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Let I be an ideal generated by quadrics in a standard graded polynomial ring S
over a field. A question of Avramov, Conca, and Iyengar asks whether the Betti 
numbers of R = S/I over S can be bounded above by binomial coefficients on 
the minimal number of generators of I if R is Koszul. This question has been 
answered affirmatively for Koszul algebras defined by three quadrics and Koszul 
almost complete intersections with any number of generators. We give a strong 
affirmative answer to the above question in the case of four quadrics by completely 
determining the Betti tables of height two ideals of four quadrics defining Koszul 
algebras.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let k be a field, S be a standard graded polynomial ring over k, I ⊆ S be a graded ideal, and R = S/I. 
We say that R is a Koszul algebra if k ∼= R/m has a linear free resolution over R where m =

⊕
i>0 Ri. Koszul 

algebras possess extraordinary homological properties; see the surveys [18] and [10]. Moreover, examples of 
Koszul algebras appear throughout commutative algebra and algebraic geometry, including the coordinate 
rings of Grassmannians [26] and most canonical curves [32], many types of toric rings [22] [31] [21], as well 
as all suitably high Veronese subrings of any standard graded algebra [4]. However, the simplest examples 
of Koszul algebras are quotients by quadratic monomial ideals [17], and a recent guiding principle in the 
study of Koszul algebras has been that any reasonable property of algebras defined by quadratic monomial 
ideals should also hold for Koszul algebras; for example, see [1], [10], [2]. Among such properties, considering 
the Taylor resolution for an algebra defined by a quadratic monomial ideal leads to the following question 
about the Betti numbers of a Koszul algebra.
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Question 1.1 ([1, 6.5]). If R is Koszul and I is minimally generated by g quadrics, does the following 
inequality hold for all i?

βS
i (R) ≤

(
g

i

)

In particular, is pdS R ≤ g?

The above questions are known to have affirmative answers when R is LG-quadratic (see next section). 
Although LG-quadratic algebras form a proper subclass of all Koszul algebras, they encompass almost all 
known examples. For general Koszul algebras, much less is known about the above question. An affirmative 
answer was first given for Koszul algebras defined by g ≤ 3 quadrics in [6, 4.5]. This work was subsequently 
extended to Koszul almost complete intersections (where ht I = g − 1) with any number of generators in 
[29]. Building on the successes of the preceding two papers, we show that Question 1.1 has an affirmative 
answer when R = S/I is a Koszul algebra defined by four quadrics.

It is clear that the Betti number bound holds when ht I = 4 and when ht I = 3 by [29]. When ht I = 1, 
there is a linear form z and a complete intersection of linear forms J such that I = zJ so that the minimal 
free resolution of R is just Koszul complex on J , except that the first differential is multiplied by z. Hence, 
the Betti number bound also holds when ht I = 1, and it suffices to consider the case of height two ideals. 
We prove:

Main Theorem. Let R = S/I be a Koszul algebra defined by four quadrics with ht I = 2. Then the Betti 
table of R over S is one of the following:

(i)
0 1 2 3

0 1 – – –
1 – 4 4 1

(ii)

0 1 2 3 4
0 1 – – – –
1 – 4 3 1 –
2 – – 3 3 1

(iii)

0 1 2 3
0 1 – – –
1 – 4 3 –
2 – – 1 1

(iv)

0 1 2 3 4
0 1 – – – –
1 – 4 2 – –
2 – – 4 4 1

In particular, we have βS
i (R) ≤

(4
i

)
for all i.

In [24], Huneke-Mantero-McCullough-Seceleanu show that pdS R ≤ 6 whenever R is defined by an ideal 
generated by four quadrics. Although their bound is sharp for general ideals of quadrics, a key point in the 
proof of our Main Theorem is that we can improve this bound to pdS R ≤ 4 when R is Koszul. (In fact, 
Theorem 4.1 shows this bound holds for a slightly larger class of algebras.) With this result, we can then 
write down all possible Betti tables for R.

Notation. Throughout the remainder of the paper, the following notation will be in force unless specifically 
stated otherwise. Let k be a fixed algebraically closed ground field of arbitrary characteristic, S be a standard 
graded polynomial ring over k, I ⊆ S be a proper graded ideal, and R = S/I. Because Betti numbers are 
preserved under flat base extension, there is no loss of generality in assuming that the ground field is 
algebraically closed. Recall that the ideal I is called nondegenerate if it does not contain any linear forms. 
We can always reduce to a presentation for R with I nondegenerate by quotienting out a basis for the linear 
forms contained in I, and we will assume that this is the case throughout. We denote the irrelevant ideal of 
R by m =

⊕
Ri.
i>0
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The division of the rest of the paper is as follows. In §2 after reviewing the relevant properties of Koszul 
algebras and their Betti tables, we show that every height two ideal generated by at least four independent 
quadrics has multiplicity at most two. In §3 we refine arguments of Engheta on the unmixed parts of 
certain ideals to give a structure theorem for ideals generated by at least four independent quadrics over 
an algebraically closed field having height two and multiplicity two. As a consequence, we see that every 
such ideal defines a Koszul algebra, and we can concentrate on the multiplicity one case to establish the 
projective dimension bound predicted by Question 1.1. In §4, we prove pdS R ≤ 4 for Koszul algebras 
defined by height two ideals of four quadrics. From this, we deduce the possible Betti tables of such rings.

Our ultimate goal is to prove a structure theorem for the defining ideals of Koszul algebras defined by four 
quadrics over an algebraically closed field. We obtain results in this direction in §3 when the multiplicity 
is two. However, the case of height two ideals of multiplicity one is substantially more complex, and so, we 
have relegated that case to a separate paper [28] to keep the current one at a manageable length.

2. Background

2.1. Koszul algebras

If R is a Koszul algebra, it is well-known that its defining ideal I must be generated by quadrics, but not 
every ideal generated by quadrics defines a Koszul algebra. We have already noted in the introduction that 
every quadratic monomial ideal defines a Koszul algebra. More generally, we say that R or I is G-quadratic
if, after a suitable linear change of coordinates ϕ : S → S, the ideal ϕ(I) has a Gröbner basis consisting 
of quadrics. We also say that R or I is LG-quadratic if R is a quotient of a G-quadratic algebra A by 
an A-sequence of linear forms. Every G-quadratic algebra is Koszul by upper semicontinuity of the Betti 
numbers; see [7, 3.13]. It then follows from Proposition 2.1 below that every LG-quadratic algebra is also 
Koszul. In particular, every complete intersection generated by quadrics is LG-quadratic. In summary, we 
have the following implications

G-quadratic LG-quadratic Koszul

Quadratic CI

each of which is strict. See [10] for a more detailed discussion.
We will be specifically interested in the graded Betti numbers of a Koszul algebra R, which are defined by 

βS
i,j(R) = dimk TorSi (R, k)j and related to the usual Betti numbers by βS

i (R) =
∑

j β
S
i,j(R). This information 

is usually organized into a table, called the Betti table of R, where the entry in column i and row j is βS
i,i+j(R)

and zero entries are represented by “−” for readability. See Table 2.1 for examples.
Since Question 1.1 is motivated by the case of quadratic monomial ideals, a natural starting point is to 

examine the Betti tables of such ideals. By the well-known procedure of polarization, studying the Betti 
tables of all quadratic monomial ideals is equivalent to studying those of square-free quadratic monomial 
ideals, and such ideals can be studied combinatorially as they are in one-to-one correspondence with simple 
graphs.

Given a simple graph G with vertex set {v1, . . . , vn}, the edge ideal of G is the square-free monomial 
ideal in S = k[x1, . . . , xn] given by

I(G) = (xixj | {vi, vj} ∈ E(G)).

In particular, an edge ideal with g generators corresponds to a graph with g edges and has height two if 
and only if the minimal size of a vertex cover of G is two. The Betti tables of height two edge ideals are 
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Table 2.1
Betti tables of height 2 edge ideals with 4 generators.

Case βS(R) Graphs

(i)
0 1 2 3

0 1 – – –
1 – 4 4 1

1

2 3

4 1

2

3 4
1

2

3 4 5

(ii)

0 1 2 3 4
0 1 – – – –
1 – 4 3 1 –
2 – – 3 3 1

1

2

3 4
5

6

(iii)

0 1 2 3
0 1 – – –
1 – 4 3 –
2 – – 1 1

1 2 3 4 5

(iv)

0 1 2 3 4
0 1 – – – –
1 – 4 2 – –
2 – – 4 4 1

1 2 3

4 5 6

shown in Table 2.1. We will show that these are precisely the Betti tables of all Koszul algebras defined by 
height two ideals generated by four quadrics. However, it should be noted that the analogy between general 
Koszul algebras and edge ideals is not perfect; see [10, 1.20] for an example of a Koszul algebra defined by 
five quadrics whose h-polynomial cannot be realized by any monomial ideal.

It is also useful to know how the Koszul property can be passed to and from quotient rings.

Proposition 2.1 ([11, §3.1, 2]). Let S be a standard graded k-algebra and R be a quotient ring of S.

(a) If S is Koszul and regS(R) ≤ 1, then R is Koszul.
(b) If R is Koszul and regS(R) is finite, then S is Koszul.

Here, the regularity of R over S is defined by

regS(R) = max{j | βS
i,i+j(R) �= 0 for some i}. (2.1)

When S is a standard graded polynomial ring, this definition agrees with the usual Castelnuovo-Mumford 
regularity of R and does not depend on the polynomial ring S, so we drop the subscript from the notation. 
We will primarily use the above proposition to show that the Koszul property can be passed to or from a 
ring and its quotient by a regular sequence consisting of linear forms or quadrics.

2.2. Betti table restrictions

There are several restrictions on the shape of the Betti tables of Koszul algebras that make it possible to 
deduce the Betti tables of Koszul algebras defined by four quadrics. The first of these restrictions, discovered 
in [5] and [26, 4], says that the Betti tables of Koszul algebras have nonzero entries only on or above the 
diagonal; see [10, 2.10] for an easier argument using regularity.

Lemma 2.2. If R = S/I is a Koszul algebra, then βS
i,j(R) = 0 for all i and j > 2i.
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Additionally, the extremal portions of the Betti table of a Koszul algebra R, namely the diagonal entries 
and the linear strand of I, satisfy bounds similar to those in Question 1.1.

Proposition 2.3 ([6, 3.4, 4.2][1, 3.2]). Suppose that R = S/I is Koszul and that I is minimally generated by 
g elements. Then:

(a) βS
i,i+1(R) ≤

(
g
i

)
for 2 ≤ i ≤ g, and if equality holds for i = 2, then I has height one and a linear 

resolution of length g.
(b) βS

i,2i(R) ≤
(
g
i

)
for 2 ≤ i ≤ g, and if equality holds for some i, then I is a complete intersection.

(c) βS
i,2i(R) = 0 for i > ht I.

Corollary 2.4. If R = S/I is a Koszul algebra and ht I ≤ g − 2, then βS
2,3(R) ≥ 2.

Proof. First, note that βS
2,3(R) ≥ 1. Indeed, if this is not the case and I is minimally generated by quadrics 

q1, . . . , qg, then the Koszul syzygies on the qi are all minimal generators of SyzS1 (I) so that βS
2,4(R) ≥

(
g
2
)
, 

contradicting the preceding proposition since I is not a complete intersection. If βS
2,3(R) = 1, it follows from 

[29, 4.1] that ht I = g − 1, which is also a contradiction. Thus, we have βS
2,3(R) ≥ 2. �

Proposition 2.5 ([27]). Let M be a finitely generated graded module over S = k[x1, . . . , xr]. If βS
r,r+j(M) �= 0, 

then (0 :M S+)j �= 0.

Proof. If K• denotes the Koszul complex on the variables of S, then Hr(K•⊗SM)r+j = TorSr (k, M)r+j �= 0
by assumption so that there is a nonzero cycle e[r] ⊗ y ∈

∧r
S(−1)r ⊗S M of degree r + j. Here, e1, . . . , er

denotes the standard basis of S(−1)r, and for each subset J = {j1, . . . , jp} ⊆ [r] = {1, . . . , r} with j1 <

· · · < jp, we set eJ = ej1 ∧ · · · ∧ ejp . In particular, we note that y must have degree j. Since e[r] ⊗ y is a 
cycle, we have 

∑r
i=1(−1)i+1e[r]\{i} ⊗ xiy = 0 so that xiy = 0 in M for all i, and hence y ∈ (0 :M S+)j . �

Corollary 2.6. Let R = S/I where I is minimally generated by g quadrics and pdS R = r. If βS
r,r+1(R) �= 0, 

then r ≤ g with equality if and only if ht I = 1.

Proof. By faithfully flat base change, we may assume that the ground field k is infinite. Then after replacing 
R and S with their quotients by a maximal regular sequence of linear forms on R, we may further assume 
that dimS = pdS R = r so that S = k[x1, . . . , xr]. In particular, we note that this does not affect the 
height one condition since, for example, the height of I is determined by the Betti numbers of R, which 
are unaffected by killing a regular sequence of linear forms. In this setup, it follows from the preceding 
proposition that there is a linear form � such that xi� ∈ I for all i. Moreover, these elements are linearly 
independent quadrics, so they must be part of a minimal set of generators for I. Hence, we have r ≤ g, and 
furthermore, equality holds if and only if I = �S+, which is equivalent to ht I = 1. �
Proposition 2.7 ([25, 3.1]). Suppose that R = S/I is a quadratic Cohen-Macaulay ring. Then regR ≤ pdS R, 
and equality holds if and only if R is a complete intersection.

Combining the above with preceding results, we have a similar statement for Koszul algebras; the first 
part was proved in a more general form in [1, 3.2].

Corollary 2.8. If R = S/I is Koszul, then regR ≤ pdS R, and equality holds if and only if R is a complete 
intersection.

Proof. If regR = j, then βS
i,i+j(R) �= 0 for some i, and so, we must have regR = j ≤ i ≤ pdS R by 

Lemma 2.2. Furthermore, if regR = pdS R, we see that i = j = pdS R so that βS
i,2i(R) �= 0. It then follows 
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from part (c) of Proposition 2.3 that ht I = pdS R so that R is Cohen-Macaulay. The rest of the statement 
then follows from the preceding proposition. �
2.3. Linkage and multiplicity

We recall a special case of a classical linkage result that we will employ several times.

Theorem 2.9 ([3, 3.1(a)]). An ideal I ⊆ S is directly linked to a complete intersection J = (f, g) via a 
complete intersection C if and only if I = I2(M) where

M =
(

g a1 a2
−f b1 b2

)

and a1, a2, b1, b2 ∈ S such that C = (a1f + b1g, a2f + b2g).

Recall that a linear prime in S is a prime ideal generated by linear forms. In the next theorem, we need 
the following result attributed to P. Samuel. This result follows easily from the local case [30, 40.6] after 
replacing R with Rm since Rm being regular forces grmRm

(Rm) ∼= R to be a polynomial ring [8, 1.1.8].

Proposition 2.10. If I ⊆ S is an unmixed ideal such that R = S/I has e(R) = 1, then I is a linear prime.

We conclude this section by proving that for any ideal I of height 2 generated by g ≥ 4 quadrics, one may 
only have e(R) ≤ 2. Recall that the unmixed part Iunm of I is the intersection of all primary components J
of I with ht J = ht I.

Theorem 2.11. Suppose that R = S/I where ht I = 2 and I is generated by quadrics. Then e(R) ≤ 3 with 
equality if and only if Iunm = I2(M) for some 3 × 2 matrix M of linear forms. Hence, e(R) ≤ 2 if I is 
minimally generated by g ≥ 4 quadrics.

Proof. Recall that the ground field k is algebraically closed by assumption. We already know by [23, 3.1]
that e(R) ≤ 3. Assume that e(R) = 3. Let C be a complete intersection of quadrics in I, and set J = (C : I). 
By linkage, J is a homogeneous unmixed ideal directly linked to Iunm with e(S/J) = e(S/C) − e(R) = 1
(see for example [13, 21.23]). It follows by Proposition 2.10 that J is a linear prime of height 2, and thus, J
is a complete intersection. Consequently, Theorem 2.9 implies that Iunm = I2(M) for some 3 × 2 matrix M
of linear forms. Conversely, if Iunm = I2(M) for some 3 ×2 matrix of linear forms, then ht I2(M) = 2 so that 
it is easily computed that e(R) = e(S/Iunm) = 3 from the Hilbert-Burch resolution [8, 1.4.17]. In particular, 
I2(M) is an ideal generated by 3 quadrics, so it is impossible for I to contain four linearly independent 
quadrics. Thus, we must have e(R) ≤ 2 if I is minimally generated by g ≥ 4 quadrics. �
3. The multiplicity 2 case

The case of Koszul algebras defined by height two ideals I of multiplicity two generated by four quadrics 
is particularly simple to analyze thanks to a result of Engheta on the unmixed part of such ideals.

Theorem 3.1. Let R = S/I be a ring defined by g ≥ 4 quadrics. Then ht I = e(R) = 2 if and only if I has 
one of the following forms:

(ia) (x, y) ∩ (z, w) or 
(
(x, y)2, xz + yw

)
for independent linear forms x, y, z and w, in which case we must 

have g = 4.
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(ib) (a1x, . . . , ag−1x, q) for independent linear forms a1, . . . , ag−1 and some linear form x and quadric q ∈
(a1, . . . , ag−1) \ (x).

(ii) (a1x, . . . , ag−1x, q) for independent linear forms a1, . . . , ag−1 and some linear form x and quadric q
which is a nonzerodivisor modulo (a1x, . . . , ag−1x).

Proof. If I has one of the forms listed above, it easily follows that ht I = e(R) = 2 by considering the 
minimal primes of the given ideals or by computing their Hilbert series from the Betti tables in Corollary 3.3
below, so we prove only that every ideal I with ht I = e(R) = 2 has one of these forms. Suppose that 
ht I = e(R) = 2. Since Iunm is a height two ideal with e(S/Iunm) = e(R) = 2, [16, Prop 11] yields that 
either: (1) Iunm = (x, y) ∩ (z, w) = (xz, xw, yz, yw) for some independent linear forms x, y, z, and w, (2) 
Iunm =

(
(x, y)2, xz + yw

)
for some linear forms x and y and some forms z and w of degree d > 0 such that 

(x, y, z, w) is a complete intersection, or (3) Iunm = (x, q) for some linear form x and quadric q.
Case (1): If Iunm = (xz, xw, yz, yw) for independent linear forms x, y, z, and w, then since I ⊆ Iunm

contains four independent quadrics, we must have g = 4 and I = Iunm.
Case (2): If Iunm =

(
(x, y)2, xz + yw

)
for some linear forms x and y and some forms z and w of degree 

d > 0 such that (x, y, z, w) is a complete intersection, then since I ⊆ Iunm is generated by four independent 
quadrics, we see that z and w must be linear forms and that I = Iunm.

Case (3): Assume that Iunm = (x, q) for some linear form x and quadric q. Then I = (a1x +c1q, . . . , agx +
cgq) for some ci ∈ k and linear forms ai. If ci = 0 for all i, then ht I = 1, which is a contradiction. So, 
we may assume without loss of generality that cg = 1 and, after replacing q with agx + q and subtracting 
combinations of the generators of I, that I has the form I = (a1x, . . . , ag−1x, q). In particular, a1, . . . , ag−1

must be independent linear forms as I is generated by g independent quadrics.
Next, we note that the only associated primes of (a1x, . . . , ag−1x) are (x) and (a1, . . . , ag−1). This is 

clear by considering the primary decomposition of an ideal of this form. Indeed, if a1, . . . , ag, x are in-
dependent linear forms, then we have (a1x, . . . , ag−1x) = (x) ∩ (a1, . . . , ag−1). Otherwise, we must have 
x ∈ (a1, . . . , ag−1) so that, after rescaling x and possibly interchanging the ai, we may assume that 
x = c1a1 + · · · + cg−2ag−2 + ag−1 for some ci ∈ k. Hence, a1, . . . , ag−2, x are independent linear forms, 
and (a1x, . . . , ag−1x) = (a1x, . . . , ag−2x, x2) = (x) ∩ (a1, . . . , ag−2, x2) so that (x) and (a1, . . . , ag−1) =
(a1, . . . , ag−2, x) are the only associated primes.

Finally, we note that q /∈ (x) since otherwise we would have ht I = 1, and so, either q is a nonzerodivisor 
modulo (a1x, . . . , ag−1x) or q ∈ (a1, . . . , ag−1) \ (x) by the preceding discussion. �

Remark 3.2. Although Engheta does not explicitly state the assumption in his classification of unmixed 
ideals of height two and multiplicity two, working over an algebraically closed ground field in the above 
theorem is necessary to ensure that prime ideals of height two and multiplicity two contain a linear form 
[20, 18.12] so that they fall into case (3) above. For example, it is easily checked in Macaulay2 [19] that the 
ideal

I2

(
x y z w
−y x −w z

)
⊆ Q[x, y, z, w]

is a nondegenerate prime ideal of height two and multiplicity two.

Corollary 3.3. Let R = S/I where I is an ideal minimally generated by g ≥ 4 quadrics of one of the forms 
described in the preceding theorem. Then the Betti table of R is one of the following:
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0 1 2 3 · · · g − 2 g − 1
0 1 – – – · · · – –
1 – g

(
g−1
2
)

+ 1
(
g−1
3
)

· · ·
(
g−1
g−2

)
1

0 1 2 · · · · · · g − 2 g − 1 g

0 1 – – · · · · · · – – –
1 – g

(
g−1
2
)

· · · · · ·
(
g−1
g−2

)
1 –

2 – – g − 1 · · · · · ·
(
g−1
g−3

) (
g−1
g−2

)
1

with the former corresponding to cases (ia) and (ib) and the latter to case (ii).

Proof. Suppose that I = (a1x, . . . , ag−1x, q) for independent linear forms a1, . . . , ag−1, a linear form x, and 
a quadric q. Using the short exact sequence

0 → S/((a1x, . . . , ag−1x) : q)(−2) q→ S/(a1x, . . . , ag−1x) → R → 0

we can easily compute the minimal free resolution of R as a mapping cone. The minimal free resolution F•
of S/(a1x, . . . , ag−1x) is the Koszul complex on a1, . . . , ag−1 except that the first differential is multiplied 
by x and the resolution must be twisted by −1 accordingly. It has the Betti table:

0 1 2 · · · g − 2 g − 1
0 1 – – · · · – –
1 – g − 1

(
g−1
2
)

· · ·
(
g−1
g−2

)
1

If q is nonzerodivisor modulo (a1x, . . . , ag−1x), then taking a mapping cone yields the second Betti table 
above. If q ∈ (a1, . . . , ag−1) \ (x), then ((a1x, . . . , ag−1x) : q) = (x) so that taking the mapping cone of a 
suitable lift of multiplication by q to a chain map K•(x)(−2) → F• yields the first Betti table above.

When I =
(
(x, y)2, xz + yw

)
for independent linear forms x, y, z, and w, we note that ((x, y)2 : xz+yw) =

(x, y) so that we can again compute the minimal free resolution of R as mapping cone coming from the short 
exact sequence 0 → S/(x, y)(−2) xz+yw→ S/(x, y)2 → R → 0. In this case, the chain map lifting multiplication 
by xz + yw on the minimal free resolutions of S/(x, y)(−2) and S/(x, y)2 is:

0 S(−4) S(−3)2 S(−2)

0 S(−3)2 S(−2)3 S

( y
−x

)

( z
w

)
(x y )

(
z 0
w z
0 w

)
xz+yw

(
y 0
−x y
0 −x

)
(x2 xy y2 )

Taking the mapping cone yields a minimal free resolution for R realizing the first Betti table above with 
g = 4.

Finally, if I = (x, y) ∩ (z, w) = (xz, xw, yz, yw) for independent linear forms x, y, z, and w, we note 
that ((xz, xw, yz) : yw) = (x, z) so that we can again compute the minimal free resolution of R as mapping 
cone coming from the short exact sequence 0 → S/(x, z)(−2) yw→ S/(xz, xw, yz) → R → 0. Since the middle 
term has a Hilbert-Burch resolution, the minimal free resolution of R realizes the first Betti table above in 
a manner similar to the previous case. �

Combining the preceding theorem and corollary with Theorem 2.11, we have the following.

Corollary 3.4. Question 1.1 has a positive answer if R = S/I when ht I = 2 and e(R) > 1.



P. Mantero, M. Mastroeni / Journal of Pure and Applied Algebra 225 (2021) 106504 9
In retrospect, however, this turns out to be unsurprising as such Koszul algebras turn out to be G-
quadratic up to extension of the ground field. The proof of the next theorem assumes a familiarity with 
various results about Gröbner bases. We refer the reader unfamiliar with these results to [15], [12], or [13]
for further details and any unexplained terminology.

Theorem 3.5. Let R = S/I be a ring defined by g ≥ 4 quadrics with ht I = e(R) = 2. Then R is G-quadratic.

Proof. We argue according to the possibilities for I described in the preceding theorem.
Case (ia): If I = (x, y) ∩ (z, w), then I is a monomial ideal up to a linear change of coordinates so that 

R is G-quadratic. If I = (x, y)2 + (xz + yw), then after a linear change of coordinates, we may assume that 
x, y, z, and w are variables of S, and it is easily checked via Buchberger’s Criterion that the generators of 
I form a universal quadratic Gröbner basis. Hence, R is G-quadratic.

Case (ib): Suppose that I = (a1x, . . . , ag−1x, q) where q ∈ (a1, . . . , ag−1) \ (x). By [9, 4], it suffices to 
prove that R is G-quadratic after quotienting out a regular sequence of linear forms on R. Hence, we may 
assume that dimS = pdS R = g − 1. In that case, since a1, . . . , ag−1 are independent linear forms, we 
may assume after a suitable linear change of coordinates that a1, . . . , ag−1 are the variables of S. As x is a 
nonzero linear form, it must contain one of the ai in its support. Without loss of generality, after rescaling 
x and performing a linear change of coordinate, we may assume that x = ag−1 +

∑g−2
i=1 λiai for some λi ∈ k. 

After a further linear change of coordinates replacing ag−1 with ag−1 −
∑g−2

i=1 λiai and fixing all other 
variables and after suitable change of generators for I, we have that I = (a1ag−1, . . . , ag−2ag−1, a2

g−1, q)
where q ∈ k[a1, . . . , ag−2].

Since q �= 0, we may assume a linear change of coordinates that q contains a2
1 in its support. Indeed, this 

is clear if q contains a2
i for some i by relabeling, so we may assume that q is square-free. In that case, as 

g ≥ 4, we may assume that the support of q contains the monomial a1a2 after relabeling so that a change 
of coordinates replacing a2 with a1 + a2 and fixing all other variables of S yields q with containing a2

1 in its 
support.

Once we have that a2
1 is in the support of q with coefficient 1, the generators of I are a quadratic Gröbner 

basis. To see this, we need only check Buchberger’s criterion for the g−1 S-pairs of the monomial generators 
with q since it is clear that the S-pairs of the monomials are zero. If we choose any monomial order with a1

bigger than all other variables in S, it is clear that the S-pairs of q with each of a2ag−2, . . . , ag−2ag−1, a2
g−1

reduce to zero since the leading monomial a2
1 of q is relatively prime to each of these other monomials [15, 

2.15]. Finally, by writing q =
∑

1≤i≤j≤g−2 αi,jaiaj for some αi,j ∈ k, we see that

S(a1ag−1, q) = a1(a1ag−1) − ag−1q =
g−2∑
j=2

(
j∑

i=1
αi,jai

)
(ajag−1)

is a standard expression for S(a1ag−1, q) with zero remainder since no cancellation can occur among the 
monomials in the forms (

∑j
i=1 αi,jai)ajag−1.

Case (ii): As in the proof of the previous case, we may assume that dimS = pdS R = g after quotienting 
out by a maximal R-sequence of linear forms, and since a1, . . . , ag−1 are independent linear forms, we may 
further assume after a suitable linear change of coordinates that the ai are variables. Let ag denote the 
remaining variable of S. Since q /∈ (a1, . . . , ag−1), we must have that a2

g is in the support of q.
There are two cases to consider. If x does not contain ag in its support, then in any monomial order 

< with ag larger than every other variable, we have that the S-pairs S(aix, ajx) = 0 for all i, j < g and 
S(aix, q) reduces to zero for all i < g since in<(q) = a2

g is relatively prime to in<(aix) ∈ (a1, . . . , ag−1) [15, 
2.15]. Hence, a1x, . . . , ag−1x, q is a Gröbner basis for I. Thus, we may assume for the rest of the proof that 
ag is in the support of x.
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In that case, after rescaling x, we can write x = ag +
∑g−1

i=1 λiai for some λi ∈ k. After a linear change of 
coordinates replacing ag with ag −

∑g−1
i=1 λiai and fixing all other variables, we may assume that x = ag so 

that I = (a1ag, . . . , ag−1ag, q). Note that this does not affect that a2
g must be in the support of q, and so, 

after a suitable change of generators for I, we have q = a2
g + q′ where q′ ∈ k[a1, . . . , ag−1]. Since ht I = 2, 

we must have q′ �= 0, and so, we may further assume that a2
1 is in the support of q′ after a suitable change 

of coordinates. Let δ ∈ k such that δ2 is the coefficient of a2
1 in q′ (which exists since k is algebraically 

closed). Replacing q with q − 2δa1ag as a generator for I, we may assume q = (ag − δa1)2 + q′ for some 
q′ ∈ k[a1, . . . , ag−1] not containing a2

1 in its support, and after performing a change of coordinates replacing 
ag with ag + δa1 and fixing all other variables, we obtain I = (a1x, . . . , ag−1x, q) where x = ag + δa1
and q = a2

g + q′. If < is the product order obtained from the degree lexicographic order on k[a1, ag] with 
a1 > ag followed by any other monomial order on k[a2, . . . , ag−1], then in<(q) = a2

g since the only quadratic 
monomials larger than a2

g are a2
1 and a1ag, which do not belong to the support of q. And so, we have that 

the S-pairs S(aix, ajx) = 0 for all i, j < g and S(aix, q) reduces to zero for all i < g since in<(q) = a2
g is 

relatively prime to a1ai [15, 2.15]. Hence, a1x, . . . , ag−1x, q is a Gröbner basis for I. �
Remark 3.6. In the proof of preceding theorem, we needed the ground field to be algebraically closed in 
order to show that rings R = S/I of the form (ii) in Theorem 3.1 are G-quadratic. If we relax the assumption 
about the ground field being algebraically closed, rings of this form are still easily seen to be LG-quadratic 
by first forming the G-quadratic algebra A = S[u]/(a1x, . . . , ag−1x, u2 + q) since u is a nonzerodivisor on 
A such that A/(u) ∼= R. This suggests a potential place to look for an affirmative answer to the following 
question.

Question 3.7. Does there exist a ring R = S/I which is not G-quadratic but which becomes G-quadratic 
after a suitable extension of the ground field?

4. The projective dimension bound and Betti tables

The goal of this section is to determine all Betti tables of Koszul algebras R = S/I where I is generated 
by g = 4 quadrics and ht I = 2. For a height two ideal generated by four quadrics, it was proved in [23] that 
pdS R ≤ 6, which is a sharp bound in general.

When R is Koszul, we improve this bound to pdS R ≤ 4 (see Corollary 4.8). When ht I = 1, 4, the bound 
is clear, and when ht I = 3, it was proved in [29], so it suffices to prove it when ht I = 2. This is achieved in 
Theorem 4.1 below, where we prove the bound under the weaker assumption that I has two linear syzygies. 
Then we determine all possible Betti tables of R (Theorem 4.7), from which we obtain the positive answer 
to Question 1.1.

Theorem 4.1. Let I = (q1, q2, q3, q4) ⊆ S be an ideal of height two generated by four linearly independent 
quadrics. If I has two independent linear syzygies, then pdS R ≤ 4.

The proof of the preceding theorem is divided into a number of lemmas. First, by the previous section, 
we may focus on the case e(R) = 1. Then, by the Associativity Formula, there are linear forms x and y
such that P = (x, y) is the only minimal prime of I of height 2. Following [23, §4], we write qi = aix + biy

for some linear forms ai and bi, and we set:

M =
(

y a1 a2 a3 a4
−x b1 b2 b3 b4

)
A =

(
a1 a2 a3 a4
b1 b2 b3 b4

)

We recall that I is said to be represented by minors by the matrix M and represented by coefficients by 
the matrix A. As observed in [23, 4.4], these matrices need not be unique. Also, we remark that I2(M) =
I + I2(A).
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Proposition 4.2 ([23, 4.7]). Let M be a 2 ×(n +1) matrix of linear forms with n ≥ 2 representing a height two 
ideal of quadrics by minors. Then M is equivalent via a sequence of ideal-preserving elementary operations 
to a matrix of linear forms M ′ of one of the following types, where ht(x, y) = 2:

(1) M ′ is 1-generic.

(2) M ′ =
(

y 0 a2 . . . an
−x b1 b2 . . . bn

)
, where D =

(
y a2 . . . an
−x b2 . . . bn

)
is 1-generic.

(3) M ′ =
(

y 0 0 a3 . . . an
−x b1 b2 b3 . . . bn

)
, with no additional restrictions.

(4) M ′ =
(

y 0 a2 a3 . . . an
−x b1 0 b3 . . . bn

)
, where D =

(
y a3 . . . an
−x b3 . . . bn

)
is 1-generic.

(5) M ′ =
(

y 0 a2 a3 a4 . . . an
−x b1 0 λa3 b4 . . . bn

)
, where λ is a scalar and there are no additional restrictions.

The next result shows that only the last three cases of the above proposition are relevant to our study of 
ideals defining Koszul algebras, since such an ideal must have at least two independent linear syzygies by 
Corollary 2.4.

Corollary 4.3. Suppose I ⊆ S is a height two ideal of quadrics represented by minors by a matrix M of 
linear forms as in (1) or (2) of the above proposition. Then I has no linear syzygies.

Proof. Assume first that M is 1-generic. In that case, we must have ht(y, a1, . . . , an) = n + 1 or else M
would have a generalized zero. By [23, 5.1], we know that (I : y) = I2(M) and (I, y) = (y, a1x, . . . , anx) so 
that the rings S/(I : y) and S/(I, y) have the following Betti tables respectively:

0 1 2 · · · n

0 1 – – – –
1 –

(
n+1

2
)

2
(
n+1

3
)

· · · n
(
n+1
n+1

)
0 1 2 3 · · · n + 1

0 1 1 – – – –
1 – n

(
n+1

2
) (

n+1
3
)

· · · 1

The former Betti table follows from the Eagon-Northcott resolution since M is 1-generic [14, 6.2, 6.4], and 
the latter follows by taking a mapping cone of multiplication by y on the resolution of S/(a1x, . . . , anx). 
The exact sequence 0 → S/(I : y)(−1) y→ S/I → S/(I, y) → 0 induces an exact sequence

0 → TorS2 (S/I, k)3 → TorS2 (S/(I, y), k)3 → TorS1 (S/(I : y), k)2 → 0

from which it follows that βS
2,3(S/I) = 0 as wanted.

When M is as in case (2) of the preceding proposition, the corollary follows by a similar argument with 
the following differences. In this case, we have ht(y, a2, . . . , an) = n and (I : y) = (b1, I2(D)) so that S/(I : y)
and S/(I, y) have the following Betti tables respectively

0 1 2 · · · n− 1 n

0 1 1 – – – –
1 –

(
n
2
)

β2 · · · βn−1 (n− 1)
(
n
n

)
0 1 2 3 · · · n

0 1 1 – – – –
1 – n− 1

(
n
2
) (

n
3
)

· · · 1

where βi = (i − 1)
(
n+1
i+1

)
+
(

n
i+1

)
for 1 < i < n. Since I2(D) is a prime ideal generated by quadrics, it follows 

that b1 is nonzerodivisor modulo I2(D), and therefore, the Betti table of S/(I : y) is obtained by taking a 
mapping cone of multiplication by b1 on the resolution of S/I2(D). �
Lemma 4.4. Suppose that I = (q1, q2, q3, q4) ⊆ S is a height two ideal minimally generated by four quadrics 
with ht(q1, q2) = ht(q3, q4) = 1 and e(R) = 1. Then pdS R ≤ 4.
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Proof. By assumption, I = (a1x, a2x, b3y, b4y) for some linear forms ai, bi, x, and y such that ht(x, y) = 2. 
If ht(x, b3, b4) = 2, then without loss of generality after a suitable change of generators, we may assume 
that b3 = x. But this implies that e(R) = 2 by Corollary 3.3, contrary to our assumptions. Hence, we must 
have ht(x, b3, b4) = 3. In that case, (I, x) = (x, b3y, b4y) where b3y and b4y are nonzero quadrics modulo x. 
Consequently, over the polynomial ring S̄ = S/(x) we have pdS̄ S/(I, x) ≤ 2 so that pdS S/(I, x) ≤ 3 by [34, 
4.3.3]. On the other hand, we have (I : x) = (a1, a2) +((b3y, b4y) : x) = (a1, a2, b3y, b4y) since ht(x, b3, b4) = 3
and ht(x, y) = 2. Again, over the polynomial ring S̄ = S/(a1, a2), the image of (I : x) is generated by 
two quadrics. Thus, we have pdS̄ S/(I : x) ≤ 2 so that pdS S/(I : x) ≤ 4. The short exact sequence 
0 → S/(I : x)(−1) x→ R → S/(I, x) → 0 then implies that pdS R ≤ max{pdS S/(I : x), pdS S/(I, x)} ≤ 4
as wanted. �
Lemma 4.5. Suppose that I = (q1, q2, q3, q4) ⊆ S is a height two ideal minimally generated by four quadrics 
having at least two linear syzygies and that ht(qi, qj) = 1 for some i �= j. Then pdS R ≤ 4.

Proof. We may assume that ht(q1, q2) = 1 and e(R) = 1. Let (x, y) be the only minimal prime of height 2 of 
I. By assumption, there exist linear forms c, d1, d2, where d1, d2 are linearly independent, such that qi = cdi
for i = 1, 2. Then either c ∈ (x, y), or c /∈ (x, y) and (d1, d2) ⊆ (x, y), which implies (d1, d2) = (x, y).

First assume c ∈ (x, y). Then we can write q1 = a1x, q2 = a2x, and qi = aix + biy for i = 3, 4 for suitable 
linear forms x, y, ai, bi with ht(x, y) = 2. Now, (I, x) = (x, q3, q4) so that pdS S/(I, x) ≤ 3. To prove the 
statement, it suffices to show that pdS S/(I : x) ≤ 4.

Observe that (I : x) = (a1, a2) + ((q3, q4) : x). By the preceding lemma, we may further assume that 
ht(q3, q4) = 2. Then

((q3, q4) : x) = ((q3, q4) : (I, x)) = ((q3, q4) : (I, x)unm) = ((q3, q4) : (x, y))

where the leftmost equality follows because (q3, q4, x) = (I, x), and the rightmost equality because x lies in 
the only minimal prime of I, thus (I, x)unm = (x, y). It follows that ((q3, q4) : x) = ((q3, q4) : (x, y)) is linked 
via (q3, q4) to the complete intersection (x, y). Thus, by Theorem 2.9, we have ((q3, q4) : x) = I2(M), where 
M is the 3 × 2 matrix of linear forms

M =
(−a4 −b4

a3 b3
−y x

)
.

Then (I : x) = (a1, a2, I2(M)). However, since I has at least two independent linear syzygies, there is a 
linear syzygy � = (�1, �2, �3, �4) which is not a scalar multiple of a = (a2, −a1, 0, 0). If �1a1 + �2a2 = 0, then 
(�1, �2, 0, 0) is a scalar multiple of a so that we can replace � with (0, 0, �3, �4), but this contradicts that 
(q3, q4) is a complete intersection of quadrics. Hence, we see that �1a1 + �2a2 ∈ ((q3, q4) : x) = I2(M) is a 
minimal generator, and this implies that (I : x)/(a1, a2) = (a1, a2, I2(M))/(a1, a2) is generated by at most 
two independent quadrics so that pdS S/(I : x) ≤ 4, by an argument similar to the one near the end of the 
proof of Lemma 4.4.

Next, assume (d1, d2) = (x, y) and c /∈ (x, y) = Iunm. Then I = (cx, cy, q3, q4), and ht(I, c) ≥ 3. It follows 
that (I, c) is a complete intersection of height 3 and pdS S/(I, c) = 3. Moreover, since c /∈ (x, y) = Iunm, we 
clearly have (x, y) ⊆ (I : c) ⊆ ((x, y) : c) = (x, y) so that (I : c) = (x, y) and pdS S/(I : c) = 2. From the 
short exact sequence 0 → S/(I : c) → S/I → S/(I, c) → 0, we deduce that pdS S/I ≤ 3, concluding the 
proof. �
Lemma 4.6. Let I = (q1, q2, q3, q4) ⊆ S be an ideal of height two generated by four linearly independent 
quadrics with e(R) = 1, and set J = (q1, q2, q3). If (J : q4) contains two independent linear forms, then 
pdS R ≤ 4.
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Proof. Let � and �′ be the independent linear forms contained in (J : q4). We note that htJ = ht I = 2. If 
not, then qi = aix for some linear forms ai and x for i = 1, 2, 3, and Corollary 3.3 implies that e(R) = 2, 
contrary to our assumption that e(R) = 1. Since k is infinite and htJ = 2, we may further assume that 
ht(q1, q2) = 2.

We first observe that the statement holds when e(S/J) ≥ 2. Consider the short exact sequence

0 −→ S/(J : q4)(−2) q4−→ S/J −→ R −→ 0. (4.1)

Since the multiplicity symbol is additive along exact sequences (see [33, V.A.2]), we must have ht(J : q4) = 2. 
As (�, �′) is a height two prime ideal in (J : q4), it follows that (J : q4) = (�, �′) is a complete intersection. 
Since J is a height two ideal generated by three quadrics, it follows from [23] that pdS S/J ≤ 4 so that 
pdS R ≤ max{pdS S/(J : q4) + 1, pdS S/J} ≤ 4.

We may therefore assume that e(S/J) = 1. In that case, we must have Junm = (x, y), where x and y are 
linear forms generating the unique prime ideal of height 2 containing I. Let C = (q1, q2), which we have 
assumed is a complete intersection. We then have

(C : q3) = (C : J) = (C : Junm) = (C : (x, y)).

As in the proof of the previous lemma, (C : q3) is a Northcott ideal of height two directly linked to (x, y); in 
particular, it is Cohen-Macaulay so that pdS S/(C : q3) = 2. It then follows from the short exact sequence

0 −→ S/(C : q3)(−2) q3−→ S/C −→ S/J −→ 0

that pdS S/J ≤ max{pdS S/(C : q3) + 1, pdS S/C} = 3. In particular, we have htQ ≤ 3 for every Q ∈
Ass(S/J) by the Auslander-Buchsbaum formula after localizing at Q. Since q4 ∈ (x, y) = Junm and q4 /∈ J , 
it follows that (J : q4) is a proper ideal of height at least 3. Since Ass(S/(J : q4)) ⊆ Ass(S/J) and every 
associated prime of S/J has height at most three, it follows that ht(J : q4) = 3. Since (J : q4) contains the 
height two linear prime (�, �′), then (J : q4) = (�, �′) + fH for some form of positive degree f /∈ (�, �′) and 
an ideal H ⊆ S such that either H = S or (�, �′) + H is a proper ideal of height at least four.

We claim that H = S. If not, then (�, �′) + H = ((J : q4) : f) is a proper ideal of height at least four. 
However, since Ass(S/((J : q4) : f)) ⊆ Ass(S/(J : q4)) ⊆ Ass(S/J), we see that (�, �′) + H has height at 
most 3, which is a contradiction.

Therefore, (J : q4) = (�, �′, f) is a complete intersection of height three. As pdS S/J ≤ 3 and pdS S/(J :
q4) = 3, (4.1) yields pdS R ≤ max{pdS S/(J : q4) + 1, pdS S/J} ≤ 4. �

We can now prove Theorem 4.1.

Proof of Theorem 4.1. By Theorem 3.1 and Corollary 3.3, we may assume that e(R) = 1. By Corollary 4.3, 
we know that I can be represented by minors by a matrix as in cases (3)–(5) of Proposition 4.2. We 
may further assume that ht(qi, qj) = 2 for all i �= j by Lemma 4.5 so that we are in case (4) or (5). In 
particular, we may assume that q1 = b1y and q2 = a2x, where x and y are the linear forms generating the 
unique minimal prime of I of height 2. Let � = (�1, �2, �3, �4) and h = (h1, h2, h3, h4) in S(−2)4 be linearly 
independent syzygies of I. If �4 and h4 are independent linear forms, then we are done by the preceding 
lemma. So we may assume that �4 and h4 are linearly dependent, and therefore, after possibly switching �
and h and subtracting a multiple of h from �, we may further assume that �4 = 0.

In this case, we claim there exists a suitable choice of generators I = (q′1, q′2, q′3, q4) such that two of 
the generators generate a height one ideal so that the conclusion follows from Lemma 4.5. Consider the 
complete intersection C = (q2, q3), and write qi = aix + biy for i = 2, 3. If ht(y, a2, a3) = 2, then we 
have αy + βa2 + γa3 = 0 for some α, β, γ ∈ k not all zero. If γ = 0, then a2 ∈ (y), and if γ �= 0, 
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then a3 ∈ (a2, y). Hence, in either case, after a suitable change of generators, we see that y divides two 
generators of I, and we are done. So we may further assume that ht(y, a2, a3) = 3. Then (C, y)unm =
(y, a2x, a3x)unm = (x, y). Indeed, it is clear that (x, y) is the unique height two prime ideal containing 
(C, y), and (C, y)S(x,y) = (x, y)S(x,y) since (y, a2, a3) � (x, y) implies either a2 or a3 is not in (x, y). And 
so, it follows that (C : y) = (C : (C, y)) = (C : (C, y)unm) = (C : (x, y)). As �1b1 ∈ (C : y), we have 
�1b1x, �1b1y ∈ C. We note that �1 �= 0 since otherwise we would have a linear syzygy �2q2 + �3q3 = 0, 
contradicting that C is a complete intersection. If b1 is a nonzerodivisor modulo C, then �1x, �1y ∈ C

are independent quadrics so that C = (�1x, �1y), contradicting that C has height two. Hence, b1 is a 
zerodivisor modulo C so that (C, b1) is a height two ideal. Then C ′ = (C, b1)unm is an unmixed height 
two ideal containing a linear form, and therefore, it is a complete intersection. Consequently, we have that 
(C : b1) = (C : C ′) is linked in one step to a complete intersection. Thus, (C : b1) = (C, f) is a Cohen-
Macaulay height two ideal for some homogeneous form f of positive degree by Theorem 2.9, and this ideal 
contains the independent quadrics �1x and �1y. This implies that there is a nonzero linear form z ∈ (x, y)
such that �1z ∈ C. Indeed, we can write �1x = α1f + α2q2 + α3q3 and �1y = β1f + β2q2 + β3q3 for some 
αi, βi ∈ k. Note that α1 and β1 are not both zero, otherwise we would have C = (�1x, �2y) contradicting 
that htC = 2. Hence, �1z ∈ C for z = β1x − α1y.

Without loss of generality, we can then replace q2 with q′2 = �1z as a generator for C and still have a 
linear syzygy of the form �1(b1y) + �2q

′
2 + �3q3 = 0. In that case, as (q′2, q3) = C ⊆ (�1, q3), we see that 

ht(�1, q3) = 2 so that the above syzygy yields �3 ∈ (�1 : q3) = (�1). If �3 = 0, then ht(q1, q′2) = 1, and if 
�3 �= 0, then q3 = λ(q1 + �2z) for some λ ∈ k so that replacing q3 with q′3 = �2z as a generator for I yields 
ht(q′2, q′3) = 1. �

Combining the results of the preceding sections, we can determine all Betti tables of Koszul algebras 
defined by height two ideals of four quadrics; they are precisely the Betti tables we expect from Table 2.1.

Theorem 4.7. Let R = S/I be a Koszul algebra defined by four quadrics with ht I = 2. Then the Betti table 
of R over S is one of the following:

(i)
0 1 2 3

0 1 – – –
1 – 4 4 1

(ii)

0 1 2 3 4
0 1 – – – –
1 – 4 3 1 –
2 – – 3 3 1

(iii)

0 1 2 3
0 1 – – –
1 – 4 3 –
2 – – 1 1

(iv)

0 1 2 3 4
0 1 – – – –
1 – 4 2 – –
2 – – 4 4 1

In particular, we have βS
i (R) ≤

(4
i

)
for all i.

Proof. By Theorem 2.11, we know that e(R) ≤ 2, and if e(R) = 2, then the Betti table of R is either (i) 
or (ii) by Theorem 3.1 and Corollary 3.3. It remains to show that the Betti table of R is either (iii) or (iv) 
if e(R) = 1. In that case, we know that 2 = ht I ≤ pdS R ≤ 4 by Theorem 4.1. If pdS R = ht I = 2, then 
R is Cohen-Macaulay so that I = I3(M) for a 4 × 3 matrix M of homogeneous forms of positive degree [8, 
1.4.17], which is clearly impossible for an ideal generated by quadrics.

Suppose that pdS R = 3. Since R is not a complete intersection, it follows from Corollary 2.8 that 
regR ≤ 2 so that the Betti table of R has the form:
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0 1 2 3
0 1 – – –
1 – 4 a c

2 – – b d

We show c = 0. If not, then after killing a maximal regular sequence of linear forms, we may assume that 
S = k[a1, a2, a3]. Then by Proposition 2.5, there is a linear form x ∈ S such that aix ∈ I for all i so that 
I = (a1x, a2x, a3x, q), but we have already seen in Corollary 3.3 that an ideal of this form has Betti table 
(i) or (ii), which is a contradiction. Thus, c = 0.

The Hilbert series of R then has the form HR(t) = Q(t)/(1 −t)dimS where Q(t) = 1 −4t2 +at3 +bt4−dt5. 
Since ht I = 2 and e(R) = 1, we know that Q(1) = Q′(1) = 0 and Q

′′(1)
2 = 1 [8, §4.1],1 which yields the 

following system of equations

a + b− d = 3

3a + 4b− 5d = 8

3a + 6b− 10d = 5

whose only solution is easily checked to be a = 3, b = 1, and d = 1.
Suppose now that pdS R = 4. As above, we see that regR ≤ 3 by Corollary 2.8 and that βS

2,5(R) =
βS

3,6(R) = βS
4,5(R) = 0 by Lemma 2.2, Proposition 2.3, and Corollary 2.6 as ht I = 2 so that the Betti table 

of R has the form:

0 1 2 3 4
0 1 – – – –
1 – 4 a c –
2 – – b d e

3 – – – – f

In this case, we have Q(t) = 1 −4t2 +at3 +(b − c)t4−dt5 +et6 +ft7 so that the equalities Q(1) = Q′(1) = 0
and Q

′′(1)
2 = 1 translate to the following system of equations:

a + b− c− d + e + f = 3

3a + 4b− 4c− 5d + 6e + 7f = 8

3a + 6b− 6c− 10d + 15e + 21f = 5

This system is easily checked to reduce to the equivalent system of equations:

a + e + 3f = 3

b− c− 3e− 8f = 1

d− 3e− 6f = 1

Since a, e, f are non-negative integers and a ≥ 2 by Corollary 2.4, the first of the above equations forces 
f = 0 and e ≤ 1, which must be an equality since pdS R = 4. Hence, a = 2 so that c = 0 by part (b) of [6, 
4.2]. The remaining values are easily computed, and we see that the Betti table of R must be (iv). �
Corollary 4.8. Question 1.1 has an affirmative answer for all Koszul algebras defined by g = 4 quadrics.

1 However, the reader should consult the errata for Corollary 4.1.14.
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Proof. It is immediate that the Betti number bound for a Koszul algebra R = S/I holds when I is a 
complete intersection (ht I = 4), when ht I = 1 by Proposition 2.3, and when I is an almost complete 
intersection (ht I = 3) by [29]. Combining this with the preceding theorem on the possible Betti tables of 
Koszul algebras when ht I = 2 completes the proof. �
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