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1. Introduction

A motivation of this research is to give a denotational semantics of Higher-order continuous probabilis-
tic programming language. The denotational semantics of discrete probabilistic programming language is 
categorified by using the (sub-)distribution monad on the category Set of all sets and functions. The cat-
egorified semantics supports the Higher-order functions since the category Set is cartesian closed, and the 
(sub-)distribution monad is commutative strong with respect to the cartesian monoidal structure. On the 
other hand, denotational semantics of continuous first-order probabilistic programming language is cate-
gorified by using the (sub-probabilistic) Giry monad. The Giry monad is a monad on the category Meas
of measurable spaces and functions, which introduced by Giry to give a categorical definition of continuous 
random processes such as (Labelled) Markov processes in the paper [1]. The Giry monad is commutative 
strong with respect to the cartesian monoidal structure of Meas, and hence it supports first-order seman-
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tics for continuous probabilistic language. However, it does not support Higher-order functions because the 
category Meas is not cartesian closed [2].

To give a categorical semantics of higher-order continuous probabilistic programming language, we have 
to find a monoidal closed structure which supports continuous probabilistic processes/calculations.

In fact, there is a canonical symmetric monoidal closed structure on Meas that is defined by the finest 
σ-algebra ΣX⊗Y over product sets |X| ×|Y | that makes all constant graph functions measurable (Section 2). 
If the Giry monad was strong with respect to it then we obtained a categorical semantics of higher-order 
continuous probabilistic programming language. However, unfortunately, the Giry monad is not strong with 
respect to the canonical symmetric monoidal closed structure.

In this paper, we prove that Giry monad is not strong with respect to the canonical symmetric monoidal 
closed structure as follows: We recall that a strength of a monad with respect to a symmetric monoidal 
closed category corresponds bijectively to a tensorial strength [3]. We show that a tensorial strength for any 
monad on Meas with respect to the canonical symmetric monoidal closed structure is uniquely determined 
if exists (Section 3). This implies that there is a unique candidate of the strength of Giry monad with 
respect to the canonical symmetric monoidal closed structure. We give a counterexample that the candidate 
associates a non-measurable function to some pair of measurable spaces (Section 4).

1.1. Preliminaries

We refer the definitions of monads, monoidal categories, and monoidal functors from [4], and refer the 
definition of strong monads on symmetric monoidal closed categories from [5,3]. The notion of tensorial 
strength can be relaxed to a monad on a symmetric monoidal category. We often call monads equipped 
with tensorial strengths strong monads (see [6, Definition 3.2] or [7, Section 7.1]).

Throughout this paper, we use the category Meas of all measurable spaces and measurable functions. The 
category Meas is complete and cocomplete. Hence we enjoy the cartesian monoidal structure (Meas, ×, 1). 
Moreover, it is a topological category [8,9]. We emphasise that the category Meas is not cartesian closed
because there is no σ-algebra over Meas([0, 1], 2) satisfying the axioms of exponential object [2].

We also introduce the following notations on measure theory:

• For each measurable spaces, we denote by |X| and ΣX the underlying set and σ-algebra of X respectively.
• The indicator function χA : X → R of a subset A of X is defined by χA(x) = 1 (x ∈ A) and χA(x) = 0

(x /∈ A). Note that χA is measurable if and only if the corresponding subset A is measurable (i.e. 
A ∈ ΣX).

We recall that the Borel σ-algebra B(R) over the real line R is generated from the family of all 
half-open intervals { [α, β) | α, β ∈ R }. We remark that each singleton {r} is a Borel set because {r} =⋂

n∈N
[r, r + 1/(n + 1)), and hence any countable subset of R is a Borel set. By the Caratheodory’s exten-

sion theorem, there is a unique measure on the Borel σ-algebra B(R) assigning β − α to each half-open 
interval [α, β). We denote it by m, and call it the Lebesgue measure on B(R). Strictly speaking, the measure 
m is the restriction of the Lebesgue measure m∗ over R to the Borel σ-algebra B(R), and the Lebesgue 
measure space (R, L(R), m∗) is indeed the completion of the measure space (R, B(R), m). We remark that 
m({r}) = 0 for any r ∈ R, and hence m(A) = 0 for any countable subset A ⊆ R.

1.2. The Giry monad

The Giry monad [1] is a monad on the category Meas that is introduced by Giry, which captures con-
tinuous/non-discrete probabilistic computations such as Labelled Markov processes. For example, Markov 
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processes are arrows in the Kleisli category of Giry monad, and the Chapman–Kolmogorov equation for 
Markov processes is characterised as associativity of multiplications of the Giry monad.

The structure of Giry monad G is defined as follows:

• For any measurable space X, the measurable space GX is defined by
– the underlying set |GX| is the set of probability measures on X.
– the σ-algebra ΣGX is the coarsest one over |GX| that makes the evaluation function evA : GX → [0, 1]

defined by ν �→ ν(A) measurable for any A ∈ ΣX , where Σ[0,1] is the Borel σ-algebra over the unit 
interval, which is introduced in the same way as B(R).

• For each f : X → Y in Meas, Gf : GX → GY is defined by (Gf)(μ) = μ(f−1(−)).
• The unit η is defined by ηX(x) = δx, where δx is the Dirac measure centred on x.
• The Kleisli lifting of f : X → GY is given by f �(μ)(A) =

∫
X
f(−)(A) dμ (μ ∈ GX).

We also consider the subprobabilistic variant Gsub of the Giry monad; the underlying set |GsubX| is the set 
of subprobability measures on X.

Both the Giry monad G and its subprobabilistic variant Gsub is strong and commutative with respect to 
the cartesian monoidal structure on Meas in the sense of [6]. The tensorial strength stG×−,= : (−) × G(=) ⇒
G(−×=) is given by the product measure stX,Y (x, ν) = δx×ν. The commutativity is shown from the Fubini 
theorem, and the double strength dstG×−,= : G(−) × G(=) ⇒ G(−× =) is given by dstX,Y (ν1, ν2) = ν1 × ν2.

2. The canonical symmetric monoidal closed structure on Meas

The category Meas is not cartesian closed, but there is the canonical symmetric monoidal closed structure 
(⊗, 1, �) on the topological category Meas (see also [10,11]). We first consider the following two families 
of constant graph functions:

• Γx : |Y | → |X| × |Y | defined by Γx(y) = (x, y) for any y ∈ |Y | (x ∈ |X|).
• Γy : |X| → |X| × |Y | defined by Γy(x) = (x, y) for any x ∈ |X| (y ∈ |Y |).

Next, we introduce the following symmetric monoidal closed structure on Meas:

• The monoidal product functor ⊗ is defined by X ⊗ Y = (|X| × |Y |, ΣX⊗Y ) where the σ-algebra ΣX⊗Y

is the finest σ-algebra Σ such that
– Γx is a measurable function Y → (|X| × |Y |, Σ) for any x ∈ X, and
– Γy is a measurable function X → (|X| × |Y |, Σ) for any y ∈ Y ,

• The internal Hom functor � is defined by (X � Y ) = (Meas(X, Y ), ΣX�Y ) where the σ-algebra 
ΣX�Y is the coarsest one generated by

〈〈x, U〉〉 = { f ∈ Meas(X,Y ) | f(x) ∈ U } (x ∈ |X|, U ∈ ΣY ).

We remark that the forgetful functor | − | : Meas → Set forms a strict symmetric monoidal functor from 
(Meas, ⊗, 1) to (Set, ×, 1).

Lemma 1. The currying operation forms a natural isomorphism Meas(X ⊗ Y, Z) 
 Meas(X, Y � Z) for 
all measurable spaces X, Y, Z.

Proof. Let f be an arbitrary function of type |X| ×|Y | → |Z|. The curried function �f� is then a function of 
type |X| → Set(|Y |, |Z|). The currying operator �−� is obviously natural and isomorphic as a transformation 
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on just functions. Hence, it suffices to show that the original f is measurable if and only if the curried �f�
returns measurable functions, and is measurable itself.

f ∈ Meas(X ⊗ Y,Z)

⇐⇒ ∀V ∈ ΣZ .f
−1(V ) ∈ ΣX⊗Y

⇐⇒ ∀V ∈ ΣZ .
(
(∀x ∈ X.Γx

−1(f−1(V )) ∈ ΣY ) ∧ (∀y ∈ Y .Γy
−1(f−1(V )) ∈ ΣX)

)

⇐⇒ ∀V ∈ ΣZ .
(
(∀x ∈ X.(�f� (x))−1(V ) ∈ ΣY ) ∧ (∀y ∈ Y .�f�−1〈〈y, V 〉〉 ∈ ΣX)

)

⇐⇒ (∀x ∈ X. �f� (x) ∈ Meas(Y,Z)) ∧ (∀V ∈ ΣZ .∀y ∈ Y .�f�−1〈〈y, V 〉〉 ∈ ΣX)

⇐⇒ �f� ∈ Meas(X,Y � Z) �
We remark that the uncurried mapping of the identity mapping idX�Y : X � Y → X � Y on X � Y

is called the evaluation mapping evX,Y : (X � Y ) ⊗X → Y .

2.1. Topological categories

The construction of the above canonical symmetric monoidal closed structure (⊗, 1, �) on Meas is 
similar to the classical one on the category Top of topological spaces and continuous functions (see [12, 
Example 6.1.9.g], [13, Section 3], and [14, Remark 6.4]). Why these constructions are similar because they 
are given by the same categorical construction of the canonical symmetric monoidal closed structure on a 
topological category along its topological functor [8, Section 2].

A faithful functor U : C → Set is a topological functor if

1. Every family in the form (fj : B → UAj)j∈J (called source) has an initial lift along U , that is, a family 
(fj : B → Aj)j∈J such that Ufj = fj , and there is a unique arrow k : C → B such that fj ◦ k = gj for 
any pair of k : UC → B and (gj : C → Aj)j∈J satisfying fj ◦ k = Ugj .

2. Every family in the form (fj : UAj → B)j∈J (called sink) has a final U -lift (fj : Aj → B)j∈J (the dual 
condition of (1.)).

The category C is then called a topological (concrete) category.
Remark that the conditions (1.) and (2.) are equivalent. Hence, either of them is often omitted from the 

definition of topological functors.
Every topological category is complete and cocomplete, and its topological functor preserves limits and 

colimits. In addition, it is separatable whose separator is the terminal object 1.
Both the forgetful functors |−| : Meas → Set and |−| : Top → Set are topological. For instance, the 

topologicity of |−| : Meas → Set are given as follows:

1. For any source (fj : B → |Aj |)j∈J , the initial lift is (fj : (B, ΣB) → Aj)j∈J where ΣB is the coarsest
σ-algebra ΣB over B that makes fj measurable.

2. For any sink (fj : |Aj | → B)j∈J , the final lift is (fj : Aj → (B, Σ′
B))j∈J where ΣB is the finest σ-algebra 

Σ′
B over B that makes fj measurable.

Here, by replacing σ-algebras and measurability respectively to topologies and continuity, we obtain the 
topologicity of |−| : Top → Set.
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2.2. The canonical symmetric monoidal closed structure

Consider a topological category C and its topological functor U : C → Set. The canonical symmetric 
monoidal closed structure (⊗, 1, �) on the topological category C is introduced as follows:

• The tensor product X ⊗ Y is the codomain of the final lift (X Γy−−→ X ⊗ Y
Γx←−− Y )x∈UX,y∈UY of 

(UX
Γy−−→ UX × UY

Γx←−− UY )x∈UX,y∈UY along U where Γy and Γx are the constant graph functions 
defined by x �→ (x, y) and y �→ (x, y) respectively.

• The tensor unit is a terminal object 1 in C.
• The internal hom X � Y is the domain of the initial lift (X � Y

evx−−→ Y )x∈UX of (C(X, Y ) U̇X,Y−−−−→
Set(UX, UY ) evx−−→ UY )x∈UX along U where U̇X,Y and evx are defined by f �→ Uf (here, C is locally 
small) and g �→ g(x) respectively.

It is straightforward to check that (C, ⊗, 1, �) is indeed a symmetric monoidal closed category, and that 
U : C → Set forms a strict monoidal functor (C, ⊗, 1) → (Set, ×, 1) preserving curryings/uncurryings.

By instantiating this construction to | − | : Meas → Set, we obtain the canonical symmetric monoidal 
closed structure on Meas. We have the classical symmetric monoidal closed structure on Top in [12, 
Example 6.1.9.g] by instantiating this construction to | − | : Top → Set.

2.3. Comparison of symmetric monoidal (closed) structures on Meas

Any symmetric monoidal closed structure (⊗, I, �) on C has the following canonical form, where the 
above canonical symmetric monoidal closed structure (⊗, 1, �) is already given in the canonical form.

Proposition 2 ([14, Proposition 3.1]). Any symmetric monoidal closed structure (⊗, I, �) on C is isomorphic 
to a unique one (⊗̇, 1, �̇) (we call it the canonical form of (⊗, I, �)) that satisfies the following conditions:

• The functor U is strictly symmetric monoidal (C, ⊗, 1) → (Set, ×, 1).
• The isomorphism ΦX,Y,Z : C(X⊗̇Y, Z) ∼= C(X, Y �̇UZ) satisfies

(U̇X⊗̇Y,Z(g))(x, y) = U̇Y,Z((U̇X,Y �̇Z(ΦX,Y,Z(g))(x))(y))

for any x ∈ UX, y ∈ UY , and g ∈ C(X⊗̇Y, Z).

Consider an arbitrary symmetric monoidal closed structure (⊗̇, 1, �̇) on Meas in the canonical form. 
Since the forgetful functor | −| : Meas → Set is strict monoidal, we have |X⊗̇Y | = |X| ×|Y |, |f ⊗̇g| = |f | ×|g|, 
|λX | = π2, and |ρX | = π1 hold, and |λX

−1| and |ρX−1| are the functions x �→ (∗, x) and x �→ (x, ∗) respectively, 
where λX : 1 ⊗̇X ∼= X and ρX : X ⊗̇ 1 ∼= X are respectively the left and right unitors.

Hence, the measurable functions (x ⊗̇ Y ) ◦ λY
−1: Y → X ⊗̇ Y and (X ⊗̇ y) ◦ ρX

−1: X → X ⊗̇ Y are 
exactly the constant graph functions Γx and Γy respectively. Here, x ∈ |X| and y ∈ |Y |, and x : 1 → X and 
y : 1 → Y are the element functions defined by ∗ �→ x and ∗ �→ y respectively.

Since the σ-algebra ΣX⊗Y is the finest one such that constant graph functions are measurable, the identity 
function on |X| × |Y | forms a measurable function X ⊗ Y → X ⊗̇ Y .

Also, the identity function on |X| × |Y | forms a measurable function X ⊗̇ Y → X × Y because π1 =
|ρX ◦ (X⊗̇!Y )| and π2 = |λY ◦ (!X ⊗̇ Y )|.
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3. The uniqueness of tensorial strength

We show the uniqueness of tensorial strength for any monad on Meas with respect to the canonical 
symmetric monoidal closed structure (⊗, 1, �) on Meas.

Moggi proved the uniqueness of tensorial strength of a monad on a well-pointed cartesian closed category 
[6, Proposition 3.4], but its situation is relaxed a separatable symmetric monoidal closed category, because 
the original Moggi’s proof uses only two things: the separator equals the tensor unit of the symmetric 
monoidal closed structure, and all generalised elements of a tensor product are splitten into two generalised 
elements of its two components. We state the extended version of the uniqueness of tensorial strength in [6]
below.

We recall that an object I in a category C is called a separator if for any pair of arrows f, g : X → Y in 
C, the equality f = g holds when f ◦ e = g ◦ e for each e : I → X.

Lemma 3 ([6, Proposition 3.4], Extended). Consider a symmetric monoidal category (C, ⊗, I) whose tensor 
unit I is a separator of C such that for any morphism z : I → X ⊗ Y , there are x : I → X and y : I → Y

satisfying z = (x⊗ y) ◦ λI
−1.

If T is a strong monad with respect to (C, ⊗, I) then its tensorial strength stT : (−) ⊗ T (=) ⇒ T (−⊗=)
is determined uniquely by

stTX,Y ◦ (x⊗ ξ) ◦ λI
−1 = T ((x⊗ Y ) ◦ λY

−1) ◦ ξ

where x : I → X and ξ : I → TY .

Proof. From the naturality of stT and λ and bifunctoriality of ⊗, we obtain,

stTX,Y ◦ (x⊗ ξ) ◦ λI
−1 = stTX,Y ◦ (x⊗ TY ) ◦ (I ⊗ ξ) ◦ λI

−1

= T (x⊗ Y ) ◦ stTI,Y ◦ λTY
−1 ◦ ξ ◦ λI ◦ λI

−1

= T ((x⊗ Y ) ◦ λY
−1) ◦ ξ

for any pair x : I → X and ξ : I → TY . Since any arrow z : I → X ⊗ TY is written as z = (x⊗ ξ) ◦ λI
−1 for 

some x : I → X and ξ : I → TY , the arrow stTX,Y is determined uniquely for each X and Y . �
The uniqueness of tensorial strength [6, Proposition 3.4] is indeed a corollary of Lemma 3: any well-pointed 

cartesian monoidal category (C, ×, 1) and any strong monad T with respect to the cartesian products satisfy 
the assumption of Lemma 3 because the terminal object 1 is both a tensor unit and a generator, and the 
left unitor λX : 1 ×X ∼= X are given by λX = π2 and λX

−1 = 〈!X , id〉 respectively.
The symmetric monoidal closed categories (Meas, ⊗, 1, �) and (Top, ⊗, 1, �) discussed in Section 2

satisfy the assumption of the lemma because the terminal object 1 is both a tensor unit and a generator, 
and each element z : 1 → X ⊗ Y (∗ �→ (x, y)) is obviously decomposed into a pair of elements x : 1 → X

(∗ �→ x) and y : 1 → Y (∗ �→ y).

4. The Giry monad is not strong

We show that the Giry monad G is not strong with respect to the canonical symmetric monoidal closed 
structure (⊗, 1, �) on Meas. In the following discussion, we consider the Giry monad G, but we are able 
to prove that the subprobabilistic variant Gsub is not strong in the same way.

Theorem 4. Giry monad G is not strong with respect to the canonical symmetric monoidal closed structure 
(⊗, 1, �) on Meas.
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Assume that the Giry monad G is strong with respect to the symmetric monoidal structure (Meas, ⊗,

�, 1). From [3], the strength GX,Y : (X � Y ) → (GX � GY ) correspond bijectively to the tenso-
rial strength stGX,Y : X ⊗ GY → G(X ⊗ Y ). From the construction of (⊗, 1, �), we obtain GX,Y =⌈
G(evX,Y ) ◦ stGX�Y,X

⌉
. By Lemma 3, the tensorial strength stG of G is determined uniquely by for any 

x ∈ X and μ ∈ GY ,

stGX,Y (x, μ) = G((x⊗ Y ) ◦ λY
−1) ◦ μ = μ(((x⊗ Y ) ◦ λY

−1)−1(−)) = μ(Γx
−1(−)).

Hence, the following calculation shows that the strength GX,Y is uniquely determined by the mapping that 
takes f : X → Y , and returns Gf : GX → GY :

G(evX,Y ) ◦ stGX�Y,X(f, μ) = μ(evX,Y ◦ Γf
−1(−)) = μ(f−1(−)) = G(f)(μ).

However, as we show below, the component GX,Y is not even a measurable function of type (X � Y ) →
(GX � GY ) for some X and Y . Hence, the Giry monad is not strong with respect to the canonical symmetric 
monoidal structure.

4.1. Non-measurability of GX,Y

We recall that ΣGX�GY is generated by 
〈〈
μ, evU

−1(A)
〉〉

for parameters μ ∈ GX, U ∈ ΣY , and A ∈ Σ[0,1]. 
We thus have,

GX,Y
−1〈〈μ, evU

−1(A)
〉〉

=
{
f ∈ Meas(X,Y )

∣∣ μ(f−1(U)) ∈ A
}
.

Hence, the σ-algebra 
{

GX,Y
−1(K)

∣∣ K ∈ ΣGX�GY
}

of the inverse images of measurable subsets of GX �
GY along GX,Y is at least finer than or equal to ΣX�Y , because for any x ∈ X and U ∈ ΣY , we obtain

〈〈x, U〉〉 =
{
f ∈ Meas(X,Y )

∣∣ x ∈ f−1(U)
}

= GX,Y
−1〈〈δx, evU

−1({1})
〉〉
.

We prove that there are X and Y such that the σ-algebra induced by GX,Y is strictly finer than ΣX�Y .

4.1.1. A σ-algebra ΩX,Y

Consider measurable spaces X and Y whose underlying sets are infinite. We define the family ΩX,Y of 
all subsets of the form

〈h, V 〉 =
{
f ∈ Meas(X,Y )

∣∣ 〈f(h(n))〉n∈N
∈ V

}

where h : N → X is an arbitrary injection and V ⊆ |Y |N is an arbitrary subset.

Lemma 5. The collection ΩX,Y forms a σ-algebra over Meas(X, Y ) including ΣX�Y .

Proof. We have ∅ = 〈h, ∅〉 ∈ ΩX,Y where h is an arbitrary injection. For any 〈h, V 〉 ∈ ΩX,Y , we have 

Meas(X, Y ) \ 〈h, V 〉 =
〈
h, |Y |N \ V

〉
∈ ΩX,Y . For any countable family {〈hm, Vm〉}m∈N with 〈hm, Vm〉 ∈

ΩX,Y , we obtain 
⋃

m∈N
〈hm, Vm〉 = 〈h, V 〉 in the following steps:

1. The image I = { hm(n) | m,n ∈ N } is countably infinite, hence there is a bijection k : N → I. Now 
we define km = k−1 ◦ hm for each m ∈ N and h = ι ◦ k where ι : I ⇀ X is the inclusion. Since 
(k ◦ km)(n) = hm(n) for all m, n ∈ N, the injection h and the family {km}m∈N satisfy h ◦ km = hm for 
each m ∈ N.
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2. We take the projection πl : |Y |N → Y (〈xL〉L∈N
�→ xl) for each l ∈ N and the tuple 

〈
πkm(n)

〉
n∈N

: |Y |N →
|Y |N indexed by {km(n)}n∈N for each m ∈ N. Then the inverse image Wm =

〈
πkm(n)

〉
n∈N

−1(Vm) satisfies 
〈hm, Vm〉 = 〈h,Wm〉 for each m ∈ N.

3. We have 
⋃

m∈N
〈hm, Vm〉 =

⋃
m∈N

〈h,Wm〉 =
〈
h,

⋃
m∈N

Wm

〉
(thus V =

⋃
m∈N

Wm).

Hence, ΩX,Y is indeed a σ-algebra over Meas(X, Y ).
For each x ∈ X and U ∈ ΣY , we have 〈 〈x, U〉 〉 =

〈
h, π0

−1(U)
〉

where h is an arbitrary injection such that 
h(0) = x. From the minimality of ΣX�Y , the σ-algebra ΩX,Y is finer than ΣX�Y . �

The inclusion ΣX�Y ⊆ ΩX,Y implies that for each measurable set K ∈ ΣX�Y , the membership f ∈ K

is determined by checking outputs f(x0), f(x1), . . . for some countable sequence x0, x1, . . . of inputs.

4.1.2. A counterexample

Theorem 6. Let X = Y = (R, B(R)), and let μ ∈ GX be absolutely continuous with respect to the 
Lebesgue measure m on B(R) (i.e. m(A) = 0 =⇒ μ(A) = 0 for any A ∈ ΣX). We then obtain 
GX,Y

−1〈〈μ, ev{0}
−1({1})

〉〉
/∈ ΣX�Y .

Proof. We write K = GX,Y
−1〈〈μ, ev{0}

−1({1})
〉〉

. We assume K = 〈h, U〉 ∈ ΩX,Y holds for some injection 
h : N → X and subset U ⊆ RN. We then have U �= RN, ∅ because K is neither the whole space Meas(X, Y )
nor the empty function space. Hence, there is a pair of sequences 〈sn〉n∈N

∈ RN and 〈tn〉n∈N
∈ RN such that 

〈sn〉n∈N
∈ U and 〈tn〉n∈N

/∈ U .
We consider a measurable function f ∈ Meas(X, Y ). We give the functions f1 and f2 by replacing the 

output of f at each h(n) to sn and tn (n ∈ N) respectively, that is,

f1 = f +
∑
n∈N

(sn − f(h(n))) · χ{h(n)}, f2 = f +
∑
n∈N

(tn − f(h(n))) · χ{h(n)}.

Here, for each n ∈ N, χ{h(n)} is the indicator function of the closed subset {h(n)}, and hence it is a 
measurable function. Since Meas(X, Y ) (i.e. the set of Borel measurable functions on R) is closed under 
scalar multiplication and countable addition, the functions f1 and f2 are measurable. We obtain f1 ∈ K

and f2 /∈ K since 〈f1(h(n))〉n∈N
= 〈sn〉n∈N

∈ U and 〈f2(h(n))〉n∈N
= 〈tn〉n∈N

/∈ U .
However, f1 ∈ K ⇐⇒ f2 ∈ K must hold. From the definition of f1 and f2, { x ∈ X | f1(x) �= f2(x) } is 

a subset of {h(n)}n∈N, and hence it is countable. We then have μ({ x ∈ X | f1(x) �= f2(x) }) = 0 since μ is 
absolutely continuous with respect to m. Since K =

{
g ∈ Meas(X,Y )

∣∣ μ(g−1({0})) = 1
}
, we obtain,

f1 ∈ K ⇐⇒ μ(f1
−1({0})) = 1

⇐⇒ μ(f1
−1({0}) \ { x ∈ X | f1(x) �= f2(x) }) = 1

⇐⇒ μ(f2
−1({0})) = 1 ⇐⇒ f2 ∈ K.

This is a contradiction. Hence, there is no h and U such that K = 〈h, U〉 ∈ ΩX,Y . From the definition of 
ΩX,Y , we have K /∈ ΩX,Y . Thus, we conclude K /∈ ΣX�Y . �
5. Concluding remarks

The proof that the Giry monad is strong with respect to the canonical symmetric monoidal closed 
structure (⊗, 1, �) in the preprint [11] has the following error: The statement of [11, Theorem 3.1] is just 
the naturality of stG×X,Y ◦ id|X|×|Y| : X ⊗ GY → G(X × Y ). Here we remark stG×X,Y is the tensorial strength 
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for G with respect to the cartesian product on Meas, and id|X|×|Y| obviously forms a symmetric monoidal 
natural transformation X ⊗Y → X ×Y . However, the above statement is mistaken for the existence of the 
natural transformation of the type X ⊗ GY → G(X ⊗ Y ) in the proof of existence of the tensorial strength 
for the Giry monad G with respect to the canonical symmetric monoidal closed structure (⊗, 1, �).

If there is a symmetric monoidal closed structure (⊗̇, 1, �̇) on Meas with respect to which makes the Giry 
monad strong, then there is a strong symmetric monoidal functor U from (⊗̇, 1, �̇) to the canonical sym-
metric monoidal closed structure (⊗, 1, �). Moreover, by converting to the “normal form” discussed in the 
last two paragraphs of Section 2, the σ-algebra ΣX⊗̇Y of the space X⊗̇Y satisfies ΣX×Y � ΣX⊗̇Y � ΣX⊗Y . 
We have not found yet an intermediate symmetric monoidal closed structure on Meas which is intermediate 
between the cartesian monoidal structure and the canonical symmetric monoidal closed structure.
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