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We study G-vertex-primitive and (G, s)-arc-transitive digraphs for almost simple 
groups G with socle PSLn(q). We prove that s � 2 for such digraphs, which provides 
the first step in determining an upper bound on s for all the vertex-primitive s-arc-
transitive digraphs.
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1. Introduction

A digraph Γ is a pair (V, →) with a set V (of vertices) and an antisymmetric irreflexive binary relation 
→ on V . For a non-negative integer s, an s-arc of Γ is a sequence v0, v1, . . . , vs of vertices with vi → vi+1
for each i = 0, . . . , s − 1. A 1-arc is also simply called an arc. For a subgroup G of Aut(Γ), we say Γ is 
(G, s)-arc-transitive if G acts transitively on the set of s-arcs of Γ. An (Aut(Γ), s)-arc-transitive digraph 
Γ is said to be s-arc-transitive. Note that a vertex-transitive (s + 1)-arc-transitive digraph is necessarily 
s-arc-transitive. A transitive permutation group G on a set Ω is said to be primitive if G does not preserve 
any nontrivial partition of Ω. For a subgroup G of Aut(Γ), we say Γ is G-vertex-primitive if G is primitive 
on the vertex set. An Aut(Γ)-vertex-primitive digraph Γ is said to be vertex-primitive. All digraphs and 
groups considered in this paper will be finite.
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It appears that vertex-primitive s-arc-transitive digraphs with large s are very rare. Indeed, the exis-
tence of vertex-primitive 2-arc-transitive digraphs besides directed cycles was only recently determined [8]
and no vertex-primitive 3-arc-transitive examples are known. In [9] the authors asked the following ques-
tion:

Question 1.1. Is there an upper bound on s for vertex-primitive s-arc-transitive digraphs that are not 
directed cycles?

A group G is said to be almost simple if G has a unique minimal normal subgroup T and T is a 
nonabelian simple group. These are precisely the groups lying between a nonabelian simple group T and its 
automorphism group Aut(T ). A systematic investigation of the O’Nan-Scott types of primitive groups has 
reduced Question 1.1 to almost simple groups by showing that an upper bound on s for vertex-primitive 
s-arc-transitive digraphs Γ with Aut(Γ) almost simple will be an upper bound on s for all vertex-primitive 
s-arc-transitive digraphs [9, Corollary 1.6]. This paper provides the first step in determining such an upper 
bound by studying vertex-primitive s-arc-transitive digraphs whose automorphism group is an almost simple 
linear group. Our main result is as follows.

Theorem 1.2. Let Γ be a G-vertex-primitive (G, s)-arc-transitive digraph, where G is almost simple with 
socle PSLn(q). Then s � 2.

We remark that an infinite family of G-vertex-primitive (G, 2)-arc-transitive digraphs with G = PSL3(p2)
for each prime p > 3 such that p ≡ ±2 (mod 5) was constructed in [8]. These digraphs have vertex stabi-
lizer A6 and arc-stabilizer A5, and are the only known examples of G-vertex-primitive (G, 2)-arc-transitive 
digraphs such that G is almost simple. A complete classification of G-vertex-primitive (G, 2)-arc-transitive 
digraphs for almost simple groups G, even for those with Soc(G) = PSLn(q), seems out of reach at this 
stage, though would be achievable for small values of n.

Note that if Soc(G) = PSLn(q) then either G � PΓLn(q) or G has an index 2 subgroup contained in 
PΓLn(q) and G contains an element that acts on the projective space associated with G by interchanging the 
set of 1-spaces and the set of hyperplanes. For any G-vertex-primitive (G, s)-arc-transitive digraph Γ, the 
vertex stabilizer Gv for any vertex v of Γ is maximal in G. We prove Theorem 1.2 by analyzing the maximal 
subgroups of G according to the classes provided by Aschbacher’s theorem [1]. The classes C1, C2, . . . , C8
are discussed in Sections 4–6, while the remaining class C9 is dealt with in Section 3. We actually prove that 
there is no G-vertex-primitive (G, 2)-arc-transitive digraph with Gv from classes C3, . . . , C6 (Theorem 5.6) 
though the possibility for an example with Gv from classes C1, C2, C7 or C8 remains open. The examples in 
[8] have Gv from the class C9. At the end of Section 6 we give a proof of Theorem 1.2.

2. Preliminaries

2.1. Notation

For a group X, denote by Soc(X) the socle of X (that is, the product of all minimal normal subgroups 
of X), F (G) the Fitting subgroup of G, Rad(X) the largest soluble normal subgroup of X, and X(∞) the 
smallest normal subgroup of X such that X/X(∞) is soluble.

For a group X and a prime p, denote by Op(X) the largest normal p-subgroup of X, and Ωp(X) the 
subgroup of X generated by the elements of order p in X.

For any integer n and prime number p, denote by np the p-part of n (that is, the largest power of p
dividing n) and π(n) the set of prime divisors of n. If X is a group, then π(X) := π(|X|). The following 
result is a consequence of the so-called Legendre’s formula, which we will use repeatedly in this paper.
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Lemma 2.1. For any positive integer n and prime p we have (n!)p < pn/(p−1).

Given integers a � 2 and m � 2, a prime number r is called a primitive prime divisor of the pair (a, m)
if r divides am − 1 but does not divide ai − 1 for any positive integer i < m. By an elegant theorem of 
Zsigmondy (see for example [3, Theorem IX.8.3]), (a, m) always has a primitive prime divisor except when 
(a, m) = (2, 6) or a + 1 is a power of 2 and m = 2. Denote the set of primitive prime divisors of (a, m)
by ppd(a, m) if (a, m) �= (2, 6), and set ppd(2, 6) = {7}. Note that for each r ∈ ppd(a, m) Fermat’s Little 
Theorem implies that r ≡ 1 (mod m) and so r > m.

2.2. Group factorizations

An expression of a group G as the product of two subgroups H and K of G is called a factorization of 
G, where H and K are called factors. The following lemma lists several equivalent conditions for a group 
factorization, whose proof is fairly easy and so is omitted.

Lemma 2.2. Let H and K be subgroups of G. Then the following are equivalent:

(a) G = HK.
(b) G = KH.
(c) G = (x−1Hx)(y−1Ky) for any x, y ∈ G.
(d) |H ∩K||G| = |H||K|.
(e) H acts transitively by right multiplication on the set of right cosets of K in G.
(f) K acts transitively by right multiplication on the set of right cosets of H in G.

We give some lemmas below concerning factorizations of almost simple groups, which are not only needed 
later but also of interest in their own right.

Lemma 2.3. Suppose G = An or Sn acts naturally on a set Ω of size n � 2 and G = HK with subgroups H
and K of G. Then at least one of H or K is transitive on Ω.

Proof. Suppose for a contradiction that neither H nor K is transitive on Ω. Then H stabilizes a subset Δ
of Ω with |Δ| � n/2 and K stabilizes a subset Λ of Ω with |Λ| � n/2. Without loss of generality assume 
|Δ| � |Λ|. Then as |Δ| � n/2 � |Ω \ Λ|, there exist subsets Δ1 and Δ2 of Ω such that |Δ1| = |Δ2| = |Δ|,

Δ1 ⊆ Λ and Δ2 ⊆ Ω \ Λ. (1)

Since G = HK and H � GΔ, we have G = GΔK, and so Lemma 2.2(f) implies that K is transitive on 
the set of right cosets of GΔ in G. Consequently, K is transitive on the set of subsets of Ω of size |Δ|. In 
particular, there exists g ∈ K such that Δg

1 = Δ2. However, as g ∈ K stabilizes Λ, this contradicts (1). �

Factorizations of almost simple groups with socle An have been classified in [14, Theorem D], from which 
one may derive the following:

Lemma 2.4. Suppose G = An or Sn acts naturally on a set Ω of size n � 2 and G = HK with subgroups H
and K of G. If both H and K are transitive on Ω, then one of the following holds:

(a) At least one of H or K contains An.
(b) n = 6, and interchanging H and K if necessary, PSL2(5) � H � PGL2(5) and K � S3 � S2.
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The next lemma is also based on the classification of factorizations of almost simple groups with socle An.

Lemma 2.5. Suppose G = An or Sn with n � 7 and G = HK with subgroups H and K of G. If H and K
have the same set of insoluble composition factors, then both H and K contain An.

Proof. Let G act naturally on a set Ω of size n. If either H or K contains An, then the other also contains An

since H and K have the same set of insoluble composition factors. To complete the proof we suppose that 
neither H nor K contains An. Then by [14, Theorem D], interchanging H and K if necessary, An−k � H �
Sn−k×Sk and K is k-homogeneous for some 1 � k � 5. The k-homogeneous but not k-transitive permutation 
groups are classified in [12], while the k-transitive permutation groups with k � 2 are well-known (see for 
example [6]). This gives us a list of all the k-homogeneous permutation groups.

First assume that k = 1. Then An−1 is an insoluble composition factor of H, and hence is a composition 
factor of K∩An. As a consequence, |An−1| divides |K∩An|. This implies that K∩An

∼= An−1. Since n � 7, 
it follows that K ∩ An fixes a unique point of Ω, contradicting the condition that K is transitive.

Next assume that k = 2. Then An−2 is an insoluble composition factor of H, and hence is a composition 
factor of K ∩An. Moreover, K is 2-homogeneous. However, checking the list of 2-homogeneous permutation 
groups we see that there is no 2-homogeneous permutation group K of degree n with a composition factor 
isomorphic to An−2, a contradiction.

Now assume that k = 3 or 4. If n − k � 4, then H is soluble and so is K. Inspecting the k-homogeneous 
permutation groups of degree n for 3 � k � 4 and 7 � n � k + 4 we see that this is not possible. Therefore, 
n − k � 5 so that An−k is an insoluble composition factor of H and hence K. However, checking the list of 
k-homogeneous permutation groups we see that there is no k-homogeneous permutation group K of degree 
n with a composition factor isomorphic to An−k for 3 � k � 4, a contradiction.

Finally assume that k = 5. Then according to the list of 5-homogeneous permutation groups, either 
PSL2(7) � K � PΓL2(7), or K is one of the groups:

AΓL1(7), PSL2(8), PΓL2(8), M12, M24.

However, as An−5 � H � Sn−5 × S5, it is not possible for H and K to have the same set of insoluble 
composition factors. �

The next three lemmas on factorizations of almost simple groups are obtained by checking [14, Tables 1–3]
as a consequence of [14, Theorem A] and [15].

Lemma 2.6. Let G be an almost simple group with socle L = PSLn(q), where q = pf with prime p. If 
G = HK with subgroups H and K of G such that r ∈ π(H) ∩ π(K) for some r ∈ ppd(p, nf), then one of 
the following holds:

(a) At least one of H or K contains L.
(b) n = 2 and q = 9.
(c) n = 6 and q = 2.

Lemma 2.7. Let G be an almost simple group with socle L = PSLn(q). If G = HK with subgroups H and 
K of G such that π(G) \ (π(q − 1) ∪ π(Out(L)) ⊆ π(H) ∩ π(K), then one of the following holds:

(a) At least one of H or K contains L.
(b) n = 2 and q = 8.
(c) n = 2 and q = 9.
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Lemma 2.8. Let G be an almost simple group with socle L = PSp2m(p), where m � 1 and p is prime. If 
G = HK with subgroups H and K of G such that π(G) \π(p(p − 1)) ⊆ π(H) ∩ π(K), then interchanging H
and K if necessary, one of the following holds:

(a) At least one of H or K contains L.
(b) m = 1, p is a Mersenne prime, H ∩ L = Dp+1 and K ∩ L = Cp � C(p−1)/2.
(c) m = 1, p = 7, H ∩ L = C7 � C3 and K ∩ L = S4.

We close this subsection with two results on factorizations of linear groups.

Lemma 2.9. Let V be a vector space and G � GL(V ) such that G acts transitively on the set of subspaces 
of V of any fixed dimension. Suppose G = HK with subgroups H and K stabilizing subspaces U and W of 
V , respectively. Then either U = 0 or V , or W = 0 or V .

Proof. Suppose on the contrary that 0 < U < V and 0 < W < V . Without loss of generality, assume that 
dim(U) � dim(W ). Since H stabilizes U and G = HK acts transitively on the set of subspaces of V of 
dimension dim(U), we conclude that K acts transitively on the set of subspaces of V of dimension dim(U). 
Take U1 and U2 to be subspaces of V of dimension dim(U) such that U1 � W and U2 � W . Then since K
stabilizes W , there is no element of K mapping U1 to U2, a contradiction. �

Lemma 2.10. Let V be a vector space, U be a nontrivial proper subspace of V and G � GL(V ) such that G
stabilizes U and acts transitively on the set of complements of U in V . Suppose G = HK with subgroups 
H and K such that H stabilizes a complement of U in V and K stabilizes a subspace W of V . Then either 
W � U or W + U = V .

Proof. Suppose for a contradiction that W � U and W +U �= V , which means U < W +U < V . Extend a 
basis e1, . . . , er of U to a basis e1, . . . , er, a1, . . . , as of W +U and then a basis e1, . . . , er, a1, . . . , as, b1, . . . , bt
of V . Let

W1 = 〈a1, a2, . . . , as, b1, b2, . . . , bt〉 and W2 = 〈e1 + a1, a2, . . . , as, b1, b2, . . . , bt〉.

Then W1 and W2 are both complements of U in V . Since H stabilizes a complement of U in V and G = HK

acts transitively on the set of complements of U in V , we deduce that K acts transitively on the set of 
complements of U in V . In particular, there exists g ∈ K such that W g

1 = W2. Since K stabilizes W and 
U , we have (W + U)g = W + U . Hence (W1 ∩ (W + U))g = W g

1 ∩ (W + U)g = W2 ∩ (W + U). However, 
W1 ∩ (W + U) = 〈a1, a2, . . . , as〉 and W2 ∩ (W + U) = 〈a2, . . . , as〉, so that dim(W1 ∩ (W + U)) = s and 
dim(W2 ∩ (W + U)) = s − 1, a contradiction. �

2.3. s-arc-transitive digraphs

We say a group G acts on a digraph Γ if G acts on the vertex set of Γ with image in Aut(Γ). For vertices 
v1, . . . , vi of Γ let Gv1...vi

denote the subgroup of G that fixes each of v1, . . . , vi. The following two lemmas 
slightly extend [9, Lemma 2.2] and [9, Corollary 2.11] by allowing the action of G on the vertex set to be 
unfaithful. Their proof is along the same lines as those in [9], so are omitted.

Lemma 2.11. Let Γ be a digraph, and v0 → v1 → · · · → vs−1 → vs be an s-arc of Γ with s � 2. Suppose that 
G acts arc-transitively on Γ. Then G acts s-arc-transitively on Γ if and only if Gv1...vi

= Gv0v1...vi
Gv1...vivi+1

for each i in {1, . . . , s − 1}.



5460 M. Giudici et al. / Journal of Pure and Applied Algebra 223 (2019) 5455–5483
Lemma 2.12. Let Γ be a digraph, G be a group acting s-arc-transitively on Γ with s � 2, and L be a normal 
subgroup of G. If L acts transitively on the vertex set of Γ, then L acts (s − 1)-arc-transitively on Γ.

A digraph (V, →) is said to be k-regular if both the set {u ∈ V | u → v} of in-neighbors of v and the set 
{w ∈ V | v → w} of out-neighbors of v have size k for all v ∈ V .

Lemma 2.13. For any vertex-primitive arc-transitive digraph Γ, either Γ is a directed cycle of prime length 
or Γ has valency at least 3.

Proof. Suppose Γ is a G-arc-transitive digraph such that Γ is not a directed cycle of prime length. Then Γ
has valency at least 2. If Γ has valency 2, then by [19, Theorem 5], G is a dihedral group of order twice a 
prime. However, in this case all suborbits of G are self-paired, contradicting Γ being a digraph. �

We close this subsection with an observation that will be used repeatedly throughout the paper.

Lemma 2.14. Let Γ be a connected G-arc-transitive digraph with arc v → w. Let g ∈ G such that vg = w. 
Then each nontrivial normal subgroup of Gv is not normalized by g.

Proof. Suppose that N is a nontrivial normal subgroup of Gv that is normalized by g. Then N is normal 
in 〈Gv, g〉. Since Γ is connected, 〈Gv, g〉 = G. Hence N is normal in G, which implies that N �

⋂
h∈G Gh

v . 
However, G acts faithfully on the vertex set of Γ and so 

⋂
h∈G Gh

v = 1, a contradiction. �

2.4. Subgroup structure

The maximal subgroups of almost simple groups with socle PSLn(q) are divided into nine classes C1, C2, 
. . . , C9 by Aschbacher’s theorem [1]. The maximal subgroups in classes C1–C8 are described in [13, Chapter 4]
and summarized in [13, Table 3.5.A]. Each class is defined by providing some geometric structure that it 
preserves. The maximal subgroups in class C9 (denoted by S in [13]) arise from irreducible representations 
of quasisimple groups. We call a maximal subgroup a Ci-subgroup if it lies in class Ci, where i ∈ {1, 2, . . . , 9}.

2.5. Computational methods

We will use Magma [4] to do computations in some relatively small groups, mainly to search for group 
factorizations with certain properties. By virtue of part (c) of Lemma 2.2, we may only consider one 
representative in a conjugacy class of subgroups as a potential factor of a group factorization. Given a 
group G and its subgroups H and K, to inspect whether G = HK holds we only need to compute the 
orders of G, H, K and H ∩K by part (d) of Lemma 2.2.

Let us illustrate this with an example of computation in the proof of Lemma 4.7, where we need to show 
that for the C2-subgroup G of type GL2(3) � S6 in SL12(3) there is no homogeneous factorization G = HK

with |H| divisible by 215 · 36 · 5 and H/Rad(H) ∼= K/Rad(K) ∼= S5. Note that the group G can be accessed 
from the list produced by the Magma command ClassicalMaximals("L",12,3:classes:={2}). Create a list of 
subgroups representing all the conjugacy classes of subgroups of G with order divisible by 215 ·36 ·5. For each 
pair (H, K) of subgroups from this list, calculate |H|, |K| and |H ∩K|. Then all those pairs (H, K) with 
|H∩K||G| = |H||K| give precisely the factorizations G = HK, up to conjugacy of H and K in G, such that 
both |H| and |K| are divisible by 215 ·36 ·5. It turns out that there is no such pair (H, K) satisfying H ∼= K

and H/Rad(H) ∼= K/Rad(K) ∼= S5. This shows that there is no homogeneous factorization G = HK with 
|H| divisible by 215 · 36 · 5 and H/Rad(H) ∼= K/Rad(K) ∼= S5.
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Table 1
The pair (T, S) in Proposition 3.3(b).

row T S

1 A6 A5
2 M12 M11
3 Sp4(2

f ), f � 2 Sp2(4
f )

4 PΩ+
8 (q) Ω7(q)

3. Homogeneous factorizations

From Lemma 2.11 we see that the s-arc-transitivity of digraphs can be characterized by group factoriza-
tions. If a group G acts s-arc-transitively on a digraph Γ with s � 2 and v0 → v1 → · · · → vs−1 → vs is an 
s-arc of Γ, then Lemma 2.11 implies that Gv1...vi

= Gv0v1...vi
Gv1...vivi+1 for all 1 � i � s − 1. In addition, 

since G acts i-arc-transitively on Γ, the two factors Gv0v1...vi
and Gv1...vivi+1 are conjugate in G and hence 

isomorphic. This motivates the following definition:

Definition 3.1. A factorization G = AB is called a homogeneous factorization of G if A ∼= B.

The next lemma shows that the orders of the factors of a homogeneous factorization are necessarily 
divisible by all the prime factors of the factorized group.

Lemma 3.2. For any homogeneous factorization G = AB we have π(A) = π(B) = π(G).

Proof. Due to G = AB, Lemma 2.2(d) implies that |G| divides |A||B|. Moreover, |A| = |B| as A ∼= B. 
Hence |G| divides |A|2 = |B|2, which implies that π(G) ⊆ π(A) = π(B). Since A and B are both subgroups 
of G, we also have the reverse containment and so π(A) = π(B) = π(G). �

The following proposition determines the homogeneous factorizations of almost simple groups.

Proposition 3.3. Let G be an almost simple group with socle T . Suppose G = AB with isomorphic subgroups 
A and B of G. Then one of the following holds:

(a) Both A and B contain T .
(b) A and B are almost simple groups with socles both isomorphic to S, where (T, S) lies in Table 1.

Proof. First assume that at least one of A or B, say A, contains T . Then A is an almost simple group with 
socle T . Since A ∼= B, B is an almost simple group with socle isomorphic to T . As B ∩ T is normal in B, 
we thereby derive that either B ∩ T = 1 or B ∩ T � Soc(B) ∼= T . If B ∩ T = 1, then B ∼= BT/T � G/T , 
which is not possible since G/T is soluble by the Schreier Conjecture. Thus B ∩ T � Soc(B) ∼= T . This 
yields T � B, so both A and B contain T , as described in part (a) of the proposition.

Next assume that neither A nor B contains T . According to Lemma 3.2 we have π(G) = π(A) = π(B), 
and so π(T ) ⊆ π(A) = π(B). Hence by [2, Theorem 1.1], (T, G, A ∩ T, B ∩ T ) lies in Table I of [2]. Then we 
conclude that A ∼= B is almost simple with socle S such that (T, S) lies in Table 1. �

Corollary 3.4. Let Γ be a connected (G, 2)-arc-transitive digraph, and let u → v be an arc of Γ. Suppose that 
Gv is almost simple. Then Guv is almost simple with (Soc(Gv), Soc(Guv)) = (T, S) in Table 1, and Γ is not 
(G, 3)-arc-transitive.

Proof. Since Γ is connected and G-arc-transitive, there exists g ∈ G such that ug = v and 〈Gv, g〉 =
G. Let w = vg. Then u → v → w is a 2-arc of Γ, and so by Lemma 2.11, Gv = GuvGvw since Γ is 
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(G, 2)-arc-transitive. Moreover, Gg
uv = Gugvg = Gvw. Thus, appealing to Proposition 3.3 we obtain that 

either both Guv and Gvw contain Soc(Gv), or Guv is almost simple with (Soc(Gv), Soc(Guv)) = (T, S) in 
Table 1.

Suppose that both Guv and Gvw contain Soc(Gv). Then Soc(Guv) = Soc(Gvw) = Soc(Gv), and so

Soc(Gv)g = Soc(Guv)g = Soc(Gg
uv) = Soc(Gvw) = Soc(Gv).

Since Soc(Gv) is normal in Gv, this contradicts Lemma 2.14. Thus Guv is almost simple and (Soc(Gv),
Soc(Guv)) = (T, S) lies in Table 1.

Suppose that Γ is (G, 3)-arc-transitive. Then by Lemma 2.11, Guv has a homogeneous factorization with 
factors isomorphic to Guvw. Now Soc(Guv) = S as given in Table 1. Since none of the possibilities for S
also appear as possibilities for T in Table 1, Proposition 3.3 implies that S = Soc(Guv) � Guvw. It follows 
that |Gv|/|Guv| = |Guv|/|Guvw| divides |Out(S)|. However, as (Soc(Gv), Soc(Guv)) = (T, S) lies in Table 1, 
we see that |Gv|/|Guv| cannot divide |Out(S)|. This contradiction shows that Γ is not (G, 3)-arc-transitive, 
completing the proof. �

In the next lemma we study homogeneous factorizations of wreath products.

Lemma 3.5. Let R � Sk be a wreath product with base group M = R1 × · · · ×Rk, where R1 ∼= · · · ∼= Rk
∼= R, 

and T � Sk � G � R � Sk with T � R. Suppose G = AB is a homogeneous factorization of G such that 
A is transitive on {R1, . . . , Rk}. Then with ϕi(A ∩ M) being the projection of A ∩ M to Ri, we have 
ϕ1(A ∩M) ∼= · · · ∼= ϕk(A ∩M) and π(T ) ⊆ π(ϕ1(A ∩M)).

Proof. Since A is transitive on {R1, . . . , Rk}, we have ϕ1(A ∩ M) ∼= · · · ∼= ϕk(A ∩ M). Consequently, 
|A| = |AM/M ||A ∩M | divides

|AM/M ||ϕ1(A ∩M)| · · · |ϕk(A ∩M)| = |AM/M ||ϕ1(A ∩M)|k.

Since G = AB and A ∼= B, we see that |G| divides |A|2. Moreover, |G| is divisible by |T |k|Sk|. We conclude 
that |T |k|Sk| divides |AM/M |2|ϕ1(A ∩M)|2k, and so

|T |k divides |Sk||ϕ1(A ∩M)|2k (2)

as AM/M � Sk. For any p ∈ π(T ), it follows from (2) and Lemma 2.1 that

pk � (k!)p|ϕ1(A ∩M)|2kp < pk/(p−1)|ϕ1(A ∩M)|2kp ,

which yields

|ϕ1(A ∩M)|p >
p1/2

p1/(2p−2) � 1.

Thus, π(T ) ⊆ π(ϕ1(A ∩M)). �

We close this section with a technical lemma on homogeneous factorizations.

Lemma 3.6. Let G = AB be a homogeneous factorization, and N be a normal subgroup of G such that 
G/N = Sn for some positive integer n. Suppose that AN/N and BN/N are transitive subgroups of Sn. 
Then one of the following holds:
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(a) AN/N = BN/N = Sn.
(b) n � 4, and N has a section isomorphic to An.
(c) n = 3, and N has a section isomorphic to S3.
(d) n = 6, and N has a section isomorphic to A5.

Proof. From G = AB and G/N = Sn we deduce Sn = (AN/N)(BN/N). Then by virtue of Lemma 2.4, 
interchanging A and B if necessary, we only need to deal with the following cases:

(i) n � 3, AN/N = Sn and BN/N = An.
(ii) n � 3, AN/N � An and BN/N � An.
(iii) n = 6, PSL2(5) � AN/N � PGL2(5) and BN/N � S3 � S2.

Since B∩N is a normal subgroup of B and A ∼= B, we know that A has a normal subgroup M isomorphic to 
B∩N such that A/M ∼= B/(B∩N). It follows that M has index |B|/|B∩N | = |BN/N | in A, and so MN/N

is a normal subgroup of AN/N of index dividing |BN/N |. From the isomorphisms M/(M ∩N) ∼= MN/N

and (A/(M ∩N))/(M/(M ∩N)) ∼= A/M ∼= B/(B ∩N) ∼= BN/N we deduce that

A/(M ∩N) ∼= (MN/N).(BN/N).

Moreover, A/(M ∩N) has a factor group isomorphic to AN/N since

(A/(M ∩N))/((A ∩N)/(M ∩N)) ∼= A/(A ∩N) ∼= AN/N.

Furthermore, since B ∩ N ∼= M and M/(M ∩ N) ∼= MN/N , it follows that every section of MN/N is 
isomorphic to a section of N .

First assume that (i) occurs. If n = 3, then since the only normal subgroup of AN/N = S3 of index 
dividing |BN/N | = 3 is S3, we deduce that MN/N = S3 and so N has a section isomorphic to S3. If n � 5, 
then since a normal subgroup of AN/N = Sn either contains An or has index |Sn| and |BN/N | < |Sn|, we 
deduce that MN/N � An, which implies that N has a section isomorphic to An. Now assume that n = 4. 
Since the only normal subgroups of AN/N = S4 of index dividing |BN/N | = 12 are C2

2, A4 and S4, it follows 
that either MN/N = C2

2 or MN/N � A4. Suppose MN/N = C2
2. Then A/(M ∩N) ∼= (MN/N).(BN/N)

has form C2
2.A4. However, no group of the form C2

2.A4 has a factor group isomorphic to AN/N = S4, a 
contradiction. Consequently, MN/N � A4. Hence again N has a section isomorphic to A4.

Next assume that (ii) occurs. If n = 4, then BN/N � D8, and since a normal subgroup of A4 or S4
of index dividing |D8| = 8 must contain A4, we deduce that MN/N � A4 and hence N has a section 
isomorphic to A4. Now assume that n � 5. Then |BN/N | < |An| and a normal subgroup of AN/N either 
contains An or has index at least |An|. We thus deduce that MN/N � An and so N has a section isomorphic 
to An.

Finally, assume that (iii) occurs. Since a normal subgroup of PSL2(5) or PGL2(5) of index dividing 
|S3 � S2| = 72 must contain PSL2(5), we have MN/N � PSL2(5). This implies that N has a section 
isomorphic to PSL2(5) ∼= A5. �

4. C1 and C2-subgroups

Hypothesis 4.1. Let Γ be a G-vertex-primitive (G, 2)-arc-transitive digraph of valency at least 3, where G
is almost simple with socle L = PSLn(q) and q = pf for some prime p. Take an arc u → v of Γ. Let g be 
an element of L such that ug = v and let w = vg. Then u → v → w is a 2-arc in Γ. Let X = SLn(q) acting 
naturally on V = Fn

q , ϕ be the projection from X to L, and g be a preimage of g under ϕ.
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Under Hypothesis 4.1, if in addition Γ is (G, 3)-arc-transitive, then Lemma 2.12 asserts that Γ is (L, 2)-arc-
transitive so that Lv = LuvLvw with Lg

uv = Lvw, and the composition of ϕ and the action of L on the vertex 
set of Γ gives an action of X on the vertex set of Γ, under which X acts 2-arc-transitively on Γ. This gives 
〈Xv, g〉 = X and Xv = XuvXvw with Xg

uv = Xvw.

Lemma 4.2. Suppose that Hypothesis 4.1 holds and Gv is a C1-subgroup of G. Then G � PΓLn(q), Gv does 
not stabilize a nontrivial proper subspace of V , and Γ is not (G, 3)-arc-transitive.

Proof. As Gv is a C1-subgroup of G, one of the following holds:

(i) Xv is the stabilizer of a nontrivial proper subspace W of V ;
(ii) G � PΓLn(q), Xv is the stabilizer of two nontrivial proper subspaces U and W of V such that 

V = U ⊕W and dim(U) < n/2;
(iii) G � PΓLn(q), Xv is the stabilizer of two subspaces U and W of V such that U < W , dim(U) = m > 0

and dim(W ) = n −m.

Suppose that (i) holds. Let e1, . . . , es be a basis of W ∩W g. Then there exist a1, . . . , at and b1, . . . , bt in 
V such that e1, . . . , es, a1, . . . , at is a basis of W and e1, . . . , es, b1, . . . , bt is a basis of W g. It follows that 
e1, . . . , es, a1, . . . , at, b1, . . . , bt is a basis of W + W g. Take g1 to be an element of X such that 〈ei〉g1 = 〈ei〉
for 1 � i � s and 〈aj〉g1 = 〈bj〉 and 〈bj〉g1 = 〈aj〉 for 1 � j � t. Then g1 interchanges W and W g and 
hence interchanges v and vg = w. This implies that Γ is undirected, a contradiction. Therefore, Xv is not 
the stabilizer of a nontrivial proper subspace of V , and so G � PΓLn(q).

From now on assume that Γ is (G, 3)-arc-transitive and so in particular, X acts 2-arc-transitively on Γ. 
First assume that (ii) holds. Since Xv stabilizes U , the group Xvw = Xv ∩Xg

v stabilizes (U + Ug)/U . As 
dim(U) < n/2, we have

dim((U + Ug)/U) = dim(Ug) − dim(U ∩ Ug) � dim(U) < n− dim(U) = dim(V/U)

and so (U +Ug)/U < V/U . Similarly, Xuv stabilizes (U +Ug−1)/U with (U +Ug−1)/U < V/U . Then since 
Xv stabilizes V/U and induces a group containing SL(V/U) and Xv = XuvXvw, we deduce from Lemma 2.9
that (U +Ug)/U = 0 or (U +Ug−1)/U = 0. Thus U = Ug. Since Xv stabilizes W , we see that Xvw stabilizes 
W ∩W g and Xuv stabilizes W ∩W g−1 . Moreover, dim(W ) + dim(W g) = 2n − 2 dim(U) > n, which implies 
that W ∩W g > 0 and W ∩W g−1 = (W ∩W g−1)g > 0. Then we deduce from Lemma 2.9 that W ∩W g = W

or W ∩W g−1 = W . This implies that W = W g and so g ∈ Xv, a contradiction.
Assume that (iii) holds with U = Ug. In this case we have W �= W g as g /∈ Xv. Consequently, W∩W g < W

and W ∩W g−1
< W . Moreover, W ∩W g � U and W ∩W g−1 � U . Since Xv stabilizes U and W , the group 

Xvw = Xv∩Xg
v stabilizes (W ∩W g)/U . Similarly, Xuv stabilizes (W ∩W g−1)/U . Then since (W ∩W g)/U <

W/U , (W ∩W g−1)/U < W/U and Xv stabilizes W/U and induces a group containing SL(W/U), we deduce 
from Lemma 2.9 that (W ∩W g)/U = 0 or (W ∩W g−1)/U = 0. This leads to W ∩W g = U . Let e1, . . . , es
be a basis of U . Then there exist a1, . . . , at and b1, . . . , bt in V such that e1, . . . , es, a1, . . . , at is a basis of W
and e1, . . . , es, b1, . . . , bt is a basis of W g. It follows that e1, . . . , es, a1, . . . , at, b1, . . . , bt is a basis of W +W g. 
Take g1 to be an element of X such that 〈ei〉g1 = 〈ei〉 for 1 � i � s and 〈aj〉g1 = 〈bj〉 and 〈bj〉g1 = 〈aj〉 for 
1 � j � t. Then g1 interchanges W and W g and stabilizes U = Ug. This implies that g1 interchanges v and 
vg = w, and so Γ is undirected, a contradiction.

Assume that (iii) holds with W = W g. In this case we have U �= Ug as g /∈ Xv. Consequently, (U +
Ug)/U > 0 and (U + Ug−1)/U > 0. Moreover, U ∩ Ug < W and U ∩ Ug−1

< W . Since Xv stabilizes U , the 
group Xvw = Xv∩Xg

v stabilizes (U+Ug)/U . Similarly, Xuv stabilizes (U+Ug−1)/U . Then since Xv stabilizes 
W/U with the action on W/U containing SL(W/U), we deduce from Lemma 2.9 that (U + Ug)/U = W/U
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or (U + Ug−1)/U = W/U . This leads to U + Ug = W . Similarly as in the previous paragraph we may take 
an element g1 of X interchanging v and vg = w, which implies that Γ is undirected, a contradiction.

Next assume that (iii) holds with U �= Ug and W �= W g. Then U∩Ug < U , U∩Ug−1
< U , (W+W g)/W >

0 and (W +W g−1)/W > 0. Moreover, since Xvw stabilizes U ∩Ug and Xuv stabilizes U ∩Ug−1 , we deduce 
from Lemma 2.9 that U ∩ Ug = 0. Since Xvw stabilizes (W + W g)/W , Xuv stabilizes (W + W g−1)/W and 
the action of Xv on V/W contains SL(V/W ), we deduce from Lemma 2.9 that W + W g = V , so

dim(W ∩W g) = 2 dim(W ) − n = n− 2m = dim(W ) − dim(U). (3)

Since Xvw stabilizes ((W ∩ Ug) + U)/U , Xuv stabilizes ((W ∩ Ug−1) + U)/U and the action of Xv on 
W/U contains SL(W/U), we deduce from Lemma 2.9 that either ((W ∩ Ug) + U)/U = 0 or W/U , or 
((W ∩Ug−1) +U)/U = 0 or W/U . Without loss of generality, assume ((W ∩Ug) +U)/U = 0 or W/U . Then 
either W ∩ Ug � U or (W ∩ Ug) + U = W .

In this paragraph we deal with the case when W ∩Ug � U . Since U ∩Ug = 0, we have (W g ∩W ) ∩Ug �
W ∩ Ug = (W ∩ Ug) ∩ U = 0 and so (W ∩W g−1) ∩ U = 0. Hence (3) implies that W = (W ∩W g−1) ⊕ U . 
Consider the action of Xv on W . Since Xuv stabilizes the complement W ∩ W g−1 of U in W and Xvw

stabilizes W ∩ W g, we derive from Lemma 2.10 that either W ∩ W g � U or (W ∩ W g) + U = W . If 
(W ∩W g) +U = W , then (3) implies that W = (W ∩W g) ⊕U . However, we know that W g = (W ∩W g) ⊕Ug

as W = (W ∩W g−1) ⊕U . Since XW,W∩W g induces SL(W/W ∩W g) on W/W ∩W g, this implies that there 
exists g1 ∈ X stabilizing W ∩ W g and interchanging U and Ug so that g1 interchanges v and w = vg, 
contrary to Γ being directed. Therefore W ∩ W g � U . As W ∩ Ug = 0 and dim(W ) + dim(Ug) = n, we 
have V = W ⊕ Ug. Now Xv contains all lower unitriangular matrices and so |Xv|p � qn(n−1)/2, while Xvw

stabilizes the decomposition V = W ⊕ Ug. Thus the valency of Γ has p-part

|Xv|p
|Xvw|p

� qmn−m2
.

Since Γ is (G, 3)-arc-transitive, (|Xv|/|Xvw|)3 divides |Gv|. Hence (|Xv|/|Xvw|)3 divides |Out(L)||Lv|, which 
yields

q3mn−3m2 �
|Xv|3p
|Xvw|3p

� 2fqn(n−1)/2.

Thereby we deduce q3mn−3m2 � q · qn(n−1)/2 < qn
2/2, which implies

0 < n2 − 6mn + 6m2 < n2 − 5mn + 6m2 = (n− 2m)(n− 3m).

However, as 2m < n � 3m, this is not possible.
Now we deal with the case when (W ∩Ug) +U = W . Then since W ∩Ug � W ∩W g and dim(W ∩W g) +

dim(U) = dim(W ) by (3), we have W = (W ∩W g) ⊕ U and (W ∩W g) ∩ U = 0. It follows that

W ∩ Ug−1
= (W g ∩ U)g

−1
= ((W ∩W g) ∩ U)g

−1
= 0.

Then the same argument as in the previous paragraph yields that this is not possible either. �

In what follows we deal with C2-subgroups. Suppose that Xv preserves a decomposition V = W1⊕· · ·⊕Wk

such that dim(W1) = · · · = dim(Wk) = m with k � 2 and n = mk. For a subgroup H of Gv or Xv, denote by 
H the induced permutation group on {W1, . . . , Wk}. Note from [13, Proposition 4.2.9] that Lv = Xv = Sk.

Lemma 4.3. Suppose that Hypothesis 4.1 holds and that Gv is a C2-subgroup. Then n � 3.



5466 M. Giudici et al. / Journal of Pure and Applied Algebra 223 (2019) 5455–5483
Proof. Suppose that Γ is (G, 2)-arc-transitive with n = 2. Then m = 1, k = 2, Lv = D2(q−1)/ gcd(p−1,2) and 
|Out(L)| = (p − 1, 2)f .

First assume that f = 1. In this case, p � 5 and Gv = Dp−1 or D2(p−1), where G = PSL2(p) or PGL2(p), 
respectively. Let N be the unique cyclic subgroup of index 2 of Gv. Then since Gv = GuvGvw, at least one of 
Guv or Gvw, say Guv, is not contained in N . This implies that Gvw is not contained in N since Gvw

∼= Guv. 
Consequently, Guv∩N and Gvw∩N are the unique cyclic subgroups of index 2 of Guv and Gvw, respectively. 
Thus we conclude that Guv ∩N and Gvw ∩N are subgroups of the cyclic group N of the same order, and 
so Guv ∩N = Gvw ∩N . Moreover, as Gvw ∩Ng = (Guv ∩N)g ∼= Guv ∩N is a cyclic subgroup of index 2
of Gvw, we deduce that Gvw ∩Ng = Gvw ∩N and hence (Guv ∩N)g = Gvw ∩Ng = Gvw ∩N = Guv ∩N . 
Since Guv ∩N is characteristic in N and hence normal in Gv, this contradicts Lemma 2.14.

Next assume that f � 2 with ppd(p, f) �= ∅. In this case, take any r ∈ ppd(p, f). We have r > f

and so r is coprime to |Out(L)|. Consequently, there is a unique subgroup M of order r in Gv. Since 
r ∈ π(Gv) = π(Guv) = π(Gvw), it follows that M � Guv and M � Gvw. Moreover, since Gg

uv = Gvw we 
have Mg = M , again contradicting Lemma 2.14.

Next assume that f � 2 with ppd(p, f) = ∅. Then f = 2 and p is a Mersenne prime. If q = 9, then 
computation in Magma [4] shows that Gv does not have a factorization Gv = GuvGvw with |Gv|/|Guv| � 2
such that Guv and Gvw are conjugate in G, a contradiction. Therefore, r � 7 and so p − 1 has an odd prime 
divisor r. Then along the same lines as the previous case we see that this is not possible. �

For the rest of this section we assume that Hypothesis 4.1 holds and Gv is a C2-subgroup of G. Under this 
assumption we have n � 3 by Lemma 4.3. We make the additional assumption that Γ is (G, 3)-arc-transitive. 
Recall the notation introduced at the beginning of Section 2.

Lemma 4.4. If m = 1, then at least one of Xuv or Xvw is intransitive.

Proof. Suppose that m = 1 while both Xuv and Xvw are transitive. Let M be the subgroup of X stabilizing 
each of W1, . . . , Wn. Then M = Cn−1

q−1 , Xv = Xv/M , Xuv = XuvM/M and Xvw = XvwM/M . From the 
factorization Xv = XuvXvw we deduce that Xv = Xuv Xvw. Then since M is abelian, Lemma 3.6 implies 
that Xuv = Xvw = Sn. In particular, Xuv ∩ M = Rad(Xuv) and Xvw ∩ M = Rad(Xvw), and so as 
Xuv

∼= Xvw, we have that Xuv ∩M ∼= Xvw ∩M . As Gv is maximal in G, we have q � 5 (see [5] and [13, 
Table 3.5.H]).

Let r be a prime divisor of |Xuv∩M | = |Xvw∩M |. Since Xuv = Sn, we have Xv = MXuv > M �An such 
that Ωr(M) is the deleted permutation module of An over Fr. As Ωr(Xuv∩M) is characteristic in Xuv∩M , 
and Xuv ∩ M is normal in MXuv, the elementary abelian r-group Ωr(Xuv ∩ M) is normal in MXuv and 
so is a submodule of the deleted permutation module of An. Similarly, Ωr(Xvw ∩M) is also a permutation 
submodule of An. From [18] we know that the submodules of the permutation module Ωr(M) of An are 0, 
Ωr(M), and a unique submodule of dimension 1 if r divides n. Therefore, Ωr(Xuv ∩M) = Ωr(Xvw ∩M). It 
follows that Ωr(Xuv ∩M) is normalized by g as

Ωr(Xuv ∩M)g = Ωr(Rad(Xuv))g

= Ωr(Rad(Xvw)) = Ωr(Xvw ∩M) = Ωr(Xuv ∩M).

Clearly, Ωr(Xuv ∩M) = Ωr(Rad(Xuv)) is normal in both M and Xuv. Moreover, Xv = MXuv and so we 
conclude that Ωr(Xuv ∩M) is normal in 〈M, Xuv, g〉 = 〈Xv, g〉 = X. This yields Ωr(Xuv ∩M) � Z(X). In 
particular, Ωr(Xuv ∩M) is cyclic, which implies that |Xuv ∩M |r divides q− 1 since Xuv ∩M � M = Cn−1

q−1 .
Now we know that |Xuv ∩M |r divides q − 1 for each prime divisor r of |Xuv ∩M |. As a consequence, 

|Xuv ∩M | divides q − 1, and so |Xuv| = |Xuv ∩M ||Xuv| divides (q − 1)n!. Then as |Xv| divides |Xuv|2, it 
follows that (q − 1)n−1n! = |Xv| divides (q − 1)2(n!)2. Hence
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(q − 1)n−3 | n!. (4)

Furthermore, since Γ is (G, 3)-arc-transitive, (|Xv|/|Xuv|)3 divides |Gv| and hence divides |Out(L)||Lv| =
2f(q − 1)n−1n!. Consequently, (q − 1)3n−3(n!)3 = |Xv|3 divides 2f(q − 1)n−1n!|Xuv|3, which implies that 
(q − 1)2n−2(n!)2 divides 2f |Xuv|3. This together with the conclusion that |Xuv| divides (q − 1)n! leads to

(q − 1)2n−5 | 2fn! (5)

First assume n = 3. Then (5) turns out to be

(q − 1) | 12f. (6)

We deduce that p − 1 � (pf − 1)/f � 12 and 2f − 1 � pf − 1 � 12f , which lead to p � 13 and f � 6, 
respectively. Checking (6) for q = pf � 3 with p � 13 and f � 6 we obtain q ∈ {5, 7, 9, 13, 25}. However, for 
these values of q, computation in Magma [4] shows that there is no nontrivial homogeneous factorization 
of Xv with the two factors conjugate in X, a contradiction.

Next assume n = 4. Then (5) turns out to be

(q − 1)3 | 48f. (7)

We deduce that (p − 1)3 � (pf − 1)3/f � 48 and (2f − 1)3 � (pf − 1)3 � 48f , which lead to p � 3 and 
f � 2, respectively. However, there is no such pair (p, f) such that q = pf � 5 satisfies (7), a contradiction.

Finally assume that n � 5. Suppose that q − 1 is divisible by an odd prime, say r. Then we derive 
from (4) that rn−3 � (n!)r < rn/(r−1) � rn/2, which forces n = 5. However, then (4) implies that r2 divides 
5! = 23 ·3 ·5, which is not possible. Consequently, q−1 is a power of 2. Then (4) yields (q−1)n−3 � (n!)2 < 2n
and so q − 1 < 2n/(n−3) � 25/2, which implies q = 5. However, substituting q = 5 into (5) we obtain 
42n−5 � 2(n!)2 < 2n+1, contradicting n � 5. �

Lemma 4.5. If m = 1, then n � 6.

Proof. Suppose that m = 1 and n � 7. Let M be the subgroup of Xv stabilizing each of W1, . . . , Wn. Then 
since M is abelian, Xuv has the same set of insoluble composition factors as Xuv and Xvw has the same 
set of insoluble composition factors as Xvw. Since Xuv

∼= Xvw, it follows that Xuv and Xvw have the same 
set of insoluble composition factors. From the factorization Xv = XuvXvw we deduce that Xv = Xuv Xvw

and hence by Lemma 2.5 both Xuv and Xvw contain An. However, this implies that both Xuv and Xvw are 
transitive, contrary to Lemma 4.4. This completes the proof. �

Lemma 4.6. m � 2.

Proof. Suppose that m = 1. Then we have by Lemmas 4.3 and 4.5 that 3 � n � 6. As Gv is maximal in G, we 
have q � 5 (see [5] and [13, Table 3.5.H]). Let M be the subgroup of X stabilizing each of W1, . . . , Wn. Then 
M ∼= Cn−1

q−1 , Xv = Xv/M , Xuv = XuvM/M and Xvw = XvwM/M . From the factorization Xv = XuvXvw

we deduce that Sn = Xv = Xuv Xvw. Since Xuv ∩M and Xvw ∩M are normal abelian subgroups of Xuv

and Xvw, respectively, we have Xuv∩M � F (Xuv) and Xvw∩M � F (Xvw). Then as Xuv
∼= Xvw, it follows 

that

Xuv/(F (Xuv)/(Xuv ∩M)) ∼= Xuv/F (Xuv) (8)
∼= Xvw/F (Xvw) ∼= Xvw/(F (Xvw)/(Xvw ∩M)).
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Note that F (Xuv)/(Xuv ∩ M) and F (Xvw)/(Xvw ∩ M) are both nilpotent. We conclude that the factors 
Xuv and Xvw of the factorization Sn = Xuv Xvw have isomorphic factor groups by nilpotent subgroups. 
This shows that, interchanging Xuv and Xvw if necessary, either the pair (Xuv, Xvw) lies in Table 2 below, 
or both Xuv and Xvw are transitive. The latter is not possible by Lemma 4.4. Thus to finish the proof, we 
only need to exclude the candidates in Table 2.

Rows 1–6. For these rows, O3(Xuv ∩ M) is a Sylow 3-subgroup of Xuv and |Xvw|3 = 3. Note that 
O3(Xuv ∩ M) is a normal abelian subgroup of Xuv. Then from Xuv

∼= Xvw we conclude that Xvw has a 
unique Sylow 3-subgroup P and P is a normal abelian subgroup of Xvw. Thus MP is normal in MXvw and 
contains every 3-element of MXvw. Since P and Xvw ∩M are both normal abelian subgroups of Xvw, we 
have P � F (Xvw) and Xvw ∩M � F (Xvw). Thus Or(Xvw ∩M) is centralized by P for every prime r �= 3. 
As Or(Xvw ∩ M) is centralized by M , it follows that Or(Xvw ∩ M) is centralized by MP and hence by 
every 3-element of MXvw. Since |MXvw|3 = |Xv|3, for any 3-element y of Xv there exists z ∈ Xv such that 
zyz−1 ∈ MXvw and so zyz−1 ∈ CXv

(Or(Xvw ∩M)), which is equivalent to y ∈ CXv
(Or((Xvw ∩M)z)).

First assume n = 3. Write each element x of M as x = (x1, x2, x3), where xi ∈ GL1(q) for 1 � i � 3 such 
that x1x2x3 = 1. Let

y =
(0 1 0

0 0 1
1 0 0

)
.

Then y ∈ Xv and y has order 3. Thus, for any prime r �= 3 there exists z ∈ Xv such that Or((Xvw ∩M)z)
is centralized by y. It follows that for any x = (x1, x2, x3) ∈ Or((Xvw ∩M)z) � M , the conclusion xy = x

gives (x2, x3, x1) = (x1, x2, x3) and then the condition x1x2x3 = 1 implies that x has order dividing 3. 
Hence for any prime r �= 3, Or((Xvw ∩ M)z) = 1, that is, |Xvw ∩ M |r = 1. Accordingly, |Xvw ∩ M | is a 
power of 3. Since |Xv| divides |Xvw|2 and |Xvw| = |Xvw||Xvw ∩ M | divides 6|Xvw ∩ M |, we deduce that 
|Xv| divides (6|Xvw ∩M |)2. As |Xv| = 6(q−1)2, it then follows that q−1 is a power of 3, which contradicts 
Mihǎilescu’s theorem [17] as q � 5.

Next assume n = 4. Write each element x of M as x = (x1, x2, x3, x4), where xi ∈ GL1(q) for 1 � i � 3
such that x1x2x3x4 = 1. Let

y =

⎛
⎜⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞
⎟⎠ .

Then y ∈ Xv and y has order 3, so there exists z ∈ Xv such that O2((Xvw ∩ M)z) is centralized by y. 
Thus, for any x = (x1, x2, x3, x4) ∈ O2((Xvw ∩ M)z) � M , we deduce from the conclusion xy = x that 
(x2, x3, x1, x4) = (x1, x2, x3, x4), and so the condition x1x2x3x4 = 1 implies that x = (x1, x1, x1, x

−3
1 ). 

Consequently, |O2(Xvw ∩M)| = |O2((Xvw ∩M)z)| divides q − 1 and hence (q − 1)2. Since |Xvw|2 divides 
2, we then conclude that |Xvw|2 divides 2(q− 1)2. This is contrary to the condition that |Xvw|2 is divisible 
by |Xv| = 24(q − 1)3.

Table 2
The pair (Xuv, Xvw) in the proof of Lemma 4.6.

row n Xuv Xvw

1 3 C2 C3
2 3 C2 S3
3 4 C2

2 S3
4 4 C4 S3
5 4 D8 C3
6 4 D8 S3
7 4 S4 S3
8 6 PGL2(5) S5
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Row 7. Since the normal nilpotent subgroups of Xuv are 1 and C2
2, we derive from (8) that F (Xuv)/(Xuv∩

M) = C2
2 and F (Xvw)/(Xvw ∩M) = 1. In particular, F (Xvw) = Xvw ∩M is abelian, which implies that 

F (Xuv) is abelian. Consequently, Xuv ∩ M is centralized by F (Xuv) and hence by MF (Xuv). For any 
element x = (x1, x2, x3, x4) in Xuv ∩M , where xi ∈ GL1(q) for 1 � i � 4 such that x1x2x3x4 = 1, we then 
have x1 = x2 = x3 = x4 since MF (Xuv)/M ∼= F (Xuv)/(Xuv ∩ M) = C2

2 is a transitive subgroup of S4. 
This further implies that x4

1 = 1, whence |Xuv ∩M | divides 4. Now |Xuv| = |Xuv||Xuv ∩M | = 24|Xuv ∩M |
divides 24 · 4 while 24(q − 1)3 = |Xv| divides |Xuv|2. We deduce that (q − 1)3 divides 24 · 42, which leads 
to q = 5. It follows that Γ has valency |Xv|/|Xuv| which is divisible by (q − 1)3/4 = 42, and so |Gv| is 
divisible by 46 as Γ is (G, 3)-arc-transitive. However, |Gv| = |Lv||Out(L)| divides 24(q − 1)3 · 2 = 3 · 45, a 
contradiction.

Row 8. Since Xuv/(Xuv∩M) and Xvw/(Xvw∩M) are almost simple groups, we have Xuv∩M = Rad(Xuv)
and Xvw ∩M = Rad(Xvw). Consequently, Xuv ∩M ∼= Xvw ∩M as Xuv

∼= Xvw. Let r be a prime divisor 
of |Xuv ∩M | = |Xvw ∩M |. Then Ωr(Xuv ∩M) ∼= Ωr(Xvw ∩M) > 1. Note that Ωr(M) is a permutation 
module of both Xuv = PGL2(5) and Xvw = S5 over Fr. As Ωr(Xuv ∩ M) is characteristic in Xuv ∩ M

and Xuv ∩ M is normal in MXuv, the elementary abelian r-group Ωr(Xuv ∩ M) is normal in MXuv

and so is a permutation submodule of PGL2(5). For the same reason, Ωr(Xvw ∩ M) is a permutation 
submodule of S5. From [18] we know that all the submodules of the permutation module Ωr(M) of PGL2(5)
are 0, Ωr(M), a unique submodule of dimension 1 and a unique submodule of dimension 5. Therefore, 
|Ωr(Xuv ∩M)| = |Ωr(Xvw ∩M)| = r, r5 or r6. If |Ωr(Xvw ∩M)| � r5, then by [18] the permutation module 
Ωr(Xvw ∩ M) of S5 has a submodule of dimension 4, which implies that Ωr(Rad(Xvw)) = Ωr(Xvw ∩ M)
contains a normal subgroup of Xvw of order r4. This would further imply that Ωr(Xuv ∩ M) contains a 
normal subgroup of Xuv of order r4, and so Ωr(Xuv ∩ M) contains a submodule of Xuv = PGL2(5) of 
dimension 4. However, the permutation module Ωr(M) of PGL2(5) has no submodule of dimension 4, a 
contradiction. Thus |Ωr(Xuv ∩M)| = |Ωr(Xvw ∩M)| = r.

Now we have |Ωr(Xuv ∩M)| = r for each prime divisor r of |Xuv ∩M |. This implies that Or(Xuv ∩M) is 
cyclic and hence has order dividing q−1 for each prime divisor r of |Xuv∩M |. Consequently, |Xuv∩M | divides 
q − 1. It follows that |Xuv| = |Xuv||Xuv ∩M | = 120|Xuv ∩M | divides 120(q − 1) while |S6|(q − 1)5 = |Xv|
divides |Xuv|2. We deduce that |S6|(q − 1)3 divides 1202, which contradicts q � 5. �

Lemma 4.7. If m = 2, then q � 4.

Proof. Suppose m = 2 and q = 2 or 3. Since Gv is maximal in G, [5, Proposition 2.3.6] implies that q = 3. 
Let M be the subgroup of Xv stabilizing each of W1, . . . , Wk and let ϕi be the action of M on Wi for 
1 � i � k. Then M is normal in Xv, Xv/M = Xv = Sk, XuvM/M = Xuv and XvwM/M = Xvw. Note that 
SL2(3) � Sk � Xv � GL2(3) � Sk. In fact, Xv = (SL2(3)k � Ck−1

2 ).Sk. For 2 � k � 5, computation in Magma

[4] shows that there is no nontrivial homogeneous factorization of Xv with the two factors conjugate in X. 
Therefore, k � 6.

From the factorization Xv = XuvXvw we deduce that Sk = Xv = Xuv Xvw. Since Xuv
∼= Xvw and M is 

soluble, we conclude that Xuv and Xvw have the same set of insoluble composition factors. If k � 7, then 
by Lemma 2.5, both Xuv and Xvw contain Ak. If k = 6, then since Xuv

∼= Xvw and |M |5 = 1, the two 
factors of the factorization S6 = Xuv Xvw both have order divisible by 5. This together with the condition 
that Xuv and Xvw have the same set of insoluble composition factors implies that Xuv and Xvw are both 
almost simple groups with socle A5 or A6. To sum up, we have two cases:

(i) both Xuv and Xvw contain Ak;
(ii) k = 6 and both Xuv and Xvw are almost simple groups with socle A5.
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In particular, Xuv and Xvw are always almost simple groups. Accordingly, Xuv ∩ M = Rad(Xuv) ∼=
Rad(Xvw) = Xvw ∩M and so Xuv

∼= Xvw.
First assume that (i) occurs. Then Xuv = Xvw = Sk. Note that Ω2(M ′) = Z(M ′) = Z(M) = Ck

2 . 
We have Ω2((Xuv ∩ M)′) � Ω2(M ′) = Z(M). As a consequence, Ω2((Xuv ∩ M)′) is normal in M . Also, 
Ω2((Xuv ∩ M)′) is normal in Xuv since it is characteristic in Xuv ∩ M and Xuv ∩ M is normal in Xuv. 
Hence Ω2((Xuv ∩M)′) is normal in MXuv. Since Xuv = Sk, we see that Ω2((Xuv ∩M)′) is a submodule 
of the permutation module Z(M) of Sk over F2. Similarly, Ω2((Xvw ∩ M)′) is a submodule of the same 
permutation module Z(M) of Sk. Since Xuv

∼= Xvw, we derive that

Ω2((Xuv ∩M)′) = Ω2(Rad(Xuv)′) ∼= Ω2(Rad(Xvw)′) = Ω2((Xvw ∩M)′).

From [18] we know that all the submodules of the permutation module Z(M) of Sk are 0, Z(M), a submodule 
of dimension 1 and a submodule of dimension k − 1. Therefore, Ω2((Xuv ∩M)′) = Ω2((Xvw ∩M)′) and is 
normal in both Xuv and Xvw and hence in 〈Xuv, Xvw〉 = Xv. Moreover,

Ω2((Xuv ∩M)′)g = Ω2(Rad(Xuv)′)g

= Ω2(Rad(Xvw)′) = Ω2((Xvw ∩M)′) = Ω2((Xuv ∩M)′).

Thus Ω2((Xuv ∩ M)′) is normal in 〈Xv, g〉 = X, and so Ω2((Xuv ∩ M)′) � Z(X). In particular, any 
nontrivial z ∈ Ω2((Xuv ∩ M)′) will satisfy ϕi(z) �= 1 for all 1 � i � k. Suppose |(Xuv ∩ M)′|2 > 8. Then 
since ϕ1((Xuv ∩M)′) � ϕ1(M ′) = SL2(3) and |SL2(3)|2 = 8, there exist 2-elements x and y of (Xuv ∩M)′
such that x �= y and ϕ1(x) = ϕ1(y). Note that every 2-element of M ′ = SL2(3)k has order dividing 4. If 
xy−1 has order 2, then xy−1 is a nontrivial element in Ω2((Xuv∩M)′) with ϕ1(xy−1) = ϕ1(x)ϕ1(y)−1 = 1, a 
contradiction. If xy−1 has order 4, then (xy−1)2 is a nontrivial element in Ω2((Xuv∩M)′) with ϕ1((xy−1)2) =
(ϕ1(x)ϕ1(y)−1)2 = 1, still a contradiction. Thus |(Xuv ∩M)′|2 � 8.

Since Xuv is transitive, Lemma 3.5 implies that

ϕ1(Xuv ∩M) ∼= · · · ∼= ϕk(Xuv ∩M)

and π(ϕ1(Xuv ∩M)) ⊇ π(SL2(3)) = {2, 3}. Recall that Xuv = Xvw = Sk. If |ϕ1(Xuv ∩M)|2 � 4, then the 
valency of Γ has 2-part

|Xv|2
|Xuv|2

= |M |2
|Xuv ∩M |2

� |M |2
|ϕ1(Xuv ∩M)|k2

� |M |2
4k = 22k−1

and so since Γ is (G, 3)-arc-transitive, |Gv|2 � 23(2k−1). However,

|Gv|2 � |Out(L)|2|Lv|2 = 24k(k!)2 < 25k,

a contradiction. Thus |ϕ1(Xuv∩M)|2 � 8, which in conjunction with the conclusion π(ϕ1(Xuv∩M)) ⊇ {2, 3}
indicates that |ϕ1(Xuv ∩M)| is divisible by 24.

Let ϕ1,2,3 be the action of M on W1 ⊕W2 ⊕W3, and Y = ϕ1,2,3(Xuv ∩M). Then

|Y ′|2 = |ϕ1,2,3((Xuv ∩M)′)|2 � |(Xuv ∩M)′|2 � 8.

Clearly, ϕi(Y ) = ϕi(Xuv ∩M) for i = 1, 2, 3. Thus |ϕ1(Y )| = |ϕ2(Y )| = |ϕ3(Y )| is divisible by 24. Since Γ
is (G, 3)-arc-transitive and the 3-part of the valency of Γ is

|Xv|3 � |M |3 = 3k
,
|Xuv|3 |Xuv ∩M |3 |Xuv ∩M |3
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we deduce that
(

3k

|Xuv ∩M |3

)3

� |Gv|3 � |Out(L)|3|Lv|3 = 3k(k!)3 < 33k/2

and hence |Xuv ∩ M |3 > 3k/2. On the other side, |Xuv ∩ M |3 � |Y |�k/3�3 . It follows that |Y |�k/3�3 > 3k/2, 
which implies |Y |3 > 3. However, by a Magma [4] computation there is no subgroup Y of ϕ1,2,3(M) �
GL2(3) × GL2(3) × GL2(3) with |Y ′|2 � 8 and |Y |3 > 3 such that |ϕ1(Y )| = |ϕ2(Y )| = |ϕ3(Y )| is divisible 
by 24, a contradiction.

Next assume that (ii) occurs. Since Xuv
∼= Xvw, we deduce from the factorization S6 = Xuv Xvw

that Xuv
∼= Xvw

∼= S5. Since Γ is (G, 3)-arc-transitive, (|Xv|/|Xuv|)3 divides |Gv| and hence divides 
|Out(L)||Lv| = 228·38·5. Consequently, 281·324·53 = |Xv|3 divides 228·38·5|Xuv|3, which implies that 215·36·5
divides |Xuv|. However, computation in Magma [4] shows that for X = SL12(3) there is no homogeneous 
factorization Xv = XuvXvw with |Xuv| divisible by 215 · 36 · 5 and Xuv/Rad(Xuv) ∼= Xvw/Rad(Xvw) ∼= S5, 
a contradiction. �

We are now able to rule out C2-subgroups.

Lemma 4.8. If Gv is a C2-subgroup of G, then Γ is not (G, 3)-arc-transitive.

Proof. Suppose that Gv is a C2-subgroup of G while Γ is (G, 3)-arc-transitive. Then Lemma 4.6 shows 
that m � 2. Moreover, if m = 2 then q � 4 by Lemma 4.7. Let M be the subgroup of Xv stabilizing 
each of W1, . . . , Wk and let ϕi be the action of M on Wi for 1 � i � k. Then M is normal in Xv, 
Xv/M = Xv = Sk, XuvM/M = Xuv and XvwM/M = Xvw. From the factorization Xv = XuvXvw we 
deduce that Xv = Xuv Xvw. Then by Lemma 2.3, at least one of Xuv or Xvw, say Xuv, is a transitive 
subgroup of Sk. Note that

Xv = (SLm(q)k � Ck−1
q−1) � Sk, (9)

and so it follows from Lemma 3.5 that

ϕ1(Xuv ∩M) ∼= · · · ∼= ϕk(Xuv ∩M)

and π(SLm(q)) ⊆ π(ϕ1(Xuv ∩ M)). Let Z be the center of ϕ1(M) = GLm(q). Then Z = Cq−1 and 
ϕ1(M)/Z = PGLm(q), which implies that

π(ϕ1(Xuv ∩M)Z/Z) ⊇ π(ϕ1(Xuv ∩M)) \ π(Z) ⊇ π(PSLm(q)) \ π(q − 1).

Thereby we deduce from [16, Theorem 4] that either ϕ1(Xuv∩M)Z/Z is almost simple with socle PSLm(q), 
or one of the following holds.

(i) m = 2, q = 9, and ϕ1(Xuv ∩M)Z/Z = A5.
(ii) m = 2, q � 7 is a Mersenne prime, and ϕ1(Xuv ∩M)Z/Z � Cq � Cq−1.
(iii) m = 2, q � 4 is even, and ϕ1(Xuv ∩M)Z/Z � D2(q+1).
(iv) m = 3, q = 3, and ϕ1(Xuv ∩M)Z/Z = C13 � C3.
(v) m = 4, q = 2, and ϕ1(Xuv ∩M) = A7.
(vi) m = 6, q = 2, and ϕ1(Xuv ∩M) stabilizes a 1-dimensional or 5-dimensional subspace of W1.

Assume that (i) occurs. Then |ϕ1(Xuv ∩M)Z/Z|3 = 3, and so |ϕ1(Xuv ∩M)|3 = 3 as |Z| = q − 1 = 8. 
Hence |Xuv ∩M |3 � 3k, which implies
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|Xuv|3 � |Xuv ∩M |3|Sk|3 � 3k(k!)3.

From (9) we see that |Xv|3 = 32k(k!)3. Thus the valency of Γ has 3-part

|Xv|3
|Xuv|3

� 32k(k!)3
3k(k!)3

= 3k.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 33k. However, as |Out(L)|3 = 1, we 
have |Gv|3 = |Lv|3 = 32k(k!)3. This leads to

33k � |Gv|3 = 32k(k!)3,

that is, (k!)3 � 3k, which is not possible.
Assume that (ii) occurs. Then |ϕ1(Xuv∩M)Z/Z|2 = 2, and so |ϕ1(Xuv∩M)|2 = 4 as |Z|2 = (q−1)2 = 2. 

Hence |Xuv ∩M |2 � 4k, which implies

|Xuv|2 � |Xuv ∩M |2|Sk|2 � 22k(k!)2.

From (9) we see that |Xv|2 = 22k−1(q + 1)k(k!)2. Thus the valency of Γ has 2-part

|Xv|2
|Xuv|2

� 22k−1(q + 1)k(k!)2
22k(k!)2

= (q + 1)k

2 .

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by (q + 1)3k/23. However, as |Gv|2 �
|Out(L)|2|Lv|2 = 22k(q + 1)k(k!)2, it follows that

(q + 1)3k/23 � |Gv|2 � 22k(q + 1)k(k!)2.

This leads to (q + 1)2k � 22k+3(k!)2 and hence

82k � (q + 1)2k � 22k+3(k!)2 < 23k+3,

a contradiction.
Assume that (iii) occurs. Then |ϕ1(Xuv∩M)Z/Z|2 = 2 and |Z|2 = (q−1)2 = 1. Thus, |ϕ1(Xuv∩M)|2 = 2

and so |Xuv ∩M |2 � 2k, which leads to

|Xuv|2 � |Xuv ∩M |2|Sk|2 � 2k(k!)2.

From (9) we see that |Xv|2 = qk(k!)2. Consequently, qk(k!)2 � (2k(k!)2)2 since |Xv| divides |Xuv|2. This 
implies that qk � 22k(k!)2 < 23k and hence q = 4. As ϕ1(Xuv ∩M)Z/Z � D10 and |Z| = 3, we then derive 
that |Xuv ∩M |3 � 3k, whence

|Xuv|3 � |Xuv ∩M |3|Sk|3 � 3k(k!)3.

By (9) we have |Xv|3 = 32k−1(k!)3. Thus the valency of Γ has 3-part

|Xv|3
|Xuv|3

� 32k−1(k!)3
3k(k!)3

= 3k−1.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 33(k−1). This together with |Gv|3 �
|Out(L)|3|Lv|3 = 32k−1(k!)3 < 32k−1 · 3k/2 implies
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33(k−1) < 32k−1 · 3k/2,

which forces k = 2 or 3. However, for q = 4 and k = 2 or 3, computation in Magma [4] shows that there is 
no nontrivial homogeneous factorization of Xv with the two factors conjugate in X, a contradiction.

Assume that (iv) occurs. In this case, |ϕ1(Xuv ∩ M)|3 = |ϕ1(Xuv ∩ M)Z/Z|3 = 3 as |Z|3 = 1. Hence 
|Xuv ∩M |3 � 3k and so

|Xuv|3 � |Xuv ∩M |3|Sk|3 � 3k(k!)3.

From (9) we see that |Xv|3 = 33k(k!)3. Then as (k!)3 < 3k, it follows that |Xuv|23 � 32k(k!)23 < |Xv|3. This 
implies that |Xv| does not divide |Xuv|2, a contradiction.

Assume that (v) occurs. Then |ϕ1(Xuv ∩M)|2 = 23. Hence |Xuv ∩M |2 � 23k and so

|Xuv|2 � |Xuv ∩M |2|Sk|2 � 23k(k!)2.

From (9) we see that |Xv|2 = 26k(k!)2. Thus the valency of Γ has 2-part

|Xv|2
|Xuv|2

� 26k(k!)2
23k(k!)2

= 23k.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 29k. This together with |Gv|2 �
|Out(L)|2|Lv|2 = 26k+1(k!)2 < 27k+1 implies 29k � |Gv|2 < 27k+1, which is not possible.

Next assume (vi). In this case, |ϕ1(Xuv∩M)|7 = |ϕ1(Xuv∩M)Z/Z|7 = 7 as Z = 1. Hence |Xuv∩M |7 � 7k
and so

|Xuv|7 � |Xuv ∩M |7|Sk|7 � 7k(k!)7.

From (9) we see that |Xv|7 = 72k(k!)7. Thus the valency of Γ has 7-part

|Xv|7
|Xuv|7

� 72k(k!)7
7k(k!)7

= 7k.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 73k. However, as |Out(L)|7 = 1, we have 
|Gv|7 = |Lv|7 = 72k(k!)7. It follows that 72k(k!)7 � |Gv|7 � 73k, that is, (k!)7 � 7k, which is not possible.

Thus far we have seen that none of cases (i)–(vi) is possible. As a consequence, ϕ1(Xuv∩M)Z/Z is almost 
simple with socle PSLm(q). Then since Xuv is transitive, it follows that Xuv ∩ M has a unique insoluble 
composition factor PSLm(q) with multiplicity � dividing k. We prove � = k in the next paragraph.

Suppose to the contrary that � < k. Write q = pf with p prime. First assume (m, q) �= (2, 8). Then 
there exists an odd prime r in π(PSLm(q)) \ π(q − 1) such that r > f . It follows that |ϕ1(Xuv ∩ M)|r =
|ϕ1(Xuv ∩M)Z/Z|r = |PSLm(q)|r and |Out(L)|r = 1. Since � < k, we deduce |Xuv ∩M |r � |PSLm(q)|k/2r , 
so the valency of Γ has r-part

|Xv|r
|Xuv|r

� |Xv|r
|Xuv ∩M |r|Sk|r

� |PSLm(q)|k(k!)r
|PSLm(q)|k/2r (k!)r

= |PSLm(q)|k/2r .

This implies |Gv|r � |PSLm(q)|3k/2r as Γ is (G, 3)-arc-transitive. However,

|Gv|r � |Out(L)|r|Lv|r = |PSLm(q)|kr (k!)r < |PSLm(q)|krrk/(r−1) � |PSLm(q)|krrk/2.

We conclude that |PSLm(q)|3k/2r < |PSLm(q)|krrk/2 and hence
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rk/2 � |PSLm(q)|k/2r < rk/2,

a contradiction. Next assume (m, q) = (2, 8). Then

|ϕ1(Xuv ∩M)|3 = |ϕ1(Xuv ∩M)Z/Z|3 � |PGL2(8)|3 = 9

and |Out(L)|3 = 3. Since � < k, we deduce |Xuv ∩M |3 � 9k/2 = 3k, so the valency of Γ has 3-part

|Xv|3
|Xuv|3

� |Xv|3
|Xuv ∩M |3|Sk|3

� 9k(k!)3
3k(k!)3

= 3k.

This together with the (G, 3)-arc-transitivity of Γ implies |Gv|3 � 33k, whence

33k � |Gv|3 � |Out(L)|3|Lv|3 = 3 · 9k(k!)3 < 3 · 32k · 3k/2,

again a contradiction.
Now we have � = k. Accordingly, Xuv ∩M � M ′ ∼= SLm(q)k and hence M ′ is a normal subgroup of Xuv. 

Moreover,

M ′Z(Xuv)/Z(Xuv) ∼= M ′/(M ′ ∩ Z(Xuv)) = M ′/Z(M ′) ∼= PSLm(q)k

is a minimal normal subgroup of Xuv/Z(Xuv) since Xuv is transitive. As Xvw
∼= Xuv, we conclude that Xvw

has a normal subgroup N isomorphic to SLm(q)k such that NZ(Xuv)/Z(Xuv) ∼= PSLm(q)k is a minimal 
normal subgroup of Xvw/Z(Xvw). Since N ∩M is normal in Xvw, (N ∩M)Z(Xvw)/Z(Xvw) is normal in 
Xvw/Z(Xvw). Thus, (N ∩ M)Z(Xvw)/Z(Xvw) = 1 or NZ(Xuv)/Z(Xuv) as (N ∩ M)Z(Xvw)/Z(Xvw) is 
a subgroup of NZ(Xvw)/Z(Xvw). If (N ∩ M)Z(Xvw)/Z(Xvw) = 1, that is, N ∩ M � Z(Xvw), then the 
insoluble composition factors of N coincide with all those of N/(N ∩M) and so |N/(N ∩M)| is divisible by 
|PSLm(q)|k. Since N/(N ∩M) ∼= NM/M � Sk, this would imply that k! is divisible by |PSLm(q)|k, which 
is not possible. Therefore, (N ∩M)Z(Xvw)/Z(Xvw) = NZ(Xuv)/Z(Xuv). It follows that

N ∩M � (N ∩M)′ = ((N ∩M)Z(Xvw))′ = (NZ(Xvw))′ = N ′ = N,

and so N � M . This implies N = N ′ � M ′, which leads to N = M ′ due to |N | = |M ′|. In particular, 
M ′Z(Xuv)/Z(Xuv) is a minimal normal subgroup of Xvw/Z(Xvw), and so Xvw is transitive. Since Xuv

∼=
Xvw and both Xuv and Xvw contain M ′, we see that Xuv and Xvw have the same insoluble composition 
factors. Thus we derive from Lemma 2.4 that both Xuv and Xuv contain Ak. Consequently, X(∞)

uv = X
(∞)
vw =

X
(∞)
v , and so

(X(∞)
v )g = (X(∞)

uv )g = (Xg
uv)(∞) = X(∞)

vw = X(∞)
v .

This in conjunction with the fact that X(∞)
v is normal in Xv implies that X(∞)

v is normal in 〈Xv, g〉 = X, 
a contradiction. �

We conclude this section with the following:

Theorem 4.9. Let Γ be a G-vertex-primitive (G, s)-arc-transitive digraph such that G is almost simple with 
socle PSLn(q) and Gv is a maximal subgroup of G from classes C1 and C2, where v is a vertex of Γ. Then 
s � 2. Moreover, if Gv is from class C1, then G � PΓLn(q) and Gv does not stabilize a nontrivial proper 
subspace of Fn

q .

Proof. From Lemma 2.13 we see that Γ has valency at least 3. Hence Hypothesis 4.1 holds. Then the 
theorem follows from Lemmas 4.2 and 4.8. �
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5. C3, C4, C5 and C6-subgroups

We recall Hypothesis 4.1 and observe that Gv = GuvGvw with Guv
∼= Gvw and so π(Gv) = π(Guv) =

π(Gvw).

Lemma 5.1. If Hypothesis 4.1 holds then Gv is not a C3-subgroup of G.

Proof. Suppose that Hypothesis 4.1 holds and Gv is a C3-subgroup of G. Then by [13, Proposition 4.3.6], 
either n is prime, or Gv/Rad(Gv) is almost simple with socle PSLn/r(qr) for some prime divisor r of n.

First assume that n is a prime with ppd(p, nf) �= ∅. If (n, q) = (2, 8) then Gv = D18 or C9 � C6, 
where G = PSL2(8) or PΓL2(8) respectively, but a Magma [4] calculation shows that Gv does not have a 
homogeneous factorization Gv = GuvGvw with |Gv|/|Guv| � 3, a contradiction. Therefore, (n, q) �= (2, 8). 
Then since

C(qn−1)/(q−1)(q−1,n) � Cn � Gv � (C(qn−1)/(q−1) � Cnf ).C2,

we deduce that for any m ∈ ppd(p, nf) there is a unique subgroup M of order m in Gv. Since m ∈ π(Gv) =
π(Guv) = π(Gvw), it follows that M � Guv and M � Gvw. Moreover, since Gg

uv = Gvw we have Mg = M . 
However, this contradicts Lemma 2.14 as M is normal in Gv.

Next assume that n is a prime with ppd(p, nf) = ∅. Then q = p is a Mersenne prime and n = 2. 
In this case Gv = Dq+1 or D2(q+1), where G = PSL2(q) or PGL2(q), respectively. Let N be the unique 
cyclic subgroup of index 2 of Gv. Then since Gv = GuvGvw, at least one of Guv or Gvw, say Guv, is not 
contained in N . This implies that Gvw is not contained in N since Gvw

∼= Guv. Consequently, Guv ∩N and 
Gvw ∩N are the unique cyclic subgroups of index 2 of Guv and Gvw, respectively. Thus we conclude that 
Guv ∩N and Gvw ∩N are subgroups of the cyclic group N of the same order, and so Guv ∩N = Gvw ∩N . 
Moreover, as Gvw ∩ Ng = (Guv ∩ N)g ∼= Guv ∩ N is a cyclic subgroup of index 2 of Gvw, we deduce that 
Gvw ∩ Ng = Gvw ∩ N and hence (Guv ∩ N)g = Gvw ∩ Ng = Gvw ∩ N = Guv ∩ N . Since Guv ∩ N is 
characteristic in N and hence normal in Gv, we have a contradiction to Lemma 2.14.

Finally assume that Gv/Rad(Gv) is almost simple with socle PSLn/r(qr) for some prime divisor r of n. If 
(n/r, qr) = (2, 8) then Gv = GL2(8) � C3 or GL2(8) � C6, where G = PSL6(2) or PSL6(2).C2 respectively, 
but a Magma [4] calculation shows that Gv does not have a homogeneous factorization Gv = GuvGvw with 
|Gv|/|Guv| � 3, a contradiction. If (n/r, qr) = (2, 9) then PSL4(3) � G � PSL4(3).C2

2 and (A6 × C4) �
C2 � Gv � (A6 × C4).C3

2 (see [7]), but by a Magma [4] computation Gv does not have a factorization 
Gv = GuvGvw with |Gv|/|Guv| � 3 such that Guv and Gvw are conjugate in G, still a contradiction. 
Therefore, (n/r, qr) �= (2, 8) or (2, 9). Denote Gv = Gv/Rad(Gv), Guv = GuvRad(Gv)/Rad(Gv) and Gvw =
GvwRad(Gv)/Rad(Gv). Then since Gv = GuvGvw and π(Rad(Gv)) ⊆ π(qr − 1) ∪ π(2rf) we have Gv =
Guv Gvw with π(Guv) and π(Gvw) both containing π(Gv) \(π(qr−1) ∪π(2rf)). Hence we see from Lemma 2.7
that at least one of Guv or Gvw, say Guv, contains Soc(Gv) = PSLn/r(qr). Since Guv

∼= Gvw and Rad(Gv)
is soluble, it follows that Guv and Gvw have the same insoluble composition factors. Thus Gvw also contains 
Soc(Gv) = PSLn/r(qr). Consequently, Guv and Gvw both contain G(∞)

v , and so G(∞)
uv = G

(∞)
vw = G

(∞)
v . It 

follows that

(G(∞)
v )g = (G(∞)

uv )g = (Gg
uv)(∞) = G(∞)

vw = G(∞)
v ,

contradicting Lemma 2.14. �

Lemma 5.2. If Hypothesis 4.1 holds then Gv is not a C4-subgroup of G.
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Proof. Suppose that Hypothesis 4.1 holds and Gv is a C4-subgroup of G. Then by [13, Proposition 4.4.10], 
G

(∞)
v = PSLm(q)(∞) × PSLk(q) with 1 < m < k such that n = mk and π(Gv/G

(∞)
v ) ⊆ π(PSLm(q)) ∪ π(f). 

Note that G(∞)
v = PSLm(q)(∞) × PSLk(q) has a unique normal subgroup K ∼= PSLk(q). We see that K is 

characteristic in G(∞)
v and thus normal in Gv. Let C be the centralizer of K in Gv. Then C �Gv and Gv/C

is an almost simple group with socle PSLk(q). Denote Gv = Gv/C, Guv = GuvC/C and Gvw = GvwC/C. 
Note that C ∩G

(∞)
v = PSLm(q)(∞) and so π(C) ⊆ π(PSLm(q)(∞)) ∪ π(Gv/G

(∞)
v ). We have

π(Gv) \ π(C) ⊇ π(PSLk(q)) \ (π(PSLm(q)) ∪ π(Gv/G
(∞)
v ))

⊇ π(qk − 1) \ (π(PSLm(q)) ∪ π(f)).

Thus we deduce from Gv = GuvGvw and π(Guv) = π(Gvw) = π(Gv) that Gv = Guv Gvw with π(Guv) and 
π(Gvw) both containing π(qk − 1) \ (π(PSLm(q)) ∪ π(f)). Then by Lemma 2.6, one of the following holds:

(i) at least one of Guv or Gvw contains Soc(Gv);
(ii) k = 6, q = 2, and neither Guv nor Gvw contains Soc(Gv).

First assume that (i) occurs. Without loss of generality, assume that Guv contains Soc(Gv). Then since 
Guv and Gvw have the same composition factors, we see that Gvw also contains Soc(Gv) = PSLk(q). 
Consequently, Guv and Gvw both contain K, and hence K is the unique normal subgroup isomorphic to 
PSLk(q) of Guv and Gvw, respectively. Now Kg is normal in Gg

uv = Gvw and so Kg = K. This contradicts 
Lemma 2.14.

Next assume that (ii) occurs. Here by [13, Proposition 4.4.10], Gv = M × K or (M × K).C2 with 
M = PSLm(2) for some 1 < m < 6. Since Gv = Guv Gvw with Gv = PSL6(2) or PSL6(2).C2, computation 
in Magma [4] shows that, interchanging Guv and Gvw if necessary, we have Guv � ΓL2(8).C2, ΓL3(4).C2

or Sp6(2).C2 and Gvw = C5
2 � PSL5(2), PSL5(2) or PSL5(2).C2. In particular, PSL5(2) is a composition 

factor of Gvw. Thus PSL5(2) is a composition factor of Guv as Guv
∼= Gvw. Since Guv � ΓL2(8), ΓL3(4)

or Sp6(2), we see that PSL5(2) is not a composition factor of Guv. Therefore, PSL5(2) is a composition 
factor of Guv ∩ C and hence a composition factor of Guv ∩M , which indicates that m = 5 and M � Guv. 
Now as Guv has a normal subgroup M ∼= PSL5(2), Gvw also has a normal subgroup isomorphic to PSL5(2), 
say N . Then N ∩ C = 1 or N , since N is simple. If N ∩ C = N , then M = N = PSL5(2) and hence 
Gvw has PSL5(2) as a composition factor of multiplicity 2. This would imply that Guv has PSL5(2) as a 
composition factor of multiplicity 2, which is not possible as Guv/C = Guv � ΓL2(8).C2, ΓL3(4).C2 or 
Sp6(2).C2. Consequently, N ∩ C = 1, and so Gvw has a normal subgroup NC/C ∼= N . Since C5

2 � PSL5(2)
does not have a normal subgroup isomorphic to PSL5(2), it follows that Gvw = PSL5(2) or PSL5(2).C2. 
Then searching in Magma [4] for the factorization Gv = Guv Gvw with PSL6(2) � Gv � PSL6(2).C2 and 
PSL5(2) � Gv � PSL5(2).C2 we deduce that Guv has PSL3(4), PSU3(3) or Sp6(2) as a composition factor. 
This implies that Gvw has PSL3(4), PSU3(3) or Sp6(2) as a composition factor, and so Gvw ∩C has one of 
these groups as a composition factor since Gvw = PSL5(2). However, no subgroup of C � PSL5(2).C2 has 
PSL3(4), PSU3(3) or Sp6(2) as a composition factor, a contradiction. �

Lemma 5.3. If Hypothesis 4.1 holds then Gv is not a C5-subgroup of G.

Proof. Suppose that Hypothesis 4.1 holds and Gv is a C5-subgroup of G. Then there exists a prime r such 
that q1/r is a power of p and Lv is described in [13, Proposition 4.5.3]. If n = 2 and q1/r = 2, then q = 4
by [5, Table 8.1]. However, in this case Gv = S3 or S3 ×C2, which have no factorization Gv = GuvGvw with 
|Gv|/|Guv| � 2 such that Guv and Gvw are conjugate in G. If (n, q1/r) = (2, 3) then A4 � Gv � S4 × Cr

since PGL2(3) ∼= S4. However, in this case Gv does not have an appropriate factorization Gv = GuvGvw. 
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Thus (n, q1/r) �= (2, 2) or (2, 3). Hence G(∞)
v = PSLn(q1/r). Then we see from [13, Proposition 4.5.3] that 

N := Z(Gv) has order 1 or r, and Gv/N is an almost simple group with socle PSLn(q1/r).
For any subgroup H of Gv denote H = HN/N . Since Gv = GuvGvw we have Gv = Guv Gvw, whence 

|Gv| divides |Guv||Gvw|. If at least one of Guv or Gvw, say Gvw, does not contain N , then Gvw ∩N = 1 and 
so |Gvw| = |Gvw| = |Guv| is divisible by |Guv|, which implies that |Gv| divides |Gvw|2. If both Guv and Gvw

contain N , then |Guv| = |Guv|/r = |Gvw|/r = |Gvw| and so |Gv| divides |Guv|2 = |Gvw|2. Therefore, |Gv|
always divides at least one of |Guv|2 or |Gvw|2, say |Gvw|2. Thus by [16, Corollary 5] the pair (Gv, Gvw) is 
described in [16, Table 10.7]. Checking the condition that |Gv| divides |Gvw|2 for the candidates we obtain 
one of the following:

(i) Gvw � Soc(Gv);
(ii) n = 2, q1/r = 9 and Gvw ∩ Soc(Gv) = A5;
(iii) n = 4, q1/r = 2 and Gvw ∩ Soc(Gv) = A7;
(iv) n = 6, q1/r = 2 and Gvw ∩ Soc(Gv) = PSL2(5) or C5

2 � PSL5(2).

First assume that (i) occurs. Then Gvw � G
(∞)
v = PSLn(q1/r). Since Guv

∼= Gvw, it follows that 
Guv � G

(∞)
v and so G(∞)

uv = G
(∞)
v = G

(∞)
vw . Since (G(∞)

uv )g = G
(∞)
vw , this implies that g normalizes G(∞)

v , 
contradicting Lemma 2.14.

Next assume that (ii) occurs. Here L = PSL2(9r), and Lv = PGL2(9) if r = 2 and PSL2(9) if r > 2. 
If r = 2, then Gv does not have a nontrivial homogeneous factorization, a contradiction. Therefore, r is 
an odd prime, Lv = PSL2(9) and Luv

∼= Lvw
∼= A5. By [5, Table 8.1], L has exactly one conjugacy class 

of subgroups isomorphic to Lv, and NL(Lv) = Lv. Note that 3r ≡ ±2 (mod 5) as r is odd. Thus we see 
that |PGL2(3r)| is not divisible by 5 and hence not divisible by |NL(Lvw)|. Then [5, Table 8.1] implies 
that the only maximal subgroups of L that may contain NL(Lvw) are those isomorphic to PSL2(9). Hence 
NL(Lvw) = Lvw. Let m be the number of subgroups of G isomorphic to Lv that contain Lvw. Note that 
Lv = PSL2(9) has 12 distinct subgroups isomorphic to A5, and there are exactly two conjugacy classes of 
such subgroups in L (see for example [20, Exercise 2, Page 416]). By counting the number of pairs (N1, N2)
of subgroups of L such that N1 is isomorphic to Lv and N1 > N2 ∼= Lvw, one obtains

|L|
|NL(Lv)|

· 12 = 2 · |L|
|NL(Lvw)| ·m.

Accordingly, Lvw is contained in exactly

m = 12|NL(Lvw)|
2|NL(Lv)|

= 12|Lvw|
2|Lv|

= 1

subgroup of L that is isomorphic to Lv. Since Lvw is contained in both Lv and Lw = Lg
v, we conclude that 

Lv = Lw = Lg
v, contradicting Lemma 2.14.

Finally assume that (iii) or (iv) occurs. Then we have seen above that either |Gvw| = |Gvw| = |Guv|
or |Guv| = |Gvw|. For the former, |Gvw|/|Guv| = |Guv|/|Guv| is a divisor of |N |. Thus we always have 
|Gvw|/|Guv| = 1 or r. However, a Magma [4] calculation shows that there is no factorization Gv = Guv Gvw

with (Soc(Gv), Gvw∩Soc(Gv)) = (A8, A7), (PSL6(2), PSL2(5)) or (PSL6(2), C5
2 �PSL5(2)) and |Gvw|/|Guv|

being 1 or a prime. This contradiction completes the proof. �

Lemma 5.4. Let X = Sp2m(r) with r prime and rm � 5. Then X does not have a subgroup of index d such 
that r2m divides 2(r − 1)d and d divides 2(r − 1)r2m.

Proof. Suppose for a contradiction that X has a subgroup Y of index d such that r2m divides 2(r − 1)d
and d divides 2(r − 1)r2m. If r = 2, then X ∼= PSp2m(2) with m � 3 and d is a power of 2 such that 
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22m−1 � d � 22m+1, contradicting [10]. Thus, r � 3 and so r2m divides d. As |Sp2(r)|r = r, this implies 
that m �= 1.

First assume that m = 2. Let M be a maximal subgroup of X = Sp4(r) containing Y . Then |X|/|M |
divides 2(r−1)r4. Checking [5, Table 8.12] we deduce that r = 3 and M = Sp2(9) �C2 or 21+4

− .A5. However, 
such an M does not have a subgroup Y such that 34 divides d and d divides 22 · 34, a contradiction.

Next assume that m � 3. Let Z be the center of X, X = X/Z and Y = Y Z/Z. Then |X|/|Y | divides 
2(r − 1)r2m, and thus from [16, Theorem 4] we infer that X = Y . However, this implies that d = |X|/|Y |
divides |X|/|Y | = |X|/|X| = |Z|, contradicting the condition that r2m divides d. �

Lemma 5.5. If Hypothesis 4.1 holds then Gv is not a C6-subgroup of G.

Proof. Suppose that Hypothesis 4.1 holds and Gv is a C6-subgroup of G. If n � 4 then the possibilities for 
Gv can be obtained from [5, Tables 8.1, 8.3 and 8.8] and in all these cases, a computation in Magma [4]
shows that Gv has no homogeneous factorization Gv = GuvGvw such that |Gv|/|Guv| � 3. Thus n � 5, 
and so by [13, Propositions 4.6.5–4.6.6], n = rm for some prime r �= p and Lv = C2m

r .Sp2m(r). Moreover, 
since Gv is maximal in G, it can be read off from [5, Tables 8.18, 8.35, 8.44 and 8.54] and [13, Table 3.5.A]
that G/L � C2 × Cf and f is the smallest odd integer such that r gcd(2, r) divides pf − 1. Consequently, 
f divides r − 1 and |G/L| divides 2(r − 1). Therefore, Gv/Rad(Gv) is an almost simple group with socle 
PSp2m(r) and

π(Rad(Gv)) ⊆ π(Rad(Lv)) ∪ π(G/L) ⊆ {2, r} ∪ π(2(r − 1)) = π(r(r − 1)).

For any subgroup H of Gv denote H = HRad(Gv)/Rad(Gv). Then Gv = Guv Gvw with π(Guv) and π(Gvw)
both containing π(Gv) \ π(r(r − 1)). Hence we deduce from Lemma 2.8 that one of the following holds:

(i) at least one of Guv or Gvw contains Soc(Gv);
(ii) m = 1, r is a Mersenne prime, and at least one of Guv or Gvw has intersection with Soc(Gv) of odd 

order.

First assume case (i). Without loss of generality, assume that Guv contains Soc(Gv) = PSp2m(r). Note 
that Guv

∼= Gvw, and Guv/Luv and Gvw/Lvw are both soluble. Hence Luv and Lvw both have PSp2m(r) as 
an insoluble composition factor. It follows that

LuvOr(Lv)/Or(Lv) = LvwOr(Lv)/Or(Lv) = Lv/Or(Lv) = Sp2m(r).

Since Lv/Or(Lv) = Sp2m(r) is irreducible on Or(Lv) = C2m
r , we deduce that Luv ∩ Or(Lv) = 1 or 

C2m
r . If Luv ∩ Or(Lv) = C2m

r then |Luv| = |Lv|, which is not possible as Γ has valency at least 2. 
Consequently, Luv ∩ Or(Lv) = 1. Similarly, Lvw ∩ Or(Lv) = 1 and so Luv

∼= Lvw
∼= Sp2m(r). Note 

that |Gv|/|Guv| = |Guv|/|Guvw| as Γ is (G, 2)-arc-transitive. Since |Lv|/|Luv| divides |Gv|/|Guv|, we con-
clude that r2m divides |Gv|/|Guv| = |Guv|/|Guvw| and so divides |G/L||Luv|/|Luvw|. This implies that 
r2m divides 2(r− 1)|Luv|/|Luvw|. Moreover, |Luv|/|Luvw| divides |Guv|/|Guvw| = |Gv|/|Guv| and so divides 
|G/L||Lv|/|Luv|, which implies that |Luv|/|Luvw| divides 2(r − 1)r2m. Thus Luvw is isomorphic to a sub-
group of Sp2m(r) of index d such that r2m divides 2(r−1)d and d divides 2(r−1)r2m, which is not possible 
by Lemma 5.4.

Next assume case (ii). Without loss of generality, assume that |Guv ∩ Soc(Gv)| is odd. Then |Luv|2 � 2
and so |Guv|2 � 2|G/L|2. Since Gv = GuvGvw with Guv

∼= Gvw, we derive that |Gv| divides |Guv|2. Thus 
|Lv|2|G/L|2 = |Gv|2 divides (2|G/L|2)2, which implies that 2(r + 1) = |Lv|2 divides 4|G/L|2. However, as 
|G/L| divides 2f and f is odd, we have |G/L|2 � 2. This leads to 2(r + 1) � 8 and so r � 3, contrary to 
the condition that r = rm = n � 5. �
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We conclude this section with the following:

Theorem 5.6. Let G be an almost simple group with socle PSLn(q). Then there is no G-vertex-primitive 
(G, 2)-arc-transitive digraph Γ such that Gv is a maximal subgroup of G from classes C3–C6 for any vertex 
v of Γ.

Proof. Suppose that Γ is a G-vertex-primitive (G, 2)-arc-transitive digraph such that Gv is a maximal 
subgroup of G from classes C3–C6, where v is a vertex of Γ. Then by Lemma 2.13, Γ has valency at least 3. 
Hence Hypothesis 4.1 holds. According to Lemmas 5.1–5.3 and 5.5, Gv cannot be a Ci-subgroup of G for 
3 � i � 6, a contradiction. �

6. C7 and C8-subgroups

In this section we need to consider the stronger hypothesis that Γ is (G, 3)-arc-transitive so that we only 
need to consider the structure of Lv instead of Gv.

Hypothesis 6.1. Let Γ be a G-vertex-primitive (G, 3)-arc-transitive digraph of valency at least 3, where 
G is almost simple with socle L = PSLn(q) and q = pf for some prime p. Then by Lemma 2.12, Γ is 
(L, 2)-arc-transitive. Take an arc u → v of Γ. Let g to be an element of L such that ug = v and let w = vg. 
Then u → v → w → wg is a 3-arc in Γ.

Under Hypothesis 6.1, it follows from Lemma 2.11 that Lv = LuvLvw and Gvw = GuvwG
g
uvw. Moreover, 

these are homogeneous factorizations. Hence by Lemma 3.2, π(Luv) = π(Lvw) = π(Lv) and π(Guvw) =
π(Gvw).

Lemma 6.2. If Hypothesis 6.1 holds then Gv is not a C7-subgroup of G.

Proof. Suppose that Hypothesis 6.1 holds and Gv is a C7-subgroup of G. Then by [13, Proposition 4.7.3],

Lv � (M1 × · · · ×Mk) � Sk = PGLm(q) � Sk

with M1 ∼= · · · ∼= Mk
∼= PGLm(q), where n = mk with m � 3, and

Lv � (Soc(M1) × · · · × Soc(Mk)) � Sk = PSLm(q) � Sk.

Let M = Lv ∩ (M1 × · · · × Mk) and for each i = 1, . . . , k let ϕi be the projection of M to Mi. Denote 
Lv = LvM/M , Luv = LuvM/M and Lvw = LvwM/M . From the factorization Lv = LuvLvw we deduce 
that Lv = Luv Lvw. Then by Lemma 2.3, at least one of Luv or Lvw, say Luv, is a transitive subgroup of 
Sk. It follows from Lemma 3.5 that

ϕ1(Luv ∩M) ∼= · · · ∼= ϕk(Luv ∩M)

and π(PSLm(q)) ⊆ π(ϕ1(Luv ∩ M)). Thereby we deduce from [16, Corollary 5] that either PSLm(q) �
ϕ1(Luv ∩M) � PGLm(q), or one of the following holds.

(i) m = 4, q = 2, and ϕ1(Luv ∩M) = A7;
(ii) m = 6, q = 2, and |PSLm(q)|/|ϕ1(Luv ∩M)| is divisible by 63.

First assume that (i) occurs. Then we have |ϕ1(Luv ∩M)|2 = 23 and hence |Luv|2 � |Luv ∩M |k2(k!)2 �
23k(k!)2. Moreover, |Lv|2 = |PSL4(2) � Sk|2 = 26k(k!)2. Thus the valency of Γ has 2-part
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|Lv|2
|Luv|2

� 26k(k!)2
23k(k!)2

= 23k.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 29k. This together with |Gv|2 �
|Lv|2|Out(L)|2 = 26k+1(k!)2 < 27k+1 implies 29k < 27k+1, which is not possible.

Next assume (ii) occurs. Then |PSLm(q)|7/|ϕ1(Luv ∩M)|7 � 7, and so the valency of Γ has 7-part

|Lv|7
|Luv|7

� |M |7
|Luv ∩M |7

�
(

|PSLm(q)|7
|ϕ1(Luv ∩M)|7

)k

� 7k.

Since Γ is (G, 3)-arc-transitive, we conclude that |Gv| is divisible by 73k. However, as |Out(L)|7 = 1, we 
have |Gv|7 = |Lv|7 = |PSL6(2)|k7(k!)7 = 72k(k!)7. It follows that 72k(k!)7 � 73k, that is, (k!)7 � 7k, which is 
not possible.

Thus far we have seen that neither case (i) nor (ii) is possible. Thus PSLm(q) � ϕ1(Luv∩M) � PGLm(q). 
Write q = pf with p prime. Then there exists an odd prime r in π(PSLm(q)) \ π(q − 1) such that r > f . 
It follows that |ϕ1(Luv ∩M)|r = |PSLm(q)|r and |Out(L)|r = 1. Since Luv is transitive and ϕ1(Luv ∩M)
has socle PSLm(q), Luv ∩M has a unique insoluble composition factor PSLm(q), and it has multiplicity �
dividing k. If � < k, then |Luv ∩M |r � |PSLm(q)|k/2r , and so the valency of Γ has r-part

|Lv|r
|Luv|r

� |PSLm(q)|k(k!)r
|PSLm(q)|k/2r (k!)r

= |PSLm(q)|k/2r .

This together with the (G, 3)-arc-transitivity of Γ implies |Gv|r � |PSLm(q)|3k/2r , which is not possible since

|Gv|r � |Out(L)|r|Lv|r = |PSLm(q)|kr (k!)r < |PSLm(q)|krrk/(r−1) � |PSLm(q)|krrk/2.

Hence we have � = k and so Luv � M ′ ∼= PSLm(q)k. Moreover, since Luv is transitive, M ′ is a minimal 
normal subgroup of Luv. As Lvw

∼= Luv, we conclude that Lvw has a minimal normal subgroup N isomorphic 
to PSLm(q)k. Then since N ∩ M is normal in Lvw, either N ∩ M = 1 or N � M . If N ∩ M = 1, then 
PSLm(q)k ∼= N ∼= NM/M � Sk, which is not possible. Hence N � M , and it follows that N = N ′ � M ′. 
This leads to N = M ′ since |N | = |M ′|. Therefore, M ′ = N is a minimal normal subgroup of Lvw, which 
implies that Lvw is transitive. Since Luv

∼= Lvw and both Luv and Lvw contain M ′, we see that Luv and 
Lvw have the same insoluble composition factors. Thus we derive from Lemma 2.4 that both Luv and Luv

contain Ak. Consequently, L(∞)
uv = L

(∞)
vw = L

(∞)
v , and so

(L(∞)
v )g = (L(∞)

uv )g = (Lg
uv)(∞) = L(∞)

vw = L(∞)
v ,

contradicting Lemma 2.14. �

Lemma 6.3. If Hypothesis 6.1 holds with n = 4 and q odd, then Lv is not the C8-subgroup PSO+
4 (q).C2 of L.

Proof. Suppose that Hypothesis 6.1 holds with n = 4 and q odd while Lv = PSO+
4 (q).C2 is a C8-subgroup 

of L. For q = 3, 5, 7 or 9 computation in Magma [4] shows that there is no nontrivial homogeneous 
factorization of Lv with the two factors conjugate in L. Therefore q � 11. Let M = K1 ×K2 be the normal 
subgroup of Lv of index 4 such that K1 ∼= K2 ∼= PSL2(q), and ϕi be the projection of M onto Ki for i = 1, 2. 
Write q = pf with p prime. Note that |Gv| divides |Lv||Out(L)| = 8f gcd(q − 1, 4)|PSL2(q)|2.

Suppose ϕi(Luv∩M) �= Ki for i = 1 or 2. Then there is a maximal subgroup H of Ki
∼= PSL2(q) containing 

ϕi(Luv∩M). Since Γ is (G, 3)-arc-transitive and |Lv|/|Luv| is divisible by |M |/|Luv∩M |, we derive that |Gv|
is divisible by (|M |/|Luv∩M |)3. Then since |M |/|Luv∩M | is divisible by |ϕi(M)|/|ϕi(Luv∩M)| and hence by 
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|PSL2(q)|/|H|, it follows that |Gv| is divisible by (|PSL2(q)|/|H|)3. Consequently, (|PSL2(q)|/|H|)3 divides 
8f gcd(q− 1, 4)|PSL2(q)|2. However, checking for all the possible maximal subgroups (see for example [11]) 
H of PSL2(q) we see that this condition is not satisfied as q � 11, a contradiction.

Now we have ϕi(Luv∩M) = Ki for i = 1, 2, which implies that either Luv∩M = M or Luv∩M ∼= PSL2(q). 
For the latter, |Lv|/|Luv| is divisible by |M |/|Luv ∩M | = |PSL2(q)|, and so the (G, 3)-arc-transitivity of Γ
implies that |PSL2(q)|3 divides 8f gcd(q − 1, 4)|PSL2(q)|2, which is not possible. Thus Luv ∩M = M , from 
which we conclude L′

uv = M = L′
v. For the same reason, L′

vw = M = L′
v. Consequently,

(L′
v)g = (L′

uv)g = (Lg
uv)′ = L′

vw = L′
v,

contradicting Lemma 2.14. �

Lemma 6.4. If Hypothesis 6.1 holds then Gv is not a C8-subgroup of G.

Proof. Suppose that Hypothesis 6.1 holds and Gv is a C8-subgroup of G. Then by [13, Proposi-
tions 4.8.3–4.8.5], one of the following holds:

(i) n � 4 is even, and Lv = PSpn(q).Cgcd(q−1,2) gcd(q−1,n/2)/ gcd(q−1,n);
(ii) n � 3, q is odd, and Lv = PSOε

n(q).Cgcd(n,2) with ε ∈ {0, ±};
(iii) n � 3, q is a square, and Soc(Lv) = PSUn(q1/2).

First assume that (i) occurs. Then by Proposition 3.3, we deduce from the homogeneous factorization 
Lv = LuvLvw and the condition |Lv|/|Luv| � 3 that n = 4, q is even and Luv

∼= SL2(q2).Ca with a ∈ {1, 2}. 
It follows that SL2(q2) � Gvw � ΓL2(q2) × C2 and

|Gvw|
|Guvw|

= |Lv|
|Luv|

= |Sp4(q)|
|SL2(q2).Ca|

= q2(q2 − 1)
a

.

This implies that π(Guvw) �= π(Gvw), a contradiction.
Next assume that (ii) occurs. Then by Proposition 3.3, we deduce from the homogeneous factorization 

Lv = LuvLvw that either Soc(Luv) = Soc(Lvw) = Soc(Lv), or (n, q, Lv) lies in Table 3 below. If Soc(Luv) =
Soc(Lvw) = Soc(Lv) is nonabelian simple, then

(Soc(Lv))g = (Soc(Luv))g = Soc(Lg
uv) = Soc(Lvw) = Soc(Lv),

contradicting Lemma 2.14. Now we analyze the candidates in Table 3. For row 1 and row 2 of Table 3, 
Lv does not have a homogeneous factorization Lv = LuvLvw with |Lv|/|Luv| � 3, a contradiction. For 
row 3 of Table 3, Γ has valency |Lv|/|Luv| = 6 since Lv = LuvLvw is a homogeneous factorization with 
|Lv|/|Luv| � 3, but |Gv| is not divisible by 63, contrary to the (G, 3)-arc-transitivity of Γ. By Lemma 6.3 we 
know that row 4 of Table 3 is not possible. For row 5 of Table 3, we have |Luv| = a|Ω7(q)| with a dividing 
4 and so

Table 3
The triple (n, q, Lv) in the proof of Lemma 6.4.

row n q Lv

1 3 3 S4
2 3 9 PGL2(9)
3 4 3 S6
4 4 odd PSO+

4 (q).C2
5 8 odd PSO+

8 (q).C2
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|Gvw|
|Guvw|

= |Lv|
|Luv|

= |PSO+
4 (q).C2|

a|Ω7(q)|
= q3(q4 − 1)

2a
,

which implies that π(Guvw) �= π(Gvw), a contradiction.
Finally assume that (iii) occurs. Then by Proposition 3.3, we deduce from the homogeneous factorization 

Lv = LuvLvw that Soc(Luv) = Soc(Lvw) = Soc(Lv), so

(Soc(Lv))g = (Soc(Luv))g = Soc(Lg
uv) = Soc(Lvw) = Soc(Lv),

contradicting Lemma 2.14. The proof is thus completed. �

We conclude this section with the following:

Theorem 6.5. Let G be an almost simple group with socle PSLn(q). Then there is no G-vertex-primitive 
(G, 3)-arc-transitive digraph Γ such that Gv is a maximal subgroup of G from classes C7 and C8 for any 
vertex v of Γ.

Proof. Suppose that Γ is a G-vertex-primitive (G, 3)-arc-transitive digraph such that Gv is a maximal 
subgroup of G from classes C7 and C8, where v is a vertex of Γ. Then by Lemma 2.13, Γ has valency at 
least 3. Hence Hypothesis 6.1 holds. According to Lemmas 6.2 and 6.4, Gv cannot be a Ci-subgroup of G
for i ∈ {7, 8}, a contradiction. �

We are now ready to prove the main theorem of the paper.

Proof of Theorem 1.2. Let Γ be a G-vertex-primitive (G, s)-arc-transitive digraph with s � 3, where G is 
almost simple with socle L = PSLn(q) and q = pf for some prime p, and let v be a vertex of Γ. Then by 
Theorems 4.9, 5.6 and 6.5, Gv cannot be a Ci-subgroup of G for 1 � i � 8. If Gv is a C9-subgroup of G, 
then Gv would be an almost simple group, which is not possible by Corollary 3.4. Thus we have s � 2, as 
Theorem 1.2 asserts. �
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