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Let o be a complete discrete valuation ring with finite residue field k of odd 
characteristic, and let G be a symplectic or special orthogonal group scheme over o. 
For any � ∈ N let G� denote the �-th principal congruence subgroup of G(o). An 
irreducible character of the group G(o) is said to be regular if it is trivial on a 
subgroup G�+1 for some �, and if its restriction to G�/G�+1 � Lie(G)(k) consists of 
characters of minimal G(kalg)-stabilizer dimension. In the present paper we consider 
the regular characters of such classical groups over o, and construct and enumerate 
all regular characters of G(o), when the characteristic of k is greater than two. As 
a result, we compute the regular part of their representation zeta function.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Let K be a non-archimedean local field, and let o be its valuation ring, with maximal ideal p and finite 
residue field k of odd characteristic. Let q and p denote the cardinality and characteristic of k, respectively. 
Fix π to be a uniformizer of o. Let G ⊆ SLN be a symplectic or a special orthogonal group scheme over o, 
i.e. the group of automorphisms of determinant 1, preserving a fixed non-degenerate anti-symmetric or 
symmetric o-defined bilinear form. In this article we study the set of irreducible regular characters of the 
group of o-points G = G(o), the definition of which we now present.

1.1. The basic definitions

Let Irr(G) denote the set of irreducible complex characters of G which afford a continuous representation 
with respect to the profinite topology. The level of a character χ ∈ Irr(G) is the minimal number � ∈ N0 =
N ∪{0} such that the restriction of any representation associated to χ to the principal congruence subgroup 
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G�+1 = Ker
(
G → G(o/p�+1)

)
is trivial. For example, the set of characters of level 0 is naturally identified 

with the set of irreducible complex characters of G(k).

1.1.1. The residual orbit of a character
Let g = Lie(G) ⊆ glN denote the Lie algebra scheme of G. The smoothness of G implies the equality 

G/G�+1 = G(o/p�+1), and moreover, the existence of an isomorphism of abelian groups between g(k) and 
the quotient group G�/G�+1, for any � ≥ 1 (see [11, II, § 4, no. 3]). In the notation of [11], this isomorphism 
is denoted x �→ eπ

�x. The action of G by conjugation on the quotient G�/G�+1 factors through its quotient 
G(k), making the isomorphism above G(k)-equivariant, with respect to the action given by Ad ◦ α�, where 
Ad denotes the adjoint action of G(k) on g(k), and α� : G(k) → G(k) is a bijective endomorphism of G(k), 
determined by a field automorphism of k (see, e.g. [25, Lemma 3] and the reference therein). Additionally, by 
the assumption char(k) 	= 2 and [32, I, Lemma 5.3], the underlying additive group of g(k) can be naturally 
identified with its Pontryagin dual in a G(k)-equivariant manner. Consequently, there exists an isomorphism 
of G(k)-spaces

g(k) ∼−→ Irr
(
G�/G�+1) . (1.1)

Let χ ∈ Irr(G) have level � > 0. Consider the restriction χG� of χ to G�. By Clifford’s Theorem and the 
definition of level, the restricted character χG� is equal to a multiple of the sum over a single G(k)-orbit of 
characters of G�/G�+1. Using (1.1), this orbit corresponds to a single G(k)-orbit in g(k), which we call the
residual orbit of χ, and denote Ω1(χ) ∈ Ad ◦ α�(G(k))\g(k) = Ad (G(k)) \g(k).

1.1.2. Regular characters
Let kalg be a fixed algebraic closure of k. An element of g(kalg) is said to be regular if its centralizer in 

G(kalg) has minimal dimension among such centralizers (cf. [36, § 3.5]). By extension, an element of g(k)
is said to be regular if its image under the natural inclusion of g(k) into g(kalg) is regular.

Definition 1.1.1 (Regular Characters). A character χ ∈ Irr(G) of positive level is said to be regular if its 
residual orbit Ω1(χ) consists of regular elements of g(k).

For a general overview of regular elements in reductive algebraic groups over algebraically closed fields, 
we refer to [32, Ch. III]. The definition of regular characters goes back to Shintani [31] and Hill [18]. An 
overview of the history of regular characters of GLN (o) can be found in [34]. Also- see [22,35] and [37] for 
the analysis of regular characters of isotropic groups of type An, as well as [30], for a partial treatment of 
anisotropic groups of type An.

1.2. Regular elements and regular characters

Following [18], we begin our investigation of regular characters with the study of regular elements in the 
finite Lie rings g(or), where or = o/pr (see Definition 3.1.1).

A central feature of the analysis undertaken in [18] is the introduction and application of geometric 
methods to the study of regular characters. Given x ∈ MN (o) and r ∈ N, let xr denote the image of x in 
MN (or) under the reduction map. The condition of commuting with xr defines a closed or-group subscheme 
of the fiber product1 GLN ×or, which, upon application of the Greenberg functor, defines a k-group scheme 
[16, § 4, Main Theorem.(5)]. The element xr is said to be regular if the group scheme thus obtained is of 

1 The notation G × or is shorthand for the fiber product G ×Spec o Spec or. Similar notation is used whenever the base change 
being performed is between spectra of rings, and the base ring of the given schemes is understood from context.
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minimal dimension among such group schemes (see [18, Definition 3.2]). In [18, Theorem 3.6], Hill proved 
that xr ∈ Mn(or) is regular if and only if its image x1 ∈ Mn(k) is regular. Additionally, regularity of xr

was shown to be equivalent to the cyclicity of the module oNr over the ring or[xr] ⊆ MN (or). We note that 
Hill’s definition of regularity is equivalent to Shintani’s definition of quasi-regularity [31, § 2].

The equivalence of regularity over the ring or and over k was recently extended to general semisimple 
groups of type An in [22]. In Section 3.2 we further extend this equivalence of to the generality of classical 
groups of type Bn, Cn and Dn in odd characteristic. However, the equivalence of regularity of an element 
xr ∈ g(or) with the cyclicity of the module oNr over or[xr], while true in GLN and generically true in 
G (see Lemma 4.2.1), is not a general phenomenon and in fact fails in certain cases (see Lemma 4.4.1). 
Nevertheless, in the present setting, it is possible to prove a supplementary result (Proposition 3.1.4), which 
specializes to the above equivalence in the case of G = GLN , and provides us with the information needed 
in order to describe the inertia subgroup of such a character and enumerate the characters of G lying above 
a given regular orbit. Consequently, we deduce the first main result of this article.

Theorem I. Let o be a discrete valuation ring with finite residue field of odd characteristic, and let G be a 
symplectic or a special orthogonal group over o with generic fiber of absolute rank n. Let Ω ⊆ g(k) be an 
Ad(G(k))-orbit consisting of regular elements and let � ∈ N.

1. The number of regular characters χ ∈ Irr(G) of level � whose residual orbit is equal to Ω is |G(k)|
|Ω| ·q(�−1)n.

2. Any such character has degree |Ω| · q(�−1)α, where α = dim G−n
2 .

1.3. Regular representation zeta functions

Taking the perspective of representation growth, given a group H, one is often interested in understanding 
the asymptotic behaviour of the sequence {rm(H)}∞m=1, where rm(H) ∈ N ∪ {0,∞} denotes the number of 
elements of Irr(H) of degree m. In the case where the sequence rm(H) is bounded above by a polynomial 
in m, the representation zeta function of H is defined to be the Dirichlet generating function

ζH(s) =
∞∑

m=1
rm(H)m−s, (s ∈ C). (1.2)

In the specific case H = G = G(o), one may initially restrict to a description of the regular representation 
zeta function, i.e. the Dirichlet function counting only regular characters of G. In this respect, Theorem I
implies that the rate of growth of regular characters of G is polynomial of degree 2n

dim G−n . Furthermore, we 
obtain the following.

Corollary 1.3.1. Let X ⊆ Ad(G(k))\g(k) denote the set of orbits consisting of regular elements, and let

Dg(o)(s) =
∑
Ω∈X

|G(k)| · |Ω|−(s+1)
, (s ∈ C). (1.3)

The regular zeta function of G = G(o) is of the form

ζreg
G (s) =

Dg(o)(s)
1 − qn−αs

where n and α are as in Theorem I.
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1.4. Classification of regular orbits in g(k)

The second goal of this article is to compute the regular representation zeta function of the symplectic and 
special orthogonal groups over o. In view of Corollary 1.3.1, to do so, one must classify and enumerate the 
regular orbits in g(k), under the adjoint action of G(k). This classification is undertaken in Section 4, and 
its consequences are summarized in Theorem 4.1.2 and Theorem 4.1.3. The classification of regular adjoint 
classes in the g(k) is closely related to the question of classifying conjugacy classes in classical groups over a 
finite field, a question which was solved in complete generality by Wall in [39, § 2.6]. Taking a enumerative 
perspective, the regular semisimple conjugacy classes in finite classical groups were enumerated in [14], 
using generating functions. Another closely related question is that of enumerating cyclic conjugacy classes 
in finite classical groups. This question is addressed in [15,28]; see Section 4.1 for further discussion. The 
enumeration carried out in this paper yields uniform formulae for the function Dg(o) (and, consequently, for 
the regular representation zeta function) of each of the classical groups in question, which are independent 
of the cardinality of k.

Given n ∈ N let Xn denote the set of triplets τ = (r, S, T ), in which r ∈ N0 and S = (Sd,e) and 
T = (Td,e) are n × n matrices with non-negative integer entires, satisfying the condition

r +
n∑

d,e=1

de (Sd,e + Td,e) = n. (1.4)

Given τ = (r, S, T ) ∈ Xn, define the following polynomial in Z[t]

cτ (t) = tn
∏
d,e

(1 + t−d)Sd,e(1 − t−d)Td,e (1.5)

and let u1(q) = |Sp2n(k)| = |SO2n+1(k)|. Note that the value u1(q) is given by evaluation at t = q of a 
polynomial u1(t) ∈ Z[t], which is independent of q (see, e.g., [42, § 3.5 and § 3.2.7]). Additionally, for any 
τ ∈ Xn, let Mτ (q) denote the number of polynomials of type τ over a field of q elements; see Definition 4.1.1. 
An explicit formula for Mτ (q) is computed in Section 4.1.1. We remark that the value of Mτ (q) is given by 
evaluation at t = q of a uniform polynomial formula which is independent of q as well; see (4.3).

Theorem II. Let o be a complete discrete valuation ring of odd residual characteristic. Let n ∈ N and G be 
one of the o-defined algebraic group schemes Sp2n or SO2n+1, with g = Lie(G).

Given τ = (r, S, T ) ∈ Xn let

ν(τ ) = νG(τ ) =
{

1 if G = Sp2n and r > 0,
0 otherwise.

The Dirichlet polynomial Dg(o)(s) (see (1.3)) is given by

Dg(o)(s) =
∑
τ∈Xn

4ν(τ )Mτ (q) · cτ (q) ·
(

u1(q)
2ν(τ )cτ (q)

)−s

. (1.6)

Recall that a symmetric bilinear form over a finite field of odd characteristic is determined by the Witt 
index of the form, i.e. the dimension of a maximal totally isotropic subspace with respect to the form. 
Following standard notation, we write SO+

2n and SO−
2n to the group schemes whose group of k-points are 

associated with a symmetric bilinear form of Witt index n and n − 1 respectively. Also, for convenience, we 
often use the notation SO±1

2n for SO±
2n.
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Given ε ∈ {±1}, let uε
2(q) = |SOε

2n(k)|. As in the previous case, note that the value uε
2(q) is given by 

evaluation at t = q of a polynomial uε
2(t) ∈ Z[t], which is independent of q (see [42, § 3.2.7])

Theorem III. Let o be a complete discrete valuation ring of odd residual characteristic and whose residue 
field has more than 3 elements. Let n ∈ N and ε ∈ {±1}. Let Gε = SOε

2n be the o-defined special orthogonal 
group scheme, as described above, and let gε = Lie(Gε).

Let X 0
n denote the set of triplets τ = (r, S, T ) ∈ Xn with r = 0, and let X 0,+1

n denote the subset of X 0
n

consisting of elements (0, S, T ) such that 
∑

d,e eSd,e is even and X 0,−1
n = X 0

n � X 0,+1
n .

The Dirichlet polynomial Dg(o) (see (1.3)) is given by

Dgε(o)(s) =
∑

τ∈X0,ε
n

Mτ (q) · cτ (q) ·
(
uε

2(q)
cτ (q)

)−s

+
∑

τ∈Xn�X0
n

4 ·Mτ (q) · cτ (q) ·
(

uε
2(q)

2 · cτ (q)

)−s

. (1.7)

1.5. Organization

Section 2 gathers necessary preliminary results and sets up notation. Section 3 contains basic structural 
results regarding the regular orbits of g(o) and regular characters of G(o), and the proof of Theorem I. 
Finally, in Section 4 we classify the regular adjoint orbits of g(k) and compute the regular representation 
zeta function of G(o).

2. Notation, preliminaries and basic definitions

2.1. The symplectic and orthogonal groups

Fix N ∈ N and a matrix J ∈ GLN (o) such that Jt = εJ, with ε = −1 in the symplectic case and ε = 1
in the special orthogonal case. The group scheme G is defined by

G(R) =
{
x ∈ MN (R) | xtJx = J and det(x) = 1

}
, (2.1)

where R is a commutative o-algebra and the notation xt stands for the transpose matrix of x. A standard 
computation (see, e.g. [40, § 12.3]) shows that the Lie-algebra scheme g = Lie(G) is given by

g(R) =
{
x ∈ MN (R) | xtJ + Jx = 0

}
. (2.2)

Let n and d denote the dimension and the absolute rank of the generic fiber of G. Note that the absolute 
rank and dimension of the generic fiber of G are equal to those of its special fiber, by flatness of G and of 
its maximal tori (see [1, VIB, Corollary 4.3]).

2.1.1. Adjoint operators
Let RN denote the N -th cartesian power of R, identified with the space MN×1(R) of column vectors, 

and define a non-degenerate bilinear form on RN by BR(u, v) = utJv. One defines an R-anti-involution on 
MN (R) = EndR(RN ) by

A� = J−1AtJ (A ∈ MN (R)), (2.3)

or equivalently, by letting A� be the unique matrix satisfying BR(A�u, v) = BR(u, Av), for all u, v ∈ RN . 
In this notation, we have that A ∈ G(R) if and only if det(A) = 1 and A�A = 1, and that A ∈ g(R) if and 
only if A� + A = 0.
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2.1.2. Maximal tori and centralizers over algebraically closed fields
Let T be a maximal torus of G and let t ⊆ g be its Lie-algebra. Given an algebraically closed field L, 

which is an o-algebra, we may assume that T(L) is the group of N × N diagonal matrices. Moreover, 
upto possibly replacing J with a congruent matrix, which amounts to conjugation of the given embedding 
G ⊆ GLN by a fixed matrix over o, we may assume that T(L) is mapped onto the subgroup of diagonal 
matrices diag(ν1, . . . , νN ), satisfying ν2i = ν−1

2i−1 for all i = 1, . . . , �N/2�, and with νN = 1 if N is odd. In 
particular, the absolute rank of the generic fiber of G is n = dim(T ×Spec o Spec L) = �N/2�, for L = Kalg

the algebraic closure of K.
Under this embedding, the Lie-algebra t(L) consists of diagonal matrices of the form diag(ν1, . . . , νN ), 

with ν2i = −ν2i−1 for all i = 1, . . . , n and νN = 0 if N is odd. We require the following well-known result.

Proposition 2.1.1. Let s ∈ g(L) be a semisimple element. The centralizer of s under the adjoint action of 
G(L) is of the form

CG(L)(s) 

t∏

j=1
GLmj

(L) × Δ(L),

where Δ is the L-algebraic group of isometries of the restriction of BL to (a non-degenerate bilinear form 
on) Ker(s), the eigenspace associated with the eigenvalue 0, and the values m1, . . . , mt are the algebraic 
multiplicities of all non-zero eigenvalues of s such that for any such eigenvalue λ, there exists a unique 
j = 1, . . . , t such that mj is the algebraic multiplicity of λ and −λ.

Proof. Let V = LN be the fixed L-vector space on which G(L) ⊆ GLN (L) acts. The element s is thus 
considered as an endomorphism of V . The decomposition of V into eigenspaces of s gives rise to a direct 
decomposition into isotypic CGLN (L)(s)-modules, V = ⊕λ∈LWλ, where Wλ = Ker(s −λ1). For any non-zero 
λ ∈ L, put W[λ] = Wλ⊕W−λ. A simple computation reveals that the spaces W0 and W[λ] are non-degenerate 
with respect to the ambient symmetric or anti-symmetric bilinear form. Since CG(L)(s) = CGLN (L)(s) ∩
G(L), it holds that x ∈ CG(L)(s) if and only if x ∈ CGLN (L)(s) and x acts as an isometry with respect to 
the restriction of B to the spaces W0 and W[λ] (for λ 	= 0).

Arguing as in [4, III, § 2.4], one verifies that for any λ 	= 0 the decomposition W[λ] = Wλ ⊕ W−λ is 
into maximal isotropic subspaces, and in particular dimL Wλ = dimL W−λ = mj , for some j = 1, . . . , t. 
Invoking Witt’s Theorem [39, § 1.2], and the CGLN (L)(s)-isotipicity of the decomposition, we obtain that 
any automorphism of Wλ extends uniquely to an isometric automorphism of W[λ] which commutes with the 
action of s, and that the action of CG(L)(s) on W[λ] is determined in this manner. Furthermore, it holds 
that any automorphism of W0 = Ker(s) which preserves the restriction of B to W0 necessarily commutes 
with s, and that the action of CG(L)(s) on this subspace is by such automorphisms. The proposition 
follows. �
2.2. Artinian local principal ideal rings

Let Kalg be a fixed algebraic closure of K and let Kunr be the maximal unramified extension of K in Kalg. 
Let O be the valuation ring of Kunr, and P = πO its maximal ideal. The residue field of O is identified 
with the algebraic closure kalg of k. Given r ∈ N we put or := o/pr and Or := O/Pr and write ηr : O → Or

and ηr,m : Or → Om for the reduction maps, for any 1 ≤ m ≤ r. The notation ηr and ηr,m is also used to 
denote the coordinatewise reduction map on MN (O) and MN (Or), respectively.

The map η1 admits a canonical splitting map s : kalg → O, which restricts to a homomorphic embedding 
of (kalg)× into O×, and satisfies s(0) = 0; see [29, Ch. II, § 4, Proposition 8].
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Let σ : Kunr → Kunr be the local Frobenius map whose fixed field is K. Then σ restricts to a ring 
automorphism of O, with fixed subring Oσ = o, and induces a map Or → Or for any r ≥ 1 whose fixed 
subring is or. In the special case r = 1, the map σ : kalg → kalg is given by the q-power map x �→ xq, where 
q = |k|.

2.3. The Greenberg functor

The Greenberg functor was introduced in [16] and [17], as a generalization of Shimura’s reduction mod p
functor to higher powers of p. Given an artinian local principal ideal ring R (or more generally, an artinian 
local ring) with a perfect residue field k, the Greenberg functor FR associates to any R-scheme Y locally 
of finite type a scheme FR(Y) locally of finite type over the residue field k. Given another such ring R′

with residue field k and a ring homomorphism R → R′, the functors FR and FR′ are related via connecting 
morphisms, on which we expand further below.

A defining property of the functor is the existence of a canonical bijection

FR(Y)(k) = Y(R). (2.4)

More generally, if A is a perfect commutative unital k-algebra, then either FR(Y)(A) = Y(R ⊗k A), in the 
case where R is a k-algebra, or otherwise

FR(Y)(A) = Y(R⊗W (k) W (A)) (2.5)

where W (·) denotes the ring of p-typical Witt vectors [29, Ch. II, § 6]. For further introduction we refer to 
[6, p. 276].

Our application of the Greenberg functor is focused on the artininan principal ideal rings Or. For any r, 
we let GOr

= G × Or and gOr
= g × Or denote the base change of the group and Lie-algebra schemes 

G and g. Put Γr = FOr
(GOr

) and γr = FOr
(gOr

). Given m ≤ r, we write η∗r,m to denote the connecting 
maps Γr → Γm and γr → γm, and put Γm

r = (η∗r,m)−1(1) = Spec (κ(1)) ×Γm
Γr (the scheme-theoretic 

group kernel) and γmr = (η∗r,m)−1(0) = Spec (κ(0)) ×γm γr (the scheme-theoretic Lie-algebra kernel). Here, 
the notation κ(·) stands for the residue field at a rational point of a scheme.

Note that, a priori, the connecting morphism between a scheme and its base change is dependent on the 
scheme in question as well. The apparent abuse of notation in writing η∗r,m for the connecting morphisms 
of different schemes is permissible by [16, § 5, Corollary 4], applied for g the inclusion morphism (see also 
Assertion 2 of the Main Theorem of [16]).

The main properties which we require are summarized in the following lemma.

Lemma 2.3.1. For r ∈ N fixed, we have

1. The rings Or are the kalg-points of an r-dimensional algebraic ring scheme Or over kalg.
The canonical map s : kalg → Or defines a closed embedding s∗ : A1

kalg → Or of the affine line over kalg

into this ring variety. The restriction of s∗ to the multiplicative group Gm ⊆ A1
kalg is a monomorphism 

of kalg-linear algebraic groups, satisfying η∗r,1 ◦ s∗ = 1A1
kalg

.
2. The group Γr is a d · r-dimensional linear algebraic group over kalg.
3. The Greenberg functor maps smooth closed sub-Or-group schemes of GOr

to closed algebraic
kalg-subgroups of Γr.

4. The scheme γr is a d ·r-dimensional affine space over kalg, which is naturally endowed with the structure 
of a Lie-algebra scheme over the ring scheme Or.
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5. The connecting morphisms η∗r,m, for m ≤ r, give rise to surjective kalg-group scheme Γr → Γm

morphisms. Similarly, for γr → γm, these are surjective Lie-ring morphisms.
6. The adjoint action of GOr

on the Lie-ring scheme gOm
with m ≤ r, induces an action of the algebraic 

group Γr on γm. The application of FOr
preserves centralizers of Om-rational points of gOm

.

Proof. 1. See [16, § 1, Proposition 4].
2. The group Γr is a smooth affine group scheme of finite type over kalg (see [16, § 4, Theorem.(5)] and 
[17, Corollary 1, p. 263]). Thus, by [40, 11.6], Γr is a linear algebraic kalg-group (see also [33, § 4]). The 
dimension of Γr may be computed by induction on r, using Greenberg’s Structure Theorem [17] (see 
remark on p. 266 of [17]; also, see [3, Lemma 4.1.1] for an explicit argument in the case where r is divisible 
by the absolute ramification index of o).
3. Let Δ ⊆ GOr

be a closed smooth sub-Or-scheme. The argument of the previous assertion shows 
that FOr

(Δ) is a linear algebraic group over kalg. That FOr
(Δ) is a closed subgroup of Γr follows from 

Assertions (2) and (5) of the Main Theorem of [16, p. 643].
4. The Lie-algebra scheme gOr

is isomorphic to the affine d-dimensional space Ad
Or

over Or, and is endowed 
with Or-regular maps, defining an Or-module structure and an Or-bilinear Lie-bracket on gOr

. It follows 
from the Main Theorem of [16, p. 643], that γr = FOr

(gOr
) is isomorphic to Adr

kalg , the affine space 
of dimension d · r over kalg. Multiplication by scalars from Or, the Lie-bracket and addition on gOr

are transported by FOr
to schematic morphisms Or × γr → γr and γr × γr → γr by [16, Corollary 3, 

p. 641]. The Lie-axioms on FOr
(γr) may be verified using compatibility of the Greenberg functor with 

preimages [16, Corollary 3, p. 641]. For example, the Jacobi identity can be reformulated using the equality 
gOr

× gOr
× gOr

= J−1(0), where J : gOr
× gOr

× gOr
→ gOr

is the morphism satisfying J(R)(x, y, z) =
[[x, y], z] + [[y, z], x] + [[z, x], y] for any Or-algebra R and x, y, z ∈ gOr

(R).
5. The connecting map is shown to be a group homomorphism in [16, § 5, Corollary 5], and the preservation 
of the Lie-bracket follows similarly from [16, § 5, Corollary 2]. Its surjectivity follows from the smoothness 
of GOr

(resp. γOr
), and [17, Corollary 2, p. 262].

6. The action of Γr on γm is given by FOm
(αm) ◦ (η∗r,m×1γm) : Γr ×γm → γm, where αm : GOm

×gOm
→

gOm
is the adjunction map; see [33, § 3]. One notes easily that, since the group Γm

r acts trivially on γm, 
this action commutes pointwise with the bijection (2.5). The preservation of centralizers follows from [33, 
Proposition 3.6], by taking Y and Z to be the sub-schemes defined by the spectrum of the reside field of 
gOm

at the given rational point. �
Remark 2.3.2. In the case where Or is a kalg-algebra, Lemma 2.3.1.(3) may be somewhat strengthened, as 
in this case γr can be shown to coincide with the Lie-algebra of Γr. In the case of unequal characteristic, 
the equality γr = Lie(Γr) is generally false. For example, in the case of G = Ga, the additive group scheme, 
we have that γ2(kalg) = Lie(Ga)(W2(kalg)) = W2(kalg) is a ring of characteristic p2, while Lie(Γ2)(kalg) is a 
two-dimensional kalg-Lie-algebra and, in particular, has p-torsion.

We also require the following lemma.

Lemma 2.3.3. For any m, r ∈ N with m ≤ r, there exists an injective homomorphism of the underlying 
additive group schemes v∗r,m : γr−m → γr, such that

1. for any y ∈ γr−m(kalg) = g(Or−m), it holds that v∗r,m(kalg)(y) = πmỹ, where ỹ ∈ g(Or) is such that 
ηr,r−m(ỹ) = y;

2. the sequence 0 → γr−m

v∗
r,m−−−→ γr

η∗
r,m−−−→ γm → 0 is exact;
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3. for any y ∈ γr−m(kalg) the square (2.6) commutes

γr γr

γr−m γr−m,

ad(v∗r,m(y))

ad(y)
η∗r,r−m v∗r,m

(2.6)

where ad(z) : γj × γj → γj (for j ∈ N and z ∈ γj(kalg)) is the map defined by ad(z)(A)(x) = [z, x] for 
any commutative unital kalg-algebra A and x ∈ γj(A);

4. The equality η∗r,m+1 ◦ v∗r,m = v∗m+1,1 ◦ η∗r−m,1 holds.

Proof. The map x �→ πmx : g(or) → g(or) gives rise to an injective or-module map vr,m : g(or−m) → g(or), 
which in turn extends to a map of Or-modules, giving rise to the exact sequence

0 → gOr−m
(Or)

vr,m−−−→ gOr
(Or)

ηr,m−−−→ gOm
(Or) → 0.

Applying [16, § 1, Proposition 3.(6)] to both maps of the above sequence, these define k-regular maps 
between associated module variety structures over kalg of the modules above, which, in turn, define an exact 
sequence of kalg-schemes

0 → γr−m

v∗
r,m−−−→ γr

η∗
r,m−−−→ γm → 0,

where the right-most map coincides with η∗r,m by same proposition and by [16, § 5, Corollary 2]. The first 
and second assertions of the lemma follow.

As for the third assertion, in order to prove that the morphisms v∗r,m ◦ ad(y) ◦ η∗r,r−m and ad(vr,m(y))
coincide, it is enough to show that, upon passing to their associated comorphisms, they induce the same 
endomorphism of the coordinate ring of γr. Invoking the isomorphism γr 
 Adm

kalg of Lemma 2.3.1.(3), since an 
endomorphism of a polynomial algebra in dm variables is determined by specifying the images of t1, . . . , tdm
in kalg[t1, . . . , tdm], by Nullstellensatz, it is enough to show that the two endomorphisms above coincide 
pointwise on γr(kalg). This is immediate by the first two assertions and the linearity of ad(·) over Or. The 
fourth assertion may be proved in a similar vein as Assertion (3). �
Remark 2.3.4. In the case where O is either a kalg-algebra, or is absolutely unramified (i.e. P = pO), and 
thus isomorphic to the ring W (kalg), the map v∗r,m of the lemma may be described explicitly, by fixing a 
suitable coordinate system for γr over kalg and taking v∗r,m to be either a coordinate shift in the former case, 
or given by successive applications of the verschiebung and Frobenius maps coordinatewise (see [29]) in the 
latter.

2.4. The Cayley map

Let D be the affine o-scheme Spec (o[t1,1, . . . , tN,N , (det(t + 1))−1]), where t1,1, . . . , tN,N are indetermi-
nates and t +1 is the N ×N matrix whose (i, j)-th entry is ti,j +δi,j , with δi,j the Kronecker delta function. 
Note that for any commutative unital o-algebra R, the set of R-points of D is naturally identified with the 
set

{
x ∈ MN (R) | det (1 + x) ∈ R×} . (2.7)
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Let cay : D → D be the o-scheme morphism with associated comorphism cay� given on generators of 
o[t1,1, . . . , tN,N , (det(1 + t))−1] by mapping ti,j to the (i, j)-th entry of the matrix (1 − t)(1 + t)−1. Note 
that cay�(det(1 + t)−1) = 2−N det(1 + t). A direct computation shows that, as 2 is invertible in o, the map 
cay� is its own inverse and thus cay is an isomorphism of D onto itself.

Under the identification (2.7) for R an o-algebra as above, the action of cay on the set of R-points of D
is given explicitly by

cay(R)(x) = (1 − x)(1 + x)−1. (2.8)

In the specific case R = kalg, the sets (D ∩ g)(kalg) and (D ∩ G)(kalg) are principal open subsets of 
g(kalg) and G(kalg) respectively.2 Using the description of g and G given in Section 2.1.1, one verifies 
that the restriction of cay(kalg) to (D ∩ g)(kalg) defines an algebraic isomorphism of affine varieties onto 
(D ∩ G)(kalg), and hence a birational map cay(kalg) : g(kalg) ��� G(kalg). Additionally, being given by a 
rational function in x on (D ∩ g)(kalg), the map cay(kalg) is equivariant with respect to the conjugation 
action of G(kalg). The properties listed in this paragraph carry over to the associated kalg-group schemes 
described in the previous section, as noted in Lemma 2.4.1 below.

The Cayley map was introduced in [10]. Its generalization to groups arising as the set of unitary trans-
formations with respect an anti-involution of an associative algebra is attributed to A. Weil [41, § 4]. See 
also [24] for a more generalized treatment of the Cayley map.

2.4.1. Properties of the Cayley map
Given r ∈ N, put Dr = D ×Or and let cayr = cay × 1Or

be the base change of cay. Let Δr = FOr
(Dr)

and ĉayr = FOr
(cayr). Note that, by construction and by the Main Theorem of [16], Δr is an open affine 

subscheme of AN2m
kalg .

Lemma 2.4.1. Let 1 ≤ m ≤ r. The map ĉayr has the following properties.

Cay1. The map ĉayr is a birational equivalence γr ��� Γr. Furthermore, its restriction to the kernel γmr is 
an isomorphism of kalg-varieties onto Γm

r , and is an isomorphism of abelian groups if 2m ≥ r.
Cay2. The map ĉayr is Γr-equivariant with respect to the action given in Lemma 2.3.1.(6) on γr and with 

respect to group conjugation on Γr.
Cay3. The diagram in (2.9) commutes.

γr Γr

γm Γm.

ĉayr

ĉaym

η∗r,m η∗r,m

(2.9)

Proof. 1. The inclusion map Dr ∩ gOr
⊆ gOr

is an open immersion, and thus by Assertion (2) and (3) of 
the Main Theorem of [16], the kalg-scheme Δr ∩ γr is immersed as an open subscheme of γr. Similarly for 
Δr ∩Γr. By functoriality, the morphism ĉayr is an isomorphism of Δr ∩ γr onto Δr ∩Γr, and hence γr and 
Γr are birationally equivalent.

2 Here ∩ denotes the scheme-theoretic intersection, D ∩ g = D ×Spec (o[t1,1,...,tN,N ]) γ. Note that, in the present setting, as 
g ⊆ MN ×o = Spec (o[t1,1, . . . , tN,N ]), for any o-algebra R, (D∩g)(R) is simply the set of matrices x ∈ g(R) such that the matrix 
1 + x is invertible. Likewise for D ∩ G, using the inclusions G ⊆ SLN × o ⊆ MN × o.
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To prove that ĉayr restricts to an isomorphism of γmr onto Γm
r , it would be enough that both are 

embedded as sub-schemes of Δr under the given inclusions into AN2m
kalg . Note that by applying Greenberg’s 

Structure Theorem [17] inductively, both γmr and Γm
r are reduced, and thus are kalg-varieties. Thus, by 

Nullstellensatz, they are determined by their kalg-points and it suffices to show they are included in the 
reduced subscheme (Δr)red ⊆ Δr. This follows from the bijection (2.4), as γmr (kalg) = gOr

(Or) ∩ η−1
r,m(0)

is included in the nilradical of the matrix algebra MN (Or), and hence included in Dr(Or), and since 
Γm
r (kalg) = GOr

(Or) ∩ η−1
r,m(1) ⊆ 1 + πMN (Or) ⊆ GLN (Or), and thus (since char(kalg) 	= 2) included in 

Dr(Or).
Lastly, to prove that ĉayr is a group homomorphism whenever 2m ≥ r, it is equivalent to show that it 

preserves comultiplication in the Hopf-algebra structure of the coordinate ring of γmr in this case. Arguing 
as in the proof Lemma 2.3.3, it sufficient to verify this on the kalg-points of the variety. This follows from 
the definition of cay (2.8), as in this case γmr (kalg) ⊆ gOr

(Or) is included in an ideal of vanishing square in 
MN (Or) and the map ĉayr coincides with the map x �→ 1 − 2x.
2. Property (Cay2) holds since FOr

maps the cartesian square (2.10), which states the GOr
-equivariance 

of cayr, to a corresponding cartesian square, stating the Γr-equivariance of ĉayr.

GOr
× gOr

gOr

GOr
× GOr

GOr

�

αGOr ,gOr

αGOr ,GOr

1GOr
× cayr cayr

(2.10)

Here αGOr ,X denotes the action map of GOr
on X ∈ {GOr

,gOr
} by either conjugation or by the adjoint 

action.
3. Finally, property (Cay3) is simply an application of [16, Corollary 4, p. 645], to the case R = or, 
R′ = om, ϕ = ηr,m, X1 = γr ∩Dr, X2 = Γr ∩Dr and g = cayr. �
2.5. Groups, Lie algebras and characters

In general, given finite groups Δ ⊆ Γ and characters σ ∈ Irr(Δ) and χ ∈ Irr(Γ), we denote by χΔ the 
restriction of χ to Δ, and by σΓ the character induced from σ in Γ. Group commutators are denoted by 
(x, y) = xyx−1y−1. Lie-algebra commutators are denoted by [x, y] = xy − yx. The center of a group Γ is 
denoted by Z(Γ).

The Pontryagin dual of a finite abelian group Δ is denoted by Δ̂ = Hom(Δ, C×). If Δ is endowed with 
an additional structure (e.g. a ring or a Lie-algebra), then Δ̂ refers to the Pontryagin dual of the abelian 
group underlying Δ.

3. Regular elements and regular characters

3.1. Regular elements

We begin our analysis of regular characters by inspecting the group G(O). To do so, we first consider 
the regular orbits for the action of G(Or) on g(Or), or, equivalently (see [33, § 3]), of Γr(kalg) on γr(kalg), 
via the action described in Lemma 2.3.1.(6). The methods which we apply are influenced by [18].

Recall that an element of a reductive algebraic group over an algebraically closed field is said to be
regular if its centralizer is an algebraic group of minimal dimension among such centralizers [36, § 3.5]. 
Following [18], this definition is extended to elements of γr.
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Definition 3.1.1. Let r ≥ 1. An element x ∈ g(Or) is said to be regular if the group scheme FOr

(
CGOr

(x)
)

=
CΓr

(x), obtained by applying the Greenberg functor to the centralizer group scheme of x in GOr
, is of 

minimal dimension among such group schemes.

The following theorem lists the main properties of regular elements of γr, which are proved in this section.

Theorem 3.1.2. Let G be a symplectic or a special orthogonal group scheme over a complete discrete valuation 
ring o of odd residue field characteristic, with Lie-algebra g = Lie(G). Fix r ∈ N and let x ∈ g(Or).

1. If xr is a regular element of gOr
(Or), then CΓr

(xr) is a kalg-group scheme of dimension r · n, where 
n = rk(G × Kalg).

2. The element xr is regular if and only if x1 = ηr,1(xr) is a regular element of g(kalg).
3. Suppose xr ∈ g(Or) is regular. The restriction of the reduction map ηr,1 to CG(Or)(xr) is surjective 

onto CG(kalg)(x1).

Remark 3.1.3. Assertions (1) and (3) of Theorem 3.1.2, as well as Assertion (1) of Proposition 3.1.4 below, 
are formal consequences of the stronger statement that the centralizer group scheme CGOr

(x) is smooth 
over Or, whenever x ∈ g(Or) is regular. This statement, while plausible, is not proved in this article.

The proofs of Assertions (1), (2) and (3) of Theorem 3.1.2 are given, respectively, in sections 3.1.1, 3.1.2
and 3.1.3 below. Once the proof of Theorem 3.1.2 is complete, we return to analyze the case of regular 
elements of gr = γr(Or)σ.

Proposition 3.1.4. Let G be a symplectic or a special orthogonal group over o with g = Lie(G) and let 
x ∈ g = g(o). Assume xr = ηr(x) is regular for some r ∈ N. Then

1. CG(x) = lim←−−r
CGr

(xr), where G = G(o) and Gr = G(or)
2. Furthermore, x is a regular element of g(Kalg).

Proposition 3.1.4 has the following corollary.

Corollary 3.1.5. In the notation of Proposition 3.1.4, let x ∈ g such that xr = ηr(x) is a regular element 
of gr, for some r ∈ N. Then CGr

(xr) is abelian.

3.1.1. General properties of the groups Γr

We begin by examining some basic properties of the group Γr (r ∈ N) and of centralizers of elements 
of γr, when considered as algebraic group schemes over kalg. The following lemma summarizes the necessary 
components for the proof of Theorem 3.1.2.(1), and is mostly included in [33].

Lemma 3.1.6.

1. The group scheme Γr is a connected linear algebraic group over kalg.
2. The unipotent radical of Γr is Γ1

r.
3. Let T be a maximal torus of G, defined over O, and let T1 = T × kalg ⊆ Γ1. The restriction of the map 

s∗ : A1
kalg → Or of Lemma 2.3.1.(1) to Gm extends to an embedding of T1 as a maximal torus in Γr.

4. The centralizer of s∗(T1) in Γr is the Cartan subgroup FOr
(T ×Or). Moreover, Fr(T × Or) is a linear 

algebraic kalg-group of dimension n · r.
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Proof. 1. Connectedness is proved in [33, Lemma 4.2]. The fact that Γr is linear algebraic over kalg is shown 
in Lemma 2.3.1.(1).
2. See [33, Proposition 4.3].
3. May be proved by following the argument of [18, Proposition 2.2.(2)], practically verbatim, making use 
of the fact that Γr and Γ1 = η∗r,1(Γr) are of the same rank by the previous assertion, and that s∗(T1) is a 
connected abelian subgroup of Γr of dimension n = rk(Γ1).
4. The inclusion T(Or) ⊆ CΓr(kalg)(s∗(T1)(kalg)) is clear, since T(Or) is abelian and contains s∗(T1)(kalg), 
by Lemma 2.3.1.(1). The inclusion T × Or ⊆ CΓr

(s∗(T1)) follows (see [33, Proposition 3.2]). By [33, 
Theorem 4.5], FOr

(T × Or) is a Cartan subgroup of Γr and hence is equal to the centralizer of s∗(T1). 
Finally, the statement regarding the dimension of Fr(T ×Or) follows from Lemma 2.3.1.(1). �
Proof of Theorem 3.1.2.(1). The alternative proof of [36, Ch. III, § 3.5, Proposition 1] shows that the 
minimal centralizer dimension of an element of g(Or) is equal to that of a Cartan subgroup of Γr, provided 
that the Cartan subgroups of Γr are abelian and that their union forms a dense subset of Γr. The former 
of these conditions holds by [33, Theorem 4.5], and the latter by [5, IV 12.1]. �
3.1.2. Regularity and the reduction maps

The first step towards the proof of the second assertion of Theorem 3.1.2 is an analogous result to [18, 
Lemma 3.5] in the Lie-algebra setting. Following this, we use the properties of the Cayley map in order to 
transfer the result to the group setting and to deduce the equivalence of regularity of an element of γr and 
of its image in γ1.

Lemma 3.1.7. Let x ∈ g(O) be fixed, and for any r ∈ N put xr = ηr(x) ∈ g(Or). Let Cγr (xr) denote 
the Lie-algebra centralizer of xr, i.e. Cγr (xr)(A) = {y ∈ γr(A) | ad(xr)(A)(y) = 0}, for any commutative 
unital kalg-algebra A. The image of Cγr(xr) under the connecting morphism η∗r,1 is a kalg-group scheme of 
dimension greater or equal to n.

Proof. Assume towards a contradiction that the statement of the lemma is false, and let r be minimal such 
that dim η∗r,1

(
Cγr (xr)

)
< n. Note that, since η∗r,1 ◦ η∗m,r = η∗m,1 for all m > r (by [16, Proposition 3, § 5]) 

we also have that dim η∗m,1
(
Cγm(xm)

)
< n for all m ≥ r.

Fix m ≥ r, and consider the sequence of immersions

Cγm(xm) ⊇ Cγ1m(xm) ⊇ . . . ⊇ Cγm−1
m

(xm) ⊇ 0, (3.1)

where Cγim(xm) = Cγm(xm) ∩ γim. Then

dimCγm(xm) =
m−1∑
i=0

(
dimCγim(xm) − dimCγi+1

m
(xm)

)
, (3.2)

where γ0
m = γm and γmm = Spec (κ(0)).

For any 0 ≤ i ≤ m − 1, the map v∗i,m : γm−i → γm of Lemma 2.3.3 restricts, by Assertion (3) of the 
lemma, to an isomorphism of abelian kalg-group schemes Cγm−i

(xm−i) 
 Cγim(xm), which restricts further, 
by Assertion (4) of the lemma, to an isomorphism Cγi+1

m
(xm) 
 Cγ1m−i

(xm−i). Using these isomorphisms 
and the exact sequence

0 → Cγ1m−i
(xm−i) → Cγm−i

(xm−i)
η∗
m−i,1−−−−−→ η∗m−i,1

(
Cγm−i

(xm−i)
)
→ 0,

we deduce



S. Shechter / Journal of Pure and Applied Algebra 223 (2019) 4384–4425 4397
dimCγm(xm) =
m−1∑
i=0

(
dimCγm−i

(xm−i) − dimCγ1m−i
(xm−i)

)
=

m−1∑
i=0

dim η∗m−i,1
(
Cγm−i

(xm−i)
)

=
r−1∑
i=1

dim η∗i,1
(
Cγi(xi)

)
+

m∑
i=r

dim η∗i,1
(
Cγi(xi)

)
≤ d · (r − 1) + (n− α) · (m− r), (3.3)

for some integer α ≥ 1, where d = dim γ1 = dimΓ1.
For any m ∈ N, by Property (Cay2) of the Cayley map and the preservation of open immersions of the 

Greenberg functor, the Cayley map restricts to a birational equivalence of the Lie-centralizer Cγm(xm) and 
the group-centralizer CΓm

(xm) of xm. In particular, by Theorem 3.1.2.(1), we have that dimCγm(xm) =
dimCΓm

(xm) ≥ m · n. Manipulating the inequality (3.3), we get that

α ·m ≤ d · (r − 1) − r · (n− α) (3.4)

for all m > r. A contradiction, since m can be chosen to be arbitrarily large while the right-hand side of 
(3.4) remains constant. �

Using Lemma 2.4.1, we now pass to the group setting.

Proposition 3.1.8. Let x ∈ γ and xr = ηr(x) for all r ∈ N. The group scheme η∗r,1 (CΓr
(xr)) is a linear 

algebraic kalg-group of dimension greater or equal to n.

Proof. Properties (Cay2) and (Cay3) of the Cayley map imply the commutativity of the square (3.5)

Cγr (xr) CΓr
(xr)

η∗r,1
(
Cγr (xr)

)
η∗r,1 (CΓr

(xr)) .

ĉayr

caykalg

η∗r,1 η∗r,1

(3.5)

A short computation, using Property (Cay3), shows that this square is cartesian. Thus, by (Cay1), and the 
properties of the fiber product, it follows that the two terms of the bottom row are of the same dimension. �
Proof of Theorem 3.1.2.(2). The assertion is proved by induction on r, similarly to [18, Theorem 3.6], the 
case r = 1 being trivially true. Consider the following exact sequence

1 CΓ1
r
(xr) CΓr

(xr)
η∗
r,1

CΓ1(x1). (3.6)

Properties (Cay1) and (Cay2) imply that the map ĉayr is defined on CΓ1
r
(xr) and is mapped onto 

Cγ1r (xr). Combined with Lemma 2.3.3, we get that dimCΓ1
r
(xr) = dimCγr−1(xr−1). Moreover, since Δr−1∩

Cγr−1(xr−1) is a non-trivial open subscheme of Cγr−1(xr−1), and is mapped by ĉayr to an open subscheme 
of CΓr−1(xr−1), we deduce the equality

dimCΓ1
r
(xr) = dimCΓr−1(xr−1). (3.7)

If x1 is regular then by induction we have that dimCΓr−1(xr−1) = n(r−1) and hence, by (3.6) and (3.7),

dimCΓr
(xr) ≤ dimCΓr−1(xr−1) + dimCΓ1(x1) = r · n.
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Conversely, if x1 is not regular, then by induction xr−1 is not regular, and the dimension of CΓr−1(xr−1)
is strictly greater than n(r − 1). By Proposition 3.1.8 and (3.7), have

dimCΓr
(xr) = dimCΓr−1(xr−1) + dim η1 (CΓr

(xr)) > n(r − 1) + n = n · r,

and xr is not regular. �
Before discussing the final assertion of Theorem 3.1.2, let us observe a simple corollary of Lemma 3.1.7, 

which is the Lie-algebra version of the assertion.

Corollary 3.1.9. Let r ∈ N and xr ∈ γr(kalg) be regular. The restriction of ηr,1 to Cg(Or)(xr) is onto 
Cg(kalg)(x1), where x1 = ηr,1(xr) ∈ g(kalg).

Proof. Theorem 3.1.2.(2) implies that x1 is regular and hence Cγ1(x1)(kalg) = Cg(kalg)(x1) is a kalg-vector 
space of dimension n = dimCΓ1(x1). By Lemma 3.1.7, the kalg-points of the image of Cγr (xr) under η∗r,1
comprise a subspace of Cg(kalg)(x1) of the same dimension. �
3.1.3. The image of ηr,1 on CΓr

(xr)
To complete the proof of the third assertion of Theorem 3.1.2 we require the following proposition, which 

is stated here in a slightly more general setting than necessary at the moment, and will also be applied later 
on in the proof of Corollary 3.1.5.

Proposition 3.1.10. Let L be either kalg or Kalg, and let H = G × Spec (L) and h = Lie(H) its Lie-algebra. 
Put H = H(L) and h = h(L). Let x ∈ h(L) be regular. Then

CH(x) = CH(x)◦(L) · Z(H),

where CH(x)◦ is the connected component of 1. In particular, |CH(x) : CH(x)◦(L)| ≤ 2 and CH(x) is 
abelian.

Proof. Let x = s + h be the Jordan decomposition of x, with s, h ∈ h, s semisimple, h nilpotent and 
[s, h] = 0. Note that, as an element of H commutes with x if and only if it commutes with both s and h, 
we have that CH(x) = CCH(s)(h). From Proposition 2.1.1, it follows that

CH(x) = CCH(s)(h) =
t∏

j=1
CGLmj

(L)

(
h |Wλj

)
× CΔ(L)

(
h |Ker(s)

)
, (3.8)

where Δ is a classical linear algebraic group over L of automorphisms preserving a non-degenerate bilinear 
form on a subspace of LN , and ±λ1, . . . , ±λt are the non-zero eigenvalues of s, as described in Proposi-
tion 2.1.1, with respective multiplicities m1, . . . , mt, and Wλj

= Ker(s − λj1). Additionally, by [36, 3.5, 
Proposition 5], the restricted operators h |W (λj) and h |Ker(s) are regular as elements of the Lie-algebras of 
GLmj

and of Δ over L, respectively.
By [32, III, 3.2.2] it is known that all factors in (3.8), apart from CΔ(h |Ker(s)), are connected. Further-

more, by [32, III, 1.14] and the assumption char(L) 	= 2, we have

CΔ
(
h |Ker(s)

)
= CΔ

(
h |Ker(s)

)◦ · Z(Δ),

(see [32, I, 4.3]). Taking into account the fact that, as char(L) 	= 2, Z(Δ(L)) is the finite group {±1}, one 
easily deduces from this the equality
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CH(x) = CH(x)◦(L) · Z(H).

Lastly, CH(x)◦ is abelian by [32, Corollary 1.4], and |CH(x) : CH(x)◦| ≤ |Z(H)| = 2. �
Proof of Theorem 3.1.2.(3). By Proposition 3.1.8 and Chevalley’s Theorem [12, IV, 1.8.4], the image of 
CΓr

(xr) under η∗r,1 contains the connected component CΓ1(x1)◦ of the identity in CΓ1(x). Additionally, 
the center Z(Γr) of Γr is clearly contained in CΓr

(xr) and is mapped by η∗r,1 onto Z(Γ1). This implies the 
inclusion

CΓ1(x1) ⊇ η∗r,1 (CΓr
(xr)) ⊇ (CΓ1(x1))◦ · Z(Γ1).

Evaluating the above inclusions at kalg-points, by Proposition 3.1.10, we deduce the equality. �
3.1.4. Returning to the o-rational setting

In this section we prove Proposition 3.1.4. An initial step towards this goal is to show that the third 
assertion of Theorem 3.1.2 remains true when replacing the groups G(Or) and Lie-rings g(Or) with the 
group and Lie-rings of or-rational points, i.e. Gr = G(or) and gr = g(or). Given 1 ≤ m ≤ r, we write 
Gm

r and gmr to denote the congruence subgroup Ker(Gr
ηr,m−−−→ Gm) = Gr ∩ η−1

r,m(1) and congruence subring 

Ker(gr
ηr,m−−−→ gm) = gr ∩ η−1

r,m(0), respectively.
Recall that σ : O → O was defined in Section 2.2 to be the local Frobenius automorphism of O over o, 

given on its quotient kalg by σ(ξ) = ξ|k|. This automorphism gives rise to an automorphism of G(O), and 
of its quotients G(Or) and their Lie-algebras. By definition, an element x ∈ gr is regular if and only if it is 
a regular σ-fixed element of g(Or) = γr(kalg). We require the following variant of Lang’s Theorem.

Lemma 3.1.11. Let r ∈ N and let xr ∈ gr be a regular element and x1 = ηr,1(xr). Given g ∈ CG1(x1) =
CG(kalg)(x1) ∩G1, let Fg = η−1

r,1 (g) ∩CG(Or)(xr), and let Lg be the map defined by

h �→ h · σ(h)−1.

Then Lg : Fg → F1 is a well-defined surjective map.

Proof. The sets Fg′ (g′ ∈ CG1(x1)) are simply cosets of the subgroup F1 = CΓ1
r(kalg)(xr). In particular, by 

(Cay1) and (Cay2), the Fg′ ’s are the kalg-points of algebraic varieties, isomorphic to Cγ1r (kalg)(xr) and hence 
affine (r − 1)n-dimensional spaces over kalg.

Since the reduction map ηr,1 commutes with the Frobenius maps, and since g is assumed fixed by σ, 
we have that Lg is well-defined. The surjectivity of Lg now follows as in the proof of the classical Lang 
Theorem [23], using the fact that F1 is a connected linear algebraic group over kalg (see also [32, I, 2.2] and 
[17, § 3]). �
Corollary 3.1.12. Let xr ∈ gr be regular and x1 = ηr,1(xr). The restriction of ηr,1 to CGr

(xr) is onto 
CG1(x1).

Proof. Lemma 3.1.11 and Theorem 3.1.2.(3) imply that for any g ∈ CG1(x1), there exists an element 
h ∈ CΓr

(xr) such that ηr,1(h) = g and such that Lg(h) = hσ(h)−1 = 1. In particular, h is fixed under σ
and hence h ∈ CGr

(xr) ∩ η−1
r,1 (g). �

Another necessary ingredient in the proof of Proposition 3.1.4 is the connection between the groups 
CGr

(xr) and CGm
(xm), where m ≤ r and x ∈ g is such that xr is regular.
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Lemma 3.1.13. Let r ∈ N and xr ∈ gr be regular. For any 1 ≤ m ≤ r write xm = ηr,m(xr).

1. The map ηr,m : Cgr
(xr) → Cgm

(xm) is surjective.
2. The map ηr,m : CGr

(xr) → CGm
(xm) is surjective.

Proof. We prove both assertions by induction on m.

1. The case m = 1 follows in Corollary 3.1.9 and Lang’s Theorem, as Cγ1(x1) and η∗r,1(Cγr (xr)) are both 
affine n-spaces over kalg. Consider the commutative diagram in (3.9), in which both rows are exact by 
induction hypothesis.

C
g
m−1
r

(xr) Cgr
(xr) Cgm−1(xm−1) 0

C
g
m−1
m

(xm) Cgm
(xm) Cgm−1(xm−1) 0

ηr,m−1

ηm,m−1

ηr,m

(3.9)

By the Four Lemma (on epimorphisms), in order to prove the surjectivity of the map ηr,m : Cgr
(xr) →

Cgm
(xm), it suffices to show that the restricted map ηr,m : C

g
m−1
r

(xr) → C
g
m−1
m

(xm) is surjective. This 
follows from the commutativity of the square in (3.10), in which the maps on the top and bottom rows 
are given the o-module isomorphism y �→ πm−1y (cf. Lemma 2.3.3), and the map on the left column is 
surjective by the base of induction.

Cgr−m+1(xr−m+1) C
g
m−1
r

(xr)

Cg1(x1) C
g
m−1
m

(xm)

∼

∼

ηr,mηr−m+1,1

(3.10)

2. In the current setting, one invokes Lemma 3.1.11 in order to prove the induction base m = 1. The case 
m > 1 is handled in a manner completely analogous to the first case, applying the Four Lemma for a 
suitable diagram of groups. The main difference from the previous case is that in proving the surjectivity 
of the map ηr,m : CGm−1

r
(xr) → CGm−1

m
(xm), one considers the commutative square in (3.11) in which the 

leftmost vertical arrow is shown to be surjective in the previous case, and the horizontal arrows are given 
by the suitable Cayley maps. Note that the fact that the top horizontal arrow in (3.11) is not necessarily 
a group homomorphism does not affect the proof of the assertion.

C
g
m−1
r

(xr) CGm−1
r

(xr)

C
g
m−1
m

(xm) CGm−1
m

(xm)

cayr

caym

ηr,mηr,m

� (3.11)

Proof of Proposition 3.1.4. 1. Given gr ∈ CGr
(xr) one inductively invokes Lemma 3.1.13 to construct a 

converging sequence (gm)m≥r such that gm ∈ CGm
(ηm(x)) and such that ηm′,m(gm′) = gm for all m′ ≥

m ≥ r. The limit g = limm gm is easily verified to be an element of CG(x), which is mapped by ηr to gr.
2. By Theorem 3.1.2, it suffices to consider the case where x1 = η1(x) ∈ g(k) is regular. By [26, (2.5.2)], 
under this assumption, we have that

dimCG×Kalg(x) = dim (CG×O(x) ×Kunr) ≤ dim
(
CG×O(x) × kalg) = dimCΓ1(x1) = n,
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as CG×O(x) ×Kunr and CG×O(x) × kalg are, respectively, the generic and special fiber of CG×O(x). On 
the other hand, by [36, 3.5, Proposition 1], the minimum value of centralizer dimension of an element of g
is n = rk(G). Hence, x is regular. �

Finally, we deduce Corollary 3.1.5.

Proof of Corollary 3.1.5. The regularity of x in g, and Proposition 3.1.10 (applied for L = Kalg), imply 
that the centralizer of x in G(Kalg) is an abelian group. In particular, it follows from this that the group 
CG(x) is abelian as well, and consequently, by Proposition 3.1.4.(1), so are its quotient groups CGr

(xr) for 
all r ∈ N. �
3.2. Regular characters

At this point, our description of the regular elements of the Lie-algebras gr is sufficient in order to initiate 
the description of regular characters of G and to prove Theorem I and Corollary 1.3.1. To do so, we prove 
the following variant of [22, Theorem 3.1].

Theorem 3.2.1. Let Ω ⊆ g1 be a regular orbit and let r ∈ N and m = � r
2�.

1. The set Irr(Gm
r | Ω) of characters of Gm

r = Ker(Gr → Gm) which lie above the regular orbit Ω consists 
of exactly qn(r−m−1) orbits for the coadjoint action of Gr.

2. Given a character σ ∈ Irr(Gm
r | Ω), the set of irreducible characters of Gr whose restriction to Gm

r has 
σ as a constituent is in bijection with the Pontryagin dual of CGm

(xm), for xm ∈ gm any element such 
that ηm,1(xm) ∈ Ω.

3. Any such character σ ∈ Irr(Gm
r | Ω) extends to its inertia group IGr

(σ). In particular, each such 
extension induces to a regular character of Gr.

Note that the first assertion of Theorem I follows from Assertions (1) and (2) of Theorem 3.2.1 and 
Corollary 3.1.12. The second assertion of Theorem I follows from the Assertion (3) of Theorem 3.2.1 and 
(3.17) below.

The proof of Theorem 3.2.1 follows the same path as [22, § 3]. For the sake of brevity, rather then 
rehashing the proof appearing in great detail in [22], our focus for the remainder of this section would be 
on setting up the necessary preliminaries and state the necessary modification required in order to adapt 
the construction of [22] to the current setting.

Recall that the group G = G(o) and g = g(o) are naturally embedded in the matrix algebra MN(o)
(see Section 2.1). Similarly, the congruence quotients Gr and gr are embedded in MN (or). From here on, 
all computation are to be understood in the framework of the embedding of the given groups and Lie-rings 
in their respective matrix algebras.

3.2.1. Duality for Lie-rings
The Lie-algebra g = g(o) ⊆ MN (o) is endowed with a symmetric bilinear G(o)-invariant form

κ : g× g → o, (x, y) �→ Tr(xy).

Note that, by the assumption p = char(k) is odd, the form κ reduces to a non-degenerate form on g1 (see [32, 
Lemma 5.3]), and hence {x ∈ g | κ(x, y) ∈ p for all y ∈ g} = πg. Fixing a non-trivial character ψ : K → C×

with conductor o (see e.g. [2, § 5.3]), for any r ∈ N, we have a well-defined map

gr → ĝr, y �→ ϕy where ϕy(x) = ψ(π−rκ(x, y)). (3.12)
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Furthermore, by the assumption π−1o � Ker(ψ), the map above induces a Gr-equivariant bijection of gr
with its Pontryagin dual ĝr.

3.2.2. Exponential and logarithm
Let m, r ∈ N with r3 ≤ m ≤ r. The truncated exponential map, defined by

exp(x) = 1 + x + 1
2x

2 (x ∈ gmr ),

is a well-defined bijection of gmr onto the group Gm
r , and is equivariant with respect to the adjoint action 

of Gr, with an inverse map given by

log(1 + x) = x− 1
2x

2 (1 + x ∈ Gm
r ).

In the case where r
2 ≤ m, the exponential map is simply given by exp(x) = 1 + x and defines an 

isomorphism of abelian groups gmr
∼−→ Gm

r . In the more general setting we have the following.

Lemma 3.2.2. Let m, r ∈ N be such that r3 ≤ m ≤ r. For any x, y ∈ gmr ,

log ((exp(x), exp(y))) = [x, y] ,

where (exp(x), exp(y)) denotes the group commutator of exp(x) and exp(y) in Gm
r . Furthermore, the fol-

lowing truncated version of the Baker–Campbell–Hausdorff formula holds

log (exp(x) · exp(y)) = x + y + 1
2 [x, y] .

The formulae in Lemma 3.2.2 may be verified by direct computation; their proof is omitted.

3.2.3. Characters of G�r/2

r

Fix r ∈ N and put m′ = � r
2� and m = � r

2� = r −m′. As mentioned above, the exponential map on gmr is 
given by x �→ 1 + x : gmr → Gm

r and defines a Gr-equivariant isomorphism of abelian groups. Taking into 
account the module isomorphism x �→ πmx : gm′ → gmr and (3.12) we obtain a Gr-equivariant bijection

Φ : gm′ → ĝm′ → ĝmr → Irr(Gm
r ), (3.13)

given explicitly by Φ(y)(1 +x) = ϕy(π−mx), for y ∈ gm′ and x ∈ gmr . In the case where r = 2m′ deduce the 
following.

Lemma 3.2.3. Assume r = 2m is even. The map Φ defined in (3.13) is a Gr-equivariant bijection of Irr(Gm′
r )

and gm′ .

In the case where r = 2m′ +1, the irreducible characters of Gm′
r are classified in terms of their restriction 

to Gm
r , using the method of Heisenberg lifts, which we briefly recall here. For a more elaborate survey we 

refer to [22, § 3.2] and [9, Ch. 8].
Let ϑ ∈ Irr(Gm

r ) be given, and let y ∈ gm′ be such that ϑ = Φ(y). Note that, as the group Gm
r is central 

in Gm′
r and (Gm′

r , Gm′
r ) ⊆ Gm

r , the following map is a well defined alternating C×-valued bilinear form

Bϑ : Gm′

r /Gm
r ×Gm′

r /Gm
r → C×, Bϑ(x1G

m
r , x2G

m
r ) = ϑ ((x1, x2)) .
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Using the definition of Φ(y) = ϑ and the explicit isomorphism x �→ exp(πrx) : g1 → Gm′
m = Gm′

r /Gm
r , we 

obtain an alternating bilinear form βy : g1 × g1 → k given by βy(x1, x2) = Tr(ηm′,1(y) · [x1, x2]), such that 
the diagram in (3.14) commutes.

Gm′
m × Gm′

m C×

g1 × g1 k

∼ ∼

Bϑ

βy

ψ(π−1(·))

(3.14)

A short computation, using the non-degeneracy of the trace and the definition of βy, shows that the 
radical of this form coincides with the centralizer sub-algebra Cg1(ηm′,1(y)) of g1 (see [22, p. 125]). Let Ry

and Ry denote the preimages of my in gm
′

r and in Gm′
r under the associated quotient maps. Let my ⊆ j ⊆ g1

be a maximal subspace such that βy(j, j) = {0} (i.e. such that j/my is a maximal isotropic subspace of 
g1/my), and let J ⊆ gm

′
r and J ⊆ Gm′

r be the corresponding preimages of j; see (3.15).

Gm′
r gm

′
r g1

J J j

Ry Ry my

Gm
r gmr 0

log

log

log

log
∼

(3.15)

Let θ = ϑ ◦ exp be the pull-back of ϑ to gmr . By virtue of the commutativity of Ry, the character θ′
extends to a character of Ry in |Ry : Gm

r | = |my| many ways. By Lemma 3.2.2, given such an extension 
θ′ ∈ R̂y, the map ϑ′ : Ry → C× is a character of Ry. Thus, the character ϑ admits |my| many extensions 
to Ry.

Lemma 3.2.4.

1. Any extension ϑ′ ∈ Irr(Ry) of ϑ extends further to a character ϑ′′ ∈ Irr(J).
2. The induced character σ = (ϑ′′)Gm′

r is irreducible and is independent of the choice of extension ϑ′′ and 
of j.

3. The character σ is the unique character of Gm′
r whose restriction to Ry contains ϑ′. Furthermore, all 

irreducible characters of Gm′
r which lie above ϑ are obtained in this manner.

Proof. The triple (Gm′
r , Ry, ϑ′) satisfies the hypothesis of [9, § 8.3], and the alternating bilinear form βy

(which corresponds to hχ in the notation of [9]) reduces to a non-degenerate form on the elementary 
abelian group Gm′

r /Ry 
 g1/ry. The subgroup J ⊆ Gm′
r may be identified with the group denoted in [9, 

Proposition 8.3.3] by G1, and the extension of ϑ′ to an irreducible character of J exists by virtue of J/Ker(ϑ′)
being finite and abelian. The irreducibility and independence of the choice of J are shown within the proof 
of [9, Proposition 8.3.3], as well as uniqueness of σ as the only irreducible character of Gm′

r whose restriction 
to Ry contains ϑ′. The final assertion, that all characters of Gm′

r lying above ϑ are obtained in this manner is 
obvious, as the restriction of any such character of Gm′

r to Ry necessarily contains an extension ϑ′ of ϑ. �
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3.2.4. Inertia subgroups in G(or) of regular characters
The final ingredient required in order to implement the construction of [22] to the current setting is a 

structural description of the inertia subgroup of a character of G�r/2�
r lying below a regular character of 

level � = r+ 1. As in the previous section, put m′ = � r
2� and m = � r

2�, and let ϑ ∈ Irr(Gm
r ). Recall that the 

inertia subgroup of ϑ in Gr is defined by

IGr
(ϑ) =

{
g ∈ Gr | ϑ(g−1xg) = ϑ(x) for all x ∈ Gm

r

}
. (3.16)

By Section 3.2.3, there exists a unique y ∈ gm′ such that ϑ = Φ(y). Moreover, letting ŷr ∈ gr be an 
arbitrary lift of ym′ to gr, we have that

IGr
(ϑ) = Gm

r · CGr
(ŷr). (3.17)

Indeed, the only non-trivial step to proving (3.17) is the inclusion ⊆, which from follows Lemma 3.1.13, as 
both hands of the equation are mapped by ηr,m onto the group CGm

(ηr,m(ŷr)).

Proof of Theorem 3.2.1. A short computation, proves that the set Ω̃ = η−1
m′,1(Ω) consists of qn(m′−1) distinct 

adjoint orbits for the action of Gm′ , and hence for the action of Gr as well. Indeed, Ω̃ is a Gm′-stable set of 
order |Ω| ·

∣∣G1
m′

∣∣ = |Ω| qd(m′−1), invoking the bijection g1
m′ → G1

m′ induced by the Cayley map, and each of 
the orbits Gm′-orbits in Ω̃ has cardinality∣∣Gm′ : CGm′ (x)

∣∣ = |G1 : CG1 (ηm′,1 (x))| ·
∣∣∣G1

m′ : CG1
m′ (x)

∣∣∣ = |Ω| · q(d−n)(m′−1),

by Corollary 3.1.12, for any x ∈ Ω̃. By the Gr-equivariance of the map Φ, defined in Section 3.2.3, it follows 
that the set Irr(Gm

r | Ω) consists of qn(m′−1) coadjoint orbits of Gr. In the case where r is even, the first 
assertion of Theorem 3.2.1 follows from Lemma 3.2.3, since m = r−m. In the case of r odd, by Lemma 3.2.4, 
and by regularity of the elements of Ω, any character in Irr(Gm

r | Ω) extends to Gm′
r in exactly qn-many 

ways. Thus, the number of coadjoint Gr-orbits in Irr(Gm′
r ) is qn(m′−1)+n = qn(r−m′−1), whence the first 

assertion.
The second assertion of Theorem 3.2.1 follows from the third assertion, (3.17) and [21, Corollary 6.17].
Lastly, for the proof of the third assertion of Theorem 3.2.1, we refer to [22, § 3.5] for the explicit 

construction, in the analogous case of GLn(o) and Un(o), of an extension of a character σ ∈ Irr(Gm′
r ) to its 

inertia subgroup IGr
(σ). Note that the construction of [22] can be applied verbatim to the present setting, 

invoking the fact the IGr
(σ) is generated by two abelian subgroups, one of which is normal in Gr ((3.17)

and Corollary 3.1.5) in the generality of classical groups. �
4. The symplectic and orthogonal groups

4.1. Summary of section

In this section we compute the regular representation zeta function of classical groups of types Bn, Cn

and Dn. Following Corollary 1.3.1, to do so, we classify the regular orbits in the space of orbits Ad(G1)\g1
and compute their cardinalities, in order to obtain a formula for the Dirichlet polynomial

Dg(s) =
∑
Ω∈X

|G1| · |Ω|−(s+1)
.

As it turns out, the cases where G is of type Bn or Cn, i.e. G = SO2n+1 or G = Sp2n, can be handled 
simultaneously, and are analyzed in Section 4.3. The case of the groups of the form Dn, i.e. even-dimensional 
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orthogonal groups, is slightly more intricate. The analysis of this case is carried out in Section 4.4. The main 
difference between the two cases lies in the fact that regularity of an element of the Lie-algebras sp2n(k)
and so2n+1(k) is equivalent to it being give by a regular matrix in MN (k); see Proposition 4.3.4 (also, cf. 
[38, § 5]). This equivalence fails to hold for even-orthogonal groups; see Lemma 4.4.1 below. Nevertheless, 
in both cases, we obtain a classification of the regular orbits in the Lie-algebra g1 in terms of the minimal 
polynomial of the elements within the orbit.

Recall that two matrices x, y ∈ MN (k) are said to be similar if there exists a matrix g ∈ GLN (k) such 
that y = gxg−1. Our description of regular orbits of g1 follows the following steps.

1. Classification of all similarity classes in glN (k) which intersect the set of regular elements in g1 non-
trivially;

2. Description of the intersection of such a similarity class with g1 as a union of Ad(G1)-orbits;
3. Computation of the cardinality of the Ad(G1)-orbit of each regular element.

A rich theory of centralizers and conjugacy classes in classical groups over finite fields already exists, most 
notably Wall’s extensive analysis in [39, § 2.6]. The enumeration of elements of a finite classical group G1
whose representing matrix is cyclic (i.e. regular when considered as an element of GLN (kalg)) was addressed 
in [28] and [15] where the proportion of such elements in G1, for all classical groups, was estimated and 
its limit as rk(G) tends to infinit was computed using generating functions. The precise number of regular 
semisimple conjugacy classes was computed, again using generating functions, in [14], where the discrepancy 
between regularity of semisimple elements of the even dimensional orthogonal groups and of regularity of 
their representing matrices in GLN (kalg) is determined (see [14, Lemma 5.1]). In the case of the symplectic 
group, the equivalence of regularity of an element of Sp2n(k) and of its representing matrix in GL2n(kalg)
was noted in [15, § 1.1]. Examples of regular elements of SO2n(k) which do not satisfy this equivalence 
appear in [27, Note 8.1].

The setting considered in the present manuscript, while akin to, is rather simpler than the one dealt with 
in [39]. Namely, the relatively simpler theory of centralizers for the adjoint action of G(kalg) on g(kalg), in 
comparison with that of G(kalg) on itself by conjugation (compare, for example, Proposition 2.1.1 and [20, 
§ 2.14]), allows one to retrace much of Wall’s analysis in the Lie-algebra setting, without having to invoke 
the notion of multipliers (see [39, p. 11]). Furthermore, the focus on regular adjoint classes results in a fairly 
“well-behaved” elementary divisor decomposition of the elements in the orbits under inspection. We also 
remark that steps (1), (2) and (3) above are in direct parallel with items (i), (ii) and (iv), respectively, of [39, 
§ 2.6.(B) and (C)], and may be derived from [39] by the following procedure. Given x ∈ MN (k) let λ ∈ k be 
such that x −λ1 is a non-singular matrix, and consider the dilated Cayley transform gx = (x −λ1)−1(x +λ1). 
Then x is similar to an element of g1 if and only if gx is similar to an element of G1, and the map 
x′ �→ (x′−λ1)(x′+λ1) is a bijection between the adjoint orbit of x under GLN (k) (resp. under G1), and the 
similarity (resp. adjoint) class of gx. However, applying such an argument necessitates imposing additional 
restrictions on the characteristic of k, and is somewhat less suitable for the purpose of enumeration of 
regular classes. Given these complications, and the relative simplicity of the adjoint classes in question, we 
have opted to present a self-contained and independent analysis of the regular adjoint classes in g1, which 
is presented in Sections 4.2-4.4 below.

4.1.1. Enumerative set-up

Definition 4.1.1 (Type of a polynomial). Let f(t) ∈ k[t] be a polynomial of degree N and n = �N
2 �. For any 

1 ≤ d, e ≤ n, let Sd,e(f) denote the number of distinct monic irreducible even polynomials of degree 2d
which occur in f with multiplicity e, and let Td,e(f) denote the number of pairs {τ(t), τ(−t)}, with τ(t)
monic, irreducible and coprime to τ(−t), such that τ is of degree d and occurs in f with multiplicity e. 
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Let r(f) be the maximal integer such that t2r(f) divides f . The type of f is defined to be the triplet 
τ (f) = (r(f), S(f), T (f)), where S(f) and T (f) are the matrices (Sd,e(f))d,e and (Td,e(f))d,e respectively.

Recall that Xn denotes the set of triplets τ = (r, S, T ) ∈ N0 × Mn(N0) × Mn(N0), with S = (Sd,e) and 
T = (Td,e) which satisfy

r +
n∑

d,e=1

de · (Sd,e + Td,e) = n.

Note that, for n = �N
2 �, it holds that τ (f) ∈ Xn whenever f is monic and satisfies f(−t) = (−1)Nf(t).

The number of monic irreducible polynomials of degree d over k is given by evaluation at t = q of the 
function wd(t) = 1

d

∑
r|d μ 

(
d
r

)
td, where μ(·) is the Möbius function (see, e.g., [13, Ch. 14]). A polynomial 

f ∈ k[t] is said to be even (resp. odd) if it satisfies the condition f(−t) = f(t) (resp. f(−t) = −f(t)). 
Note that, by assumption the k is of odd characteristic, the only monic irreducible odd polynomial over k
is f(t) = t. The number of monic irreducible even polynomials of degree d over k is given by evaluation at 
t = q of the function

Ed(t) =

⎧⎪⎨⎪⎩
1
d

∑
m|d , m odd

μ (m) (td/2m − 1) if d is even

0 otherwise;
(4.1)

cf. [8, Lemma 3.2], noting that the set of monic irreducible even polynomials of degree d is in bijection with 

the set N∗1(d, q) ⊆ k[t], defined in [8], via the map f(t) �→ (1+t)deg f

f(−1) f(1−t
1+t ).

Put

Pd(t) =
{
wd(t) − Ed(t) if d > 1
t− 1 if d = 1.

(4.2)

Note that, for q odd, Pd(q) is the number of irreducible polynomials of degree d which are neither odd nor 
even over a field of cardinality q.

Given N ∈ N, n = �N
2 �, and τ ∈ Xn, the number of polynomials f ∈ k[t] of type τ (f) such that 

f(−t) = (−1)Nf(t) is given by evaluation at t = q of the polynomial

Mτ (t) =
(

1
2

)∑
d,e Td,e n∏

d=1

( ∑
e Sd,e

Sd,1, Sd,2, . . . , Sd,n

)
·
(

E2d(t)∑
e Sd,e

)
·
( ∑

e Td,e

Td,1, Td,2, . . . , Td,n

)
·
(

Pd(t)∑
e Td,e

)
. (4.3)

The combinatorial data described above is utilized in Theorem II and Theorem III, where it allows to 
enumerate the similarity classes in MN (k) which meet the Lie-algebra g1 non-trivially in terms of the minimal 
polynomial of the class elements. The classification of such similarity classes and their decomposition into 
Ad(G1) is described Theorem 4.1.2 and Theorem 4.1.3 below.

Once Theorems 4.1.2 and 4.1.3 are proved, the proof of Theorem II and of Theorem III may be completed 
by direct computation.

4.1.2. Statement of results- symplectic and odd-dimensional special orthogonal groups

Theorem 4.1.2. Assume char(k) 	= 2. Let V = kN and let B be a non-degenerate bilinear form which is 
anti-symmetric if N = 2n is even, and symmetric if N = 2n + 1. Let G ∈ {Sp2n, SO2n+1} be the algebraic 
group of isometries of V with respect to B and put G1 = G(k) and g1 = g(k) where g = Lie(G).

Let x ∈ MN (k) have minimal polynomial mx ∈ k[t].
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1. The element x is similar to a regular element of g1 if and only if mx has degree N and satisfies 
mx(−t) = (−1)Nmx(t).

Furthermore, assume x ∈ g1 is a regular element and let Ω = Ad(G1)x denote its orbit under G1.

2. If N is even and mx(0) = 0, then the intersection Ad(GLN (k))x ∩ g1 is the union of two distinct 
Ad(G1)-orbits. Otherwise, Ad(GLN (k))x ∩ g1 = Ω.

3. Let τ = τ (mx) = (r(mx), S(mx), T (mx)) as in Definition 4.1.1. Then

|Ω| = q2n2 ·
(

1
2

)ν ∏n
i=1(1 − q−2i)∏

1≤d,e≤n(1 + q−d)Sd,e(mx) · (1 − q−d)Td,e(mx) ,

where ν = 1 if N = 2n is even and mx(0) = 0, and ν = 0 otherwise.

The proofs of Assertions (1), (2) and (3) of the theorem are carried out in sections 4.3.1, 4.3.2 and 4.3.3
respectively.

4.1.3. Statement of results- even-dimensional special orthogonal groups

Theorem 4.1.3. Assume |k| > 3 and char(k) 	= 2. Let N = 2n with n ≥ 2. Let V = kN and let B+ and 
B− be non-degenerate symmetric forms on V of Witt index n and n − 1, respectively. Given ε ∈ {±1}, 
let Gε = SOε

2n be the k-algebraic group of isometries of V with respect to Bε and put Gε
1 = Gε

1(k) and let 
gε1 = gε(k), where gε = Lie(G).

Let x ∈ MN (k) have minimal polynomial mx(t).

1. If mx(0) = 0 (i.e. x is a singular matrix) then the following are equivalent.
(a) The polynomial mx has degree N − 1 and satisfies mx(−t) = −mx(t).
(b) The element x is similar to a regular element of g+

1 .
(c) The element x is similar to a regular element of g−1 .
Otherwise, if mx(0) 	= 0, let ε = ε(x) = (−1)

∑
e eSd,e(mx) where S = (Sd,e(mx)) is as in Definition 4.1.1. 

Then x is similar to a regular element of gε1 if and only if mx has degree N and satisfies mx(−t) = mx(t). 
Moreover, in this case x is not similar to an element of g−ε

1 .

Furthermore, assume x ∈ gε1 is a regular element and let Ωε = Ad(Gε
1)x denote its orbit under Gε

1, for 
ε ∈ {±1} fixed.

2. In the case where mx(0) = 0, the intersection Ad(GLN (k))x ∩ gε1 is the disjoint union of two distinct 
Ad(Gε

1)-orbits. Otherwise, Ad(GLN (k))x ∩ gε1 = Ωε.
3. (a) Assume mx(0) = 0 and let τ = τ (t ·mx). Then

|Ωε| = q2n2 · 1
2 · (1 + εq−n)

∏n−1
i=1 (1 − q−2i)∏

1≤d,e≤n(1 + q−d)Sd,e(mx) · (1 − q−d)Td,e(mx) .

(b) Otherwise, let τ = τ (mx). Then

|Ωε| = q2n2 · (1 + εq−n)
∏n−1

i=1 (1 − q−2i)∏
1≤d,e≤n(1 + q−d)Sd,e(mx) · (1 − q−d)Td,e(mx) .
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The proofs of Assertions (1), (2) and (3) of the theorem appear in sections 4.4.1, 4.4.2 and 4.4.3. The 
exclusion of the specific case of k = F3 is done for technical reasons, and may possibly be undone by 
replacement of the argument in Lemma 4.4.8 below.

4.2. Preliminaries to the proofs Theorem 4.1.2 and Theorem 4.1.3

4.2.1. Regularity for non-singular elements

Lemma 4.2.1. Let x ∈ g(kalg) ⊆ glN (kalg) be non-singular. Then x is regular in g(kalg) if and only if x is a 
regular element of glN (kalg).

Proof. Let W = (kalg)N , so that g(kalg) is given as the Lie-algebra of anti-symmetric operators with respect 
to a non-degenerate bilinear form B = Bkalg on W (see Section 2.1). Note that the existence of non-singular 
elements in g(kalg) implies that N = 2n is even. Indeed, x ∈ g(kalg) if and only if x� = −x (notation of 
Section 2.1.1), and det(x) = det(x�) = (−1)N det(x) is possible if and only if N is even, since char(kalg) 	= 2.

Let x = s + h be the Jordan decomposition of x, with s, h ∈ g(kalg), s semisimple, h nilpotent and 
[s, h] = 0. Let λ1, . . . , λt ∈ kalg be non-zero and such that {±λ1, . . . ,±λt} is the set of all eigenvalues 
of s with λi 	= ±λj whenever i 	= j. As in Proposition 2.1.1, the space W decomposes as a direct sum 
W =

⊕t
i=1(Wλi

⊕W−λi
), where, for any i = 1, . . . , t, the subspace W[λi] = Wλi

⊕W−λi
is non-degenerate, 

and its subspaces Wλi
and W−λi

are maximal isotropic. Comparing centralizer dimension, and invoking [36, 
§ 3.5, Proposition 1], we have that x is regular if and only if the restriction of x to each of the subspaces 
W[λi] (i = 1, . . . , t) is regular in glN (W[λi]). Likewise, x is regular in g(kalg) if and only if the restriction of 
x to each subspace W[λi] is regular within the Lie-algebra of anti-symmetric operators with respect to the 
restriction of Bkalg to W[λi]. Thus, it is sufficient to prove the lemma in the case where s has precisely two 
eigenvalues λ, −λ.

Representing s in a suitable eigenbasis, it be identified with the block-diagonal matrix diag(λ1n, −λ1n). 
Under this identification, the centralizer of s in glN (kalg) is identified with the subgroup of block diagonal ma-
trices consisting of two n ×n blocks. Moreover, the involution � maps an element diag(y1, y2) ∈ CglN (kalg)(s), 
with y1, y2 ∈ gln(kalg) to the matrix diag(yt2, yt1). In particular, it follows that h ∈ CglN

(kalg) ∩ g(kalg) is of 
the form h = diag(h1, −ht

1), where h1 ∈ gln(kalg) is nilpotent. Arguing as in [32, III, § 1], we have that

CGLN
(x) = CCGLN

(s)(h) 
 CGLn
(h1) × CGLn

(−ht
1) 
 CGLn

(h1) × CGLn
(h1)

where the final isomorphism utilizes the isomorphism y �→ (yt)−1 : CGLn
(−ht

1) → CGLn
(h1).

Finally, since the group G is embedded in GLN as the group of unitary elements with respect to �, we 
have diag(y1, y2) ∈ CGLN (kalg)(s) ∩G(kalg) if and only if y2 = (yt1)−1, and hence the map y �→ diag(y, (yt)−1)
is an isomorphism of CGLn

(h1) onto CCG(s)(h) and hence

CG(x) = CCG(s)(h) 
 CGLn(h1).

Thus

dimCGLN
(x) = 2 dimCGLn

(h1) = 2 dimCG(x),

and the lemma follows. �
Remark 4.2.2. The assumption that x is non-singular in Lemma 4.2.1 is crucial, as the proof relies heavily on 
the fact that the centralizer of a non-singular semisimple element of γ1(kalg) in Γ1(kalg) is a direct product 
of groups of the form GLmj

(kalg) (see Proposition 2.1.1). The same argumentation would not apply in the 
case where x is singular, and in fact fails in certain cases; see Lemma 4.4.1 below.
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4.2.2. From similarity classes to adjoint orbits
In this section develop some the tools required in order to analyze the decomposition of the set Πx =

Ad(GLN (k))x ∩ g1, for x ∈ g1 regular, in to Ad(G1)-orbits. The results appearing below can also be derived 
from [39, § 2.6]. However, as the case of regular elements of the Lie-algebra g1 allows for a much more 
transparent argument, we present it here for completeness.

Let Sym(�; x) be the set of elements Q ∈ CGLN (k)(x) such that Q� = Q and define an equivalence relation 
on Sym(�; x) by

Q1 ∼ Q2 if there exists a ∈ CGLN (k)(x) such that Q1 = a�Q2a. (4.4)

Let Θx to be the set of equivalence classes of ∼ in Sym(�; x). In the case where CGLN (k)(x) is abelian 
(e.g., when x is a regular element of glN (k)), the set Sym(�; x) is a subgroup and the set Θx is simply its 
quotient by the image of restriction of w �→ w�w to CGLN (k)(x).

Proposition 4.2.3. Let x ∈ g1 and let Πx denote the intersection Ad(GLN (k))x ∩ g1. There exists a map 
Λ : Πx → Θx such that y1, y2 ∈ Πx are Ad(G1)-conjugate if and only if Λ(y1) = Λ(y2).

Proof. 1. Construction of Λ. Let y ∈ Πx and let w ∈ GLN (k) be such that y = wxw−1. Put Q = w�w. 
Note that, as x, y ∈ g1, by applying the anti-involution � to the equation y = wxw−1, we deduce that 
(w�)−1xw� = y as well and consequently, that Q = w�w commutes with x. Since Q� = Q, we get that 
Q ∈ Sym(�; x).

Define Λ(y) to be the equivalence class of Q in Θx. To show that Λ is well-defined, let w′ ∈ GLN (k) be 
another element such that y = w′xw′ −1 and Q′ = w′ �w′. Put a = w−1w′. Then a commutes with x, and

a�Qa = w′ �(w�)−1Qw−1w′ = w′ �w′ = Q′,

hence Q ∼ Q′.
2. Proof that y1, y2 ∈ Πx are Ad(G1)-conjugate if Λ(y1) = Λ(y2). Let w1, w2 ∈ GLN (k) be such that 
yi = wixw

−1
i , and let Qi = w�

iwi (i = 1, 2). Then, by assumption, there exists a ∈ CGLN (k)(x) such that 
Q2 = a�Q1a. Put z = w1aw

−1
2 . Note that zy2z

−1 = y1. We claim that z ∈ G1. This holds since for any 
u, v ∈ V

B(zu, zv) = B(w1aw
−1
2 u,w1aw

−1
2 v) = B(a�(w�

1w1)aw−1
2 u,w−1

2 v)

= B(a�Q1aw
−1
2 u,w−1

2 v) = B(Q2w
−1
2 u,w−1

2 v) (since Q2 = a�Q1a)

= B(w�
2u,w

−1
2 v) = B(u, v).

3. Proof that y1, y2 ∈ Πx are Ad(G1)-conjugate only if Λ(y1) = Λ(y2). Assume now that z ∈ G1 is such 
that y1 = zy2z

−1, and let w1, w2 ∈ GLN (k) be such that yi = wixw
−1
i (i = 1, 2). Then w1 and zw2 both 

conjugate x to y1, and hence, by the unambiguity of the definition of Λ and fact that z ∈ G1, we have that

Λ(y1) = [w�
1w1] = [w�

2(z�z)w2] = [w�
2w2] = Λ(y2). �

A crucial property of the set Θx in the case x is regular, which makes the analysis of adjoint orbits 
feasible, is that it may be realized within the quotient of an étale algebra over k by the image of the algebra 
under an involution. As a consequence, the set Πx decomposes into |ImΛ| many Ad(G1)-orbits, a quantity 
which does not exceed the value four in the regular case.

Let us state another general lemma, which will be required in the description of Θx.
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Lemma 4.2.4. Let C ⊆ MN (k) be the ring of matrices commuting with a matrix x, with x� = −x (or x� = x), 
and let N �C be a nilpotent ideal, invariant under �. The following are equivalent, for any Q1, Q2 ∈ Sym(�; x).

1. There exists a ∈ C such that a�Q1a = Q2;
2. There exists a ∈ C such that a�Q1a ≡ Q2 (mod N ).

Proof. The argument of [39, Theorem 2.2.1] applies to the case where N is any nilpotent ideal which is 
invariant under �, provided that the required trace condition holds. In the present case the condition holds 
since char(k) 	= 2. �
4.2.3. Similarity classes via bilinear forms

We recall a basic lemma which would allow us to determine when an element of glN (k) is similar to an 
element of g1. Here and in the sequel, given a non-degenerate bilinear form C on a finite dimensional vector 
space V over k, we call an operator x ∈ End(V ) C-anti-symmetric, if C(xu, v) + C(u, xv) = 0 holds for all 
u, v ∈ V .

Lemma 4.2.5. Let C1, C2 be two non-degenerate bilinear forms on a vector space V = kN , and assume 
there exists g ∈ End(V ) and δ ∈ k such that C1(gu, gv) = δC2(u, v) for all u, v ∈ V . Let x ∈ glN (k) be 
C2-anti-symmetric. Then gxg−1 is C1-anti-symmetric.

The proof of Lemma 4.2.5 is by direct computation, and is omitted.

4.3. Symplectic and odd-dimensional special orthogonal groups

Throughout Section 4.3, we assume G = Sp2n or G = SO2n+1. The following well-known fact is very 
useful in the classification of regular adjoint classes in the Lie-algebra g1.

Lemma 4.3.1. Let ε = −1 and N = 2n in the symplectic case, or ε = 1 and N = 2n + 1 in the special 
orthogonal case. Let C1, C2 be two non-degenerate forms on V = kN such that Ci(u, v) = εCi(v, u) for all 
u, v ∈ V and i = 1, 2. There exists δ ∈ k and g ∈ End(V ) such that C1(gu, gv) = δC2(u, v) for all u, v ∈ V . 
Additionally, if ε = −1 then δ can be taken to be 1.

Proof. See, e.g., [42, § 3.4.4] in the symplectic case and [42, § 3.4.6 and § 3.7] in the special orthogonal 
case. �
4.3.1. Similarity classes of regular elements

The following lemma gives a criterion for a regular matrix to be similar to an element of g1.

Lemma 4.3.2. Let x ∈ glN (k) with minimal polynomial mx(t) ∈ k[t].

1. If x is similar to an element of g1 then mx(t) satisfies mx(−t) = (−1)deg mxmx(t).
2. If x is a regular element of glN (k) (and hence degmx = N) such that mx(t) = (−1)Nmx(t), then x is 

similar to an element of g1.

Proof. For the first assertion, we may assume x ∈ g1. Note that for any r ∈ N we have that B(xru, v) =
B(u, (−1)rxrv) for all u, v ∈ V = kN . Invoking the non-degeneracy of B, we deduce that (−1)degmxmx(−t)
is a monic polynomial of degree degmx which vanishes at x, and hence equal to mx(t).

By Lemma 4.2.5, to prove the second assertion it would suffice to construct a non-degenerate bilinear 
form C on V such that B and C satisfy the hypothesis of Lemma 4.2.5. In view of Lemma 4.3.1, in the 
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present case it suffices to construct some non-degenerate bilinear form C on V such that C(u, v) = εC(v, u), 
where ε = (−1)N , and such that x is C-anti-symmetric.

By [36, Ch. III, 3.5, Proposition 2], the assumption that x is a regular matrix is equivalent to V being 
a cyclic module over the ring k[x] (which, in turn, is equivalent to degmx = N). In particular, there exists 
v0 ∈ V such that (v0, xv0, . . . , xN−1v0) is a k-basis for V . Let PrjN−1 : V → k denote the projection onto 
k · xN−1v0. Given u1, u2 ∈ V let p1, p2 ∈ k[t] be polynomials such that ui = pi(x)v0 and define

C(u1, u2) = PrjN−1 (p1(x)p2(−x)v0) . (4.5)

The fact that C is well-defined, bilinear and satisfies C(u, v) = εC(c, u) follows by direct computation. Let 
us verify that C is non-degenerate.

Let u ∈ V be non-zero, and let p(t) be such that p(x)v0 = u. By unambiguity of the definition of C, we 
may assume that deg p(t) < N . Let v = xN−1−deg pv0 ∈ V . Then

C(u, v) = PrjN−1((−1)N−1−deg pxN−1−deg pp(x)v0)

is non-zero, since tN−1−deg pp(t) is a polynomial of degree N − 1.
Finally, for ui = pi(x)v0 as above, we have that

C(xu, v) + X(u, xv) = PrjN−1(xp1(x)p2(x)v0) + PrjN−1(p1(x) · (−xp2(−x))v0) = PrjN−1(0) = 0,

and hence x is C-anti-symmetric. �
Note that Lemma 4.3.2 gives a criterion for a regular element of glN (k) to be similar to an element of g1, 

but a-priori, not necessarily to a regular element of g1. We will shortly see that it is indeed the case that 
the similarity class of such x meets g1 at a regular orbit. Before proving this, let us consider an important 
example.

Example 4.3.3 (Regular nilpotent elements). Let x ∈ glN (k) be a regular nilpotent element, i.e. mx(t) = tN . 
Picking a generator v0 for V over k[x] and putting E = (v0, xv0, . . . , xN−1v0), the element x is represented in 
the basis E by the matrix Υ, given by an N×N nilpotent Jordan block. The bilinear form C of Lemma 4.3.2
is represented in this basis by the matrix

c =

⎛⎜⎜⎝
1

−1
...

(−1)N−1

⎞⎟⎟⎠ . (4.6)

To show that Υ is similar to a regular element of g1, by [36, 3.5, Proposition 1] and [20, § 1.10, Proposition], 
it suffices to show that the centralizer of Υ within the Lie-algebra h ⊆ MN (kalg), of matrices y satisfying 
the condition ytc + cy (i.e. the Lie-algebra of the linear algebraic kalg-group of isometries of C(·, ·)), is of 
dimension n over kalg. By direct computation, one shows that

Ch(Υ) =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
a1 a2 . . . aN

. . . . . .
...

a1 a2
a1

⎞⎟⎟⎠ ∈ MN (kalg) | 2a2i−1 = 0 for all i = 1, . . . , �N/2�

⎫⎪⎪⎬⎪⎪⎭ .

Recalling that char(kalg) 	= 2, it follows that a2i+1 = 0 for all i = 0, . . . , �N/2� and hence dimkalg Ch(Υ) =
�N/2� = n.
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Proposition 4.3.4. Let x ∈ g1. Then x is a regular element of g1 if and only if x is regular in glN (k).

Proof. By [36, § 3.5, Proposition 1], we need to show dimCΓ1(x) = n if and only if dimCGLN×kalg(x) = N . 
Let x = s +h be the Jordan decomposition of x over kalg, with s, h ∈ g(kalg), s semisimple, h nilpotent, and 
[s, h] = 0. As seen in the proof of Proposition 2.1.1, the space W = (kalg)N decomposes as an orthogonal 
direct sum W1 ⊕ W0 with respect to the ambient bilinear form Bkalg , where W0 = Ker(s) and s |W1 is 
non-singular. Let Σ ⊆ G(kalg) be the subgroup of elements acting trivially on W0 and preserving W1, and 
let Δ be as in Proposition 2.1.1. Then

CΓ1(x) = CΣ(x) × C{1W1
}
×Δ(x)

and

CGLN (kalg)(x) = CGL(W1)×
{
1W0

}(x) × C{1W1
}
×GL(W0)(x)

and therefore the proof reduces to the cases where x is non-singular and where x is a nilpotent element acting 
on W0. The first case follows from Lemma 4.2.1, whereas the second case follows from Example 4.3.3 and 
from the uniqueness of a regular nilpotent orbit over algebraically closed fields [36, III, Theorem 1.8]. �
Proof of Theorem 4.1.2.(1). Proposition 4.3.4 implies that any element x ∈ MN (k) which is similar to a 
regular element of g1 is regular as an element of glN (k). It follows easily that degmx = N and mx(−t) =
(−1)Nmx(t) (see Lemma 4.3.2.(1)). The converse implication is given by Lemma 4.3.2.(2). �
4.3.2. From similarity classes to adjoint orbits

In this section is to we analyze decomposition of the set Ad(GLN (k))x ∩ g1, for x ∈ g1 regular, into 
Ad(G1)-orbits, and prove Theorem 4.1.2.(2).

Notation 4.3.5. Given a polynomial f(t) ∈ k[t] we write k〈f〉 for the quotient ring k[t]/(f). For example, if 
f is an irreducible polynomial over k then k〈f〉 stands for the splitting field of f . We write GL1(k〈f〉) for 
the group of units of k〈f〉.

Assuming further that f(t) = ±f(−t), let σf denote the k-involution of k〈f〉, induced from the 
k[t]-involution t �→ −t, and let U1(k〈f〉) be the group of elements ξ ∈ k〈f〉 such that σf (ξ) · ξ = 1.

Proposition 4.3.6. Let x ∈ g1 be a regular element, and put Πx = Ad(GLN (k))x ∩ g1. If x is singular 
and N is even, then the intersection Πx is the disjoint union of two distinct Ad(G1)-orbits. Otherwise, 
Πx = Ad(G1)x.

Proof. The notation of Proposition 4.2.3 is used freely throughout the proof. We proceed in the following 
steps.

1. Computation of the cardinality of Θx. Namely, we show that |Θx| = 2 if x is singular and equals 1
otherwise.

2. Description of the image of the map Λ in Θx.

By Lemma 4.3.2, the minimal polynomial mx of x is of degree N and satisfies mx(−t) = (−1)Nmx(t). 
Thus, it can be expressed uniquely as the product of pairwise coprime factors

mx(t) = td1 ·
d2∏

ϕi(t)li ·
d3∏

θi(t)ri , (4.7)

i=1 i=1
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where the polynomials ϕ1, . . . , ϕd2 are irreducible, monic and even, and θ1, . . . , θd3 are of the form θi(t) =
τi(t) ·τi(−t) with τi(t) monic, irreducible and coprime to τ(−t). The centralizer C = CMN (k)(x) is isomorphic 
to the ring k〈mx〉 and the restriction of the involution � to C is transferred via this isomorphism to the 
map σmx

, defined in Notation 4.3.5. By the Chinese remainder theorem, we get

C 
 k〈td1〉 ×
d2∏
i=1

k〈ϕi(t)m1〉 ×
d3∏
i=1

k〈θi(t)ri〉. (4.8)

Furthermore, the restriction of the involution σmx
to each of the factors k〈f〉, for f ∈

{
td1 , ϕli

i , θ
rj
j

}
coincides 

with the respective involution σf , induced from t �→ −t. A short computation shows that the nilpotent 
radical of C is isomorphic to the direct product of the nilpotent radicals of all factors on the right hand side 
of (4.8), and that the quotient C/N is isomorphic to the étale algebra

K = kr ×
d2∏
i=1

k〈ϕi〉 ×
d3∏
i=1

k〈θi〉, (4.9)

where r = 1 if d1 > 0 (i.e. if x is singular) and equals 0 otherwise.3 Let † denote the involution induced on 
the k-algebra K in (4.9) from the restriction of � to C. From the observation regarding the action of � on C
above, we deduce the following properties of the involution † on K.

D1. The involution † preserves the factor kr and acts trivially on it.
D2. The involution † preserves the factors k〈ϕi〉 and coincides with the non-trivial field involution σϕi

.
D3. The involution † preserves the factors k〈θi〉 
 k〈τi(t)〉 × k〈τi(−t)〉 and maps a pair (ξ, ν) ∈ k〈τi(t)〉 ×

k〈τi(−t)〉 to the pair (ι−1(ν), ι(ξ)), where ι : k〈τi(t)〉 → k〈τi(−t)〉 is the isomorphism induced from 
t �→ −t.

Let Sym(†) be subgroup of K× of elements fixed by †. Note that, as K 
 C/N is a commutative 
ring, by Lemma 4.2.4, the set Θx can be identified with the quotient of Sym(†) by the image of the map 
z �→ z†z : K → Sym(†).

By (D2) and the theory of finite fields, the restriction of the map z �→ z†z to the factors k〈ϕi〉 coincides 
with the field norm onto the subfield of element fixed by †, and is surjective onto this subfield. Furthermore, 
by (D3), it is evident that an element (ξ, ν) ∈ k〈τi(t)〉 × k〈τi(−t)〉 is fixed by † if an only if ν = ι(ξ), in 
which case (ξ, ν) = (ξ, 1)† · (ξ, 1). Lastly, by (D1) it holds that the image of the restriction of z �→ z†z to 
the multiplicative group of kr is either trivial, if r = 0, or the group of squares in k×, otherwise. It follows 
from this that the set Θx is either in bijection with the quotient 

(
k×/(k×)2

)
, and hence of cardinality 2, if 

x singular, or otherwise trivial. This completes the first step of the proof.
For the second step, we divide the analysis according to the parity of N , in order to describe the image 

of Λ.

N even. In this case we show that Λ is surjective. To do so, let Q ∈ Sym(�; x). Note that, by assumption, 
Q� = Q and Q ∈ GLN (k), and hence the form (u, v) �→ B(u, Qv) is alternating and non-degenerate. By 
Lemma 4.3.1, there exists w ∈ GLN (k) such that Q = w�w. To show that Q ∈ ImΛ we only need to verify 
that y = wxw−1 ∈ g1. This holds, as

y� = (w�)−1x�w� = −(w�)−1(QxQ−1)w� = −wxw−1 = −y,

since Q is assumed to commute with x.

3 Here it is understood that the ring k0 is the trivial algebra {0}.
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N odd. Note that in this case, all elements of g1 are non-singular and hence |Θx| = 2 for all x ∈ g1. In 
this case we prove that the map Λ is not surjective. Note that by definition of the equivalence class ∼, if 
Q1, Q2 ∈ Sym(�; x) are such that Q1 ∼ Q2, then det(Q1)−1 det(Q2) is a square in k×. This holds since 
det(a�) = det(a) for all a ∈ MN (k). By the same token, it follows that the det(w�w) is a square in k× for 
all w ∈ GLN (k).

Therefore, to show that Λ is not surjective, it suffices to show that Sym(�; x) contains elements whose 
determinant is not a square in k. One may take, for example, the element Q = δ · 1N , for δ ∈ k× non-
square. �
4.3.3. Centralizers of regular elements

Finally, we compute the order of the centralizer of a regular element of g1. The analysis we propose is 
analogous to [22, Proposition 4.4].

Lemma 4.3.7. Let x ∈ g1 be regular with minimal polynomial

mx(t) = td1

d2∏
i=1

ϕi(t)li
d3∏
i=1

θi(t)ri ,

where the product on the right hand side is as in (4.7), with θi(t) = τi(t)τi(−t). The determinant map 
induces a short exact sequence

1 → CG1(x) → U1(k〈td1〉) ×
d2∏
i=1

U1(k〈ϕli
i 〉) ×

d3∏
i=1

GL1(k〈τ rii 〉) det−−→ Z → 1 (4.10)

where Z ⊆ k× is the subgroup of order 2 if N is odd and trivial otherwise.

Proof. As shown in the proof on Proposition 4.3.6, the centralizer of x in GLN (k) is isomorphic to the group 
of units of the ring C, i.e. the direct product

CGLN (k)(x) 
 GL1(k〈td1〉) ×
d2∏
i=1

GL1(k〈ϕli
i 〉) ×

d3∏
i=1

GL1(k〈θrii 〉).

Furthermore, the involution � of GLN (k) restricts to an involution of CGLN (k)(x) which is transferred via 
this isomorphism to the involution σmx

, induced by t �→ −t, and restricts to the involution σf on each of 
the factors GL1(k〈f〉) for f ∈

{
td1 , ϕli

i , θ
ri
i

}
.

The additional condition z�z = 1, and the fact that � preserves all factors in the decomposition (4.8), 
imply that the centralizer of x in G1 is embedded in the group

U1(k〈td1〉) ×
d2∏
i=1

U1(k〈ϕi(t)li〉 ×
d3∏
i=1

U1(k〈θi(t)ri〉).

Similarly to Proposition 4.3.6, the map σθ
ri
i

acts on the factors GL1(k〈θi(t)ri〉) 
 GL1(k〈τi(t)ri〉) ×
GL1(k〈τi(−t)ri〉) as (ξ, ν) �→ (ι−1(ν), ι(ξ)), where ι : k〈τi(t)ri〉 → k〈τi(−t)ri〉 is the isomorphism induced 
from t �→ −t. It follows from this that (ξ, ν) ∈ U1(k〈θrii 〉) if and only if ι(ξ) = ν−1, and hence that 
U1(k〈θrii 〉) 
 GL1(k〈τ rii 〉).

Lastly, we compute order of the group Z. Since for any w ∈ GLN (k) we have that det(w�) = det(w), it 
follows that the condition w�w = 1 implies that det(w) ∈ {±1}. Thus, to complete the lemma, we need to 
show that both values occur in the case of N odd, and that only 1 is possible for N even. Both statements 
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are well-known. The former can be proved simply by considering the elements ±1 ∈ GLN (k), while the 
latter can be deduced by considering the Pfaffian of the matrix wtJw = J. �
Lemma 4.3.8. Let f ∈ k[t] be a monic irreducible polynomial with f(−t) = ±f(t) and let r ∈ N. Let Efr

denote the image of the map z �→ σfr (z) · z : GL1(k〈fr〉) → GL1(k〈fr〉). Given y ∈ GL1(k〈fr〉) it holds that 
y ∈ Efr if and only if

1. σfr(y) = y, and
2. there exists z ∈ GL1(k〈f(t)r〉) such that y ≡ zσfr (z) (mod f).

In particular, we have

|Efr | =
{
q

1
2 r deg f (1 − q−

1
2 deg f ) if f(t) 	= t

q−1
2 q�

r
2 �−1 if f(t) = t.

Proof. Let W denote the vector space underlying the ring k〈fr〉 and let C be the bilinear form defined on 
W as in Lemma 4.3.2. Let x be the linear operator defined on W by multiplication by t. The map t �→ x

sets up a ring isomorphism of k〈fr〉 with the ring C ⊆ Mr·deg f (k) of matrices commuting with x, and the 
involution � on C is identified with the ring involution σfr . Note that, in the current setting, if y ∈ k〈fr〉
is the image modulo (fr) of a polynomial ỹ(t), then the assumption σfr(y) = y is equivalent to ỹ(x) ∈ C
satisfying ỹ(x)� = ỹ(x) or, in the notation of Section 4.2.2, to ỹ(x) ∈ Sym(�; x). Also, the nilpotent radical 
of C is given as the image of the ideal (f) ⊆ k〈fr〉. The equivalence stated in the lemma now follows from 
Lemma 4.2.4, by taking Q1 = 1 and Q2 = ỹ(x) ∈ Sym(�; x).

We now compute the cardinality of Efr . In the case f(t) = t, the equivalence proved above implies that 
Efr can be identified with the subgroup of the ring k[t]/(tr) of truncated polynomials of degree no greater 
than r − 1, which consists of even polynomials whose constant term is an invertible square of k. Hence 
|Efr | = q−1

2 q�
r
2 �−1.

In the complementary case, by irreducibility, necessarily f(t) = f(−t) and has even degree. In this 
case, by the Jordan–Chevalley Decomposition Theorem, there exist polynomials S, H ∈ k[t] such that 
the endomorphism S(x) (resp. H(x)) acts semisimply (resp. nilpotently) on the vector space W = k〈fr〉, 
on which x acts by multiplication by t, and such that H(t) + S(t) ≡ t (mod f(t)r) (see [19, § 4.2]; note 
that S, H ∈ k[t] is possible since k is perfect). It follows that k〈fr〉 
 k[x] = k[S(x)][H(x)]. A quick 
computation shows that the minimal polynomials of S(x) and H(x) are f(t) and tr respectively, and 
thus k〈f〉 
 k[S(x)][H(x)] 
 k〈f〉 ⊗k (k[h]/(hr)). Moreover, by the properties of the Jordan–Chevalley 
decomposition, both S(t) and H(t) satisfy S(−x) = −S(x) and H(−x) = −H(x) [7, § 3, Proposition 3]. 
Thus, under this identification, the involution σfr is transferred to an involution of k〈f〉 ⊗k (k[h]/(hr)), 
mapping h to −h and acting as σf on the field k〈f〉.

By the equivalence in the lemma, and the theory of finite fields, the group Efr is identified with the 
subgroup of (k〈fr〉)× of elements fixed by σfr . Using the identification above, this subgroup consists of 
elements of the form 

∑r−1
i=0 ai ⊗ hi, with a0, . . . , ar−1 ∈ k〈f〉, a0 	= 0, and

σf (ai) =
{
ai if i is even
−ai if i is even.

The equality |Efr | = q
1
2 r deg f (1 − q−

1
2 deg f ) now follows by direct computation. �

Proposition 4.3.9. Let x ∈ g1 be a regular element with minimal polynomial mx ∈ k[t]. Let τ (mx) =
(r(mx), S(mx), T (mx)) ∈ Xn be the type of mx (see Definition 4.1.1). Then
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|CG1(x)| = 2νqn
∏
d,e

(
1 + q−d

)Sd,e(mx) ·
(
1 − q−d

)Td,e(mx)
,

where ν = 1 in the case where N = 2n is even and r(mx) > 0, and ν = 0 otherwise.

Proof. Let mx = td1
∏d2

i=1 ϕ
li
i

∏d3
i=1 θ

ri
i be a decomposition of mx as in (4.7), with ϕi even and irreducible, 

and θi(t) = τi(t)τi(−t) with τi(t), τi(−t) irreducible and coprime. Note that by definition of τ (mx) we have 
that r(mx) = �d1

2 �.
In view of Lemma 4.3.7 it suffices to show the following three assertions.

1.
∣∣U1(k〈td1〉)

∣∣ = 2qr(mx);
2.
∣∣∣U1(k〈ϕli

i 〉)
∣∣∣ = q

1
2 li·deg ϕi(1 + q−

1
2 deg ϕi);

3. |GL1(k〈τ rii 〉)| = qri·deg τi(1 − q− deg τi).

Note that for any irreducible polynomial f(t) ∈ k[t] and r ∈ N, invoking the Jordan–Chevalley Decompo-
sition as in Lemma 4.3.8, the group GL1(k〈fr〉) is isomorphic to the group of units of the ring k〈f〉[u]/(ur), 
and hence |GL1(k〈fr〉)| = qr·deg f

(
1 − q− deg f

)
. Assertion (3) follows by taking f(t) = τi(t) and r = ri.

Assertions (1) and (2) follow from the exactness of the sequence

1 → U1(k〈fr〉) → GL1(k〈fr〉) x �→σfr (x)·x−−−−−−−−→ Efr → 1,

which holds for any irreducible f ∈ k[t] with f(−t) = ±f(t) and r ∈ N, and from the computation of |Efr |
in Lemma 4.3.8 and |GL1(k〈fr〉)| for the case where f(t) = t and r = d1, and the cases f(t) = ϕi(t) and 
r = li. �

The final assertion of Theorem 4.1.2 follows directly from Proposition 4.3.9.

4.4. Even dimensional special orthogonal groups

The following lemma demonstrates the failure of the first assertion of Theorem 4.1.2 in the even orthogonal 
case.

Lemma 4.4.1. Let N = 2n be even and let x ∈ glN (kalg) be a regular nilpotent element. Then x is not 
anti-symmetric with respect to any non-degenerate symmetric bilinear form on V = (kalg)N .

Proof. Note that, as x is conjugate to an N ×N nilpotent Jordan block, the kernel of x is one dimensional. 
Assume towards a contradiction that C is a symmetric non-degenerate bilinear form on V such that x is 
C-anti-symmetric. Consider the form F (u, v) = C(u, xv) on V . By assumption the C(xu, v) +C(u, xv) = 0, 
we have that F is anti-symmetric. Additionally, the radical of F coincides with the kernel of x, by non-
degeneracy of C. By properties of antisymmetric forms, it follows that the kernel of x is even-dimensional. 
A contradiction. �

Nonetheless, regular nilpotent elements in the case of even-dimensional special orthogonal groups are 
well-known to exist [32, III, 1.19]. In Lemma 4.4.2 below we shall construct such an element and compute 
its centralizer.

Recall that non-degenerate symmetric bilinear forms on V = kN are classified by the dimension of a 
maximal totally isotropic subspace of V with respect to the given form (i.e. its Witt index), and that over 
a finite field of odd characteristic there are exactly two such forms, upto isometry. We fix B+ and B− to 



S. Shechter / Journal of Pure and Applied Algebra 223 (2019) 4384–4425 4417
be bilinear forms on V of Witt index n and n − 1, respectively. In suitable bases, the forms B+ and B− are 
represented by the matrices

J+ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

. . .
0 1
1 0

0 1
1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
or J− =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1
1 0

. . .
0 1
1 0

1 0
0 δ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4.11)

where δ ∈ o× is a fixed non-square.
Given ε ∈ {±1}, let Gε

1 = SOε
N (k) and gε1 = soεN (k) be the group of isometries of determinant 1 and 

the Lie-algebra of anti-symmetric operators with respect to the form Bε. We will also occasionally use the 
colloquial notation G±

1 = G+
1 ∪ G−

1 and g±1 = g
+
1 ∪ g

−
1 . For example, the phrase x is a regular element of 

g
±
1 indicates that x is either a regular element of g+

1 or of g−1 .

4.4.1. Similarity classes of regular elements
In this section we prove the first assertion of Theorem 4.1.3, which classifies the similarity classes of 

glN (o) whose intersection with g±1 consists of regular elements. Following this, we differentiate whether such 
a similarity class intersects g+

1 or g−1 .
Note that if x ∈ glN (k) is a non-singular element whose minimal polynomial mx is even and has degree 

N then, by applying the argument of Lemma 4.3.2.(2) verbatim, we have that x is anti-symmetric with 
respect to a non-degenerate symmetric bilinear form and hence similar to an element of g±1 . By Lemma 4.2.1, 
all non-singular regular elements of g1 are obtained in this manner. Thus, for x ∈ glN (k) non-singular, it 
holds that x is similar to a regular element of g± if and only if the minimal polynomial of x is even and of 
degree N .

As explained below (see Proposition 4.4.9), the case of singular regular elements of g±1 is essentially 
reduced to the study of nilpotent regular elements. These elements are considered in the following lemma.

Lemma 4.4.2. Let x ∈ glN (k) have minimal polynomial mx(t) = tN−1. Then x is similar to a regular 
nilpotent element of g+

1 , as well as to a regular nilpotent element of g−1 .

Proof. By considering the Jordan normal form of such an element x, there exist elements v0, u0 ∈ V with 
u0 ∈ Ker(x) and such that E =

{
v0, xv0, . . . , x

N−2v0, u0
}

is a k-basis for V .
Let E ′ =

{
v0, . . . x

N−2v0
}

and V ′ = Spank E ′. Since the element x |V ′∈ gl(V ′) has minimal polynomial 
tN−1 = tdim V ′ , it is regular in gl(V ′). By the proof of Lemma 4.3.2, there exists a non-degenerate sym-
metric bilinear form C ′ on V ′, with respect to which x |V ′ is anti-symmetric. We wish to extend C ′ to a 
non-degenerate symmetric bilinear form on V , with respect to which x is anti-symmetric. This is equivalent 
to finding an invertible matrix d ∈ MN (k), whose top-left (N − 1) × (N − 1) submatrix coincides with the 
matrix c of Example 4.3.3 (see (4.6)), and such that

dtΥ + Υd = 0 where Υ = [x]E =

⎛⎜⎜⎜⎜⎝
0 1

. . . . . .
0 1

0 0

⎞⎟⎟⎟⎟⎠ . (4.12)
0
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A short computation shows that the matrix

d = dη =

⎛⎜⎜⎜⎜⎝
1

−1
...

1
η

⎞⎟⎟⎟⎟⎠ , (4.13)

where η ∈ k× satisfies the required equality. Furthermore, by applying a signed permutation to E , one may 
verify easily that dη is congruent to the matrix J+ of (4.11) if η is a square, and to J− otherwise. Thus, x
is similar in this case to elements of both g+

1 and of g−1 .
Lastly, we need to verify that x is similar to a regular element of g±1 . To do so, we pass to the algebraic 

closure kalg of k and compute the centralizer in G(kalg) of an element zxz−1 ∈ g1. Working in the basis E , by 
direct computation, one sees that the centralizer of x in MN (kalg) can be identified with the set of matrices 
y =

( A v
ut r

)
, where

1. A ∈ MN−1(kalg) and commutes with the restriction of Υ to V ′ = Spankalg E ′;
2. u, v ∈ (kalg)N−1 are elements of the kernel of Υ and Υt, respectively, and hence of the form v =

(v1 0 . . . 0)t and u = (0 . . . 0 uN−1 )t; and
3. r ∈ kalg is arbitrary.

As in Example 4.3.3, the centralizer of zxz−1 ∈ g1 is conjugated in GLN (kalg) to the group{
y ∈ CGLN (kalg)(Υ) | ytdy = d

}
.

Computing its Lie-algebra, which consists of matrices y ∈ CMN (kalg)(Υ) satisfying ytd +dy = 0, we get the 
additional three conditions

1. Atc + cA = 0, where c is as in Example 4.3.3;
2. ηu + cv = 0, i.e. v1 = −ηuN−1; and
3. 2ηr = 0, and hence r = 0.

It follows that CΓ1(zxz−1) is at most n-dimensional, and hence x is regular. �
To streamline the analysis of nilpotent regular orbits, let us fix some notation.

Notation 4.4.3. Given a matrix A ∈ MN−1(k), column vectors v, u ∈ kN−1 and r ∈ k, let Ξ(A, v, u, r)
denote the N ×N matrix

Ξ(A,v,u, r) =
(

A v
ut r

)
.

We also write A� for the matrix cAtc, where c is as in Example 4.3.3. Note that, in the case where d = dη

is the representing matrix for the symmetric bilinear form given on V , we have that

Ξ(A,v,u, r)� =
(

A� ηcu
η−1vtc r

)
= Ξ(A�, ηcu, η−1cv, r). (4.14)

The next step of the computation is to differentiate whether a given element x ∈ glN (k), which is similar 
to a regular element of g±1 , is similar to either g+

1 or g−1 . We first consider two specific cases, depending on 
the minimal polynomial of x.
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Lemma 4.4.4 (cf. [39, § 2.6.(B).(i) and (i’)]). Let x ∈ glN (k) have minimal polynomial mx. Assume x is 
similar to a regular element of g±1 .

1. If mx(t) = f(t)f(−t) for some polynomial f ∈ k[t] with f(0) 	= 0, then x is similar to an element of g+
1 , 

and not to an element of g−1 .
2. If mx = ϕr for ϕ ∈ k[t] an even irreducible polynomial and r ∈ N odd, then x is similar to a regular 

element of g−1 and not to an element of g+
1 .

Proof. Let C be a non-degenerate symmetric bilinear, with respect to which x is C-anti-symmetric. We will 
show that C necessarily has Witt index n in the first case and n − 1 in the second case.

1. By the assumption mx(0) 	= 0 and Lemma 4.2.1, it follows that x is also a regular element of glN (k), 
and hence the space V is cyclic as a k[x] module. Put W = f(x)V . Then W is isomorphic, as a 
k[x]-module, to V/f(−x)V , and hence is of dimension n = N

2 over k. Additionally, for any u, v ∈ V

we have C(f(x)u, f(x)v) = C(f(x)f(−x)u, v) = 0, and hence W is totally isotropic.
2. Let us first consider the case where r = 1, and hence V is isomorphic to the field extension k〈ϕ〉 of k. 
Furthermore, the map σϕ ∈ Autk(k〈ϕ〉), induced from t �→ −t is a field involution of k〈ϕ〉 over k, with 
fixed field K, such that |k〈ϕ〉 : K| = 2. Note that in this setting, without loss of generality, we may assume 
that C(u, v) = Trk〈ϕ〉/k(σϕ(u)v) for all u, v ∈ V . Indeed, invoking the separability of the extension k〈ϕ〉/k, 
there exists an element c ∈ k〈ϕ〉 such that C(u, 1) = Trk〈ϕ〉/k(c · u) for all u ∈ k〈ϕ〉. From the symmetry 
of C and the invariance of Trk〈ϕ〉/k under σϕ, it can be deduced that in fact c ∈ K. By the theory of finite 
fields, there exists an element d ∈ k〈ϕ〉 such that c = σϕ(d)d. It follows that multiplication by d is an 
isometry of C with the trace pairing (u, v) �→ Trk〈ϕ〉/k(σϕ(u)v).

Note that an element u ∈ k〈ϕ〉 is isotropic if and only if σϕ(u)u is a traceless element of K. Since the 
number of non-zero traceless elements in the extension K/k is qn−1−1, and by the surjectivity of the norm 
map Nrk〈ϕ〉/K, it follows that the number of non-zero isotropic element of k〈ϕ〉 is (qn + 1)(qn−1 − 1). The 
fact that C is of Witt index n − 1 now follows as in [42, § 3.7.2].

For the case r > 1, put l = � r
2� and U = ϕ(x)l+1V . Then, similarly to (1), U is an isotropic subspace 

of V , with perpendicular space U⊥ = ϕ(x)lV . Moreover, the form C reduces to a non-degenerate symmetric 
bilinear form on the quotient space U⊥/U , on which x acts as an anti-symmetric operator with minimal 
polynomial ϕ. By the case r = 1, we find a two-dimensional anisotropic subspace L̄ ⊆ U⊥/U , whose 
pull-back to U⊥ is contains a two-dimensional anisotropic subspace of V . It follows that the Witt index of 
C is necessarily n − 1. �

Having Lemma 4.4.4 at hand, we need one more basic tool in order to complete the classification of 
similarity classes containing regular elements of g±1 .

Notation 4.4.5. Given a finite, even-dimensional vector space U over k with a non-degenerate symmetric 
bilinear form C, put δU = 1 if U is of Witt index 1

2 dimk U and δU = −1 otherwise.

Lemma 4.4.6. Let U, W be finite, even dimensional vector spaces over k with non-degenerate symmetric 
bilinear forms CU and CV respectively. Endow the space U ⊕W with the non-degenerate symmetric bilinear 
form CU⊕W (u + w, u′ + w′) = CU (u, u′) + CW (w, w′) where u, u′ ∈ U and w, w′ ∈ W . Then

δU⊕W = δU · δW .

Proof. The lemma follows, e.g., from [42, § 3.7.4, p. 68], noting that the direct product of the groups of 
isometries of CU and CW is embedded in the group of isometries of CU⊕W . �
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We are now ready to complete the proof of the first and second assertions of Theorem 4.1.3.

Proposition 4.4.7. Let x ∈ glN have minimal polynomial mx. Assume mx(−t) = (−1)deg mxmx(t) and let

mx(t) = td1

d2∏
i=1

ϕli
i

d3∏
i=1

θrii

a decomposition as in (4.7), with ϕi(t) even and irreducible, and θi(t) = τi(t)τi(−t) with τi(t) monic, 
irreducible and coprime to τi(−t).

1. If d1 > 0 then x is similar to a regular element of g±1 if and only if degmx = N − 1. Moreover, in this 
case x is similar to an element of g+

1 as well as to an element of g−1 .
2. Otherwise, if d1 = 0 then x is similar to a regular element of g±1 if and only if degmx = N . In this 

case, put ω(mx) =
∑d

i=1 li.
(a) If ω(mx) is even, then x is similar to an element of g+

1 and not to an element of g−1 .
(b) Otherwise, if ω(mx) is odd, then x is similar to an element of g−1 and not to an element of g−1 .

Proof. Considering the primary canonical form of x, the space V decomposes as a k[x]-invariant direct sum 
V = Wtd1 ⊕

⊕d2
i=1 Wϕ

li
i
⊕
⊕d3

i=1 Wθ
ri
i

, where the restriction of x to the spaces Wf has minimal polynomial 

f(t), with f ∈
{
td1 , ϕli

i , θ
ri
i

}
.

For any f(t) 	= td1 , the restriction of x to Wf is a regular element of gl(Wf ). By Lemma 4.2.1, the space 
Wf is endowed with a non-degenerate symmetric bilinear form on which x |Wf

acts as an anti-symmetric 
operator. Furthermore, by Lemma 4.4.4, in the case where f = θrii for i = 1, . . . , d3 or f = ϕli

i with li even, 
then δWf

= +1. Otherwise, if f = ϕli
i with li odd, δWf

= −1. Assertion (2), in which d1 = 0 is assumed, 
now follows from Lemma 4.4.6.

In the case where d1 > 0, the assumption degmx = N − 1 implies that t ·mx(t) = cx, where cx(t) is the 
characteristic polynomial of x. It follows that the restriction of x to Wtd1 has minimal polynomial td−1, and 
hence, by Lemma 4.4.2, is antisymmetric with respect to non-degenerate symmetric forms of Witt index d1

2
as well as d1

2 − 1. Thus δW
td1

can be taken to be either +1 or −1. By the case where x is non-singular, and 
by Lemma 4.4.6, x is similar to an element of g+

1 as well as to an element of g−1 . �
4.4.2. From similarity classes to adjoint orbits

Our next goal, once the similarity classes containing regular elements of g±1 have been classified, is to 
describe the set Πx = Ad(GLN (k))x ∩ gε1 into Ad(Gε

1)-orbits, for ε ∈ {±1} fixed. In order to complete the 
description, we require the following lemma, whose proof is appears after Proposition 4.4.9.

Lemma 4.4.8. Assume |k| > 3 and char(k) 	= 2. For any element γ ∈ k× there exist ν, δ ∈ k× such that 
ν ∈ (k×)2, δ ∈ k× � (k×)2 and such that γ = ν − δ.

Proposition 4.4.9. Assume |k| > 3. Fix ε ∈ {±1} and let x ∈ gε1 be regular. If x is singular, then the intersec-
tion Ad(GLN (k))x ∩gε1 is the disjoint union of two distinct Ad(Gε

1)-orbits. Otherwise, Ad(GLN (k))x ∩gε1 =
Ad(Gε

1)x.

Proof. In the notation of Proposition 4.2.3, let Πx = Ad(GLN (k))x ∩ g1 and Θx the set of equivalence 
classes in Sym(�; x) =

{
Q ∈ CGLN (k)(x) | Q� = Q

}
under the equivalence relation ∼, defined in (4.4). Let 

Λ : Πx → Θx be the map wxw−1 �→ [w�w] ∈ Θx, for y = wxw−1 ∈ Πx.
In the case where x is non-singular, by applying the argument of Proposition 4.3.6 for non-singular 

elements verbatim, we have that Θx consists of a single element and therefore that Πx = Ad(Gε
1)x.
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Furthermore, in the case where x is singular, by considering the decomposition of x into primary rational 
canonical forms, one may restrict x to a maximal subspace of kN on which x acts as a regular nilpotent 
element. This subspace is even-dimensional and admits an orthogonal complement, on which x acts as a 
non-singular regular element. Additionally, any operator commuting with x must preserve this subspace as 
well as its orthogonal complement. It follows that to prove the proposition in the case where x is singular 
it is sufficient to consider the case where x is a nilpotent regular element of gε1.

In this case, by the uniqueness of a nilpotent regular element in g(kalg) [32, III, Theorem 1.8], we may 
invoke Lemma 4.4.2 and fix a basis E , with respect to which x is represented by the matrix Υ, defined 
in (4.12), and that the ambient non-degenerate symmetric bilinear form is represented in E by the matrix 
d = dη of (4.13), where η ∈ k× is a square if ε = 1 and non-square otherwise.

The centralizer C of Υ in MN (k) is isomorphic to the ring of k[x]-endomorphisms of k[x] × k, and can be 
realized as the set of matrices Ξ(A, v, u, r) (see Notation 4.4.3) with v and u elements of the kernel of Υ
and Υt respectively, A ∈ MN−1(k) is an upper triangular Töplitz matrix, and r ∈ k. Note that the ideal 
generated by elements of the form Ξ(0N−1, v, u, 0) ∈ C is nilpotent and in particular is contained in the 
nilpotent radical N of C. It follows that the quotient ring C/N is isomorphic to the étale algebra k × k. 
Additionally, by Lemma 4.2.4, we have that Ξ(A, v, u, r) ∼ Ξ(A′, v′, u′, r′) if and only if there exists a block 
matrix Ξ(q, 0, 0, s) such that

(
q

s

)�(A v
ut r

)(
q

s

)
≡
(

A′ v′

u′ t r′

)
(mod N ).

Applying a similar argument as in the nilpotent case of Proposition 4.3.6, we have that the involution �

restricts to the identity map on C/N and hence that the quotient Θx of Sym(�; x) by the relation ∼, defined 
in Section 4.2.2, is isomorphic to the quotient group k×/(k×)2 × k×/(k×)2 and is of order 4.

The final step of the proof is to compute the image of the map Λ. Recall that Λ maps an element 
wxw−1 ∈ Πx = Ad(GLN (k))x ∩ gε1 to the equivalence class of w�w in Θx. As in the odd orthogonal case, 
two elements which are equivalent with respect to ∼ must have determinant in the same coset of k×/(k×)2. 
In particular, as w�w has square determinant, the image of Λ in Θx is contained in the subset of equivalence 
classes in Θx, containing block matrices Ξ(A, 0, 0, r) with detA ≡ r (mod (k×)2).

To complete the proof that |Im(Λ)| = 2 it suffices to find an element w ∈ GLN (k) such that wxw−1 ∈ g1

and such that w�w is a block matrix of the form Ξ(A, 0, 0, r) with detA, r /∈ (k×)2.
Let η ∈ k× be as above put α = (−1)(N−2)/2. Let ν ∈ (k×)2 and δ ∈ k×� (k×)2 be such that αη = ν− δ; 

see Lemma 4.4.8. Let ν1 ∈ k× be such that ν2
1 = ν, and put z = η · ν−1

1 . Let w ∈ GLN (k) be represented in 
E by the matrix w of (4.15), in which the upper-left scalar block with δ on the diagonal is 

(
N−2

2
)
×
(
N−2

2
)
.

Recalling that w� is represented by the matrix d−1wtd, one verifies by direct computation that w�w is 
given by the diagonal matrix Ξ(δ1N−1, 0, 0, ν−1δ), and consequently, that w�w ∈ Sym(�; x) and wxw−1 ∈ gε1, 
and that w�w is not equivalent to 1N under the relation ∼.

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
. . .

δ
ν1 αz

1
. . .

1
−η−1ν1z 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. � (4.15)
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Proof of Lemma 4.4.8. Let ξ ∈ k× be a non-square, and let K = k〈t2 − ξ〉 be the splitting field of t2 − ξ, 
with ξ1 ∈ K× a square root of ξ. The norm map NrK|k : K× → k× is surjective and has fibers of order q + 1. 
In particular, there exist ν1, δ1 ∈ k such that

NrK|k(ν1 + ξ1δ1) = ν2
1 − ξδ2

1 = γ.

We claim that ν1 and δ1 can be taken to be both non-zero.

Case 1, γ ∈ k× � (k×)2. Note that in this case we must have that δ1 	= 0, as otherwise γ = ν2
1 ∈ (k×)2. 

Furthermore, if ν1 = 0 for any pair (ν1, δ1) such that ν2
1 − ξδ2

1 = γ then Nr−1
K|k(γ) ⊆ ξ1k×, and in particular 

has order smaller than q. A contradiction.
Case 2, γ ∈ (k×)2. Consider the set Nr−1

K|k(γ) � k×. Note that, as 
∣∣∣Nr−1

K|k(γ) ∩ k×
∣∣∣ = 2 (namely, it consists of 

the two roots of γ in k), the order of Nr−1
K|k(γ) � k× is exactly q − 1. Assume towards a contradiction that 

there is no solution (ν1, δ1) ∈ k× × k× for the equation

ν2
1 − ξδ2

1 = NrK|k(ν1 − ξ1δ1) = γ.

This implies that any solution not in k××{0} is an element of {0}×k×, or in other words, that Nr−1
K|k(γ) �k× ⊆

ξ1k×. By considering the cardinality of the two sets, we deduce that this inclusion is in fact an equality. In 
particular, this implies that for any δ1 ∈ k×,

NrK|k(ξ1δ1) = −ξδ2
1 = γ.

Thus, the set of squares in k× equals the singleton set 
{
−ξ−1γ

}
. This contradicts the assumption |k| > 3.

The lemma follows by taking ν = ν2
1 and δ = ξδ2

1 . �
4.4.3. Centralizers of regular elements

Lemma 4.4.10. Let ε ∈ {±1}. Let x ∈ gε1 be regular, with minimal polynomial

mx(t) = td1

d2∏
i=1

ϕli
i

d3∏
i=1

θrii ,

a decomposition as in (4.7), with θi = τi(t)τi(−t) and τi(t) irreducible and coprime to τi(−t).

1. If d1 > 0, then there exists a short exact sequence

1 → CGε
1(x) → Aε ×

d2∏
i=1

U1(k〈ϕli
i 〉) ×

d3∏
i=1

GL1(k〈τ rii 〉) det−−→ {±1} → 1. (4.16)

where

Aε =
{
w ∈ CGLd1+1(k)(Υ) | wtdηw = dη

}
,

with Υ and dη the (d1 + 1) × (d1 + 1) matrices defined as in (4.12) and (4.13).
2. Otherwise, the group CGε

1(x) is isomorphic to 
∏d2

i=1 U1(k〈ϕli
i 〉) ×

∏d3
i=1 GL1(k〈τ rii 〉).
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Proof. Similarly to Lemma 4.3.7, in order to prove the lemma, it is sufficient to compute the possible 
determinants of the middle term of (4.16). For the first assertion it is sufficient to verify that both +1 and 
−1 are obtained as determinant of elements from Aε, for which it is enough to consider block diagonal 
matrices of the form 

(
1d1 0
0 ±1

)
∈ Aε.

For the second assertion, we need to verify that any element w ∈ CGLN (k)(x) such that w�w = 1 has 
determinant 1. Since any element of CGLN (k)(x) preserves the invariant factors of the decomposition of V
as a k[x]-module, it is sufficient to consider the following cases of the minimal polynomial of x.

Case 1. Assume mx(t) = ϕi(t)m, with ϕi ∈ k[t] irreducible and even and m ∈ N. Let x = s + h be 
the Jordan decomposition of x, with s, h ∈ gε1, s semisimple, h nilpotent and [s, h] = 0. As mx(0) 	= 0, 
by Proposition 4.4.9.(2), the space V is cyclic as a k[x]-module and hence CMN (k)(x) 
 k[x] = k[s][h] 

k〈ϕi〉[u]/(um) (see Lemma 4.3.8). Let ρ : k〈ϕi〉[u]/(um) → CMN (k)(x) be a k-linear isomorphism. The 
k-linearity of ρ and the nilpotency of u imply that

det(ρ(α0 + α1u + . . . + αm−1u
m−1)) = Nrk〈ϕi〉/k(α0)m.

Furthermore, the restriction of the involution � to the image of ρ induces a k-automorphism σϕm
i

of k〈ϕm
i 〉

which acts on k〈ϕi〉 as the involution σϕi
, and maps u to −u. Consequently, if z ∈ CGLN (k)(x) is given by 

z = ρ(α0 + α1u + . . . + αm−1u
m−1) and satisfies z�z = 1 then necessarily Nrk〈ϕi〉/K(α0) = σϕi

(α0)α0 =
ρ−1(z�z) |u=0= 1 and

det(z) = det(ρ(α0 + α1u + . . . + αm−1u
m−1))

= Nrk〈ϕi〉/k(α0)m =
(
NrK/k ◦ Nrk〈ϕi〉/K(α0)

)m = 1.

Case 2. Assume mx(t) = (τi(t) · τi(−t))r, for τi(t) irreducible and coprime to τ(−t). In this case, by the 
cyclicity of the k[x] module V , we have that CGLN (k)(x) 
 GL1(k〈τ(t)r〉) × GL1(k〈τ(−t)r〉). Moreover, the 
map � restricts to the map (ξ, ν) �→ (ι−1(ξ), ι(ν)), where ι : k〈τ(t)r〉 → k〈τ(−t)r〉 is the isomorphism induced 
from t �→ −t. Furthermore, since ι is a ring-isomorphism which preserves k, we have that det(ι(ξ)) = det(ξ)
for all ξ ∈ k〈τ(t)r〉. In particular, if (ξ, ν)�(ξ, ν) = 1 then ν = ι(ξ)−1 and hence, det((ξ, ν)) = det(ξ) ·
det(ξ)−1 = 1. �
Proposition 4.4.11. Let x ∈ g

±
1 be regular with minimal polynomial mx(t). Let cx denote the char-

acteristic polynomial of x, i.e. cx = mx if x is non-singular, and cx(t) = t · mx(t) otherwise. Let 
τ (cx) = (r(cx), S(cx), T (cx)) ∈ Xn be the type of cx (see Definition 4.1.1). Then

∣∣CGε
1(x)

∣∣ = 2νqn
∏
d,e

(
1 + q−d

)Sd,e(mx) ·
(
1 − q−d

)Td,e(mx)
,

where ε ∈ {±} and ν = 1 if r(mx) > 0 and 0 otherwise.

Proof. In the case where x is non-singular the assertion follows verbatim as in Proposition 4.3.9. Otherwise, 
if x is singular, by decomposing x into its primary rational canonical forms, it is sufficient to consider 
the case where x is a regular nilpotent element, with minimal polynomial mx(t) = t2n−1, and show that 
|CG1(x)| = 2qn.

Without loss of generality, we fix the basis E of Lemma 4.4.2, with respect to which the ambient symmetric 
form Bε is represented by the matrix d = dη, for some η ∈ k×, and x is represented by the matrix Υ. Let 
Aε =

{
z ∈ CGLN (k)(Υ) | ztdz = d

}
, as in Lemma 4.4.10. Let N ⊆ Aε be the subgroup consisting of elements 

of the form
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X(ξ) =

⎛⎜⎜⎜⎜⎝
1 2ηξ2 2ξ

1
. . .

1
2ηξ 1

⎞⎟⎟⎟⎟⎠ (ξ ∈ k).

Note that X defines a one-parameter subgroup of Aε of order |k| = q. Additionally, N = Im(X) is the image 
under the Cayley map of the Lie-ideal generated by elements of the form Ξ(0N−1, u, v, 0) ∈ g1, and hence 
is normal in Aε.

Let H ⊆ Aε be the subgroup of block diagonal matrices Ξ(A, 0, 0, r). Note that, by (4.14) and the 
assumption Ξ(A, 0, 0, r)�Ξ(A, 0, 0, r) = 1N , we have that A�A = 1N−1 and r2 = 1. Additionally, since A
commutes with the restriction of Υ to the subspace spanned by the first N − 1 elements of E , we have that 
|H| =

∣∣U1(k〈t2n−1〉) × {±1}
∣∣ = 4qn−1 (by the first assertion in the proof of Proposition 4.3.9).

Given an arbitrary element Ξ(A, v, u, r) ∈ Aε, it holds that A must be invertible, and that v = γdu for 
some γ ∈ k. In particular, v = 0 if and only if u = 0. It follows from this, and by direct computation, that

X

(
− v1

a1,1η

)(
A v
ut r

)
∈ H,

where v1 is the first entry of v, and a1,1 is the (1, 1)-th entry of A. Therefore, we have that Aε = H ·N and 
hence, as H ∩N = {1}, that

|Aε/N| = |H| = 4qn−1.

To conclude, we have that |Aε| = 4qn, and the result follows from Lemma 4.4.10. �
The final assertion of Theorem 4.1.3 follows from Proposition 4.4.11.
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