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0. Introduction

Quillen’s construction associates to any essentially small exact category &7 its algebraic K-theory which
is an infinite loop space K (&) and this correspondence is a functor from the category of essentially small
exact categories to the category 2spg of infinite loop spaces.

If o is the category &4 of finitely generated projective right modules over some ring A, one gets a
functor A — K(A) = K(Z4) and this functor can be enriched into a new functor K containing also the
negative part of the algebraic K-theory. That is K is a functor from the category of rings to the category Qsp
of Q-spectra and the natural transformation K(A) — K(A) induces a homotopy equivalence from K(A) to
the 0-th term of K (A).

By a left-flat bimodule we mean a pair (A,S) where A is a ring and S is an A-bimodule flat on the
left. The left-flat bimodules form a category where a morphism (4,S) — (B, T) is a ring homomorphism
f:+ A — B together with a morphism of A-bimodules ¢ : S — f*(T).

For each left-flat bimodule (A4, .S) one has an exact category A7il(A,S) where the objects are the pairs
(M, f) where M is an object in &4 and f: M — M ®4 S is a nilpotent morphism of right A-modules.
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The correspondence M +— (M, 0) induces a morphism K(A) — K(.A4Gl(A,S)) and this morphism has a
retraction coming from the functor (M, f) — M. Thus there is a functor Nil from the category of left-flat
bimodules to Q2spy which is unique up to homotopy such that:

K(Ail(A,S)) ~ K(A) x Nil(A, S)

Theorem 1. There is a functor Nil from the category of left-flat bimodules to the category Qsp of 2-spectra
and a natural transformation Nil — Nil such that the following holds for every left-flat bimodule (A, S):
e the map Nil(A,S) — Nil(A,S) induces a homotopy equivalence from Nil(A,S) to the 0-th term of
Nil(A,S)
e if R is the tensor algebra of S, then there is a natural homotopy equivalence in 2sp:
K(R) = K(A) x Q7 (Nil(4, 5))

Moreover if A is reqular coherent on the right, every spectrum Nil(A,S) is contractible.

Following a terminology of Waldhausen, a ring homomorphism « : A — B will be called pure if it is split
injective as an A-bimodule homomorphism.

Theorem 2. Let o : C —> A and 8 : C — B be pure ring homomorphisms. Let R be the ring defined by

the push-out diagram:
C A
I
R

B —
and K'(R) be the Q-spectrum defined by the homotopy fibration in Qsp:

(e
R

K(C) 2 K(A) x K(B) — K'(R)
where f is the map K(a) x —K(B).
Suppose A and B are C-flat on the left. Then there exist a left-flat bimodule (C x C,S) and a homotopy
equivalence in Qsp:

K(R) = K'(R) x Q"1 (Nil(C x C,5))

Theorem 3. Let C' and A be two rings and « and B be two pure ring homomorphisms from C to A. Let R
be the ring generated by A and an invertible element t with the only relations:

Vee C, alc)t =t5(c)
and K'(R) be the Q-spectrum defined by the homotopy fibration:
E(C) -5 K(4) — K'(R)
where f is the map K(a) — K(B).

Suppose A is C-flat on the left via both o and 3. Then there exist a left-flat bimodule (C x C,S) and a
homotopy equivalence in Qsp:
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K(R) = K'(R) x Q' (Nil(C x C,5))

The connective part of these theorems are generalization of the Waldhausen’s results in [8], in the sense
that the condition free on the left in [8] may be replaced by the condition flat on the left and (in the
polynomial extension case) the condition on the right may be removed. Because of these results, the functor
Nil detects in some sense the default of excision in algebraic K-theory. So it would be useful to know when
the spectrum Nil(A, S) is contractible, especially if A is not regular coherent. Actually we have the following
result:

Theorem 4. Let A and B be two rings, S be an (A, B)-bimodule and T be a (B, A)-bimodule. Suppose S and
T are flat on both sides. Using projections A x B — A and A x B — B, S and T may be considered as
A x B-bimodules. Then we have natural homotopy equivalences of spectra:

Nil(Ax B,S&T) =5 Nil(A,S&T)
B
Nil(Ax B,S®T) = Nil(B,T ® 5)

We have other results concerning the spectrum Nil(A,S) when the bimodule S is a direct sum of

bimodules: S =& S;.
icl
Let W(I) be the set of words in the set I. This set is the unitary monoid freely generated by I. Let
CW (I) the set of cyclic words in I. The set CW (I) is the quotient of W(I) by the equivalence relation

uv ~ vy in W(I). A word u € W(I) is said to be reduced if we have the following:
Yoe W), Vp>1, u#vP

The set of reduced words is denoted by Wy(I) and its image in CW(I) is denoted by CWy(I). A subset
X C W(I) is said to be admissible if the projection W (I) — CW (I) induces a bijection X — CWq(I).

For every u € W(I), we have a bimodule S,, defined by:

u=1—= S, =A4

u=vi, with iel, — S,=5,8S;
A
Using these notations, we have this result:

Theorem 5. Let A be a ring and S;, i € I, be a family of A-bimodules. Suppose each bimodule S; is flat on
both sides. Let X be an admissible set in W (I). Then we have a homotopy equivalence of spectra:

Nil(A, & S;) = & Nil(A4,5,)
i ueX

where @ is the coproduct in the category of spectra.
Moreover, using theorems 4 and 5, we can deduce this last result:

Theorem 6. Let A be a ring, S be an A-bimodule and I be a set. For each i € I, let A; be a right reqular
coherent ring, E; be an (A, A;)-bimodule and F; be an (4;, A)-bimodule. Suppose all these bimodules are flat
on both sides. Then the inclusion:

SCSOPE; ®F;
i A;

i
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induces a homotopy equivalence:
Nil(A,S) = Nil(A,S @ & E; %@ F;)

The paper is organized as follows:

In section 1, we construct many categories and functors in such a way they are defined in each of the
three cases: the general polynomial extension case, the generalized free product case and the generalized
Laurent extension case. We prove also many algebraic properties of these categories and functors.

In section 2, we apply these properties to algebraic K-theory and prove theorems 1, 2 and 3.

The section 3 is devoted to the proof of theorems 4, 5 and 6 about Nil functors.

In the last section we apply all these theorems and get new results about Whitehead spectra. In particular
we construct a class Cly bigger that Waldhausen’s class Cl such that every group in Cl; has trivial Whitehead
groups.

1. The categories ¥ and .# ¥ and their algebraic properties

In order to simplify the notations, the following writing conventions will often be used: e Convention 1:
if ®: .o/ — A is a functor, then for every morphism « in &7, its image under ® will be still denoted by .
So, if & : X — Y is a morphism, we have a morphism « : ®(X) — ®(Y). e Convention 2: if E is a right
module over some ring A and F' is a left module over the same ring, then the module £ ® 4 F' will be simply
denoted be E'F'. In the same spirit, if £ is an A-bimodule, the tensor product £ ®4 -+ ®4 E of n copies of
FE will be denoted by E™.

Definition 1.1. Let A be a ring and S be an A-bimodule. Let M be a right A-module and f: M — MS be
an A-linear map. So by iteration, we get for each integer n > 0 a morphism f" : M — MS™. We say that
f is nilpotent if every element in M is killed by some power f™ of f.

Lemma 1.2. Let (A, S) be a left-flat bimodule. Let M be a right A-module and f : M — MS be an A-linear
map. Then f is nilpotent if and only if there is a filtration of M :

O=MyCcMiCMyC---CM

by right A-submodules, such that:
o M is the union of the M;’s
e for every i > 0, one has: f(M;) C M;_1S.

Proof. If such a filtration exists, then f is clearly nilpotent.
Suppose f is nilpotent. For every integer n > 0, denote by M,, the kernel of f* : M — MS". By
construction we have an increasing sequence

0=MyC My C My C Mg...

and M is the union of the M;’s.
Since S is flat on the left, we have, for every n > 0, an isomorphism:

Ker(f": MS — MS™™) ~ Ker(f": M — MS™)S

and then an equality: M, 1 = f~1(M,S). The result follows. O
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1.3. The exact category ANil(A,S) and the space Nil(A,S)

Let (A, S) be a left-flat bimodule. The pairs (M, f) where M is a right A-module and f: M — MS is a
nilpotent morphism are the objects of a category denoted by Ail(A,S)Y. Let & be the category of finitely
generated projective right A-modules. The full subcategory of 47l(A,S)Y generated by pairs (M, f) with
M € & will be denoted by AGl(A,S). If 0 — (M, f) — (M', f') — (M", f”") — 0 is a sequence in
Nil(A, S), we say that this sequence is exact if the following diagram is commutative with exact lines:

O — M — M — M — 0

I

O — MS — MS —— M'S —— 0

With these exact sequences the category A7l(A,S) becomes an exact category in the sense of Quillen and
its algebraic K-theory K (.47l(A,S)) is a well defined infinite loop space (see [6]).

Actually 47l is a functor from the category of left-flat bimodules to the category of essentially small
exact categories and exact functors.

We have two exact functors M — (M,0) from & to AGl(A,S) and (M, f) — M from Ail(A,S) to &
inducing two maps:

K(A) -5 K(/il(A,S)) -5 K(A)

where G is a retraction of F. Denote by Nil(A,S) the homotopy fiber of G. Then Nil(A4,S) is an infinite
loop space and we have a decomposition:

K(Nil(A, 8)) ~ K(A) x Nil(A, S)

Throughout this paper, we’ll consider many categories and functors and, in particular, many exact categories
and their abelianizations, where an abelianization of an exact category is defined as follows:

Definition. Let & be an exact category. We say that a category &V is an abelianization of & if the following
holds:

e &V is an abelian category

e & is a fully exact subcategory of & i.e. & is a full subcategory of &V and, for every sequence S =
0—X-—Y —Z-—0)in &, Sisexact in & if and only if S is exact un &V

e & is stable in &V under extension.

Notice that the Gabriel-Quillen embedding theorem produces an abelianization for every essentially small
exact category (see [7], thm A.7.1 or [4], prop A.2). Following Waldhausen we consider three situations:
the generalized free product case, the generalized Laurent extension case and the generalized polynomial
extension case.

In case 1 (i.e. the generalized polynomial extension case), we have a ring C' and a C-bimodule S which
is flat on the left. In this case the ring R is the tensor algebra of S:

R=CaoSeS?’eSe...

In case 2 (i.e. the generalized free product case) we have two pure morphisms of rings o : C — A and
B : C — B and we suppose that A and B are C-flat on the left. We denote by R the ring defined by the
cocartesian diagram:
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C A
|
B R
In case 3 (i.e. the generalized Laurent extension case) we have two rings C' and A and two pure morphisms

«a and B from C to A. We suppose that A is C-flat on the left via both « and S and we denote by R the
ring generated by A and an invertible element ¢ with the only relations:

[e3

e

-y

Vee C, alc)t =tp(c)

So we have a morphism v: A — R and v o « and o 3 are conjugate.

From now on we will consider o and + as inclusions. So in each case A, B and R are C-bimodules. We
denote by &7, #, ¢ and & the categories of finitely generated projective right modules over the rings A,
B, C and R respectively. We set also: 2 = % incase 1, ¥ = & x & in case 2 and ¥ = & in case 3. This
category is the category of finitely generated projective right modules over the ring C' or A x B or A.

The categories &7/, 8, ¢, 9 and Z are contained in the abelian categories &V, 8", €V, 2V and Z" of
right-modules over the corresponding rings and these categories are abelianizations of &/, &, ¢, ¥ and #
respectively. Notice that 47l(A, S)Y is also an abelianization of A7il(A,S).

We denote by Cy the ring C in case 1 and C' x C in the other cases and also by 43" the category of
right Cy-modules and by %5 the subcategory of 62" generated by finitely generated projective modules. The
category %" is also an abelianization of €.

We will define the Cs-bimodule S and many categories and functors in order to give a common proof of
theorems 1, 2 and 3 (at least for the connective part of it).

1.4. The functors s and o and the bimodule S

Consider the case Co = C' x C. Let m; and w5 be the two projections C' x C — C'. Consider a right
C-module M and an integer ¢ € {1,2}. The ring C x C acts on M via 7; and becomes a right C' x C-module
M. This functor M + M? from €V to %> has an adjoint functor (on both sides) from %" to ¢V denoted
by E + E;. The two functors M — M' and M — M? induce an equivalence of categories from ¢V x €V
to %5V and the functors F — E; and E — E, induce an inverse of it.

The two functors s; : M +— M from % to %, (and also from €V to 6>") are exact and it is the same for
they adjoint functors o; : E + E; from %5 to € (and from 42" to €V). So s1, s2 and s = 51 ® s are exact
functors and their adjoint functors o1, o2 and o = 01 @ 09 are also exact.

In case 1, s and o are defined to be identities. Therefore s and o are well defined in all cases: s is an
exact functor from € to %, (and also from ¢V to %2") and o is an exact functor from %2 to € (and also
from €5 to €V).

Moreover, for every module F in %% (or %32") the module o(E) is nothing else but the module £ equipped
with the C-action induced by the identity or the diagonal map from C to Cs. We can do the same for left
modules and we have functors M + ‘M and E + ;E. In case of bimodules, we gets functors M ~ M7 and
E — ;E;. Using these notations we have the following, for every right C'x C-module E and left C'x C-module
F:

E @ F=EF=E, F®FEy, F=a&E, ,F
CxC Q

In case 1, the Cs-bimodule S is already defined.
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Consider the case 2. Since o : C — A and 8 : C — B are pure morphisms, A and B have two complements
A" and B’. These objects are C-bimodules and we have two decompositions of C-bimodules: A = a(C) @ A’
and B = §(C) @ B’. Then we define the bimodule S by:

251 = A’ 152 = B’ 151 =25 =0

Consider the case 3. Ring homomorphisms « and 3 induce two left C-actions on A and we get two
(C, A)-bimodules 4, A and gA. By doing the same on the right, we get four C-bimodules oAq, oA, gAa
and gAg. Moreover, since o and 3 are pure morphisms, we have two decompositions of C-bimodules:

Ao =a(C)d A gAs = p(C)e A"
Then we define the bimodule S by:
251 = A’ 18y = A” 151 = pAa 252 = o Ap
Then in the three cases S is a well defined Cs-bimodule. It is easy to see that S is flat on the left.
1.5. The categories D, #Y and ¥ and the functors T, F and F

We have a functor T : 2V — %" defined as follows:

eincase I: T(E) = E®c R=ER

eincase 2: T(Es,Ep) =EAs s R®Ep®p R=FE, RO Eg R

eincase 3: T(E)=E®4 R=ER

It is easy to check that T is an exact functor sending 2 to Z. Let E be an object in 2V, M be an object
in ¢V and ¢ : T(E) — MR be a morphism in Z". We say that ¢ is admissible if the following holds:

e o(E)C M & MS in case 1

e p(F4) C MA and ¢(Ep) C MB in case 2 (with: E = (E4, Ep))

e (E) C MA@ MtA C MR in case 3.

The set of admissible morphisms ¢ : T(E) — MR will be denoted by % (E, M).

Following Waldhausen, we define a splitting diagram as a triple X = (E, M, ¢) with: E € 9V, M € €V
and p € F(E, M).

The splitting diagram (F, M, ) is called a Mayer Vietoris presentation (resp. a splitting module) if ¢
is surjective (resp. bijective). The splitting modules, the Mayer Vietoris presentations and the splitting
diagrams define three categories ¥V C .4 C .. Moreover categories " and .7V are abelian.

If we replace 2V and €V by 2 and %, we get three subcategories ¥ C AV C ..

The correspondences (E, M, ) — E and (E,M,p) — M define two functors ®3 : .¥ — 2 and
D3 : ¥ — € (and also from Y to 2V and from .V to €). We have an extra functor ®; sending
(E, M, ) to the kernel of ¢.

Consider a sequence S = (0 — X — Y — Z — 0) in ¥ or in .. We say that this sequence is exact
if it is sent to an exact sequence under ®4 and ®3. If S is a sequence in .Z Y, we say that S is exact if it is
sent to an exact sequence under ®;, 5 and Ps.

With these exact sequences, ¥, #¥ and . become exact categories and the inclusions ¥ C # YV C .
are exact functors. Moreover ®, : #Z Y — % is an exact functor. In some sense ¥ is the kernel of the
functor &1 : LYV — ZX.

Since .4/ is not an abelian category, it will be useful to construct an abelian category .##" containing
MY . The category .4V is equivalent to the category of tuples (U, E, M, u, ¢) where (U, E, M) is an object
of Zx P x€ and p:U — T(E) and ¢ : T(E) — MR are morphisms in Z# such that ¢ is admissible
and the sequence:
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0—U-5T(E) S MR—0

is exact. So the category .# ¥V is defined as the category of tuples (U, E, M, ji, ) where (U, E, M) is an
object of Z¥ x PV x €V and p : U — T(E) and ¢ : T(F) — MR are morphisms in #" such that ¢
is admissible and ¢u = 0. It is easy to see that .#Z#" is an abelian category and the inclusions of exact
categories ¥ C AV and AV C . extend to functors ¥V — A VY and A VY — V. Moreover the
categories ¥V, .4V and .V are abelianizations of ¥, .# ¥ and .¥ respectively.

We have a functor F' from %, to 2V defined as follows:

e in case 1, F' is the identity

e in case 2, F(M) = (61(M)A,02(M)B) € 9V

e incase 3, F(M) =01(M),A® 02(M)sA € 2V

where A and gA are the module A equipped with the (C, A)-bimodule structure induced by « and S
respectively.

This functor F is exact and sends %5 to 2. It has a right adjoint functor F from 2" to %" and we have:

e in case 1, F is the identity

o in case 2, F(E4, Eg) = s1(E4) ® s2(Eg)

o in case 3, F(E) = s1(Ea) ® s2(Ep)
where E, and Ejg are the module ' equipped with the right C-module structure induced by o and
respectively. In case: Cy = C' x C, we have another functor M M from %" (or €») to itself defined by:

M=(M,M") = M=(M",M)
Lemma 1.6. Suppose Co = C x C. Then for every right C' x C-module M, we have natural isomorphisms:

so(M)~ Mo M
FF(M) ~ M & MS

Moreover the induced projection sa(M) —s M and the induced injections M — so(M) and M — FF(M)
are adjoint to identities.

Proof. Let M = (M', M") be a module in 65 = € x €. We have:

s(c(M))=s(M &M")=s;(M ®M")® so(M' ©M") =M D (s1(M") ® so(M')) =~ M oM
In case 2, we have:

FF(M) = F(M'A,M"B) = (M'(C & A"), M"(C & B'))
~ (M',M") @ (M58, M"1S5) ~ M @& MS

In the case 3 we have:

FF(M)=F(M',A® M"3A) = s1(M' 0 A0 & M"5A0) & s2(M' o Ag & M" 5A5)
= Sl(M/ (o) MIQSl (o) M”lSl) (o) SQ(M/QSQ oM M”ng)
~ M @ s1(MSy) ® so(MSy) ~ M @ MS

and the result follows. 0O
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1.7. The module M[S] and the transformations e, € and T

For every M € 45", we set:
M[S]=MeMSoMS*®...

and M[S] is a right Co-module. In case 1, M[S] is isomorphic to M R.
We have a stabilization map MS[S] — M|[S] induced by the identities M SS* — MS+L.

Lemma 1.8. There exist natural transformations:
e: TF(P) = o(P)R
e:0(F(E)[S]) = T(E)
T:o(s(M)[S]) — MR

forall P €6, E€ 2" and M € €V such that:
e ¢ is an isomorphism of R-modules
e ¢ is an isomorphism of C-modules
e 7 is an epimorphism of C-modules and the following diagram is exact (i.e. cartesian and cocartesian):

08({\4) — G(S(T)[S})
M ey MR

where the horizontal maps are the canonical inclusions and 7y is adjoint to the identity of s(M).

Proof. In case 1, it is easy to see that e, €, 7 and 79 can be chosen to be identities.
In the other cases consider a module P € %,". So we have two C-modules M = P, and N = P».
In case 2, we have:

T(F(P))=T(MA,NB)=MA®4, R& NB® R~MR®NR~ (M & N)R =o(P)R

and we get the isomorphism e.
In case 3, we have:

but the multiplication on the left by ¢ induces a isomorphism of (C, R)-bimodules from gR to o R. Then we
have:

T(F(P)) ~ MoR® NoR = o(P)oR = o(P)R

and we get the isomorphism e.
In order to construct the morphism 7, we need to give an explicit description of R as a C-bimodule.
We set:

Ua=A" gUs=B  Us=U,=
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in case 2 and:
U,=A4 Ug =tA"t™ 1 Ug = At~ 1 U, =tA
aVa BYB aVp BYa

in case 3.
For each sequence ¥ = (i1, j1,42,52, - - -, %n,Jn) in the set {a, 5}, the ring structure on R induces a well
defined morphism of C-bimodules:

@(Z) : ilUjliQUj "'intn, — R

and the sum of these morphisms is an epimorphism. On the other hand it is easy to see that, for each
(4,7, k) in {a, B} the image of ®(i,7, j, k) is contained in C' @ ;Uy. Therefore, if there is some k < n such
that ji = ix41 in the sequence ¥ = (i1, j1, 42, j2, - - - » in, jn), €very element of the image of ®(X) is reducible.
As a consequence the sum of the morphisms ®(X), for each sequence ¥ = (i1, j1, %2, J2, - - -, in, Jn) such that
Jk # k41 for every k < n is still an epimorphism.

Actually this sum is an isomorphism and we have a description of R as C-bimodule:

R: C@@(ilUjlizUj2 "'intﬂ)

the sum being taken over all non empty sequences (i1, ji,%2, 2, - - -, in,Jjn) in {a, B} such that ji # iy for
all k < n.

This fact was proven in [8], p. 140 (or in [2]) for the case 2 and in [8], p. 150 (with a suggestion of S.
Cappell) for the case 3.

Denote by f (resp. g) the unique bijection from {1,2} to {«, 8} such that f(1) = 8 (resp. g(1) = «).
Then, because of the definition of S, we have in case 2:

Vi,j € {1,2}, iSj = Uy

In case 3, we check that the multiplication by ¢ or 1 on the left and by ¢! or 1 on the right induce for
each i, j in {1,2} an isomorphism of C-bimodules ;S; — F@&Ug()-

Then in cases 2 and 3 we have an isomorphism of C-bimodules:
R~Co @(i15j1i25j2 . inSjn)

the sum being taken over all non empty sequences (i1, j1, 42, jo, - - -, in, jn) in {1,2} such that ji = ixyq for
all k£ < n. Hence we get an isomorphism of C-bimodules:

R~Co @ (iSj@i(SQ)j@i(SS)j@...)ZC@ ©  i(S");
Z’j

i,5,m>0

So we are able to define the morphism 7. If M is a right C-module we have:

MR~M® & M;S")~Me & (s(M)S");~Mo & o(s(M)S™)

%,7,n>0 7,m>0 n>0

But we have:

a(s(M)[S]) = os(M)® n6>90 o(s(M)S™)

Then we define the morphism 7 to be the identity on the direct sum of the o(s(M)S™) and the morphism
70 : 08(M) — M induced by the adjunction on the first term os(M).
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The last thing to do is to construct the isomorphism ¢ in cases 2 and 3.
In case 2 with E = (E4, Ep), we have:

T(E)=Fa®@sR®Ep@p R~FEs(CoB @B'A®BAB ®...)oEg(CoA dAB oABA®...)
~E,®Ep® Ex( @01(Sn)j) @ Ep( 6102(5")3')

Jm> Jm

= o(F(E) © (0 o(F(E)S") = o(F(E)IS)

which give the isomorphism e¢.
In the last case we have:

R~C&® EB i(8™); = (C®25)(Ca @ 1(5™);) ©252(C® GB 2(5™);)

,4,m>0 J,m>0 J,m>0

~ ACo @ (7)) @ A (Cd @ 2(57);)

3,n>0 §,n>0

~ Ay (C® EB 1(S™);) © Ag(Co @ 2(5™);

7,m>0 7,m>0

and we check that the isomorphism from R to this last module is an isomorphism of (A, C')-bimodules. Since
E belongs to o7V, we have;

T(E) ~ Eo(Co® @) 1(S™);) ® Es(Co @D 2(S™);)

jn>0 7,n>0
~o(F(E))e @ o(F(E)S™) ~ o(F(E)[S))
n>0

which give the isomorphism ¢ in this last case. O

Remark 1.9. We have an explicit description of the morphism 7 and the isomorphism ¢.

Consider two modules M € ¢V and E € 9V.

In case 1, set: w = u for each u € E.

In case 2, the maps E4 — E4R and Ep — EpR induce a map o(E) — T(E) and in case 3, the
maps E, — ER and Eg — EtR — ER induce also a map o(E) — T(E). Denote by v — ¥ this map.

So we have a morphism v — T from o(F) to T(E) in the three cases.

Denote also by s — 5 the isomorphism ;5; = 7 Ug(j) C R in cases 2 or 3 and the identity S — S in
case 1.

With these notations, we have the following description of 7 and &:

In case 1, for each integer n > 0, each u € M, each v € E and each sequence (s1,s2,...,8,) in S we
have:

In case 2 or 3, for each integer n > 0, each sequence (ig,41,...,4,) in {1,2}, each u € M, each v € E;,

and each sequence (1, 82, ...8y,), with s € ;,_,S;,, we have:

T(us182...8,) =481 S3...5, € MR

e(vs182...8,) =V S1 53...5, € T(E)
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Lemma 1.10. There is a natural transformation:

A F(E, M) —s Hom(F(E), s(M) ® s(M)S)
for each (E, M) € X2V x €V with the following properties:
e A is injective in case 2 or 8 and bijective in case 1
o for each (P,M) € 6> x €V, if [ is the map P — F(F(P)) induced by adjunction, the composite
morphism:

F(F(P), M) - Hom(F(F(P)), s(M) & s(M)S) - Hom(P, s(M) & s(M)S)

1s bijective
e for each p € F(E, M), we have a commutative diagram:

U(ﬁ(lf)[b”]) — U(S(T)[SD
T(E) — MR
where g is the composite morphism:

o(F(E)[S)) X2 o((s(M) & s(M)S)[S]) = o(s(M)[S))

and h the morphism induced by the identity s(M)[S] — s(M)[S] and the stabilization map s(M)S[S] —
s(M)]S].

Proof. Consider the case 1. We have an isomorphism from Homg (ER, M R) to Hom¢ (F, M R) inducing an
isomorphism .Z (E, M) ~ Hom(E, M & M S) and we get the isomorphism A : % (E, M) — Hom(E, M &

~

MS) =Hom(F(E),s(M) @ s(M)S).
Consider the case 2. We have E = (E4, Ep) € & x % and we get isomorphisms:

Homg(T(E), MR) ~ Homg(EAR ® EgR, MR) ~ Homy (FE4, MR) & Homg(Ep, MR)
and then isomorphisms:
F(E,M) ~Hom(E4s, MA) ® Hom(Ep, MB) ~ Hom(E, (MA, MB)) = Hom(E, F(s(M)))
Consider now the last case. We have:
Homg(T(E), MR) ~ Homg(ER, M R) ~ Hom, (E, MR)
and then:
F(E,M)~Hom(E,MA® MtA) ~Hom(E, M,A® MgA) ~ Hom(E, F(s(M)))
Therefore, in case 2 and 3, we have an isomorphism:

Z(E,M) — Hom(E, F(s(M))) (*)
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On the other hand, the morphism F induces an injection:
Hom(E, F(s(M))) — Hom(F(E), F(F(s(M)))) ~ Hom(F(E), s(M) & s(M)S)
(see lemma 1.6) and we get the desired injection
A: Z(E,M) — Hom(F(E), s(M) & s(M)S)

Let (P, M) be an object in C5Y x €Y. In case 1, the morphism P —s» F(F(P)) is the identity and the
composite map:

~

F(F(P), M) - Hom(F(F(P)), s(M) & s(M)S) - Hom(P, s(M) & s(M)S)

is bijective.

Consider the other cases. Let ¢ € % (F(P), M) be an admissible morphism and « : F(P) — F(s(M)) be
the corresponding morphism (via the isomorphism (x)). Let f : P — FF'(P) be the morphism adjoint to the
identity of F(P). By adjunction, the composite morphism P N ﬁF(P)) = ﬁF(s(M)) is the morphism
obtained from « by adjunction and we have a bijection Hom(F(P), F(s(M))) ~ Hom(P, ﬁF(s(M)) Hence
we have a bijection:

F(F(P), M) ~ Hom(P, FF(s(M)) ~ Hom(P, s(M) & s(M)S)

which is nothing else but the map f* o A. Denote by (D) the diagram of the lemma.

In case 1, € and 7 are identities and we have: g = ¢. Hence (D) is commutative.

Consider the other cases. Via the bijection % (E, M) ~ Hom(FE, F(s(M))), the morphism ¢ € % (E, M)
corresponds to a morphism ¢ : E — F(s(M)) and we have a diagram:

U(ﬁT)[SD — U(ﬁF(S[M))[SD R U(S(T)[SD
T(E) —2—  T(Fs(M)  —2 MR

In this diagram, the square on the left is commutative by naturality and the square on the right (Dy) is
the diagram (D) in the case: E = F(s(M)). Moreover the total square is the diagram (D). Hence, to prove
the commutativity of (D) it is enough to prove that (Dy) is commutative.

In (D), the morphism go is induced by the isomorphism FF(s(M)) — s(M) @ s(M)S, the identity
s(M)[S] — s(M)[S] and the stabilization map s(M)S[S] — s(M)[S].

The morphism (g is the composite map:

T(F(s(M))) = (MA® MB)R~ MR& MR — MR
in case 2 and the composite map:

T(F(s(M))) = (MA® MtA)R~ MR& MR — MR
in case 3. Hence ¢ is the composite map:

T(F(s(M))) - os(M)R - MR

~
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where a : 0s(M) — M is adjoint to the identity of s(M).

Consider an element u € ﬁF(s(M)), an integer n > 0, a sequence (ig, i1, .. .,i,) in {1,2} and a sequence
(81,82, ...,8n) with si € ;,_,S;,. Denote by v the image of v under the isomorphism FF(s(M)) ~ s(M) @
s(M)S. If v belongs to s(M) or to s(M)S;,, we have, because of remark 1.9, the following:

poe(us182...8,) =0 81 82...5, = 7go(us182...58y)
and (Dy) is therefore commutative. O
1.11. The functors ® : Nil(Cs,S)Y — ¥V and ¥ : SV — Nil(Cs, S)Y
Let H be a module in %65". Because of lemma 1.10, we have an isomorphism:
¢: F(F(H),o(H)) = Hom(H, so(H) ® so(H)S)

Therefore, for every morphism 6 : H — H.S, we have a unique morphism ¢y in F(F(H),c(H) such that
C(pg) is the composite morphism:

H = HaoHS - soH @ scHS

where ¢ : H — soH is adjoint to the identity. Thus ®(H,0) = (F(H),0(H),pg) is a well defined split
diagram in V.

Lemma 1.12. The correspondence above induces two equivalences of categories ® : Nil(Cy,S) —= ¥ and
O Nil(Cy, S)V — ¥V

Moreover there is a functor ¥ : .V — Ail(Ca,S)Y and a morphism of functors = from I®¥ to the
identity, where I : ¥V — .V is the inclusion, such that the following holds for every X € .V (with:
U(X) = (H,0)):

e we have a natural exact sequence in € :

0 — &1(X) — o(H) = &3(X)

e a splitting diagram X belongs to MY (resp. to ¥V ) if and only if the morphism m : ®W(X) — X is
an epimorphism (resp. an isomorphism,).

Remark. Actually, everything works without any flatness condition from subsection 1.4 to 1.11. But this
condition is strongly needed for lemma 1.12, essentially for constructing the functor .

Proof of lemma 1.12. Let (H,6) be an object of Ail(Cy,S)Y. If § = 0, the morphism ¢ : T(F(H) —
o(H)R is nothing else but the isomorphism e defined in lemma 1.8. Therefore ®(H, 6y) belongs to ¥V in
this case.

Suppose 6 is nilpotent. Then, because of lemma 1.2, there is a filtration 0 = Hy C H; C Ho C ... of H
such that H is the union of the H;’s and, for all ¢ > 0, 8(H;) is contained in H;_1S5.

On the other hand it is easy to see that the functor ® is exact. So we get a filtration:

0= q)(Ho,9> C <I>(H1,9) - @(Hg,e) c.--C <I>(H,6)

Because each ®(H;/H;_1,0) = ®(H;/H;—1,0) belongs to ¥V, each ®(H;,0) is also in ¥ and then ®(H, 0)
is a splitting module.



P. Vogel / Journal of Pure and Applied Algebra 225 (2021) 106488 15

Therefore ® is a functor from A73l(Cs, S)Y to ¥V and also from A7%l(C3, S) to 7.

Let X = (FE,M,p) be a splitting diagram with £ € 2¥ and M € %". Denote by P the module
F(E) € %,". By composing the morphism e : o(P[S]) — MR with the identity P[S] = o(P[S]), we
get a Z-linear map f : P[S] — MR. Denote by H the Z-submodule f~!(M) and by i the inclusion map
H — PIS].

Because of lemma 1.10, ¢ is determined by a morphism 1 = A(y) from P = F(E) to s(M) & s(M)S.
Then we have two morphisms X : P — s(M) and v : P — s(M)S such that: ¢y = XA — +. Moreover the
composite map P[S] = o(P[S]) == MR is equal to: 7(A — 7).

We have:

ueH < ge(u)eM = TA—7)(u)eM
— Vk>0, 7(Mugy1) —yur)) =0

But the morphism 7 : o(s(M)S*) — MR is injective for all k> 0 (see lemma 1.8). Then we have:
ueH <= Vk>0, AMugs1) =v(uk)
Since A and v are morphisms in 45", H is a Cy-module and we have an exact sequence in 65":
0 — H -5 P[S] -2 N[S]

where N is the module s(M)S and § is the morphism sending u = ug + uy + ug + ... (with ux € PS* for
every k > 0) to:

O(up+ur +ug+...) :Z (A(ukt1) = y(ug))
k>0

If U is a module in %", we have a morphism 6y : U[S] — U[S]S sending ug + uy + us + -+ € U[S]
(with uy € PS* for every k > 0) to:

9U(uo+u1+u2+...) =u; +us+us+...
Notice that 9,’} sends ug + uy + ug + -+ € U[S] to ug + ug+1 + ... and Oy is nilpotent. Hence (U[S],0y)

belongs to Al(Cs, S)V.
Consider the following diagram:

!
i)

NIS]

or [ o [ (D)

51 —2— NI[S|S

Let n > 0 be an integer, u be an element in P and sy, So, ..., S, be elements in S. We have the following;:
n=0 = d0p(u) =0xn3(u)=0

n=1 = d0p(us1) =0Ond(us1) = —y(u)s1
S1

)
n>1 = 60p(usi...sn) =0n0(us1...8n) = A(u)s1...8n —Y(U)S1...8n

and the diagram (D) is commutative.
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Since S is flat on the left, A47l(Cs,S)Y is an abelian category and there is a unique nilpotent morphism
6 : H— HS such that the following sequence is exact in A%l(Cs, S)Y:

0 —> (H,0) - (P[S],0p) - (N[S], 0x)

Therefore W(X) = (H,0) is a well defined object in A%l(Ca,S)" and we get the desired functor
U Y — Ail(Cq,S)Y. Consider the splitting diagram ®W(X) = (F(H),o(H), ). The morphism
g corresponds to the composite morphism H U HeHS — so(H) @ so(H)S. We have to construct
a morphism 7 : ®¥(X) — X in .¥V. This morphism is given by two morphisms m : F(H) — F and
mo(H)— M.

For each u € H we set: m(u) = ug, with i(u) = ugp +uy + ... and uy € PS* for all k. So we have two
morphisms 7, : H — F(E) and Ay H — s(M) and, by adjunction, two morphisms my : F(H) — FE
and 71 : o(H) — M.

For w € H, with: i(u) = uo + u1 + ..., we have:

o (u) = ¥ (uo) = Auo) — y(uo) = Auo) — A(ur) = Amo(u)) — Amo0(u) = Amp(1 — 0)(u)
and the following diagram is commutative:
H —% so(H)® so(H)S
P —Y s s(M)®s(M)S

Therefore the two morphisms 7y : F(H) — FE and 71 : 0(H) — M induce a well defined morphism
m: ®P¥(X) — X and we get a commutative diagram:

T(F(H)) % o(H)R
7TO|/ 7"1[ (DX)

We have an exact sequence in Z":
0— & (X) 5 T(E) 2 MR

and then an exact sequence in €V:

—1

0— & (X) ¥ o(P[S]) = MR

Therefore we have a commutative diagram in ¢V with exact lines:
0 —— & (X) —— o(H) —— M
R
0 —— & (X) -~ T(E) —FL— MR

where j : M — MR is the inclusion, and the top line of this diagram is the desired exact sequence. We
have the following equivalences:
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X e #V < themorphism ¢:T(E) — MR is surjective
<= the image of ¢ contains M

<= the image of o(P[S]) — MR contains M

— o(H) = o(P) 25 M s surjective

where ) is adjoint to A. Therefore X belongs to .# 7 if and only if the morphism 7, : o(H) — M is
surjective.

Suppose X belongs to .# 7. Let E’ be the image of 7y : F(H) — E. Because of the diagram above,
T(E') contains the image of p : ®1(X) — T(F) and the image of i : o(H) — T(F). But T(E’) is a
R-submodule of T'(E) and ¢(T(E")) is a R-submodule of M R containing M. Therefore ¢ : T(E') — MR
is surjective and T'(E’) contains the kernel ®1(X) of . Hence we have: T(E’) = T'(E) and then: E' = E.

Consequently, if X belongs to .# ¥, 7 : o(H) — M and 7y : F(H) — E are surjective and  :
®U(X) — X is an epimorphism (in .#V). Conversely, if 7 : ®¥(X) — X is an epimorphism, m :
o(H) — M is surjective and X belongs to .. Suppose X is in #"V. Then 7y and 7y are epimorphisms.

Because of the exact sequence:
0— & (X) —o(H) M

the morphism m; : o(H) — M is an isomorphism. Therefore in the diagram (Dx), mp and ¢ are iso-
morphisms and 7 : ®¥(X) — X is an isomorphism too. As a consequence, the functor ® induces two
equivalences of categories Al(Cs,S) — ¥ and Ail(Cs, S)Y — ¥V,

Conversely, if 7 is an isomorphism, 7y and 71 are isomorphisms and ¢ is an isomorphism too. Therefore
X belongs to ¥V. O

Lemma 1.13. Let (A, S) be a left-flat bimodule and X = (M,0) be an object in Nil(A,S)V. Let V be a
finitely generated projective right A-module and f : V. — M be a morphism. Then there exist an object
Y = (M',0") € Ail(A,S), a split injective morphism f': V. — M’ and a morphism g : Y — X making
the following diagram commutative:

v L

]

V%M

Proof. Denote by &7V the category of right A-modules and &/ C &V the category of finitely generated
projective modules in «7V. Because of lemme 1.2 there is a filtration:

0=MyC My C M C...

of M by A-modules such that M is the union of the M;’s and 6(M;) C M;_1S for every i > 0. Since V is
finitely generated, there is an integer n > 0 such that M,, contains the image of f: V — M.

Then we’ll construct modules F; € ./, morphisms h; : F; — M; for i = 0,1,...,n and morphisms
0 F;, — F;_1S for i =1,2,...,n such that:

e [, =V Fy=0and h, = f
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e for each i = 1,2,...,n, the following diagram is commutative:

0’ [ % [ (Dl)

Fio 8~ M8

Let p be an integer with 0 < p < n. Denote by H(p) the following property:

e There exist modules F; € & and morphisms h; : F; — FE; for i = p,...,n and also morphisms
0 F, — F,_1S for i = p+1,...,n such that F,, =V, h, = f, the diagram (D;) is commutative for
i=p+1,...,nand Fy =0 (if p = 0).

This property is clearly true if p = n. Suppose H(p) is true with p > 0 and consider the composite
morphism A : F, — M, SN M,_1S5. If p = 1, this morphism is trivial and we set: Fy = 0. Therefore the
property H(p — 1) = H(0) is true.

Consider the case p > 1. Since F), is finitely generated, M,_; contains a finitely generated submodule
M’ such that: \(F,) C M'S. Let F,_; be a module in & and u : F,_; — M’ be an epimorphism. Since
F, is projective the morphism F,, — M’S factorizes through Fj,_1.S and we have a commutative diagram:

F, —* F,_.8

B2 ars

So we define the morphism h,_; as the composite map: F},_; 2 M M,,_1 and we have the property
H(p-1).

By induction we obtain the property H(0) and all the data are constructed.

Then we set: M' = Fy @ Fy @ --- ® F,,. The morphisms h; induce a morphism g : M’ — M and the
morphisms 6’ : F; — F;_1.S induce a morphism ¢’ : M’ — M'S. The lemma is now easy to check. O

Denote by %’ the full subcategory of % generated by modules on the form U = VR with V € %. This
category is exact and cofinal in %, that is, for each module M € %, there is a module M’ € % such that
M & M’ belongs to Z'.

Lemma 1.14. Let X be a split diagram in .Y, V be a module in #' and f :V — ®(X) be a morphism
in Z. Then there exrist an object Y € .4V, a morphism g : Y — X in Y and an isomorphism
e:V = ®(Y) such that the following diagram is commutative:

1|/ — @1[1/)
v —L 5 e (X)

Moreover, if X belongs to AV, the morphism g can be chosen to be an epimorphism in .7V .

Proof. The split diagram X is a triple (E, M, ) with E € 2V and M € €. Since V belongs to %', there
is a module W € € such that: V = WR and we get a morphism f': W — &;(X) in €.

Denote by K = (H,6) the object ¥(X) € A5l(Cs,S)Y. Because of lemma 1.12, we have an exact
sequence:
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0— &(X) 5 o(H) = M

and the morphism pf’ : W — o(H) has an adjoint A : s(W) — H. Because of lemma 1.13, there
are an object K' = (H',0") € Ail(Cs,S), a morphism h : K’ — K and a split injective morphism
X : s(W) — H’' making the following diagram commutative:

The morphism N:W — o(H') adjoint to )\ is still split injective and we get a commutative diagram
with exact lines:

N/ ’
A g

O — W ——— oH) — M — 0

|

0 —— &(X) 4~ oH) —— M

where M’ is the cokernel of X'.
We have now an object Y/ = ®(K') = (F(H'),0(H'), pg») € ¥,an object Y = (F(H'), M’ , 7' pg:) € MV
and an epimorphism u : Y’ — Y. But the morphism ®(K’) — ®(K) — X vanishes on the kernel of u

and factorizes by a morphism g : Y — X. So we have morphisms Y’/ — Y — X inducing a commutative
diagram with exact lines:

0o —— 0 — T(F(H)) —— o(H)R —— 0

/
s

0O ——» WR — T(F(H) —— MR —— 0

f

0 —— &(X) —— T(E) — MR

Hence, we get an isomorphism ¢ : V.= WR — ®1(Y) and a commutative diagram:

Suppose X belongs to .# ¥ . Because of lemma 1.12; the morphism 7 : ®¥(X) — X is an epimorphism
in .V inducing two epimorphisms F(H) — E and o(H) — M.

Since E is finitely generated, H contains a finitely generated Cs-submodule Hy C H such that the
composite morphism F(Hy) — F(H) — E is an epimorphism. Therefore there exist a module P € €
and a morphism v : s(P) — H such that the image of u contains the submodule Hj. Because of lemma
1.13, there are an object K/ = (H',0") € Ail(C5,S), a morphism h : K/ — K and a split injective
morphism XN @ v’ : (W) @ s(P) — H' making the following diagram commutative:
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s(W)a®
s(W) e

Therefore the composite morphism F(H') SN F(H) — FE is an epimorphism.

(P) o H
hl/
(P) —H

H

S

S

If we continue the construction above by using this morphism h : K/ — K, we get a morphism
g : Y — X such that the morphism ®5(Y) — ®5(X) is isomorphic to the morphism F(H') — F
which is an epimorphism. Hence ®5(Y) — ®5(X) is also an epimorphism. On the other hand, we have a
commmutative diagram:

T(®(Y)) —— P3(Y)R

{ J

T(E) —%— MR

where ¢ : T(E) — MR is surjective. Then ®3(Y)R — MR is surjective and ®3(Y) — M is surjective
too. The result follows. O

2. Algebraic K-theory of categories ¥ and .#Z ¥
2.1. About Waldhausen K-theory

A Waldhausen category is a category with a zero object and two subcategories: the category of cofibra-
tions and the category of (weak-)equivalences. These categories have to satisfy certain conditions (see [9]).
Waldhausen associates to any essentially small Waldhausen category % an infinite loop space K(%) and K
(called the Waldhausen K-theory functor) is a functor from the category of essentially small Waldhausen
categories to the category of infinite loop spaces.

An exact category & may be considered as a Waldhausen category, where a cofibration is an admissible
monomorphism of & (i.e. a morphism f appearing is an exact sequence 0 — X —f> Y —Z7-—0in &)
and an equivalence is an isomorphism in &. Moreover, if & is essentially small, we have a natural homotopy
equivalence from the Quillen K-theory of & to the Waldhausen K-theory of &. To every exact category &
we can associate the following category &:

The objects of &, (called the &-complexes) are the complexes:

C = (~.$cn$cn_1$cn_2$...)

where each C), is an object of & and each d is a morphism of & such that the sum & C), exists in & and

each morphism d? is zero.

The morphisms in this category are morphisms respecting degrees and differentials. A sequence 0 —
X —Y — Z — 01in &, is said to be exact if it induces an exact sequence in & on each degree. With
these exact sequences, &, becomes an exact category.

If & is the category of right modules (resp. the category of finitely generated projective right modules)
over a ring A, the &-complexes are called A-complexes (resp. finite A-complexes).

Suppose & is an exact subcategory of an abelian category &V. Then &, is a Waldhausen category, where
cofibrations are admissible monomorphisms and equivalences are morphisms inducing an isomorphism in
homology (where homologies are computed in &V). Moreover &, is saturated and has a cylinder functor
satisfying the cylinder axiom (in the sense of Waldhausen [9]). We have the following result (][9], [10]):
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Gillet-Waldhausen theorem 2.2. Let & be an essentially small exact category contained in an abelian category
&Y. Suppose & is stable in & by kernel of epimorphisms. Then the inclusion & C &, of Waldhausen
categories induces a homotopy equivalence in K-theory.

Let & be an essentially small exact category and C' and C’ be two &-complexes. For each integer n, we
set:

Hom(C, C"), = | [ Homg (Cy,, C}, )
p

and Hom(C, C") is a graded Z-module. We have on Hom(C, C’) a natural differential d of degree —1 defined
by:

Vf € Hom(C,C"),, d(f)=dof—(=1)"fod

An element of Hom(C, C"),, is called a linear map of degree n, a cycle in Hom(C, C"),, is called a morphism
of degree n and a boundary of Hom(C, C"),, is called a homotopy of degree n. The morphisms of degree 0
are the morphisms in the category &;.

In this category, we have also a notion of n-cone:

Consider a morphism f: X — Y in &, and an integer n € Z. We set: C' = X @Y. So we have four linear
maps:i:Y —C,p:C — X, r:C — Y and s: X — C. The map 4 is an injection, p is a projection,
r is a retraction of ¢ and s is a section of p. There is a unique way to modify degrees and differentials on C
such that the following holds:

0% =n °r = —n °p=—-1-—n °s=1+n
di)=0 dp)=0 d(r)=—(=1)"fp  d(s)=if

With these new degrees and differentials, C' is an &-complex called the n-cone of f. If n = 0, C is the
classical mapping cone, the map i : Y — C' is a cofibration in &, and we have an exact sequence in &:

0—X—T(f)—C—0

where T'(f) is the cylinder of f.

If n = —1, the map p: C' — X is also a morphism in &,. Let F': &/ — 2 be an exact functor between
two Waldhausen categories. We say that F' has the approximation property if the following holds:

e (Appl) a morphism in & is an equivalence if and only if its image under F is an equivalence

e (App2) for every (X,Y) € & x B and every morphism [ : F(X) — Y, there exist a morphism
a: X — X' in & and a commutative diagram in Z:

Fx) —L1 v
T
FX) Ly

where f’ is an equivalence. We have the following theorem of Waldhausen ([9]):

Waldhausen approximation theorem 2.3. Let ' : of — % be an exact functor between two essentially
small saturated Waldhausen categories. Suppose <7 has a cylinder functor satisfying the cylinder axiom and
F' has the approzimation property. Then F' induces a homotopy equivalence in K-theory.
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Lemma 2.4. The functor o X O3 : MYV — D X € induces a homotopy equivalence in K-theory:
K(#Y) = K9P x%)=K(2)x K(%)

Proof. The proof will be done by using Waldhausen K-theory.

The three exact categories .# ¥, 2 and € are contained in the abelian categories .#Z ¥, 2V and €V
respectively. Moreover each of these exact categories are closed by kernel of epimorphisms in the corre-
sponding abelian categories. Therefore, because of Gillet-Waldhausen theorem, it’s enough to prove that
the functor @5 X O3 : AV, — D, X €, induces a homotopy equivalence in K-theory.

By replacing the category of equivalences of .Z ¥, by the category of morphisms f : X — Y inducing
a homology equivalence ®5(X) =+ ®5(Y) we get a new Waldhausen category denoted by . ¥, .

Denote also by .Z ¥ the Waldhausen subcategory of .# ¥, of objects X with acyclic ®(X). Because of
the fibration theorem (see [9]), the sequence:

MV — MV — MY

induces a fibration in K-theory.
Denote by 2° the Waldhausen subcategory of 2, of acyclic complexes in %,. Since each morphism in
29 is an equivalence, 2° has trivial K-theory. We have a commutative diagram:

MYV s MY ———s V!

<I>2><<I>3[ QQXQS[ @2[

PxC, —— DxC —— D,

where each line induces a fibration in K-theory. Therefore it will be enough to prove that functors &, :
MYV — D, and Py x B3 : MV — D0 x €, induce homotopy equivalences in K-theory or, equivalently,
that ®y : AV — P, and ®3 : MV — €, induce homotopy equivalences in K-theory.

Because of the approximation theorem of Waldhausen, in order to prove that ® : . # ¥ — P, and
O3 : MV — €, induces a homotopy equivalence in K-theory, it’s enough to show that these two functors
have the approximation property.

The property (Appl) is easy to check. Then the last thing to do is to show that ®5 : A ¥, — P, and
O3 . MYV — €. have the property (App2). Consider an object X € .Z¥,/, an object F € %, and a
morphism f : ®3(X) — F in Z.. The object X is a triple X = (E, M, ¢) where & is a P-complex, M is
a ¢-complex and ¢ is an element in .Z#(E, M) inducing a surjective morphism T(E) — MR. So f is a
morphism from E to F' in %,.

Denote by F; the —1-cone of f. So we have linear maps i : F — E1,p: Fy — E, r: By — F and
s: E — F;. The map p is an epimorphism in %, ¢ is a morphism of degree —1 and we have:

Consider the triple (E1, M, ¢p). Since p is an epimorphism, this triple is an object X € .# ¥, and we
have a morphism g : X3 — X. Denote by Y the 0-cone of g. We have a cofibration j : X — Y and four
linear maps: j: E — ®9(Y), q: (V) — E1, p: ®2(Y) — F and 0 : E; — $5(Y"). Moreover we have;

d(o) =jp  d(p) = —pq

Consider the linear map g = fp + rq. The differential d(g) vanishes and g is a morphism from ®5(Y") to
F. Tt is easy to see that g is surjective and its kernel is isomorphic to the O-cone of the identity of F.
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Moreover we have: gj = f. Therefore g : ®3(Y) — F is a homology equivalence and the following diagram
is commutative:

By(X) —L

| [

dy(Y) —I—

~

Then the functor &, : AV, —> P, has the property (App2) and @5 : A ¥, — P, induces a homotopy
equivalence in K-theory. Consider an object X € . ¥, an object N € €, and a morphism f : ®3(X) — N
in €. The object X is a triple (E, M, ¢) where & is an acyclic Z-complex, M is a €-complex and ¢ is an
element in % (E, M) inducing a surjective morphism T'(E) — MR. So f is a morphism from M to N.

Let U be the —1-cone of the identity of V. Then U is acyclic and we have an epimorphism p: U — N.
Consider the composite morphism:

¢ T(Fs(U)) = T(Fs(N)) — 0s(N)R — NR

This morphism is surjective and the triple (E @ Fs(U), N, fo @ ¢') is an object Y in .#7,°. Moreover we
have a morphism g : X — Y inducing the inclusion E C F @ Fs(U) and the morphism f : M — N,
making the following diagram commutative:

®3(X) —1— N

3(Y) ——— N

Hence ®3 : #/V) — . has the property (App2) and this functor induces a homotopy equivalence in
K-theory. O

Denote by .# "’ the full subcategory of .# ¥ consisting of objects X € .# ¥ such that ®;(X) belongs
to #’. Then an object X € .#V belongs to .4 if and only if there is an isomorphism ®;(X) ~ VR for
some V € €. This category is exact and cofinal in .#¥". Moreover the functor ®; sends .Z¥"' to Z%'.

We define the following categories:

e The category &y of modules in %’ and isomorphisms

e The category & of objects in .# ¥’ and morphisms inducing isomorphisms under ®;

e The category & of objects in .# ¥’ and epimorphisms inducing isomorphisms under ®;

e The category &3 of objects in .4 ¥’ x ¥, where a morphism in &3 from (X, V) to (Y, W) is an morphism
X®V —Y a&Win & sending X to Y.

We have four functors f1 : 61 — &b, fo : & — &1, g1 : &3 — & and g : &5 — & where f is induced
by ®1, fo is the inclusion and g; (resp. g2) is the correspondence (X, V) — X (resp. (X, V) — X @ V).

In order to prove a connective version of theorems 1, 2 and 3, we’ll need to prove that the sequence
YV C MYV — #' induces a fibration in K-theory and, for that, it will be useful to prove that fifs is a
homotopy equivalence.

Lemma 2.5. The functor f1 is a homotopy equivalence.

Proof. It is enough to prove that the fiber category f1/U is contractible for each object U € & = Z#'.

Consider an object U in %’ and denote by # the fiber category fi/U. By applying lemma 1.14 with
X =0and V =U, we get an object Y € .#¥ and an isomorphism U ~ ®;(Y"). Hence the category .Z is
nonempty
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Consider two objects (X1,e1) and (X2,e2) in Z. For i = 1,2, g; is an isomorphism from ®;(X;) to U.

By applying lemma 1.14 with X = X; @ Xy and f = ;' @ e, : U — ®,(X), we get an object
Y € .4, a morphism g : Y — X; @ X, and an isomorphism ¢ : U — ®;(Y) such that ! @ &5 ! is
the composite morphism U —= &;(Y) % ®;(X). Therefore (Y,e~') is an object in .# and we have two
morphisms (Y,e™!) — (X1,e1) and (YV,e7 1) — (Xa,2).

Consider two objects (X1,e1) and (X3,¢2) in Z and two morphisms hy and hy from (X7,e1) to (Xa,e2).
Denote by X the kernel of hy — hy (in V).

For 7 = 1,2, we have an exact sequence:

0 — &1(X;) 25 TOy(X;) 25 B3(X)R — 0
and then an exact sequence:

-1
Hi€;

0 — U™ Toy(X;) 25 &3(X;)R — 0

So we get for each i = 1,2 a commutative diagram with exact lines:

—1
H1€q

0 —— U 2o Toy(X,) —2— d3(X)) R —— 0

[

—1
0 —— U 25 T0y(X,) —2— O3(X)R —— 0

and then an exact sequence:
0 —U—TP(X) — P3(X)R

inducing an isomorphism € : U — ®;(X). By applying lemma 1.14 with ¢, we get an object (Y,u™!) € &
and a morphism k : (Y,u™!) — (X1,e1) such that: hik = hok.

Because of these properties, each fiber category % is cofiltered and then contractible. Hence the functor
f1 is a homotopy equivalence. 0O

Lemma 2.6. The functor g, is a homotopy equivalence.

Proof. Let X be an object of .# Y’ and # be the fiber category ¢;/X. Applying lemma 1.14 to the
morphism 0 — ®1(X), we get an object E € .#%, a morphism a : E — X such that: ®;(F) = 0
and ®9(F) — ®5(X) and ®3(E) — P3(X) are epimorphisms. Then E belongs to ¥ and the morphism
a : F — X induces epimorphisms on ®, and ®3. Therefore, for each morphism f : Y — X in &, the
morphism Y @ F 19e x belongs to &5.

An object in .7 is a triple (Y, V, f) where (Y, V) belongs to 4%’ x ¥ and f:Y — X is a morphism in
&1. A morphism ¢ : (Y,V, f) — (Y, V', f’) is a morphism ¢ : Y &V — Y’ @ V' in & sending Y to Y’
such that: f = f'o.

The category % is nonempty because it contains the object (X, 0,1d).

We have three functors Go, G1, G2 from % to .# sending each (Y,V, f) € F to Go(Y,V, f) = (Y, V, f),
G, V. /)=, V@ E, f) and G2(Y,V, f) = (X, 0,1d) respectively.

The inclusion 0 C F induces a morphism Gg — G1. The morphism f@&0Pa : Y VB E — X induces
a morphism (Y,V @ E, f) — (X,0,1d) and we get a morphism G; — Ga. Therefore the identity of .7 is
homotopic to G and then to G5 which is constant. Hence .% is contractible and, since each fiber category
of g1 is contractible, g; is a homotopy equivalence. 0O



P. Vogel / Journal of Pure and Applied Algebra 225 (2021) 106488 25

Lemma 2.7. The functor g2 is a homotopy equivalence.

Proof. Let X be an object in &1 and # be the fiber category go/X. An object in .% is a triple (Y, V, f) where
(Y,V) belongs to & and f : Y &V — X is a morphism in &. A morphism ¢ : (Y,V, f) — (Y', V', f)
in % is a morphism ¢ : Y @V — Y’ @ V' in & such that ¢(Y) C Y' and f = f'¢. Therefore it is easy
to see that, for every (Y,V, f) € .#, we have a unique morphism in .# from (Y,V, f) to (X,0,1d). Hence
% has a final object and is contractible. Since each fiber category of go is contractible, go is a homotopy
equivalence. O

Lemma 2.8. The functor fo is a homotopy equivalence.

Proof. The inclusion X C X®V for all (X, V) € & induces a morphism from g; to fag2 and g; is homotopic
to fogo. But g1 and g, are homotopy equivalences. Therefore f5 is a homotopy equivalence too. O

Lemma 2.9. The following diagram of exact categories:
Vv 2 Rz
induces a fibration in K-theory.

Proof. In [8] (lemma 10.2 p. 206), Waldhausen proved that Q¥ — Q.ZY' — Q%g is a homotopic
fibration in a situation similar to ours. In our situation we’ll prove, essentially in the same way, that the
sequence QY — QY — QA is a homotopic fibration.

Following Waldhausen’s notations, if .% is an exact subcategory of an exact category &, we have a bicat-
egory QP (&, 7 ) where the horizontal maps form the Quillen’s category Q(&) and the vertical morphisms
form the category of epimorphisms in & with kernel in .%. In particular we have an equivalence between
Q(&) and Q°P(&£,0) and Q(&) may be considered as a bicategory.

We have a commutative diagram of bicategories:

QYY) — QT

|

QLAY — QF(AVY)
which is homotopically cartesian. Moreover Q°P(¥, ¥) is contractible. Therefore the diagram of bicategories:
Q) — QaV') — QU (MY, )

is a homotopic fibration.

On the other hand the morphism f = fifs : & — %’ induces a morphism f, : Q¥ (ALY, V) —
QP (Z',0) and we want to prove that f, is a homotopy equivalence. Actually, the proof of lemma 10.2 in
[8] works exactly the same in our situation except maybe for the sublemma (p. 209). In this sublemma, we
have a filtered object

MycM,C...M, 1 CM,
in AV’ where each quotient M;/M;_1 is in .4 ¥'. Since P, is exact and each module in %’ is projective,

the morphism ®;(M,,) — ®1(M,/M,_1) is surjective and has a section s from U = &1(M,,/M,_1) to
Dy (M,).
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Because of lemma 1.14, there are an object N € .# ¥, a morphism g : N — M,, inducing epimorphisms
on ®, and ®3, and an isomorphism U — ®;(N) making the following diagram commutative:

U —=—  &(N)

U —>— &(M,)

Therefore the morphism N — M, induces epimorphisms on ®, and ®3 and the composite morphism
N — M, — M,,/M,,_1 is an epimorphism with kernel in #". Hence the sublemma can be proven in our
situation and, since f is a homotopy equivalence, the proof of lemma 10.2 applies completely here. The
lemma follows. O

Lemma 2.10. Let Z" be the full subcategory of # generated by the image of ®1 : MYV —> X. Then the
diagram:

VA &y

induces a fibration in K-theory.

Proof. Let X = (E, M, ¢) be an object in .# ¥ . Since E is projective in 2, there is a module F; € 2 such
that £ @ Fj is free in case 1 or 3 and on the form E @ E; = (Fa,Fp) € & x & with Fs and Fp free.
Therefore T(E @ E4) is free in all cases. Let X1 be the object (E1,0,0) € .4 . We have an exact sequence
in Z:

and ®1(X @ X;) is stably in #’. Hence there is another object Xo € .# % such that ®1(X @ X; @ X3)
belongs to #’ and .# Y is cofinal in .4V .
Consider the following commutative diagram:

v 2 g

[

v =2 g

where the vertical maps are the canonical cofinal inclusions.

Let K be the fiber product of Ko(.# ) and Ko(%#') over Ko(%#"). The commutativity of the diagram
Ky(D) induces a map X : Ko(#V') — K. Since the map Ko(AYV') — Ko(#Y) is injective (by
cofinality) and factorizes through K, the map A is injective.

Let w = (u,v) be an element in K. Then we have: u € Ko(A#Z V), v € Ko(#') and ®1(u) and v are the
same in Ko(Z2").

For every object X in some exact category 7, the class of X in the Grothendieck group Ky(«/) will be
denoted by [X].

So there are two objects X, Y in .# 7% such that: u = [X] — [Y]. Since .# ¥’ is cofinal in .#Z Y, there is
an object Y7 in .# ¥ such that Y @ Y] is in A4 Y'. Let us set: w’' =w+ A[Y @ V1] and X' = X @ Y;. We
have: w' = (v/,v") with v’ = [X'] and [®1(X")] belongs to Ko(#’). Then ®1(X’) is stably isomorphic to a
module in #Z’. Up to adding to X (and then to X’) an object in .# %" on the form (E,0,0), we may as well
suppose that ®1(X’) belongs to £’ and then that X’ belongs to .Z¥".
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Therefore we have: w’ — A[X'] = (0,v") where v’ is an element in Ky(#') killed in Ko(Z%"). But the
morphism Ko(#Z') — Ko(£") is injective. So we have:

w = ANX=0 = v =\X)

and w’ and then w are in the image of A. Therefore ) is surjective and then bijective.
Consequently the diagram Ky(D) is exact (cartesian and cocartesian) and, by cofinality, the diagram
K (D) is homotopically cartesian. The lemma follows. O

As a consequence we get the following result, which is, in some sense, a connective version of theorems
1, 2 and 3:

Proposition 2.11. Let X be the homotopy fiber of the map K(€2) — K(2) x F(%) induced by the functor
FXo:% — 2 x%. Then there is a natural homotopy equivalence QK (R) — Nil(Ca,S) x X.

Proof. Because of lemma 1.12 the functor ® : A7%l(Cy,S) — ¥ is an equivalence of categories and the
lemma 2.10 implies that the following diagram:

Nil(Co, S) 25 v 2 7"

induces a fibration in K-theory. Hence QK (#") ~ QK (R) is homotopically equivalent to the homotopy
fiber of the map induced by ® : Al(Cy,S) — AV in K-theory.
Because of lemma 2.4, we have a commutative diagram

Nil(Co,S) —2— 4V

Hil(Cs,S) —2 s gxw

where the functor ®; x ®3 induces a homotopy equivalence in K-theory. Therefore QK (R) is homotopically
equivalent to the homotopy fiber of the map @' : K(Ail(Cs,S)) — K(2 x €).

The functor @' sends an object (H,0) € A7l(Ca, S) to the pair (F(H),o(H)) € 2 x € and ¥’ factorizes
by the forgetful map Al(Cs,S) — %%. Therefore QK (R) is homotopically equivalent to the homotopy
fiber of " : K(C2) x Nil(Ca,S) — K(2) x K(%) where ®” is trivial on Nil(Cs,S) and induced by the
functor F' x o on K(%3). The lemma follows. O

2.12. The spectra K and Nil

The K-theory of Quillen is a functor K from the category of rings to the category of infinite loop spaces.
There are different methods to construct a so called negative K-theory: that is a functor K’ from the
category of rings to the category 2sp of Q-spectra (see [1] and [5]) and a natural homotopy equivalence
from K (A) to the 0-th term of K’(A) such that the following sequence is exact for every ring A and every
integer i € Z:

00— Kl(A) — Kl(A[t]) D Ki(A[til]) — Ki(A[t,til]) — Ki_l(A) — 0

where K;(A) is the i-th homotopy group of K’(A). This exact sequence was proven by Bass [1] for i = 1
and generalized by Quillen for ¢ > 0 [6]. The morphisms of this exact sequence are induced by the inclusions
A C Alt] C Aft,t71], A C A[t71] C AJt,t71] except for the map 0 : K;(At,t7!]) — K;_1(A). But this
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map O has a section induced by the multiplication by ¢ € K;(Z[t,t~!]). Therefore the exact sequence above
is natural in A.

Inspired by the Karoubi-Villamayor method [5], we’ll define our version K(A) of negative K-theory as
follows:

Denote by E the set of infinite square matrices with entries in Z having only finitely many nonzero entries
in each row and each column. This ring has a two-sided ideal M (Z) of matrices having only finitely many
nonzero entries. So we set: ¥ = E/M(Z).

For every ring A, FA = F ®z A and YA = ¥ ®z A are rings and the morphism f: FEA — YA is a
surjective ring homomorphism. It is easy to see that the kernel of f is isomorphism, as a pseudo ring, to
M(A) and that FA is a flasque ring. Therefore (see [5]) we have a natural homotopy equivalence:

K(A) 5 QK (SA)

and the sequence K (X" A) is an Q-spectrum. This spectrum will be denoted by K(A) and K is a negative
K-theory. For each integer ¢ € Z we set also: K;(A) = m;(K(4)).

Lemma 2.13. Let (A,S) be a left-flat bimodule. Then for each integer n > 0, (X"A,X"S) is a left-flat
bimodule and the sequence Nil(X™A,X"S) is an Q-spectrum denoted by Nil(A,S). Moreover we have a
natural homotopy equivalence from Nil(A,S) to the 0-th term of Nil(A,S) and, for each integer i € Z, we
have an exact sequence which is natural on the left-flat bimodule (A, S):

0 — Nil;(A,S) — Nil;(Alt], S[t]) @ Nil(A[t™'],S[t™']) —
Nil;(Aft,t™1], S[t,t7']) — Nil;_1(A,S) — 0

where Nil;(?) is the i-th homotopy group of Nil(?).

Proof. Let (A,S) be a left-flat bimodule. For every ring B, BS = B ®z S is a BA-bimodule. Since S is
flat on the left S, as a left A-module, is isomorphic to a filtered colimit of free left A-modules E; and BS is
also isomorphic to a filtered colimit of free BA-modules BE;. Therefore BS is flat on the left and (BA, BS)
is a left-flat bimodule. In particular each (X"A,¥"S) is a left-flat bimodule. Moreover we have a natural
isomorphism of rings: 3(A[S]) ~ (2 A)[XS].

Consider the case 1 (with C = A). Because of proposition 2.11, we have a natural homotopy equivalence:

QK (A[S]) =5 Nil(A,S) x X

Fxo

where X is the homotopy fiber of the map: K(%,) — K(Z x €). But in case 1, €, 2 and € are equal

to the category &7 of finitely generated projective right A-modules and functors F' and o are the identity.
Therefore X is nothing else but the loop space of K(A). So we get a natural homotopy equivalence:

QK (A[S]) =5 Nil(A4, S) x QK(A)

By naturality, we get a homotopy equivalence from Nil(A,S) to the homotopy fiber of the map
QK (A[S]) — QK (A) induced by the canonical ring homomorphism A[S] — A.
We have a commutative diagram:

K(A[S)  ——  K(4)

| |

QK(S(A[S])) ——— QK(3A)
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where the horizontal maps are induced by the canonical morphism A[S] — A and the vertical maps are
homotopy equivalences.
But X(A[S]) is isomorphic to (XA)[XS]. So we get a commutative diagram:

QK(A[S]) ———  QK(A)

VK((SA)[D9])) —— Q2K (ZA)

inducing a homotopy equivalence Nil(A,S) — QNil(X A, XS). Then the sequence of spaces Nil(X"A, X",

S) is a well defined Q-spectrum Nil(A,S) and we have a natural decomposition:
QK (A[S]) > Nil(4, 5) x QU (A)

Let us set: Nil;(4,S) = m;(Nil(A, S)). Then we have, for every left-flat bimodule (4, S) and every integer
i € Z an isomorphism K;(A[S]) ~ Nil;_1(4,5) & K;(A).
For the ring A we have, for every integer i € Z, the following exact sequence S;(A):

0 — K;(A) — Ki(A[t]) ® K;(A[t™']) — Ki(Alt,t7!]) — K;_1(A) — 0

For B = Z[t] or B = Z[t™!] or B = Z[t,t!], the ring B(A[S]) is isomorphic to (BA)[BS]. Then the
sequence S;11(A[S]) decomposes into S;11(A) and the following sequence:

0 —» Nil;(A, S) — Nil;(A[t], S[t]) & Nil;(A[t™], S[t™"]) —
Nil;(A[t,t7*], S[t,t71]) — Nil;_1(A,S) — 0

which, as a consequence, is exact. O
2.14. Proofs of theorems 1, 2 and 3

In the proof of lemma 2.13, we have constructed the Q-spectrum Nil(?) and the first two properties of
theorem 1 have already been proven.

Suppose A is regular coherent on the right, i.e. every finitely presented right A-module has a finite
resolution by finitely generated projective modules. The category <7 of finitely generated projective right
A-modules is contained in the category &/’ of finitely presented right A-modules. The category Ail(A, S) is
also contained in the category A4il'(A, S) of pairs (H, 6) with H € &/’ and § : H — H S nilpotent. Moreover
&/ is stable in &’ under extension and kernel of admissible epimorphism and the inclusion A%l(A,S) C
Nil'(A, S) have the same properties. Therefore, by the resolution theorem [6], the inclusions &/ C &’ and
Nil(A,S) C Al (A, S) induce homotopy equivalences in K-theory.

On the other hand, we have an inclusion &/ — A7l'(A,S) sending H to the pair (H,0) and every
object (H,0) in A%l'(A,S) has a finite filtration with subquotients in 27’. Moreover &’ and A7l’(A4, S)
are abelian categories and &’ is closed in A7l'(A,S) under subobjects and quotients. Therefore, by the
devissage theorem [6], the inclusion &/’ C Ail'(A,S) induces a homotopy equivalence in K-theory. As
a consequence the inclusion &/ C A7l(A,S) induces a homotopy equivalence in K-theory and the space
Nil(A,S) is contractible.

Hence for every left-flat bimodule (A, S), with A regular coherent, the space Nil(A,S) is contractible
and Nil;(A,S) is trivial for every i > 0.

Consider the following property E(n) where n is any integer:
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e For every left-flat bimodule (A, S) with A regular coherent on the right, the module Nil;(A, S) is trivial
for every i > n.

The property E(0) is then satisfied. Suppose E(n) is true and take a left-flat bimodule (A, 5) with A
regular coherent on the right. Then A[t], A[t~!] and A[t,t~!] are also regular coherent on the right and, in
the exact sequence:

0 — Nil, (A, S) — Nil, (A[t], S[t]) ® Nil, (A[t™'], S[t™']) —
Nil,, (A[t,t™1], S[t,t™']) — Nil,,_1(A,S) — 0
all the modules are zero except Nil,,_1(A, S). Hence the module Nil,,_1(A, S) is also trivial and the property
E(n—1) is true.

By induction E(n) is satisfied for all n. Hence Nil(A, S) is contractible for every left-flat bimodule (A4, .5)
with A regular coherent on the right and theorem 1 is proven. Consider the case 2. The ring R is defined

c A
! | D)
R

B —
o —2 s Sn4

1l -

B —— Y"R

by the cocartesian diagram:

(0%
—

By tensoring by X", we get a cocartesian diagram:

We remark that the morphism « : ¥"C — X" A (resp. § : ¥"C — X" B) is pure with complement
Y™ A’ (resp. X" B’). Therefore in this new situation, we get new rings: X"C, ¥ A, ¥"B, ¥R, ¥"C x ¥"C
and a new bimodule X"S.

Because of proposition 2.11, we have a homotopy equivalence between QK (X"R) and Nil(X"C X
"C,¥"S) x X, where X, is the homotopy fiber of f : K(X"C' x ¥"C) — K(X"A) x K(X"B) x K(X"C).

The morphism f is induced by the functor € x € — &/ x B x € sending (M, M’') € € x € to
(MA,M'B,M @ M’). Denote by f,(a) (resp. fn(8)) the map K(X"C) — K(X"A) (resp. K(X"C) —
K(¥X™B)) induced by « (resp. ). Then X, is homotopy equivalent to the homotopy fiber of f,,(a)— fn(5) :
K(X"C) — K(X"A) x K(X"B) and we have a homotopy cartesian diagram of spaces:

QH(X"C) —%— QK(Z"A))
/| |
QK(2"B) —— X,

By naturality of the homotopy equivalence: K(?) ~ QK (X?), we get a homotopy equivalence X,, —
QX,+1 and the sequence of X,, defines an 2-spectrum X together with a homotopy cartesian diagram of
spectra:

K(C) —— K(A)
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and that finishes the proof of theorem 2. Consider now the case 3. We proceed as before and we get a
homotopy equivalence between QK (X" R) and Nil(X"C x ¥"C, ¥"S) x X,, where X, is the homotopy fiber
of the map f: K(X"C x ¥"C) — K(X"A) x K(X"C) induced by the functor F X 0: € X € — o X €
sending (M, M') € € x € to (M, A® M'gA, M & M').

Denote by fn(a) (resp. fn(8)) the map K(X"C) — K(X"™A) induced by « (resp. §). Then X,, is
homotopy equivalent to the homotopy fiber of f,,(a) — f.(8).

As before, we get a homotopy equivalence X,, — QX1 and the sequence of X,, defines an Q-spectrum
X which is the homotopy fiber of the map f(a) — f(5) : K(C) — K(A). Therefore we have a homotopy
fibration of spectra:

K@) "D gy —oix
and that finishes the proof of theorem 3. O
3. Properties of the functor N4l

Consider two rings A and B. Every right A x B-module M is determined by two right modules M, and
My, where M, is an A-module and M, is a B-module. By setting: R, = A and R, = B, we see that M; is
a right R;-module for each i € {a,b}.

If £ is an A x B-bimodule, E is determined by four bimodules ,E,, . Es, 1 F, and ,Ep, and for each i, j
in {a, b}, iEj is a (Ri,Rj)—bimodule.

Suppose f: M — MFE is a morphism of right A x B-modules. Then f is determined by four morphisms
ifj : Mj — M, iEj and ifj is a morphism of I‘lght Rj—modules.

Lemma 3.1. Let A and B be two rings and E be an A x B-bimodule. Suppose E is flat on the left. Then the
correspondences

(M, f) = (Mp, v fo)
(Ma f) — (Maaafa'f' Z afb(bfb)kbfa)

k>0

induce two well defined functors:

®, : Nil(A x B,E) — Nil(B,,Ey)
Dy : Nil(AX B,E) — Nil(A, o E.® ® Ep(,Ep)*vE,)
k>0

Moreover, if Ey is flat on the right, these functors induce a homotopy equivalence of spectra:

Nil(A x B,E) =5 Nil(B,»Ep) x Nil(A,oFEa ® oEy(,Ep)"sE,)
k>0

This lemma will be proven in 3.7. Using this result, we are able to prove theorem 4. Consider two rings
A and B, an (A, B)-bimodule S and a (B, A)-bimodule T'. Suppose S and T are flat on both sides. Define
the A x B-bimodule E by:

aEb:S vEo =T alla = Ep =0

Actually, this bimodule is the bimodule S @ T', where S and T are considered as A x B-bimodules (via the
projections A x B — A and A x B — B). Moreover E = S & T is flat on both sides.
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Applying lemma 3.1, we get two functors:

&y : Nil(A x B,E) — Nil(B,0)
Oy : Nil(A x B,E) —s Nil(A, ST)

and a homotopy equivalence of spectra:
®(S,T) : Nil(A x B, E) — Nil(A, ST)
By exchanging the roles of A and B, and S and T we get also a homotopy equivalence of spectra:
®(T,S) = Nil(Ax B,E) = Nil(B,TS) O
3.2. Proof of theorem 5

Let A be a ring, I be a set and S;, i € I be a family of A-bimodules flat on both sides. The direct sum
of the S;’s will be denoted by S.
Let (M, f) be an object of the category .A4l(A,S). The morphism f : M — M.JS decomposes into a

finite sum: f =) f;, where f; is a morphism from M to MS;.
iel
If u =141d2...4p is a word in W(I), we set:

fu = filfi2 e fip and Su = Silsh . Sip

If J is a subset of W(I), we set also:

= w d S;= Su
fr=Y_ fu and S, g

ueJ

We check that f, is a morphism from M to M S, and f; is a morphism from M to MS;.

Let u be a non empty word in W (I). Then the correspondence (M, f) — (M, f,) induces an exact
functor ¢, : AUl(A,S) — Ail(A,S,). If J is a subset of W(I) that does not contains the empty word,
the correspondence (M, f) — (M, f;) induces also an exact functor ¢z : Al(A,S) — AGl(A, Sy). These
functors are compatible with tensor product with any power of ¥ and induce morphisms of spectra on
K-theory.

Consider two words v and v in W (I). We have four A-bimodules: S,,, Sy, Sy and S,,,. Using notations
in 1.4, for each A-bimodule T and each (i,j) € {1,2}* we get an A x A-bimodule ‘T7 where A x A acts
on the left of T via the i-th projection and on the right via the j-th projection. We have a commutative
diagram of exact categories:

Nil(A,S) —F v Hil(Ax 4,182 3288 U 4ii(A, Su)

Nil(A,8) —T s yil(Ax A28 ts?) PO,

Nil(A, Spu)

where F' and F' are defined by:

F(M, f)=(M"® M?, fu+ fo) F'(M, f) = (M"& M?, f, + fu)
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for each (M, f) € Ail(A,S) and the morphisms G, ¥(u,v) and ¥ (v,u) are defined by sending each
(M, M, f+ f") (with M\M' e &, f: M — M'S, and f': M’ — MS,,) to

GMM', f+f)=M M f+f) wo)(M,M, f+f)=Mff)
o, u)(M,M', f+ f') = (M, ff)
Because of theorem 4, this diagram induces a homotopy commutative diagram of 2-spectra:
Nil(A,5) — s Nil(AxA'S2@28)) U Nil(4,8,,)
Nil(4,5) —" Nil(Ax A2SLe1s2) LU Nil(A,S,.)

where 1) (u, v) and (v, u) are homotopy equivalences and H is the map v (u, v) " G (v, u) (up to homotopy).
On the other hand we have: ¥ (u, v)F = ¢y, and (v, u) ' = ¢,,. Then we have a homotopy commutative
diagram:

Nil(A,8) —2“—  Nil(A, Sw)
Nil(A,S) —2  Nil(A, Sy,)

and the homotopy class of the map ¢, depends only on the class of u in CW (I). Therefore, to prove the
theorem, its is enough to prove it for some admissible set X.

Lemma 3.3. Suppose I has exactly two elements i and j. Let J C W (I) be the set of elements i*j, for k > 0.
Then the functors: ; : Nil(A,S) — Nil(A,S;) and ¢y : Nil(A,S) — Nil(A,Sy) induce a homotopy
equivalence of spectra:
Proof. We apply lemma 3.1 in the following case:

B=A oEo=5; vEp =0 vEo = A oFy =S
and we get a homotopy equivalence of spectra:

Nil(A x A, E) =5 Nil(A,S; & S;) = Nil(A, S)

induced by the functor (P, Q, ) — (P, afa + afb bfa)-
By exchanging the role of a and b, we have also a homotopy equivalence of spectra:

Nil(A x A, E) = Nil(A,S;) x Nil(A, © SFS;) = Nil(A,S;) x Nil(A,Sy)
k>0
and this map is induced by the two functors:

(P,Q, f) = (P afa)
<P7Q7f) = (Q7 Z bfa(afa)kafb)

k>0
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Because of theorem 4, this last functor is, after applying the functor Nil, equivalent to the functor:

(P,Q, ) = (P, (afa)*afo vfa)

k>0

Therefore we get a homotopy equivalence of spectra:
Nil(A, S) — Nil(A, S;) x Nil(A, Sy)
induced by the two functors:

(P, f) = (P, f;)
(P f) = (P>t )

k>0

and the lemma follows. O

From now one, the coproduct in the category of spectra will be denoted by & and the trivial spectrum
will be denoted by 0. Actually, is E; is a family of spectra, the spectrum @ E; is nothing else but the filtered
J

colimit of finite products of the F;’s.

Let X be an admissible set in W (I). Then the map: X ¢ W(I) — CW(I) induces a bijection X —
CWo(I).

For every object (M, f) € Al(A, S) there are only finitely many non zero morphisms f,, and the product
of the ¢, for u € X, induces a map:

Nil(A,S) — [ Nil(A,S.)
ueX

with values in @ Nil(A,S,). Hence we have a morphism of spectra:
ueX

F:Nil(A,S) — @® Nil(A,S,)
ueX

and the last thing to do is to prove that F' is a homotopy equivalence.
On the other hand, we have a homotopy commutative diagram:

lim Nil(4, & ;) —— hm( @ ml(A,Su))

— \ueXnNW(J)
Nil(A,S) — © Nil(A,S,)
ueX

where the limit is taken over all finite subset J of I. Moreover vertical arrows of this diagram are homotopy
equivalences and, in order to prove the theorem, it is enough to consider the case where I is finite.

If T has at most 1 elements there is nothing to prove. So we may suppose that I is a finite set with at
least 2 elements. If J is a subset of W (I) and j an element of J, we denote by Z(J, j) the set of words in
W(I) on the form j?j’, where j' is any element in J distinct from j and p is any non negative integer.



P. Vogel / Journal of Pure and Applied Algebra 225 (2021) 106488 35

Lemma 3.4. Suppose I is finite with at least 2 elements. Then there exists a sequence (Jyn, jn), for n > 0,
with the following properties:
e for every integer n > 0, J,, is a subset of W(I), j, is an element of J, and Jp41 is the set Z(Jp, jn)
o the set Y = {jo, j1,72,73,--- } C W(I) is admissible
e for every integer p > 0, there is an integer m > 0 such that:

Yn >m, Yu € J,,|ul >p
where |u| is the length of u.

Proof. In order to define the sequence (J,,, j,), it’s enough to define Jy and to choose each j, in J,. So we
set: Jo = I and, for each n, j, is chosen to be an element of J,, of minimal length in W (I).

Let n > 0 be an integer. Set: J = J,, j = j, and denote by J’ the complement of j in J. The inclusion
Jnr1 = Z(J,45) € W(I) factorizes through W(J) and J,,+1 can be considered as a subset of W(J). Every
word u in W(J) is written uniquely in the following form:

w= 3" g15" jog"* ... Jpg"?

with: p >0, n, >0, j. € J'.
Suppose u is reduced.
If p =0, then u is a power of j and, because u is reduced, we have: u = j.
If p > 0, then u is, up to conjugation, on the form:

‘N

u=j"515"j2 ... 7" jp

and u is conjugate to an element in Wy(Z(J,j)) = Wo(Jpt1). Moreover u is reduced in W (J) if and only if
u is reduced in W(I).

Therefore every element in CWy(J) = CWy(J,,) belongs to the image of the map CW (J,,4+1) — CW (J,,)
except the element j = j,, and the inclusion J,, 1 C J,, induces a bijection {j,, } [ CWo(Jns1) — CWo(Jy,).
As a consequence, we have, for each n > 0, a bijection:

{jos g1+ - v dn—1} [JCWo(Jn) = CWo (1)

For each integer n > 0, denote by p,, the minimal length of the words in .J,,. Since .J,, 41 is contained in
W(J,), we have: p,+1 > p, and the sequence (p,,) is increasing. We’ll prove that this sequence is unbounded.

Let n > 0 be an integer. For every u € J,, we have: |u| > p,,. For every integer m, denote by H,, the set
of elements u € J,, with |u| = p,, and by CH,, its image in CW (I). Since I is finite and every element of
H,, is reduced in W (J,,), CH,, is a finite set contained in CWy(I).

Denote by ¢ the cardinal of CH,,. Since j,, is an element in J,, of minimal length j, belongs to H,,. Then
we have: ¢ > 0 and, because of the bijection {j,} [[CWo(Jns1) — CWo(J,), the cardinal of CH,, ., is

q — 1. For the same reason, we have the following:
vie{0,1,...,q}, card(CHp1i) =q—1
and then:
card(CHp4q) =0 and ppiq > pn

Therefore the sequence (py,) is unbounded and the last property of the lemma is proven.
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Since the map {jo,j1,---,jn_1} [[CWo(Jn) — CWy(I) is bijective, the map f : Y — CWy(I) is
injective. Let u be an element in CWy(I) with length p. Since the sequence p,, is unbounded, there is an
integer n such that p, > p and u doesn’t belong to the image of CWy(J,,) — CWy(I). Hence u belongs to
the image of {jo,j1,...,Jn—1} — CWy(I) and f is surjective. Therefore Y is admissible and the lemma is
proven. 0O

For every n > 0 we denote by Y,, the set {jo,j1,..-,Jn-1}

Lemma 3.5. For all integer n > 0, the maps ., : Nil(A,S) — Nil(A,S,), for u € Y, and the map
g, Nil(A,S) — Nil(A, Sy,) induce a homotopy equivalence of spectra:

G, : Nil(A,S8) — @ Nil(A,S,)® Nil(A,Sy,)
u€eYy,

Proof. We’ll prove the lemma by induction on n. The map Gg is the identity (and then a homotopy
equivalence).
Suppose n > 0 and G, is a homotopy equivalence. Consider the bimodule S’ = S @ S’ with:

Si = S;,
S; = SJn\{jn}

By applying lemma 3.3 with this bimodule, we get a homotopy equivalence of spectra:
Nil(A,8') = Nil(A, S,,) = Nil(A, 8;,) & Nil(A, S)

where S is the following bimodule:

the sum being taken over all integer £ > 0 and all u # j, in J,,. So we have isomorphisms:

§:EBSJ-§“: D SU:SJnJrl

u,k VEJn41

s

and then a homotopy equivalence:

n+1 )

Therefore we have homotopy equivalences:

Nil(A,S) =5 @ Nil(A,S,) ® Nil(A, Sy,
u€eY,

— @ Nil(A,S,) @ Nil(A,S;,) © Nil(A, Sg,.,)

u€Yy,

= @ Nil(A,S,) @ Nil(A, Sy

+1)
uEYpn 1 "

and G,1 is a homotopy equivalence. The lemma follows by induction. O
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We are now able to finish the proof of theorem 5.

As we have said before it is enough to consider the case where I is finite with at least two elements.

Consider the map ® : Nil(A,S) — & Nil(A,S,) induced by the functors ¢, : AHl(A,S) —
ueyY

Nil(A, S,). We have to prove that G is a homotopy equivalence and, for doing that, it will be enough
to prove that G induces an isomorphism:

ueyY
for every integer i € Z.
Let ¢ € Z be an integer and y be an element in @& Nil;(A, S, ). There is an integer n > 0 such that y is
uc€Y

in the direct sum of Nil;(A, S,), for u € Y,,. Because of lemma 3.5, there is an element x € Nil;(A, S) such
that:

ueYn

Hence z is sent to y by ®; and ®; is surjective.

Suppose ¢ > 0. Let = € Nil;(A,S) be an element killed by ®;. This element can be lifted in an element
y € K;(ANil(A,S)) = m11(B(QAGl(A,S))) and there is a finite subcategory & of the Quillen category
QNil(A,S) such that y can be lifted in an element z € m;41(B&). This category & involves only finitely
many objects (M, f) € Al(A,S). Denote by # the set of these morphisms f.

Since each f € . is nilpotent, there is an integer p such that f, is trivial for each f € % and each
element u € W(I) of length > p. Because of the last property of lemma 3.4, the set of integers n such that
there is some u € J,, and some f € .% with f, # 0 is finite. Hence, for n big enough, the composite functor

& — QNil(A,S) 2% Qil(A,S;,)
factorizes through the category Q4 and the composite map
QB& — QBQIl(A,S;,) — Nil(A,S;,)

is trivial. Hence z is killed in Nil;(A, Sy, ) and x € Nil;(A,S) is killed by ¢, : Nil;(A,S) — Nil(A,Sy,)-

But z is killed by ®; and z is also killed by the map Nil;(A,S) — @ Nil;(A,S,). Therefore z is killed
UEY,

by G,, which is a homotopy equivalence and x is zero. Hence the morphism ®; is bijective for every integer
1> 0.

If 7 is a negative integer, we may replace A and S by XA and ¥?.S for some p > —i and the bijectivity of
;. for (XPA, XPS) implies that ®; (for (A, .S)) is bijective. Hence ® is a homotopy equivalence of spectra.
Moreover this is true for the set Y and then for every admissible set in W (I). Then we get the desired result
and the theorem follows. O

3.6. Proof of theorem 6
Denote by S’ the following bimodule:
S=So®E ®F
i A

Let J be the disjoint union of I and {0}. We set:
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A;

So=S

and we have:

Because of theorem 5, there exist a family of A-bimodules Uy, k € K such that the following holds:

e cach Uy is flat on both sides

e Nil(A,S") ~ Nil(A,S) & % Nil(A,Uyg)

e cach Uy has the form: Uy = 55,5}, ... S;,, with ji, j2,...,j, in J and j, € I for some q.

Then, because of theorem 4, there exist a family of A-bimodules Vi, k € K and elements i € I such
that

e cach V}, is flat on both sides

e Nil(A,S") ~ Nil(A,S) @ % Nil(A, S;, Vi)

and we have, for each k:
Nil(A, S;, Vi) = Nil(A,E;, F;, Vi) ~ Nil(4;,, F;, Vi, E;}.)
But A4;, is regular coherent and each spectrum Nil(A4;,, F;, Vi E;,) is contractible. The result follows. O
3.7. Proof of lemma 3.1

With the notations of lemma 3.1, we denote by F = B @ ,E}, @ (bEb)2 @ ... the tensor algebra of ,E}
and by E the bimodule £ = ,F, © Ey F vE,.
For every object (M, f) € Nil(A x B, E), we set:

91 = afar 92 =afv, 93 =00, 94 =1 fp

Since f is nilpotent, there is an integer n > 0 such that f™ = 0. Then, for every integers iy,is,..., i,
;= 0. Hence the two

in

in {1,2,3,4} the morphism g;,g;, ...g;, is a part of ™ and we have: g;, gi, ... g

morphisms ,fp and f = o fat+ D ofp (bfb)kbfa are nilpotent and we have a functor
k>0

®(A,B,E) : Nil(A x B,E) — Nil(B,,E,) x Nil(A,E)

sending each object (M, f) € Ail(A x B, E) to:

(A, B, E)(M, f) = (My,1./y), (Mo, )

Moreover this functor is exact.

Tt is easy to see that lemma 3.1 is equivalent to the fact that (X" A, X", B, X" F) induces, for all n > 0,
a homotopy equivalence in K-theory. Therefore it is enough to prove that ®(A, B, E) induces a homotopy
equivalence in K-theory for every left-flat bimodule (A x B, F) such that F} is flat on the right and that
will be done by using K-theory of Waldhausen categories.

In our situation, we have three exact categories: the categories &7, % and € of finitely generated projective
right modules over the rings A, B and C = A x B respectively. These categories are contained in the
corresponding abelian categories &7V, #Y and € of right modules over the corresponding rings.
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If (A4,S) is a left-flat bimodule, we have also an exact category .A47il(A,S) and a Waldhausen category
Nil(A, S)«. Moreover A7Gl(A,S) is contained in the abelian category A7il(A,S)Y (see part 1.3) and, as
a subcategory of Al(A,S)V, Ail(A,S) is stable under taking kernel of epimorphisms. Hence the Gillet-
Waldhausen theorem applies to the categories A47l(?,7) and we have a commutative diagram:

Nil(Ax B,E) T2PE B, B,) x Nil(A,E)

|

Nil(Ax B,E), “APE (B, By, x Nil(A, E).

of Waldhausen categories where the vertical functors induce homotopy equivalences in K-theory.
Therefore, in order to prove the lemma, it is enough to prove that the functor:

®(A,B,E), : Nil(A x B,E), — Nil(B,,Ey)s x Nil(A, E),

induces a homotopy equivalence in K-theory.

If (4, 5) is a left-flat bimodule, it is easy to see that an object of A7l(A, S). is nothing else but a pair
(M, f), where M is in <7 and f : M — M S is a nilpotent morphism in «. Then the functor ®(A, B, F).,
is given by:

®(A,B,E), (M, f) = ((Mb,bfb% (Ma,f)>

for every M € €, = < X PB,.

Consider the Waldhausen category & = Ail(Ax B, E).. We may define a new subcategory of equivalences
by saying that ¢ : (M, f) — (M’, f') is an equivalence if the induced morphism M, — M/ is an
isomorphism in homology. With this new equivalences, we get a new Waldhausen category &”’. We have also
a Waldhausen subcategory &y of & generated by the objects (M, f) € & such that M, is acyclic. Denote
also by Al the Waldhausen subcategory of A7l(A, E)* generated by pairs (M, f) with M acyclic. Hence
we have a commutative diagram of essentially small Waldhausen categories:

& — & — &'
o t ®(A,B,E) [ o’ J
Nil(B,pEp)s x Nily ———  Nil(B,,Ep). x Nil(AE), —— Nil(A,E),

Since every morphism in .47ilj is an equivalence, the category .47ily has trivial K-theory and, because of
the fibration theorem, the two lines of the diagram induce fibrations in K-theory. Hence in order to prove
the lemma, it’s enough to prove that ®; and @’ induce homotopy equivalences on K-theory and that’s
equivalent to show that ® and the functor:

D 1 Gy 2% Nil(B,yEy), x Nily 5 Nil(B, ,Ey),

induce homotopy equivalences on K-theory. Moreover these two functors have the approximation properties
(Appl).

Lemma 3.8. The functor ® induces a homotopy equivalence in K-theory.

Proof. Because of the approximation theorem 2.3, we just have to prove that ®{, has the property (App2).
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Let X = (M, f) € & and Y = (Q,g) € Nil(B,pEp)« be two objects in the corresponding categories.
A morphism ¢ : ®((X) — Y is represented by a morphism ¢ : M, — @ in %, making the following
diagram commutative:

M, -~ Q

I

My B, —2— QB

Denote by C' the cylinder of ¢ and by C’ its mapping cone (or its 0-cone as defined in 2.1). The morphisms
»fp and g induce two nilpotent morphisms A : C — C ,E}, and X : ¢! — C' , E}. By naturality, we have
a commutative diagram in € :

M — c -2 Q

]

My v Ey % CbEb % QbEb

where 7 : M, — C'is a cofibration and p : C' — @ a homotopy equivalence. Moreover we have: ¢ = pi.

Define the object M’ € €, by: M| = M, and M} = C. In order to define the desired object X’ € &, we
have to construct the morphism f': M’ — M'E.

We set: ofl, = afas vfs = A and f, =i pfq. Since i : M, — C' is a cofibration and M, ,Ej is acyclic,
there is no obstruction to extend ,f, : My — M, Ep to a morphism: ,f] : C — M, ,E;. Hence we get
a morphism f': M’ — M'E.

Let C be the finite complex in €, defined by: C,, = 0 and Cj, = C’ and X : C — CE be the morphism
in ¢ associated with A\’ under the canonical bijection: Homev (C, CE) ~ Homgy (C’,C"Ep). Since X' is
nilpotent, X is also nilpotent.

We have a commutative diagram in €Y with exact rows:

o —— M — M — C — 0

0 ——— ME —— M'E —— CE —— 0
and, since f and X are nilpotent, f’ is nilpotent also. More precisely, if we have: f? = 0 and A= 0, then
we have f'PT4 = (.

Since M is acyclic, X' = (M’, f') is an object in &, and the morphism ¢ induces a morphism o : X — X".
Moreover we have the following commutative diagram:

<I>6J(X) —f 1{/
oH(X) —L— Y
and the property (App2) is satisfied. The lemma follows. O

So the last thing to do is to prove that the functor ® : & —s 4il(A, E),) induces a homotopy
equivalence in K-theory. As before, it’s enough to prove that ® has the property (App2). In order to do
that we’ll need two technical results:
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Lemma 3.9. Let A and B be two rings and S be an (A, B)-bimodule. Suppose S is flat on the left. Let X be
a finite B-complex, Y be an A-complex and f : X — Y'S be a morphism of B-complexes. Then there exist
a finite A-complex Y', a morphism g:Y' — Y and a commutative diagram:

X — V'S
x —f 4 vs

Lemma 3.10. Let A be a ring, X and Y two A-complexes and f : X — Y be a morphism. Suppose the
module & X, is finitely presented and each Y, is flat. Then f factorizes through a finite A-complez.
n

These two lemmas will be proven at the end of the section. As a consequence of these two lemmas we
have the following result:

Lemma 3.11. Let A, B and C be three rings, S be a (C, B)-bimodule and T be a (B, A)-bimodule. Suppose
S is flat on the right and T is flat on the left. Let X, Y and Z be finite complexes over the rings A, B
and C respectively and f: X — YT and g: Y — ZS be two morphisms. We suppose that the composite
morphism:

x Loyr 2 zsT

is zero. Then the morphism g : Y — ZS factorizes through a finite complex Y’ by a morphism A : Y — Y’
in such a way that the composite morphism:

18 zero.
Proof. Let K be the kernel of g. Since T is flat on the left we have two exact sequences:
0—K-5v -4 28

0— KT - vyT -5 28T

and the morphism f factorizes through KT. Because of lemma 3.9 there exist a finite B-complex K’, a
morphism j : K’ — K and a commutative diagram:

x I g

1]

x —f 5 vyr

Denote by Y7 the cokernel of ¢j : K’ — Y. Since ¢i is the zero morphism, there is a morphism
g1 : Y1 — ZS making the following diagram commutative:

y —% 4 7§

|

y, —2 + Z§
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Since S is flat on the right, Z.5 is flat and, because of lemma 3.10, g; factorizes through a finite complex
Y’. The lemma follows. O

Lemma 3.12. The functor ®' : & — JVil(A,E)*) has the property (App2).
Proof. Let’s set:
H=4,E, K=wB, S=,BE T=4E, K=F=BoKaKk’a...

Let X and Y be two objects in A%l(A x B, E), and JVil(A,E)* respectively and ¢ be a morphism from
d'(X) to Y. By setting: (U, f) = X, (M,g) =Y, P = U, Q = Uy, we see that P and M are finite
A-complexes, @ is a finite B-complex, ¢ is a morphism from P to M and g is written as a finite sum:

QZM‘ZM

k>0

where \ is a morphism from M to MH and each py is a morphism from M to MSK*T. Moreover the
following diagrams are commutative:

P —Z 5 M P -7 5 M
afa [ kt afb(bfb)kbfa [ Mk ‘/
PH —% + MH PSK*T —%  MSKFT

We want to construct an object X' € A4l(A x B,E), and a morphism « : X — X’ such that
P'(a) : '(X) — P'(X’) is isomorphic to ¢ : ' (X) — Y. So we want to have: X' = (U’, f') and U, = M
and, to determine X', we need to define Q" = Uy, the morphism f’ and the morphism o : Q@ — Q. Actually,
Q' will be constructed as a direct sum: Q' :_E>BO Qi such that 4 f;(Qi41) is contained in Q;K for all ¢ > 0

and is zero for ¢ = —1 and . f; vanishes on each Q;, for i > 0.
So we need to define finite B-complexes @;, a morphism e : Qg — M .S and morphisms «; : Q — Q;,
0;: Qiy1 — Q;K and §; : M — Q;T (with Q; = 0 for ¢ big enough) and the morphism f’ is defined by:

ofi=N 0 wf=>_0  wfi=_Bi afy=epro

i>0 i>0

where pro : Q' — Qo is the projection. The morphism « is equal to ¢ : P — M on P and to > «; :

i>0
Q — @ on Q.

But we have two conditions: the fact that « is a morphism and the equality: ®'(X’) = Y. These conditions
are equivalent to:

© ofp = eag

a; pfa = Bip

Oiait1 = o v fp

i = ebpby ... 0;_10;

for all 4 > 0.

For technical reasons, we introduce the morphism e; = efp0; ...0;_1 from Q; to MSK®. Then we have to
construct, for each i > 0, the complex Q; and morphisms e; : Q; — MSK® «; : Q — Q;, Bi : M — QT
and 0; : Q;y1 — Q; K, with the following properties:

A@): 0 ofo(ofp) = eio
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(i): i pfa = Bip
(1): Oscvit1 = i v fo
(i): pi = eifs
(’L) €i+1 = 62'91‘

for all 7 > 0.

Since the sum of the uy’s is finite, there is an integer n > 0 such that: u; = 0 for all ¢ > n.

So we’ll construct (Q;,e;, ay, 5;,0;) by induction. Let ¢ > 0 be an integer and suppose that
(Qj,ej,05,B;,0;) is defined for all j > i such that the properties A(j), B(j), C(4), D(j), E(j), are satisfied
for all j > 7. We begin this induction with i = n by setting: J; = 0 for all j > n.

HoQ®

We have to construct (); and morphisms e;, «;, 3; and 6;.
Consider the following morphisms:

¢ ofo(ofo)' 1 Q — MSK’

wi: M —s MSK'T
€it1: Qi+l — MSKiJrl

These morphisms induce a morphism h: Q ® M @© Q;11 — MSK (B® T @ K) and, because of lemma
3.9, there are a finite complex @;, a morphism e; : Q; — MSK® and a commutative diagram:

/

QOM® Qi1 —— Qi(BeToK)
QeMaQ —— MSK(BeTaK)

The morphism A’ induces morphisms:

a; 1 Q — Q;
ﬁiZM—>QiT
0;: Qiy1 — QK

and properties A(i), D(i), (E(i) are satisfied. Denote by u and v the defaults of properties B(i) and C/(4):
u=Pip—aivfa
v =05 pfp — Oivit1
Because of properties A(i) and D(2), we have:
e = eifip — ;i pfa = i — ¢ afs(0fs) vfa =0
and, because of properties A(), F(i) and A(i + 1), we have:
i+1
eiv = e pfy — €ibiciv1 = © afs(bfo) —€iy10i41 =0

Since a tensor product of bimodules which are flat on the right is flat on the right, we can apply the lemma
3.11 to morphisms u @ v : P — Q;(T & K) and ¢; : Q; — MSK?'. Thus e; factorizes through a finite
complex Q) by a morphism ¢ : Q; — @} such that: e(u ®v) = 0.

Hence, up to replacing Q; by @}, we may as well suppose that A(:), B(3), C(i), D(i), E(i) are satisfied.
Therefore Q;, e;, a;, B, 0; are defined and A(i), B(i), C(i), D(i), E(i) are satisfied for all ¢ > 0.
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Then the finite complex Q' = & (@Q); is constructed and the morphism f’ is defined by:
i>0

afo =X
vfo =S 0
1>0

afl; = €oPTo

vfo = Bi
>0

Hence the desired object X’ is constructed and @’ has the approximation property (App2). The lemma
follows and then follow lemma 3.1 and theorems 4, 5 and 6. O

3.18. Proof of lemma 3.9

The situation is the following: (A, S) is a left-flat bimodule, X is a finite A-complex, Y is an A-complex
and f : X — Y S is a morphism of A-complexes. We want to construct a finite A-complex Y’ and a
morphism Y/ — Y such that f: X — YS factorizes through Y’S.

For each integer n, denote by X (n) the n-skeleton of X. Let n be an integer. Suppose the n-skeleton
Y’(n) of Y’ is constructed in such a way that we have a morphism g, : Y'(n) — Y and a commutative
diagram:

X(n) —— Y'(n)S

{ k (D)

X(n) —L— vs

If n is small enough, X (n) is null and Y’(n) can be chosen to be zero.
Denote by Z, the kernel of the morphism d : Y, — Y, _; and by U,; the module defined by the
cartesian square:

a
Ungr — Yo

I

Z, —I . vy

The composite morphism X, 1 4, X, RN Y, S takes values in Z,S and induces, together with the
morphism f : X, 11 — Y,415, a well defined morphism A : X,,41 — Upy1. So we get a commutative
diagram:

Xpp1 —2— UpiS —2— Y,uS

I

X, —s ys§s ., vYS

where 7y is the composite morphism U, 4 i> Z, CY,.

Since X,,4+1 is finitely generated, there is a finitely generated submodule M in U,,4+1 such that A(X,, 1)
is contained in MS. Let Y, ,; be a finitely generated projective A-module and p : Y, ,; — M be an
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epimorphism. Since X,y is projective, the morphism A : X, 41 — Y’'S can be lifted in a morphism
Xnt1 — Y, 1S and we get a commutative diagram:

h g
Xpp1 —2 Y8 —2 5 Yo

dl/ d d[
X, —— Y'S — Y,S

where d : Y, | — Y]] is the morphism yu and g : Y, ,; — Y}, is the morphism ay.

Thus we have constructed the complex Y’(n 4+ 1) and the commutative diagram (D,,+1). By induction
we have Y’ (n) and the commutative diagram (D,,) for every integer n and, for n big enough, Y”/(n) and the
diagram (D,,) is a solution of the problem. 0O

8.14. Proof of lemma 5.10

In the lemma, f: X — Y is a morphism between two A-complexes, the direct sum of the X/ s if finitely
presented and each Y, is flat.

For every A-complex E, denote by E™ its n-coskeleton i.e. the quotient of E by its (n — 1)-skeleton.

Let n be an integer. Suppose that the n-coskeleton F™ of a finite complex F' is constructed in such a
way that the morphism f : X™ — Y™ induced by f : X — Y factorizes through F™ via two morphisms
a: X" — F"and f: F* — Y"™. If n is big enough X" is trivial and we may set: F™ = 0.

We have a commutative diagram:

Xpp1 —2 Fapi —2— Yan
X, —*~» £ —25 v,
Let E be the A-module defined by the cocartesian square:
X, —— F!
[
X1 —— F

where F! is the cokernel of the morphism d : F,, ;1 — F),. Since X,,, X,,_1 and F), are finitely presented,
the A-module F is also finitely presented.
We have a commutative diagram:

a B
Xny1 —— Foyr —— Yaon
d d d

o B

X, —>- B -2 v

d ) d

Xn—l — E E— Yn_l

where the composite morphism Fj, 1 4, F, — F is trivial.
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But F is finitely presented and Y,,_; is flat. Therefore the morphism E — Y,,_; factorizes through a
finitely generated projective A-module Fj,_; and, together with the composite morphism F, 2 E —

F,_1, we get the desired finite complex F”~! and a commutative diagram:

Xn— 1 @ N Fn—l B N Yn—l

L]

Xn « Jal B yn

So we construct the complexes F™ inductively and, for n small enough, the morphism f : X — Y
factorizes through the finite complex F = F". 0O

Remark. It is not clear that the right flatness condition is necessary in theorems 4, 5 and 6. Actually this
condition is only used in order to prove that the functor ®' : &' —s Ail(A, E). (in the proof of lemma 3.1)
is a homotopy equivalence. The proof given here needs the right flatness condition (in the lemma 3.10) but
another proof without this condition is still possible.

4. Whitehead spectra

If E is an Q-spectrum and X is a space, we denote by H(X, E) the Q-spectrum associated to the smash
product XAE. For every i € Z, we have:

mi(H(X,E)) ~ H(X,E)

In [8], section 15, Waldhausen associates to any ring R and any group G an assembly map:
H(BG,K(R)) — K(R|G]) which is a map of infinite loop spaces. This assembly map induces assem-
bly maps H(BG,X"K(R)) — K(X"R|G]) and then an assembly map h : H(BG,K(R)) — K(R[G))
which is a map of spectra. So we get a fibration of spectra:

H(BG, K(R)) 2% K(R[G]) — WhE(G)

The spectrum Wh®(G) is called the Whitehead spectrum of G relative to R.
For every integer i, we set:

Whi(G) = m(Wh*(G))
For i < 0, the group Wh;(G) is isomorphic to K;(Z[G]) and we have exact sequences:

0—Z — Ko(Z[G]) — Who(G) — 0
0— Z/2@® H\(G,Z) — K{(Z[G]) — Whi(G) — 0

More precisely, Who(G) is the reduced Ky-group of Z[G], Why(G) is the classical Whitehead group of
G and Why(G) is the second Whitehead group of G as defined in [3].

Following Waldhausen, a group G is said to be regular noetherian (resp. regular coherent) if, for every
ring R which is regular noetherian on the right, R[G] is regular noetherian (resp. regular coherent) on the
right. Since R°P[G] is isomorphic to (R[G])°P, this condition is equivalent to the condition obtained by
replacing right by left. We denote also by ¢ the category of groups and monomorphisms of groups.
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Proposition 4.1. We have the following properties:
o If G is the amalgamated free product of a diagram in 4 :

H — G

|

G

where G1 and G2 are reqular coherent and H regular noetherian, then G is reqular coherent.
e If G is the HNN extension of a diagram in 9 :

H%&Gl

where G1 is reqular coherent and H is reqular noetherian, then G is regular coherent.

o If G is the colimit of a filtered system G; in &, where each G; is regular coherent, then G is reqular
coherent.

o A subgroup of a regular coherent group is regular coherent.

Proof. All these properties are proven in [8] (in theorem 19.1) except the third one.
Let G be the colimit of a filtered system G; in ¢4 and R be a ring which is regular noetherian on the
right. Suppose each G; is regular coherent. Set: A = R[G] and A; = R[G].
Each ring A; is regular coherent on the right and for each ¢ € I, the ring A is free on the left over A;.
Let M be a finitely presented right A-module. We have an exact sequence of right A-modules:

F i>F’0—)]\4'—>0

where Fy and Fj are finitely generated free A-modules. The morphism f is represented by a finite matrix
with entries in A. Since A is the colimit of the A;’s, there is an element i € I such that A; contains all the
entries of f. Therefore f comes from a finite matrix with entries in A; and there exist a finitely presented
right A;-module M’ and an isomorphism M’ ®4, A ~ M.

Since A; is regular coherent on the right we have an exact sequence of right A;-modules:

0—C,—Chqg——Ch— M —0

where each C}, is finitely generated projective. Since A is free on the left over A;, we have an exact sequence
of right A-modules:

O—>Cng§A—>Cn_1§19A—>-~-—>CO§>A—>M—>O

But each Cy ® A is finitely generated projective right A-module. Therefore every finitely presented A-
A;
module has a finite resolution by finitely generated projective A-modules and A is regular coherent. The

result follows. O

Let Cl be the class of groups defined by Waldhausen in [8]. This class is the smallest class of groups
satisfying the following:
e The trivial group belongs to Cl.
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e If G is the amalgamated free product of a diagram in ¥:

H — &

|

G2

where GG; and G5 are in Cl and H regular coherent, then G belongs to Cl.
e If G is the HNN extension of a diagram in ¢:

H:%%ia

where G is in Cl and H is regular coherent, then G belongs to Cl.

e If G is the colimit of a filtered system G; in ¢, where each G; is in Cl, then G belongs to Cl. This class
contains free groups, torsion free abelian groups, poly-Z-groups, torsion free one-relator groups and funda-
mental groups of many low-dimensional manifolds. It is also closed under taking subgroups. See theorem
19.5 in [8].

Theorem 4.2. For every group G in Cl and every ring R which is regular noetherian on the right, the
Whitehead spectrum WhT(G) is contractible.

Proof. This is essentially theorem 19.4 in [8]. We just have to replace spaces Nil(A, S) by spectra Nil(A,S).
Since all these spectra are contractible, the result follows. 0O

We'll construct a class of groups Cl; obtained by replacing the condition “H is regular coherent” (in
the definition of Cl) by a weaker condition in such a way that theorem 4.2 is still true for groups in Cl;.
Consider a diagram of groups:

H ‘—a—%Gl

ﬂl/
Go

We say that this diagram is regular coherent if the following holds:

e o and S are monomorphisms

e for every x € G1 \ a(H) and every y € G \ B(H), the intersection of the two groups a~*(za(H)z 1)
and B~ (yB(H)y~!) is regular coherent.

Consider a diagram of groups:

H%;Gl

We say that this diagram is regular coherent if the following holds:

e o and (3 are monomorphisms

e for every x € G1 \ a(H) and every y € Gy \ B(H), the intersection of the two groups a~*(za(H)z 1)
and B~ (yB(H)y~!) is regular coherent.

e for every x € Gy, the group 87! (za(H)x~1) is regular coherent.

Since the condition “regular coherent” is stable under taking subgroups, it is easy to see that diagrams
above are regular coherent if the subgroup H is regular coherent. So we define the class Cl; as the smallest
class of groups satisfying the following:
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e The trivial group belongs to Cl;.
e If GG is the amalgamated free product of a diagram D:

H — &

|

G2

where GG; and Gy are in Cl; and D is regular coherent, then G belongs to Cly.
e If G is the HNN extension of a diagram D’:

H%&Gl

where G is in Cl; and D’ is regular coherent, then G belongs to Cly.
o If G is the colimit of a filtered system G; in 4, where each G; is in Cly, then G belongs to Cl;.

Theorem 4.3. Let R be a ring which is reqular noetherian on the right and G be the amalgamated free product
of a regular coherent diagram of groups:

H L)Gl

|

Go
Then this diagram induces a homotopically cartesian diagram of spectra:

Whi(H) —=— WhR(G))

| |

Whi(Gy) ——— WhE(G)

Theorem 4.4. Let R be a ring which is regular noetherian on the right and G be the HNN extension of a
regular coherent diagram of groups:

" %& el
Then this diagram induces a homotopy fibration of spectra:
WhE(H) L Whi(Gy) — WhE (@)
where f is the difference (in Qsp) of maps induced by o and .

Proofs of theorems 4.3 and 4.4. In the amalgamated case, we have a commutative diagram of spectra:

H(BH.K(R)) —*~% H(BG1,K(R)® H(BG»K(R)) —— H(BG,K(R))

| | l

K(R[H]) —— K(R[G1]) & K(R[G2]) —  K(R[G])
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where horizontal lines are fibrations and vertical maps are assembly maps. Moreover theorem 2 implies a
homotopy equivalence:

K(R[G]) ~ K(R[G]) & Q"' Nil(R[H] x R[H],S)
for some R[H]| x R[H] bimodule S. Therefore we have a fibration:

WhE(H) — WhE(Gy) @ WhT(Gs) — WhT(G)
and a homotopy equivalence:

WhE(G) ~ WhE(G) @ Q"' Nil(R[H] x R[H],S)

We can do the same for the HNN extension and we get a fibration:
Wh™(H) -5 Wh(Gh) — WH(G)
and a homotopy equivalence:
WhE(G) ~ WhH(GY @ Q ' Nil(R[H] x R[H], S)

for some R[H| x R[H] bimodule S.

Hence the only thing to do is to prove that Nil(R[H]x R[H], S) is contractible. Let’s denote by C' the ring
R[H]. With the notations of 1.4, the bimodule S is determined by four C-bimodules ;S; (with 4,5 € {1,2}).
In order to describe these bimodules we’ll introduce the following terminology:

Let G be a group. A G-biset is a set X equipped with two compatible actions of G, one on the left and
the other one on the right. We say that a G-biset X is free if both actions on X are free. If R is a ring,
R[X] is naturally a R[G]-bimodule and, if X is free, R[X] is free on both sides. For any free G-biset X and
any ring R, we set:

If G and G4 are two groups, we can also define a (G1, G2)-biset as a set equipped with two compatible
actions: a left action of G and a right action of Ga. Then, for every ring R and any (G1, Gs)-biset X, R[X]
is a (R[G1], R[Gs])-bimodule. Consider the amalgamated case. We have two monomorphisms o : H — G4
and 5 : H — G3. Denote by X the complement of «(H) in G and by Y the complement of S(H) in G.
The group H acts on both sides on X and Y and X and Y are free H-bisets. Moreover we have:

251 = R[X] 152 = R[Y} 151 = QSQ =0
and then:
S =°R[X]' & 'R[Y]

In the HNN extension case we have two monomorphisms a: H — G1 and 5 : H — G;. Denote by X
the complement of a(H) in Gy and by Y the complement of 5(H) in G;. Denote also by U (resp. V) the
set G where H acts on the left by 8 and on the right by « (resp. H acts on the right by § and on the left
by «). These sets X, Y, U and V are free H-bisets. In this case, the bimodule S is characterized by the
conditions:
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251 = R[X] 152 = R[Y] 151 = R[U] 259 = R[V]
and then:
S =2R[X]'®'R[Y)? @ 'R[U]' @ 2R[V]?
Consider the HNN extension case. For every = € GG, we set:
D(z) =~ (za(H)z™") I'(z) = o™ (zB(H)z™")

For each x € G1, I'(z) and I"(x) are subgroups of H and I'(z) is regular coherent. Moreover, we have a
group homomorphism A, : I'(x) — H such that:

vy el(z), B(Y) =za(r(7)z"

It is easy to see that )\, is an isomorphism from I'(z) to IV (x~!). Thus groups I''(z) are also regular coherent.
Let:

Let Hy (resp. . H) be the (H,T'(x))-biset (resp. the (I'(x), H)-biset) H, where H acts in the standard way
on the left (resp. on the right) and I'(z) acts by the inclusion on the right (resp. by the morphism A, on the
left). Then the map: (u,v) — B(u)za(v) from H x H to f(H)xa(H) induces an isomorphism of H-bisets:

H, x H~pB(H)za(H)
I'(z)

and we have:

— 'R[U)' ~'R[H|] ® R[.H]!
RID(2)]

Moreover the ring R[I'(z)] is regular coherent.
Hence, because of theorem 6, we have a homotopy equivalence of spectra:

Nil(C x C,°R[X]* ® 'R[Y]? @ *R[V]?) =
Nil(C x C,?R[X]' @ 'R[Y]? ® 'R[U]' @ 2R[V]?)
We proceed the same with the biset V' and we get a homotopy equivalence of spectra:
Nil(C x C,?R[X]* @ 'R[Y]?) = Nil(C x C,?R[X]* @ 'R[Y]? ® 2R[V]?)

Hence, in both amalgamated case and HNN extension case, we have a homotopy equivalence:

Nil(C x C,?R[X]' @ 'R[Y]?)) = Nil(C x C, S)
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and, because of theorem 4, we have a homotopy equivalence:

Nil(C x C,S) = Nil(C, RIX x Y))

Denote by Z; the orbits of the biset X x Y. Then, for each j, there is an element (z,y) € X x Y such
b's
that:

Z; = a(H)ayB(H)
For each x € X and each y € Y we have the groups:
Ii(z) = o~ (za(H)z™") Pa(y) = 7 (yB(H)y™") H(z,y) = T1(z) NTa(y)
We have group homomorphisms A, : I'1(z) — H and p,, : I's(y) — H defined by:

vy eTi(z), a(A(7)) =za(y)z™"
vy eTa(y), B(Y) =yBuy()y

Denote by H, the (H, H(x,y))-biset H where H acts in the standard way on the left and H(x,y) acts
via A, on the right. Denote also by ,H the (H(x,y), H)-biset where H acts in the standard way on the
right and H(z,y) acts via p, in the left. Then the map (u,v) — a(u)zyB(v) from H x H to a(H)zyB(H)
induces an isomorphism:

H, x ,H - a(H)zyB(H)
H(z,y)

where H(x,y) is regular coherent. Hence, because of theorem 6, the spectrum Nil(R[H],R[X x Y]) is
H
contractible and so is Nil(R[H] x R[H|,S). O

Theorem 4.5. For every group G in Cly and every ring R which is regular noetherian on the right, the
Whitehead spectrum WhT(G) is contractible.

Proof. Denote by Cly the class of groups G such that Wh(G) is contractible for every ring R which is
regular noetherian on the right. Because of theorem 4.2, Cly contains the class Cl.

Since the functor Wh commutes with filtered colimits, the class Clsy is stable under filtered colimits.
Therefore it’s enough to prove that Cls is stable under taking amalgamated free products and HNN exten-
sions of regular coherent diagrams. But that follows directly from theorems 4.3 and 4.4. O

Example 4.6. Consider the group H with two generators = and ¢ and the following relations:
VneZ, axt"zt™" =t"at™"x

For every integer p # 0, the correspondence = +— x and ¢t — tP induces a monomorphism f, : H — H.
Consider a monomorphism of groups « : H — G and denote by I' the amalgamated free product of the

H
G

diagram:

fp H
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Proposition 4.7. For every ring R which is regular noetherian on the right, the morphism G — T induces
a homotopy equivalence of spectra: WhT(G) - WhT(T).
Moreover, if G belongs to Cly, then the group I is also in Cly.

Proof. Denote by H’ the normal closure of z in H. This group is commutative and freely generated by
the elements: x,, = t"2t~" for n € Z. The correspondence. x,, ++ ¥, 41 is an automorphism 7 : H' —+ H’
and H is the semidirect product of H' and Z, or equivalently, the HNN extension of H’ with morphisms
Id, 7 : H — H’. On the other hand, R[H’] is regular coherent on the right (but not noetherian) and H
belongs to the class Cl. Hence the Whitehead spectrum Wh*(H) is contractible.

Denote by H,, the image of f, : H — H and by X its complement in H. For every z € H, denote by
I'(z) the subgroup f, ' (2f,(H)z"") of H. We have the following formula:

D(fp(@)zfp(b)) = al'(z)a™"

for every a,b, z in H and the conjugacy class of I'(z) depends only on the class of z in the set Y = H,\H/H,.
Let z be an element in X. A direct computation shows the following:

e if z is congruent in Y to an element in H’ then I'(z) is the group H’

e if z is congruent in Y to a power of ¢ then I'(z) is conjugate to the subgroup of H generated by ¢

e in the other cases I'(z) is the trivial group.

Therefore T'(z) is always a free abelian group. Hence, for every y in G \ «a(H), the group I'(z,y) =
L(z)NaY(ya(H)y™!) is also a free abelian group and the ring R[['(z,y)] is regular coherent on the right.
Then theorem 4.3 applies and the result follows. 0O

The class Cl; seems to be strictly bigger than the class Cl. For example the amalgamated free product
I" of the diagram:

H —" g

y

H

with p,q > 1, belongs to the class Cl;. But in this case, Waldhausen’s theorems cannot be used to prove
that ' belongs to the class Cl because of the following result:

Proposition 4.8. The ring Z[H] is not reqular coherent.
Proof. Let f: Z[H| ® Z[H] — Z[H] be the following morphism:
(U V)= f(UV) =1 —t+to)U — (1 —t + 2tV

and K be its kernel. We'll prove that K is not finitely generated and that will imply that Z[H] is not
coherent and therefore not regular coherent.

Denote by A the ring Z[H']. This ring is the ring of Laurent polynomials in the x;’s. Then A is an integral
domain and every element u € Z[H| can be written in a unique way on a finite sum:

U :Z tiui

with each u; in A. So u may be considered as a Laurent polynomial in ¢ and has a valuation v(u) and a
degree 0°u (at least if u is not zero). If u = 0, we set: v(u) = +o0 and 9°u = —o0.
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Define the elements y; and z; in A by:
VieZ, y=1—x=1—tat™" zi=y —yi_1 =1 — T
and, for every integer n > 0, we have the following elements in Z[H]:
Up=2-n—t""2190y-1...Yy-n

Vi=zpt Y tznzyoy1...yo—i — " 2y0y1 . Y1ionyo1-n
0<i<n

An explicit computation shows that, for each n > 0, W,, = (U,, V,,) is killed by f and each W), belongs
to K. O

Lemma 4.9. The set {Wy, W1, Wa,...} is a generating set of K.

Proof. Denote by E the Z[H]-submodule of Z[H| & Z[H]| generated by the set {Wy, Wy, Wa,...}. Since
each W, is in K, we have an inclusion F C K and we have to prove that this inclusion is an equality.
For each integer n > 0, denote by K, the set of the elements (U, V) in K satisfying the following:

v(U)>0 o0°U <n v(V)>0 o°V <n
We denote also by I,, the ideal (z29,2_1,2-2,...,21-) C 4 and by J,, the right ideal of Z[H] generated by
I,.
The quotient B,, = A/I,, is the quotient of A by the relations

xO:x71:x72:"‘:l’7n

and B, is a Laurent polynomial ring where 21, z_,, and all y; are not zero.
Suppose we have proven that K,,_; is contained in F. Let U = > tiu; and V = > t'v; be two
0<i<n 0<i<n
elements in Z[H], with u; and v; in A. For W = (U, V') we have the following equivalences:

WekK, < (17ty0)U: (1—ty1)V

= tlui—v) =ty Yt —tyy Yt
e Z t'(u; — v;) :Z Ty ui— Z Ty,

= Vi, u; — i = Y1-ili—1 — Y2—iVi—1
And these conditions are equivalent to the following:

Vo = Up
V1 = U + 21U

Vg = Uz + 2oU1 + 21YoUo

Up = Un+ E Z1—iY—iY—1—i - Y2_nlU;
0<i<n
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0= E 21y —iY—1—i - - Yl-nUi
0<i<n

This last relation implies the following relation in B,,:
21Y90Y—1---Y1-no =0 € B,

and we have: ug = 0 in B,, because B,, is an integral domain.
Suppose W is in K,,. Then uq is in I,, and there are elements ag, a1, ...a,—1 in A such that:

Up = 20a0 + 2-101 + -+ 21—nln—1
Set:
W =W — (Woao + Wiar + Waas + ... Wn_lan_l)

Since Wy, W1, ..., W,,_1 are in K,,, W’ belongs to K,, and there exist elements u; and v} in A such that:

W' = ( Z thul, Z t'vl)

0<i<n 0<i<n

Moreover, because W' is in K,,, we have u, = v{, and:
/
ug = ug — (2000 + z2-101 + -+ 21-pap-1) =0

So we have: ujy = vj, = 0 and W’t~! belongs to K,,_1 C E. Therefore W’ and then W belong to E and we
have: K,, C E.

Thus K, is contained in F for every n > 0. On the other hand, for every W € K, there is some integer
p such that WtP belongs to some K,,. Hence K is contained in F and the lemma is proven. O

Lemma 4.10. The module K is not finitely generated.

Proof. For each integer n > 0, denote by E,, the submodule of E generated by {Wy, Wy, Wa, ..., W,_1}.
Let F,, : Z[H|" — Z[H] & Z[H] be the morphism:

(Co,Cl,CQ,...,Cn,ﬂ — E Wici

0<i<n

The image if F), is the module FE,. Denote by R, the kernel of F, and by m, the last projection
Z[H]|" — Z[H]. We have an exact sequence of right Z[H]-modules:

0—>Rn—>Z[H}"£>En—>O
Hence we have a commutative diagram of right Z[H]-modules with exact lines:

0 —— ZH""' —— Z[H" —— ZH — 0
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with: J) = 7, (R,,). We'll prove that Z[H]/J] is not trivial.

An easy computation shows that, for every integers p,q with 0 < p < ¢, the following element:

Woz_p —Wpz_gq — Wq,p,ltpﬂzlyoy,l e Y—p

is zero in K and induces a well defined element X (p,q) € R, (for every n > ¢) and, for every p with

0<p<n-—1, we have: m,(X(p,n — 1)) = z_).

Let n > 0 be an integer. Suppose J!, is not contained in J,,. Then there is an element Xy € R,, such that
7T (Xo) doesn’t belong to J,,. Set: d = 0°m,(Xo) and denote by Z the set of X € R,, such that: 0°m,(X) = d

and m,(X) — m,(Xo) € Jp.
For each X = (cg,¢1,...,cn—1) € Z we can associate three integers «, 8,y defined this way:
o a=v(ch_1)
e (3 is the lowest v(cy), for k=0,1,...,n—1
e ~ is the highest integer k such that v(c;) = .

The triple x(X) = («, 8,7) will be called the complexity of X. This complexity belongs to the set C' of

triple (a, 3,7) € Z* satisfying the following conditions:
b<a<d and 0<y<n
The lexicographical order of (d — o, « — f3,7) induces a well order relation on C' and we have:

(@.8,7) < (', 8,7) <= a>a’ or a=a’ and B> B or (a,8) = (o, 8') and 7 < '

Since C' is well ordered, there is an element in Z with a minimal complexity. Let X = (cg, c1, -

be such an element.

For each integer k € {0,1,...,n — 1}, we have a decomposition:
CL :Z Ckiti
B<i
with cg; € A.

The condition X € R,, implies the following:

Z Z_kCkp = 0

0<k<y

iCnn1)

and that implies the congruence z_,c,3 = 0 in B, = A/I,. But z_, is not a zero divisor in B, and ¢,

belongs to I,. So we have a decomposition in A:

Cyg = § : Z—jaj
0<j<vy
and we get a new element in R,,:

X'=X- Y X(j,)at?
0<j<y

It is easy to see that m,(X') = 7,(X) = 7,(Cp) mod J,, and that X’ belongs to Z. Moreover we have
the following: x(X’) < x(X). But that’s impossible because X was chosen with a minimal complexity.
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Hence we get a contradiction and the module J), is contained in .J,,. As a consequence, by killing all the
zi’s, we get epimorphisms:

Z[H)/J! — Z[H]/J, — Z[z*1 T

and Z[H]/J] is not trivial. Hence the sequence Ey C Fy C E2 C ... is strictly increasing and F = Ker(f)
is not finitely generated. Therefore the category of finitely presented right Z[H]-modules is not abelian and
Z[H] is not coherent. The result follows. O
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