted to the study of the connection between Leavitt path algebras 
and Steinberg algebras. Let us first recall a brief history and the notion of Leavitt path algebras with 
coefficients in a commutative semiring. Given a row-finite graph E and any field K, Abrams and Aranda 
Pino in [2], and independently Ara, Moreno, and Pardo in [5], introduced the Leavitt path algebra LK(E). 
The definition was later generalized to all countable graphs by Abrams and Aranda Pino [3], and to all 
(possibly uncountable) graphs by Goodearl [23]. Then Tomforde in [45] constructed Leavitt path algebras of 
graphs over a commutative ring, and Katsov and the present authors in [26] introduced Leavitt path algebras 
with coefficients in a commutative semiring. The notion of a Leavitt path algebra generalizes the algebras 
LK(1, n) constructed by Leavitt [29] and also encompasses many other interesting classes of algebras. In 
addition, Leavitt path algebras are intimately related to graph C∗-algebras (see [38]).

Definition 4.4 ([26, Def. 2.1]). Let E = (E0, E1, r, s) be an arbitrary graph and S a commutative semiring. 
The Leavitt path algebra LS(E) of the graph E with coefficients in S is the S-algebra generated by the union 
of the set E0 and two disjoint copies of E1, say E1 and {e∗ | e ∈ E1}, satisfying the relations:

(1) vw = δv,wv for all v, w ∈ E0;
(2) s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1;
(3) e∗f = δe,fr(e) for all e, f ∈ E1;
(4) v =

∑
e∈s−1(v) ee

∗ whenever v ∈ E0 is a regular vertex;

where δ is the Kronecker delta.

It is easy to see that the mappings given by v �→ v, for v ∈ E0, and e �→ e∗, e∗ �→ e for e ∈ E1, 
produce an involution on the algebra LS(E), and for any path p = e1 . . . en there exists p∗ := e∗n . . . e

∗
1. For 

notational convenience we extend the source and range maps by s(e∗) := r(e), r(e∗) := s(e) for all e ∈ E1, 
and accordingly s(p∗) := r(p) = r(en), r(p∗) := s(p) = s(e1) for a path p = e1 . . . en.

Observe that the Leavitt path algebra LS(E) can also be defined as the quotient of the free S-algebra 
S〈v, e, e∗ | v ∈ E0, e ∈ E1〉 by the congruence ∼ generated by the following ordered pairs:

(1) (vw, δv,wv) for all v, w ∈ E0,
(2) (s(e)e, e), (e, er(e)) and (r(e)e∗, e∗), (e∗, e∗s(e)) for all e ∈ E1,
(3) (e∗f, δe,fr(e)) for all e, f ∈ E1,
(4) (v, 

∑
e∈s−1(v) ee

∗) for all regular vertices v ∈ E0.

If A is an S-algebra generated by a family {av, be, ce∗ | v ∈ E0, e ∈ E1} of elements satisfying relations 
analogous to (1) – (4) in Definition 4.4, then there is a unique S-algebra homomorphism ϕ : LS(E) → A

given by ϕ(v) = av, ϕ(e) = be and ϕ(e∗) = ce∗ . We refer to this property as the universal homomorphism 
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property of LS(E). Moreover, by [26, Prop. 2.4], every monomial in LS(E) is of the form spq∗, where s ∈ S

and p, q are paths in E such that r(p) = r(q).
Using the universal homomorphism property of LS(E) and Remark 4.1 (1), we immediately obtain that 

for each graph E and commutative semiring S, there exists a unique S-algebra homomorphism

πE : LS(E) −→ AS(GE)

such that πE(v) = 1Z(v,v), πE(e) = 1Z(e,r(e)), and πE(e∗) = 1Z(r(e),e) for all v ∈ E0 and e ∈ E1. In 
particular, πE(pq∗) = 1Z(p,q) for all paths p, q ∈ E∗ with r(p) = r(q). We refer to this homomorphism as the 
natural homomorphism from LS(E) to AS(GE). Clark and Sims in [14, Ex. 3.2] showed that πE is always 
an isomorphism when S is a commutative unital ring. However, as the next result shows, this is in general 
not true for our semiring setting which might be, similarly as for Proposition 2.12, explained by a lack of 
zero sums.

Proposition 4.5. Let E be a graph and S an additively idempotent commutative semiring. Then, the natural 
homomorphism πE : LS(E) −→ AS(GE) is surjective if and only if E is row-finite.

Proof. (=⇒). Suppose that πE is surjective, and let v ∈ E0. Our claim is that s−1(v) is finite. We may 
assume that v is not a sink and choose some nonempty finite subset F of s−1(v). Since πE is surjective, 
there exists an element α ∈ LS(E) such that πE(α) = 1Z(v,v,F ). By [26, Prop. 2.4], this element can be 
written in the form α =

∑n
i=1 sipiq

∗
i , where si ∈ S\{0} and pi, qi are paths in E such that r(pi) = r(qi). 

Then we have

1Z(v,v,F ) = πE(α) =
n∑

i=1
siπE

(
piq

∗
i

)
=

n∑
i=1

si1Z(pi,qi).

Since the semiring is zero-sum free, for all x ∈ GE we have 
∑

i si1Z(pi,qi)(x) �= 0 if and only if x ∈
⋃

i Z(pi, qi), 
and therefore

Z(v, v, F ) =
n⋃

i=1
Z(pi, qi).

In particular, Z(pi, qi) ⊆ Z(v, v) ⊆ G(0)
E for all i, from which we infer that pi = qi and s(pi) = s(qi) = v. 

Furthermore, since F �= ∅ there holds pi = qi �= v for all i. Hence, for every 1 ≤ i ≤ n, we may write 
pi = qi = eiri for some edge ei ∈ s−1(v) and path ri in E, and thus Z(pi, qi) = Z(eiri, eiri) ⊆ Z(ei, ei). 
Now since

⋃
e∈s−1(v)\F

Z(e, e) = Z(v, v, F ) =
n⋃

i=1
Z(pi, qi) ⊆

n⋃
i=1

Z(ei, ei),

we deduce that s−1(v) \F ⊆ {e1, . . . , en}, whence s−1(v) ⊆ F ∪ {e1, . . . , en} is a finite set as claimed. 
Therefore, E is a row-finite graph.

(⇐=). Assume that E is a row-finite graph. Let α, β ∈ E∗ with r(α) = r(β) and let F be a finite 
subset of s−1(r(α)). We claim that π−1

E (1Z(α,β,F )) �= ∅. If r(α) is a sink, then necessarily F = ∅ and 
Z(α, β, F ) = Z(α, β), so we have that αβ∗ ∈ π−1

E (1Z(α,β)). Thus we may assume that r(α) is not a sink, 
and hence

Z(α, β, F ) = Z(α, β) \
⋃

Z(αe, βe) =
⋃

Z(αe, βe),

e∈F e∈F c
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where F c := s−1(r(α)) \ F . Since E is row-finite, F c is a finite set, and so

1Z(α,β,F ) =
∑
e∈F c

1Z(αe,βe) =
∑
e∈F c

πE((αe)(βe)∗) = πE

( ∑
e∈F c

(αe)(βe)∗
)
,

hence 
∑

f∈F c(αe)(βe)∗ ∈ π−1
E (1Z(α,β,F )), showing the claim. By Remark 4.1 (2) this claim implies that πE

is surjective, thus finishing the proof. �
Next we investigate the injectivity of the natural homomorphism πE. We note ([14, Ex. 3.2]) that if S

is a commutative unital ring, then injectivity follows from the Graded Uniqueness Theorem of Tomforde 
[45, Th. 5.3], which is based on using graded ring and homogeneous ideal considerations. In our semiring 
setting, however, concepts like homogeneous ideal and graded quotient algebra are not well-established, thus 
we present a novel argument. But first we recall some notations and establish a few useful facts.

Let E be an arbitrary graph and S a commutative semiring. Following [2], a monomial in LS(E) is a real 
path if it contains no term of the form e∗ ∈ E∗, and a polynomial α ∈ LS(E) is in only real edges if it is 
an S-linear combination of real paths; let LS(E)real denote the subhemiring of all polynomials in only real 
edges in LS(E). For a cycle c based at the vertex v, we use the notation

c0 := v and c−n = (c∗)n, for all n ∈ N.

Moreover, for such a cycle c and any polynomial p(x) =
∑n

i=m six
i ∈ S[x, x−1] (where m, n ∈ Z with 

m ≤ n), we denote by p(c) the element

p(c) :=
n∑

i=m

sic
i ∈ LS(E).

The following important fact, being an B-algebra analog of the Reduction Theorem [1, Th. 2.2.11], 
provides a method to prove the injectivity of B-algebra homomorphisms from Leavitt path algebras LB(E)
of row-finite graphs E.

Lemma 4.6. Let E be a row-finite graph and ρ a congruence on LB(E) different from the diagonal congruence. 
Then, at least one of the following is true:

(1) (v, 0) ∈ ρ for some v ∈ E0;
(2) (p(c), q(c)) ∈ ρ, where c is a cycle in E without exits and p(x), q(x) are distinct polynomials in B[x, x−1].

Proof. The proof is essentially based on the ideas in the proof of the direction (⇐=) in [26, Th. 4.4].
By [26, Prop. 4.3], the congruence ρ is generated by ρreal := ρ ∩ (LB(E)real)2 and ρreal �= ΔLB(E)real . 

Hence, there exist two elements a, b ∈ LB(E)real such that a �= b and (a, b) ∈ ρ. Since LB(E) is an 
additively idempotent hemiring, we can consider the natural order defined by s ≤ s′ ⇐⇒ s + s′ = s′. We 
have (a, a + b) = (a + a, a + b) ∈ ρ, (b, a + b) = (b + b, a + b) ∈ ρ, and since a �= b, either a < a + b or 
b < a + b. Thus, keeping in mind that (a + x, b + x) ∈ ρ for all x ∈ LB(E) and without loss of generality, we 
may assume that a < a + b and that a, a + b are written in the form

a = p1 + . . . + pn, a + b = p1 + . . . + pn + p

where p1, . . . , pn, p are distinct paths in E. We also may choose a having the minimal number n of such 
{p1, . . . , pn}.
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Let v := s(p), w := r(p) ∈ E0. Then (vaw, v(a + b)w) ∈ ρ, where vaw = vp1w + · · · + vpnw and 
v(a + b)w = vp1w + . . . + vpnw + p, hence by minimality we may assume that s(pi) = v and r(pi) = w for 
all 1 ≤ i ≤ n.

Suppose that v �= w. Write p = qp′, where q is a path from v to w of shortest length and p′ is a closed 
path based at w. For every pj such that q∗pj �= 0 we have pj = qp′j for some closed path p′j based at w. 
Then we have

(q∗a, q∗(a + b)) = (q∗p1 + . . . + q∗pn, q
∗p1 + . . . + q∗pn + q∗p) = (

∑
j∈J

p′j ,
∑
j∈J

p′j + p′),

and thus (
∑

j∈J p′j , 
∑

j∈J p′j+p′) ∈ ρ with p′j (for j ∈ J) and p′ distinct closed paths based at w, where J is a 
subset of {1, . . . , n}. Therefore, without loss of generality, we may assume that v = w, i.e., that p, p1, . . . , pn
are distinct closed paths based at v, and consider the following two possible cases.

Case 1: There is exactly one closed simple path based at v, say c := e1 . . . em. Then c is a cycle, and 
there are distinct positive integers k and ki for 1 ≤ i ≤ n such that p = ck and pi = cki for all i. Write

(c∗)ka = (c∗)h1 + . . . + (c∗)hr + chr+1 + . . . + chn

(c∗)k(a + b) = (c∗)h1 + . . . + (c∗)hr + chr+1 + . . . + chn + v.

If c has no exit, we may consider distinct polynomials p and q in B[x, x−1], defined by p(x) = (x−1)h1 +
. . .+(x−1)hr +xhr+1 + . . .+xhn and q(x) = (x−1)h1 + . . .+(x−1)hr +xhr+1 + . . .+xhn +1, and deduce that 
p(c) = (c∗)ka and q(c) = (c∗)k(a +b), whence (p(c), q(c)) ∈ ρ, as desired. On the other hand, if c has an exit f , 
i.e., there exists 1 ≤ j ≤ m such that ej �= f and s(f) = s(ej), we obtain (0, r(f)) = (z∗p(c)z, z∗q(c)z) ∈ ρ

for z := e1 . . . ej−1f , as desired.
Case 2: There are at least two distinct closed simple paths based at v, say c and d, and we have 

c∗d = 0 = d∗c. Note that (p∗a, p∗(a + b)) ∈ ρ and let

α := p∗a = q∗1 + . . . + q∗s + qs+1 + . . . + qn

β := p∗(a + b) = q∗1 + . . . + q∗s + qs+1 + . . . + qn + v,

where q1, . . . , qn are closed paths in E based at v. Then for some k ∈ N, where |ck| > max{|q1|, . . . , |qn|}, 
we get α′ := (c∗)kxck = (c∗)kq∗1ck + . . . + (c∗)kq∗sck + (c∗)kqs+1c

k + . . . + (c∗)kqnck and β′ := (c∗)kyck =
(c∗)kq∗1ck + . . .+ (c∗)kq∗sck + (c∗)kqs+1c

k + . . .+ (c∗)kqnck + v, and (α′, β′) ∈ ρ. If (c∗)kq∗i ck = 0 = (c∗)kqjck
for all 1 ≤ i ≤ s and s +1 ≤ j ≤ n, then (0, v) = (α′, β′) ∈ ρ. Note that if (c∗)kqjck �= 0, then (c∗)kqj �= 0, 
and as |ck| > |qj |, we have ck = qjq

′
j for some closed path q′j , whence qj = c� for some positive integer � ≤ k. 

Similarly, in the case (c∗)kq∗i ck �= 0, we get that q∗i = (c∗)� for some positive integer � ≤ k. Since c∗d =
0 = d∗c, for every i, j, one gets d∗(c∗)kq∗i ckd = 0 = d∗(c∗)kqjckd, and hence, (0, v) = (d∗α′d, d∗β′d) ∈ ρ, as 
desired, thus finishing the proof. �

Two results of importance, which are direct consequences of Lemma 4.6, are the following Uniqueness 
Theorems. These results can be considered as the B-algebra analogs of [45, Th. 5.3, Th. 6.5]. Namely, the 
following corollary is an B-algebra analog of the Graded Uniqueness Theorem [45, Th. 5.3].

Corollary 4.7. Let E be a row-finite graph and A an arbitrary B-algebra. Then, a hemiring homomorphism 
ϕ : LB(E) −→ A is injective if and only if the following two conditions are satisfied:

(1) ϕ(v) �= 0 for all v ∈ E0;
(2) ϕ(p(c)) �= ϕ(q(c)) for all cycles c in E without exits, and for all distinct polynomials p(x), q(x) ∈

B[x, x−1].
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Proof. (=⇒). Assume that ϕ is injective. Considering the natural homomorphism πE : LB(E) −→ AB(GE), 
we have πE(v) = 1Z(v,v) �= 0 and so v �= 0, for all v ∈ E0. Since ϕ is injective, ϕ(v) �= 0 for all v ∈ E0, 
proving condition (1).

Let c be a cycle in E without exits, and let p(x), q(x) be two distinct polynomials in B[x, x−1]. It is clear 
that p(c), q(c) ∈ vLB(E)v, where v := s(c) = r(c). As shown in the proof of [26, Prop. 3.1 (2)], the natural 
homomorphism ϑ : B[x, x−1] → vLB(E)v, defined by ϑ(f) = f(c), is an isomorphism of B-algebras. This 
implies that p(c) = ϑ(p) �= ϑ(q) = q(c), and hence ϕ(p(c)) �= ϕ(q(c)), showing condition (2).

(⇐=). Suppose that ϕ is not injective. This implies that its congruence on LB(E), namely ker(ϕ) :=
{(x, y) ∈ LB(E) | ϕ(x) = ϕ(y)}, is different from the diagonal congruence. By Lemma 4.6, we either have 
(v, 0) ∈ ker(ϕ) for some v ∈ E0, or (p(c), q(c)) ∈ ker(ϕ), where c is a cycle in E without exits, and p(x), 
q(x) are distinct polynomials in B[x, x−1]. In the first case, we have ϕ(v) = ϕ(0) = 0, and in the second 
case, this implies that ϕ(p(c)) = ϕ(q(c)). Thus either condition (1) or condition (2) is violated, finishing the 
proof. �

The following corollary is an B-algebra analog of the Cuntz-Krieger Uniqueness Theorem [45, Th. 6.5].

Corollary 4.8. Let E be a row-finite graph in which every cycle has an exit, and let A be an arbitrary B-
algebra. If ϕ : LB(E) −→ A is a hemiring homomorphism with ϕ(v) �= 0 for all v ∈ E0, then ϕ is injective.

Proof. This follows directly from Corollary 4.7, since condition (2) is automatically satisfied. �
Now we are able to prove the following theorem, providing a criterion for the natural homomorphism 

from the Leavitt path algebra LB(E) into the Steinberg algebra AB(GE) to be an isomorphism. The result 
establishes that the Leavitt path algebra LB(E) of a row-finite graph E is a Steinberg algebra, which can 
be considered as an B-algebra analog of Clark and Sims’s result [14, Ex. 3.2].

Theorem 4.9. For any graph E, the natural homomorphism πE : LB(E) −→ AB(GE) is an isomorphism if 
and only if E is row-finite.

Proof. (=⇒). It follows from Proposition 4.5.
(⇐=). Assume that E is row-finite. By Proposition 4.5, πE is surjective. We claim that πE is injective 

by using Corollary 4.7. Indeed, we first have πE(v) = 1Z(v,v) �= 0 for all v ∈ E0.
Let c be a cycle in E without exits based at the vertex v, and p(x), q(x) two distinct polynomials in 

B[x, x−1], therefore xkp(x) �= xkq(x) for all k ∈ Z. We choose an integer k such that xkp(x) =
∑

i∈F xi

and xkq(x) =
∑

i∈G xi for some distinct finite subsets F and G of N. Then we have ckp(c) =
∑

i∈F ci

and ckq(c) =
∑

i∈G ci, and hence πE(ckp(c)) =
∑

i∈F 1Z(ci,v) = 1�i∈F Z(ci,v) as well as πE(ckq(c)) =∑
i∈G 1Z(ci,v) = 1�i∈G Z(ci,v). Since F �= G, we have

πE(ckp(c)) = 1�i∈F Z(ci,v) �= 1�i∈G Z(ci,v) = πE(ckq(c)),

whence πE(p(c)) �= πE(q(c)). From these observations and Corollary 4.7, we obtain that πE is injective, 
proving the claim and finishing the proof. �

In light of Theorem 4.9, the natural question arises whether there exists any isomorphism between the 
Leavitt path algebra LB(E) and the Steinberg algebra AB(GE), where E is an arbitrary graph. The following 
example gives a negative answer to this question. Before presenting it, we recall the notion of graph inverse 
semigroups introduced by Mesyan and Mitchell in [33].

Given a graph E = (E0, E1, r, s), the graph inverse semigroup G(E) of E is the semigroup with zero 
generated by the sets E0 and E1, together with a set of variables {e−1 | e ∈ E1}, satisfying the relations:
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(1) vw = δv,wv for all v, w ∈ E0;
(2) s(e)e = e = er(e) and r(e)e−1 = e−1 = e−1s(e) for all e ∈ E1;
(3) e−1f = δe,fr(e) for all e, f ∈ E1;

where δ is the Kronecker delta. We define v−1 = v for each v ∈ E0, and for any path p = e1 . . . en in E

we let p−1 := e−1
n . . . e−1

1 . With this notation, every nonzero element of G(E) can be written uniquely as 
pq−1 for some paths p, q ∈ E∗. It is not hard to verify that G(E) is indeed an inverse semigroup, with 
(pq−1)−1 = qp−1 for all p, q ∈ E∗. For further reference we refer to [33].

Example 4.10. Let E = (E0, E1, r, s) be a graph with single node E0 = {v} and countably infinite set of 
edges E1 = {en | n ∈ N}, where r(en) = v = s(en) for all n ∈ N. Then, LB(E) is not isomorphic to AB(GE).

Proof. Consider the semigroup algebra B[G(E)]. By the universal homomorphism property of LB(E), there 
exists a unique B-algebra homomorphism ϑ : LB(E) −→ B[G(E)] such that ϑ(pq∗) = pq−1 for all p, q ∈ E∗. 
Since B[G(E)] is the free B-semimodule with basis {pq−1 | p, q ∈ E∗}, the map is an isomorphism. This 
implies that LB(E) is the free B-semimodule with basis {pq∗ | p, q ∈ E∗}.

Suppose that LB(E) is isomorphic to AB(GE), and let ϕ : LB(E) −→ AB(GE) be an isomorphism. Since v

is the identity of LB(E) and 1Z(v,v) is the identity of AB(GE) (note that Z(v, v) = G(0)
E ), it follows that 

ϕ(v) = 1Z(v,v). Let F be a nonempty finite subset of E1. We then have ϕ(x) = 1Z(v,v,F ) for some nonzero 
element x ∈ LB(E). Since Z(v, v, F ) is a proper subset of Z(v, v), we get that ϕ(x) = 1Z(v,v,F ) �= 1Z(v,v) =
ϕ(v) and ϕ(v+x) = ϕ(v) +ϕ(x) = 1Z(v,v)+1Z(v,v,F ) = 1Z(v,v) = ϕ(v), hence x �= v and v+x = v. From [26, 
Prop. 2.4] it follows that x can be written in the form x =

∑n
i=1 piq

∗
i , where n ≥ 1, pi, qi ∈ E∗ and pkq∗k �= v

for some 1 ≤ k ≤ n. We then have v = v + x = v +
∑n

i=1 piq
∗
i . But since LB(E) is the free B-semimodule 

with basis {pq∗ | p, q ∈ E∗}, an equation of the type v = v +
∑n

i=1 piq
∗
i cannot hold in LB(E). This shows 

that LB(E) is not isomorphic to AB(GE), finishing the proof. �
Combining Theorems 4.3 and 4.9 with [14, Ex. 3.2], we readily obtain a complete characterization of the 

congruence-simple Leavitt path algebras LS(E) of row-finite graphs over commutative semirings, which was 
established in [26, Th. 4.5] by another approach.

Corollary 4.11 (cf. [26, Th. 4.5]). Let E be a row-finite graph and S a commutative semiring. Then, LS(E)
is congruence-simple if and only if the following three conditions are satisfied:

(1) S is either a field, or the Boolean semifield B;
(2) The only hereditary and saturated subset of E0 are ∅ and E0;
(3) Every cycle in E has an exit.

Remark 4.12. Theorem 4.3 provides us with nice examples of additively idempotent congruence-simple 
semirings by using graph groupoids, which may not isomorphic to the corresponding Leavitt path algebras. 
For example, let E be the graph as in Example 4.10. It is obvious that E0 has the trivial hereditary and 
saturated subsets, and every cycle in E has an exit. Therefore, by Theorem 4.3, AB(GE) is an additively 
idempotent congruence-simple infinite semiring. We have not yet known whether LB(E) is congruence-
simple. However, in any case we obtain a congruence-simple semiring being non-isomorphic to LB(E).
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