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étale groupoid algebra to be a prime ring. As an application we recover the 
known primeness results for inverse semigroup algebras and Leavitt path algebras. 
It turns out that primeness of the algebra is connected with the dynamical 
property of topological transitivity of the groupoid. We obtain analogous results 
for semiprimeness.
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1. Introduction

The author introduced in [37] a purely algebraic analogue of étale groupoid C∗-algebras [33,34], both 
to serve as a unifying factor between the theories of Leavitt path algebras [2] and graph C∗-algebras [21]
and to provide a new approach to inverse semigroup algebras. In recent years, there has been a lot of work 
around étale groupoid algebras [5,6,8–12,14–17,19,24,38–40].

The groupoid and inverse semigroup interaction has been, in this author’s opinion, a two-way street. The 
simplicity criteria for algebras of Hausdorff groupoids [10,15] enabled the author [39] to make progress on 
an old question of Douglas Munn about which contracted inverse semigroup algebras are simple [28]. On the 
other hand, inspired by work of Domanov [22] and Munn [27,29,31] for inverse semigroup algebras, the author 
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made significant progress toward the study of primitivity and semiprimitivity of groupoid algebras [39]. In 
particular, the primitivity results for Leavitt path algebras [4] were given a more conceptual explanation.

In this paper, we turn to the related question of when a groupoid algebra is a prime or semiprime ring; 
recall that a ring is prime if 0 is a prime ideal and it is semiprime if it has no nilpotent ideals. Of course 
(semi)primitive rings are (semi)prime, but the converse is not true. In [4] it was observed that, for countable 
graphs satisfying condition (L), primitivity and primeness were equivalent but that things changed for 
infinite graphs. This too deserves a conceptual explanation.

Inspired by results of Munn [30] we develop some necessary conditions and some sufficient conditions 
for an étale groupoid algebra to be a prime or semiprime ring. Note that group algebras are particular 
cases of étale groupoid algebras and primeness and semiprimeness for group algebras was characterized long 
ago [20,32]. Our conditions are general enough to recover all the known results for both inverse semigroup 
algebras and for Leavitt path algebras. And, as is often the case, the proofs for groupoids are easier than 
the original inverse semigroup arguments.

It turns out that both primeness and primitivity are related to dynamical properties of the groupoid. 
Generalizing the notion of topological transitivity from dynamical systems, we say that an étale groupoid is 
topologically transitive if each non-empty open invariant subspace of the unit space is dense. If the groupoid 
has a dense orbit, then it is topologically transitive; the converse holds for second countable groupoids by 
a Baire category argument. For an effective Hausdorff groupoid, it turns out that primitivity of its algebra 
over a field is equivalent to having a dense orbit [39] and it is shown here that primeness is equivalent to 
topological transitivity. In particular, for second countable Hausdorff effective groupoids, primitivity and 
primeness are equivalent. This explains the results of [4] because a Leavitt path algebra satisfies condition 
(L) precisely when the associated groupoid is effective and the groupoid is second countable when the graph 
is countable.

For more general groupoids, topological transitivity is not enough for primeness. We can show that if 
there is a dense orbit whose isotropy group has a prime group algebra (i.e., has no non-trivial normal 
subgroup of finite order), then the groupoid algebra (over an integral domain) is prime. This generalizes 
Munn’s result for (0-)bisimple inverse semigroup algebras [30].

It is an open question to characterize completely (semi)prime étale groupoid algebras (or even inverse 
semigroups algebras).

The paper is organized as follows. We begin with a section on groupoids, inverse semigroups and their 
algebras. In the next section we define topological transitivity for étale groupoids and establish some basic 
results concerning the notion. The following section turns to our necessary and our sufficient conditions for 
primeness and semiprimeness of groupoid algebras (unfortunately the conditions do not coincide). The final 
section recovers the results of [4] characterizing prime and primitive Leavitt path algebras from the more 
general groupoid results and recovers the results of Munn [30] for inverse semigroup algebras.

2. Groupoids, inverse semigroups and their algebras

This section contains preliminaries about groupoids, inverse semigroups and their algebras. Lawson [26]
is our recommended reference for inverse semigroup theory. For étale groupoids, we recommend [23,33,34]. 
Algebras of ample groupoids were introduced in [37]; see also [36] for some additional results not included 
in [37], as well as [18] where the notion was introduced independently.

2.1. Inverse semigroups

An inverse semigroup is a semigroup S such that, for all s ∈ S, there exists unique s∗ ∈ S with ss∗s = s

and s∗ss∗ = s∗. Notice that s∗s, ss∗ are idempotents. Also, note that (st)∗ = t∗s∗. Idempotents of S
commute and so E(S) is a subsemigroup. Moreover, it is a meet semilattice with respect to the ordering 
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e ≤ f if ef = e. In fact, S itself is ordered by s ≤ t if s = te for some idempotent e ∈ E(S) or, equivalently, 
s = ft for some f ∈ E(S). This partial order is compatible with multiplication and stable under the 
involution. If e ∈ E(S), then Ge = {s ∈ S | s∗s = e = ss∗} is a group called the maximal subgroup of S
at e. It is the group of units of the monoid eSe.

All groups are inverse semigroups, as are all (meet) semilattices. If X is a topological space, then the set 
of all homeomorphisms between open subsets of X is an inverse semigroup IX under the usual composition 
of partial functions. An inverse semigroup S has a zero element z, if zs = z = sz for all s ∈ S. Zero elements 
are unique when they exist and will often be denoted by 0. The zero element of IX is the empty partial 
bijection.

By an action of an inverse semigroup S on a space X, we mean a homomorphism θ : S −→ IX such that 
if we put Xe = dom(θ(e)), then ⋃

e∈E(S)

Xe = X.

This last condition is a non-degeneracy condition and implies, for instance, that a group must act by 
homeomorphisms.

If R is a commutative ring with unit, then the semigroup algebra RS of an inverse semigroup S is 
defined as the R-algebra with basis S and multiplication extending that of S via the distributive law. If S
is an inverse semigroup with zero element z, then the contracted semigroup algebra is R0S = RS/Rz. The 
contracted semigroup algebra construction amounts to amalgamating the zero of S with the zero of R and 
it is universal for zero-preserving representations of S into R-algebras.

2.2. Étale groupoids

In this paper, following Bourbaki, compactness will include the Hausdorff axiom. However, we do not 
require locally compact spaces to be Hausdorff. A topological groupoid G = (G (0), G (1)) is étale if its domain 
map d (or, equivalently, its range map r) is a local homeomorphism. In this case, identifying objects with 
identity arrows, we have that G (0) is an open subspace of G (1) and the multiplication map is a local 
homeomorphism. Details can be found in [23,33,35].

Following [33], an étale groupoid is called ample if its unit space G (0) is locally compact Hausdorff with 
a basis of compact open subsets. We shall say that an ample groupoid G is Hausdorff if G (1) is Hausdorff.

A local bisection of an étale groupoid G is an open subset U ⊆ G (1) such that both d |U and r |U are 
homeomorphisms. The local bisections form a basis for the topology on G (1) [23]. The set Γ(G ) of local 
bisections is an inverse monoid under the binary operation

UV = {uv | u ∈ U, v ∈ V, d(u) = r(v)}.

The semigroup inverse is given by U∗ = {u−1 | u ∈ U} and E(Γ(G )) = Γ(G (0)). The inverse monoid Γ(G )
acts on G (0) by partial homeomorphisms by putting

U · x =
{
y, if there is g ∈ U with d(g) = x, r(g) = y

undefined, else.

The set Γc(G ) of compact local bisections is an inverse subsemigroup of Γ(G ) (it is a submonoid if and only 
if G (0) is compact) [33]. Note that G is ample if and only if Γc(G ) is a basis for the topology on G (1) [23,33].

The isotropy subgroupoid of a groupoid G = (G (0), G (1)) is the subgroupoid Is(G ) with Is(G )(0) = G (0)

and
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Is(G )(1) = {g ∈ G (1) | d(g) = r(g)}.

The isotropy group of x ∈ G (0) is the group

Gx = {g ∈ G (1) | d(g) = x = r(g)}.

An étale groupoid is said to be effective if G (0) = Int(Is(G )(1)), the interior of the isotropy bundle. It is well 
known, and easy to prove, that an ample groupoid G is effective if and only if the natural action of Γc(G )
on G (0) is faithful.

If x ∈ G (0), then the orbit Ox of x consists of all y ∈ G (0) such that there is an arrow g with d(g) = x

and r(g) = y. The orbits form a partition of G (0). If G is ample, then the orbits of G are precisely the orbits 
for the natural action of Γc(G ) on G (0).

A subset X ⊆ G (0) is invariant if it is a union of orbits. Equivalently, X is invariant if and only if it is 
invariant under the natural action of Γc(G ) on G (0).

A key example of an étale groupoid is that of a groupoid of germs. Let S be an inverse semigroup acting 
on a locally compact Hausdorff space X. The groupoid of germs G = S � X is defined as follows. One 
puts G (0) = X and G (1) = {(s, x) ∈ S × X | x ∈ Xs∗s}/∼ where (s, x) ∼ (t, y) if and only if x = y

and there exists u ≤ s, t with x ∈ Xu∗u. Note that if S is a group, then there are no identifications. The 
∼-class of an element (s, x) is denoted [s, x]. The topology on G (1) has basis all sets of the form (s, U)
where U ⊆ Xs∗s is open and (s, U) = {[s, x] | x ∈ U}. One puts d([s, x]) = x, r([s, x]) = sx and defines 
[s, ty][t, y] = [st, y]. Inversion is given by [s, x]−1 = [s∗, sx]. Note that (s, Xs∗s) ∈ Γ(S �X) and if Xs∗s is 
compact, then (s, Xs∗s) ∈ Γc(S �X). Consult [23,33,37] for details.

2.3. Étale groupoid algebras

Fix now a commutative ring with unit R. The author [37] associated an R-algebra RG to each ample 
groupoid G as follows. We define RG to be the R-span in RG (1) of the characteristic functions χU of compact 
open subsets U of G (1). It is shown in [37, Proposition 4.3] that RG is spanned by the elements χU with 
U ∈ Γc(G ). If G (1) is Hausdorff, then RG consists of the locally constant R-valued functions on G (1) with 
compact support. Convolution is defined on RG by

ϕ ∗ ψ(g) =
∑

d(h)=d(g)

ϕ(gh−1)ψ(h).

The finiteness of this sum is proved in [37]. The fact that the convolution belongs to RG rests on the 
computation χU ∗ χV = χUV for U, V ∈ Γc(G ) [37]. Note that RG is a quotient of the inverse semigroup 
algebra RΓc(G ).

The algebra RG is unital if and only if G (0) is compact, but it always has local units (i.e., is a directed 
union of unital subrings) [37,38].

3. Topological transitivity of étale groupoids

Primeness of ample groupoid algebras turns out to be closely related to the dynamical property of topo-
logical transitivity. The definition is a straightforward adaptation to groupoids of a topologically transitive 
group action on a space. Fix an étale groupoid G .

Let us begin with two elementary propositions. The first one gives us a large source of open invariant 
subspaces.

Proposition 3.1. Let U ⊆ G (0) be open. Then r d−1(U) = dr−1(U) is open and invariant. It is, moreover, 
the smallest invariant subset containing U .
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Proof. First note that r d−1(U) is trivially open. Also it is invariant because if x ∈ r d−1(U) and g : x −→ y, 
then there exists h : z −→ x with z ∈ U and so gh : z −→ y shows that y ∈ r d−1(U). Similarly, dr−1(U)
is invariant. Obviously, U ⊆ r d−1(U) and r d−1(U) is contained in any invariant subset containing U . In 
particular, r d−1(U) ⊆ dr−1(U). By symmetry, we obtain the reverse containment. �

The next proposition observes that the interior and the closure of an invariant set are invariant.

Proposition 3.2. Let X ⊆ G (0) be invariant. Then Int(X) and X are also invariant.

Proof. Since X = G (0) \ Int(G (0) \ X) and invariant sets are closed under complementation, it suffices 
to handle the case of Int(X). Suppose x ∈ U ⊆ X with U open and let g : x −→ y be an arrow. Then 
y ∈ r d−1(U) ⊆ X, since X is invariant, and r d−1(U) is open. Thus y ∈ Int(X). �

The following proposition establishes the equivalence of a number of conditions, any of which could then 
serve as the definition of topological transitivity.

Proposition 3.3. Let G be an étale groupoid. Then the following are equivalent.

(1) Every pair of non-empty open invariant subsets of G (0) has non-empty intersection.
(2) Each non-empty open invariant subset of G (0) is dense.
(3) Each invariant subset of G (0) is either dense or nowhere dense.
(4) If ∅ 	= U, V ⊆ G (0) are open subsets, then d−1(U) ∩ r−1(V ) 	= ∅.
(5) G (0) is not a union of two proper, closed invariant subsets.

Proof. The first and last item are trivially equivalent by taking complements. Suppose that (4) holds and 
let X be an invariant subset. Then U = Int(X) is invariant by Proposition 3.2. Suppose U 	= ∅ and let 
V 	= ∅ be any open subset of G (0). By (4), there is an element g ∈ d−1(U) ∩ r−1(V ). Then g : x −→ y with 
x ∈ U ⊆ X and y ∈ V . Since X is invariant, y ∈ X and so X∩V 	= ∅. We conclude that X is dense. Trivially, 
(3) implies (2) since a non-empty open set is not nowhere dense. Also (2) implies (1) by definition of density. 
Assume now that (1) holds and let ∅ 	= U, V ⊆ G (0) be open. Then r d−1(U) and dr−1(V ) are non-empty, 
open invariant subsets by Proposition 3.1. So, by (1), there is an element x ∈ r d−1(U) ∩ dr−1(V ) and 
hence there are arrows h : y −→ x and g : x −→ z with y ∈ U and z ∈ V . Then gh ∈ d−1(U) ∩r−1(V ). This 
completes the proof. �

We define an étale groupoid G to be topologically transitive if the equivalent conditions of Proposition 3.3
hold. Note that if G is a discrete group acting on a locally compact Hausdorff space X, then the groupoid 
G �X is topologically transitive if and only if the action of G on X is topologically transitive in the usual 
sense. Topological transitivity is closely related to the existence of a dense orbit.

Lemma 3.4. If G has a dense orbit, then it is topologically transitive. If G (0) is locally compact, Hausdorff 
and second countable, then the converse holds (in fact, the set of points with dense orbit is co-meager).

Proof. Assume that Ox is dense and let U 	= ∅ be open and invariant. Then U ∩Ox 	= ∅ and hence Ox ⊆ U

by invariance of U . Thus U is dense and hence G is topologically transitive.
Suppose now that G is topologically transitive and G (0) is locally compact, Hausdorff and second count-

able. Let {Ui}∈N be a countable base for its topology. Let Vi = r d−1(Ui) and note that Vi is a non-empty, 
open invariant subset by Proposition 3.1 and hence dense by topological transitivity. Then V =

⋂∞
i=0 Vi

is dense by the Baire category theorem and its complement G (0) \ V is meager. Suppose that x ∈ V . We 
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claim that Ox is dense. Indeed, x ∈ Vi = r d−1(Ui) and so there is an arrow g : y −→ x with y ∈ Ui. Thus 
Ox ∩ Ui 	= ∅. As the Ui form a basis for the topology, we conclude that Ox is dense. �

I previously observed in [39] that for non-Hausdorff groupoids, density often needs to be replaced by a 
more subtle notion that depends on the base commutative ring R. We recall the definition. From now on G
will be an ample groupoid and R a commutative ring with unit. A subset X ⊆ G (0) is said to be R-dense
if, for each 0 	= f ∈ RG , there is an element g ∈ G (1) with f(g) 	= 0 and d(g) ∈ X. It is shown in [39, 
Prop. 4.2] that an R-dense set is dense and that the converse holds if G is Hausdorff. Moreover, there are 
examples of dense sets that are not R-dense in the non-Hausdorff setting.

4. Prime and semiprime étale groupoid algebras

Recall that a ring A is prime if IJ = 0 implies I = 0 or J = 0 for any ideals I, J of A. It is easy to see that 
this is equivalent to the condition that if axb = 0 for all x ∈ A, then a = 0 or b = 0. A ring A is semiprime
if I2 = 0 implies I = 0 for an ideal I or, equivalently, A contains no nilpotent ideals [25, Prop. 10.16]. At 
the level of elements, A is semiprime if axa = 0 for all x ∈ A implies a = 0. Note that any semiprimitive 
ring A (one with a trivial Jacobson radical) is semiprime. A commutative ring with unit is prime if and 
only if it is an integral domain; it is semiprime if and only if it is reduced (i.e., has no nilpotent elements). 
The following characterization of prime group rings is due to Connell, see [25, Chpt. 10, Sec. 4, Thm. A].

Theorem 4.1 (Connell). Let R be a commutative ring with unit and G a group. Then the group algebra RG

is prime if and only if R is an integral domain and G has no non-trivial finite normal subgroups.

The anologue of Connell’s result for semiprimeness is due to Passman, cf. [25, Chpt. 10, Sec. 4, Thm. B].

Theorem 4.2 (Passman). Let R be a commutative ring with unit and G a group. Then the group algebra 
RG is semiprime if and only if R is reduced and the order of any finite normal subgroup of G is not a 
zero-divisor in R.

Our first result shows that topological transitivity is a necessary condition for an étale groupoid algebra 
to be prime.

Proposition 4.3. Let R be a commutative ring with unit and let G be an ample groupoid. If RG is prime, 
then R is an integral domain and G is topologically transitive.

Proof. Suppose that RG is prime and let a, b ∈ R with ab = 0. Let ∅ 	= K ⊆ G (0) be compact open. Then 
aχK ∗ f ∗ bχK = ab(χK ∗ f ∗ χK) = 0 for any f ∈ RG . Thus aχK = 0 or bχK = 0 and so we conclude that 
a = 0 or b = 0. Thus R is an integral domain.

Fix ∅ 	= U, V ⊆ G (0) open invariant subsets. Let ∅ 	= K ⊆ U and ∅ 	= K ′ ⊆ V be compact open. Then we 
can find h ∈ RG such that χK ∗ h ∗ χK′ 	= 0. If α ∈ G (1) with χK ∗ h ∗ χK′(α) 	= 0, then α = α1α2α3 with 
χK(α1)h(α2)χK′(α3) 	= 0. But then α1 ∈ K, α3 ∈ K ′ and so α2 ∈ r−1(K) ∩ d−1(K ′) ⊆ r−1(U) ∩ d−1(V ). 
Thus G is topologically transitive by Proposition 3.3. �

Another necessary condition for primeness comes from the group algebras at isolated points of G (0). First 
we recall that if A is a prime ring, then each corner eAe, with e 	= 0 an idempotent, is prime. Indeed, if 
a, b ∈ eAe \{0} and axb 	= 0 with x ∈ A, then a(exe)b = axb 	= 0 and exe ∈ eAe. Similarly, if A is semiprime, 
then eAe is semiprime.

Proposition 4.4. Let RG be a (semi)prime ring. Then RGx is a (semi)prime ring for each isolated point 
x ∈ G (0).
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Proof. Observe that 0 	= e = χ{x} is an idempotent and eRG e ∼= RGx (cf. [39, Prop. 4.7]). �
Next we characterize primeness for effective Hausdorff groupoids.

Theorem 4.5. Let G be an effective Hausdorff ample groupoid and R a commutative ring with unit. Then 
RG is prime if and only if R is an integral domain and G is topologically transitive.

Proof. The necessity of the conditions follows from Proposition 4.3. For the sufficiency, let I, J ⊆ RG be 
non-zero ideals. Then, by [39, Prop. 3.3], there exist a, b ∈ R \ {0} and ∅ 	= U, V ⊆ G (0) compact open such 
that aχU ∈ I and bχV ∈ J . By Proposition 3.3, there is an arrow g ∈ r−1(U) ∩ d−1(V ). Let K ∈ Γc(G )
with g ∈ K. Then aχU ∗ χK ∗ bχV = abχUKV 	= 0 as R an integral domain implies ab 	= 0 and g ∈ UKV . 
Thus IJ 	= 0 and hence RG is prime. �

It was shown in [39] that if k is a field and G is an effective Hausdorff groupoid, then kG is primitive (i.e., 
has a faithful irreducible representation) if and only if G has a dense orbit. Primitivity is a stronger notion 
than primeness, but in light of Theorem 4.5 and the result just mentioned, we see that they are equivalent 
for second countable effective Hausdorff groupoids over a field.

Corollary 4.6. Let G be an effective Hausdorff ample groupoid with G (0) second countable and k a field. Then 
kG is prime if and only if it is primitive.

Proof. By Theorem 4.5, kG is prime if and only if G is topologically transitive and by [39, Thm. 4.10] kG

is primitive if and only if G has a dense orbit. But when G (0) is second countable, these are equivalent 
conditions by Lemma 3.4. �

An action of a discrete group G on a locally compact Hausdorff space X is said to be topologically free if 
the fixed point set of each non-identity element of G is nowhere dense. The action groupoid G �X is well 
known to be effective if and only if the action is topologically free, cf. [39, Prop. 5.6]. Let Cc(X, R) be the 
ring of compactly supported, locally constant functions from X to R equipped with the pointwise operations; 
so Cc(X, R) is the algebra of X viewed as a groupoid of identity morphisms. Then it is well known that the 
crossed product algebra Cc(X, R) � G is the algebra R[G �X]. Thus Theorem 4.5, Corollary 4.6 and [39, 
Thm. 4.10] have the following corollary.

Corollary 4.7. Let G be a discrete group acting on a Hausdorff space X with a basis of compact open 
sets. Assume that the action of G is topologically free and let R be a commutative ring with unit. Then 
Cc(X, R) � G is prime if and only if R is an integral domain and the action of G on X is topologically 
transitive. If R is a field, then Cc(X, R) �G is primitive if and only if G has a dense orbit on X. If X is 
second countable and R is a field, then Cc(X, R) �G is prime if and only if it is primitive.

Note that it was shown in [39] that if G is Hausdorff and effective, and R is semiprimitive, then RG is 
semiprimitive. The corresponding result is also true for semiprimeness.

Theorem 4.8. Let R be a commutative ring with unit and G an effective Hausdorff ample groupoid. Then 
RG is semiprime if and only if R is reduced.

Proof. Necessity is clear since if r ∈ R with r2 = 0 and ∅ 	= U ⊆ G (0) is compact open, then rχU ∗f ∗rχU =
r2(χU ∗f ∗χU ) = 0 for any f ∈ RG and hence if RG is semiprime, then r = 0. Thus R is reduced. Conversely, 
if R is reduced and 0 	= I is an ideal of RG , then by [39, Prop. 3.3] there exists a ∈ R\{0} and ∅ 	= U ⊆ G (0)

compact open with aχU ∈ I. Then aχU ∗ aχU = a2χU 	= 0 as R is reduced. Thus I2 	= 0. We conclude that 
RG is semiprime. �
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Our next result, which is one of the main results of the paper, gives a sufficient condition for an ample 
groupoid algebra to be prime. In the proof, we will use the well-known fact that if G is an ample groupoid 
with finitely many objects and one orbit, then RG ∼= Mn(RG) where n is the number of objects of G and 
G is an isotropy group of G (G is well defined up to isomorphism), cf. [40].

Theorem 4.9. Let G be an ample groupoid and R a commutative ring with unit. Suppose that G contains an 
R-dense orbit Ox such that RGx is prime (i.e., R is an integral domain and Gx has no finite non-trivial 
normal subgroups). Then RG is a prime ring.

Proof. Let 0 	= f, g ∈ RG . Since Ox is R-dense, we can find α, β ∈ G (1) with f(α) 	= 0 	= g(β) and 
r(α), d(β) ∈ Ox. Choose γ : r(α) −→ x and γ′ : x −→ d(β) and let K, K ′ ∈ Γc(G ) with γ ∈ K and 
γ′ ∈ K ′. Then χK ∗ f(γα) = f(α) 	= 0, g ∗ χK′(βγ′) = g(β) 	= 0 and it suffices to find h ∈ RG with 
(χK ∗ f) ∗ h ∗ (g ∗ χK′) 	= 0. Thus, replacing f by χK ∗ f and g by g ∗ χK′ we may assume without loss of 
generality that f̃ = f |r−1(x) 	= 0 	= g|d−1(x) = g̃.

Since r−1(x) and d−1(x) are closed and discrete, they intersect any compact subset of G (1) in finitely 
many points. Since f and g are finite linear combinations of characteristic functions of compact open subsets, 
it follows that f̃ , ̃g are finitely supported. Let

X = d(f̃−1(R \ {0})) ∪ r(g̃−1(R \ {0})) ∪ {x}

and observe that X is finite. Let H be the subgroupoid of G with H (0) = X, H (1) = G (1) ∩ d−1(X) ∩
r−1(X); notice that it inherits the discrete topology from G . We can view f̃ , ̃g as elements of RH . Since 
H is a discrete groupoid with one orbit (by construction each element of X is in the orbit of x) and finitely 
many objects, RH ∼= M|X|(RGx) (note that G and H have the same isotropy group at x by construction). 
As RGx is a prime ring, M|X|(RGx) is prime, cf. [25, Proposition 10.20]. Thus we can find h̃ ∈ RH with 
f̃ ∗ h̃ ∗ g̃ 	= 0.

Let Y = h̃−1(R \ {0}) and note that Y is finite. For each γ ∈ Y , choose Kγ ∈ Γc(G ) such that γ ∈ Kγ . 
Since G (0) is Hausdorff and X is finite, we can find Uγ , Vγ ⊆ G (0) compact open such that Uγ ∩X = {r(γ)}
and Vγ ∩ X = {d(γ)}. Using that Kγ is a local bisection and replacing Kγ by UγKγVγ , we may assume 
without loss of generality that Kγ ∩ H (1) = {γ}. Let us put

h =
∑
γ∈Y

h̃(γ)χKγ
.

Then h ∈ RG . We claim that if η ∈ (f̃ ∗ h̃ ∗ g̃)−1(R \ {0}), then f ∗ h ∗ g(η) = f̃ ∗ h̃ ∗ g̃(η) 	= 0.
Indeed, since f̃ is supported on r−1(x) and g̃ is supported on d−1(x), we conclude that η ∈ Gx. Note 

that

f ∗ h ∗ g(η) =
∑

α1α2α3=η

f(α1)h(α2)g(α3). (4.1)

If α1α2α3 = η with f(α1)h(α2)g(α3) 	= 0, then r(α1) = r(η) = x and d(α3) = d(η) = x and so 
d(α2), r(α2) ∈ X by construction. Therefore, α1, α2, α3 ∈ H (1). Moreover, since the support of h is con-
tained in 

⋃
γ∈Y Kγ and H (1) ∩Kγ = {γ}, for γ ∈ Y , we obtain that α2 ∈ Y and

f(α1)h(α2)g(α3) = f̃(α1)h̃(α2)g̃(α3).

Conversely, if α1, α2, α3 ∈ H (1) with α1α2α3 = η, then f̃(α1)h̃(α2)g̃(α3) = f(α1)h(α2)g(α3) by construc-
tion. It follows that the right hand side of (4.1) is precisely f̃ ∗ h̃ ∗ g̃(η). This completes the proof. �
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Next we prove an analogue of Theorem 4.9 for semiprimeness.

Theorem 4.10. Let G be an ample groupoid and R a commutative ring with unit. Suppose that the set Z of 
x ∈ G (0) such that RGx is semiprime is R-dense. Then RG is a semiprime ring.

Proof. Let 0 	= f ∈ RG . We need to show that f ∗ h ∗ f 	= 0 for some h ∈ RG . Observe that the set Z is 
invariant since elements of the same orbit have isomorphic isotropy groups. Since Z is R-dense, we can find 
α ∈ G (1) with f(α) 	= 0 and x = d(α) ∈ Z. Let K ∈ Γc(G ) with α−1 ∈ K. Then χK ∗ f(x) = f(α) 	= 0 and 
it suffices to find h ∈ RG such that (χK ∗ f) ∗h ∗ (χK ∗ f) 	= 0. Thus, replacing f by χK ∗ f we may assume 
without loss of generality that f̃ = f |Gx

	= 0.
Note that f̃ is finitely supported since Gx is closed and discrete. Let

X = d(f |−1
r−1(x)(R \ {0})) ∪ r(f |−1

d−1(x)(R \ {0})) ∪ {x}

and observe that X is finite since the fibers of d and r are closed and discrete. We view f̃ as an element of 
RGx. Since RGx is semiprime, we can find h̃ ∈ RGx with f̃ ∗ h̃ ∗ f̃ 	= 0.

Let Y = h̃−1(R \ {0}) and note that Y is finite. For each γ ∈ Y , choose Kγ ∈ Γc(G ) such that γ ∈ Kγ . 
Since G (0) is Hausdorff and X is finite, we can find U ⊆ G (0) compact open such that U ∩X = {x}. Using 
that Kγ is a local bisection and replacing Kγ by UKγU , we may assume without loss of generality that 
Kγ ∩ d−1(X) ∩ r−1(X) = {γ}. Set

h =
∑
γ∈Y

h̃(γ)χKγ
.

Then h ∈ RG . We claim that if η ∈ (f̃ ∗ h̃ ∗ f̃)−1(R \ {0}), then f ∗ h ∗ f(η) = f̃ ∗ h̃ ∗ f̃(η) 	= 0.
Observe that

f ∗ h ∗ f(η) =
∑

α1α2α3=η

f(α1)h(α2)f(α3). (4.2)

If α1α2α3 = η with f(α1)h(α2)f(α3) 	= 0, then r(α1) = r(η) = x and d(α3) = d(η) = x, whence 
d(α2), r(α2) ∈ X by construction. Moreover, since the support of h is contained in 

⋃
γ∈Y Kγ , by construction 

α2 ∈ Gx and hence

f(α1)h(α2)f(α3) = f̃(α1)h̃(α2)f̃(α3).

Conversely, if η = α1α2α3 with α1, α2, α3 ∈ Gx, then f̃(α1)h̃(α2)f̃(α3) = f(α1)h(α2)f(α3). It follows that 
the right hand side of (4.2) is precisely f̃ ∗ h̃ ∗ f̃(η). This completes the proof. �
5. Applications

In this section, we show that the results of the previous section are strong enough to recover the results 
of Munn [30] on primeness of inverse semigroup algebras and of Abrams, Bell and Rangaswamy on prime 
Leavitt path algebras [4].

5.1. Leavitt path algebras

To recover the description of prime Leavitt path algebras from [4], we need to combine Theorem 4.5 with 
Theorem 4.9. Let E = (E(0), E(1)) be a (directed) graph (or quiver) with vertex set E(0) and edge set E(1). 
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We use s(e) for the source of an edge e and r(e) for the range, or target. A vertex v is called a sink if 
s−1(v) = ∅ and it is called an infinite emitter if | s−1(v)| = ∞. The length of a finite (directed) path α is 
denoted |α|.

The Leavitt path algebra [1–3,7] LR(E) of E with coefficients in the unital commutative ring R is the 
R-algebra generated by a set {v ∈ E(0)} of pairwise orthogonal idempotents and a set of variables {e, e∗ |
e ∈ E(1)} satisfying the relations:

(1) s(e)e = e = e r(e) for all e ∈ E(1);
(2) r(e)e∗ = e∗ = e∗ s(e) for all e ∈ E(1);
(3) e∗e′ = δe,e′ r(e) for all e, e′ ∈ E(1);
(4) v =

∑
e∈s−1(v) ee

∗ whenever v is not a sink and not an infinite emitter.

It is well known that LR(E) = RGE for the graph groupoid GE defined as follows. Let ∂E consist of all 
one-sided infinite paths in E as well as all finite paths α ending in a vertex v that is either a sink or an 
infinite emitter. If α is a finite path in E (possibly empty), put Z(α) = {αβ ∈ ∂E} (if α is the empty path 
εv at v, this should be interpreted as those elements of ∂E with initial vertex v). Note that Z(α) is never 
empty. Then a basic open neighborhood of ∂E is of the form Z(α) \ (Z(αe1) ∪ · · · ∪Z(αen)) with ei ∈ E(1), 
for i = 1, . . . n (and possibly n = 0). These neighborhoods are compact open.

The graph groupoid GE is the given by:

• G
(0)
E = ∂E;

• G
(1)
E = {(αγ, |α| − |β|, βγ) ∈ ∂E × Z × ∂E} | |α|, |β| < ∞}.

One has d(η, k, γ) = γ, r(η, k, γ) = η and (η, k, γ)(γ, m, ξ) = (η, k+m, ξ). The inverse of (η, k, γ) is (γ, −k, η).
A basis of compact open subsets for the topology on G (1)

E can be described as follows. Let α, β be finite 
paths ending at the same vertex and let U ⊆ Z(α), V ⊆ Z(β) be compact open with αγ ∈ U if and only if 
βγ ∈ V . Then the set

(U,α, β, V ) = {αγ, |α| − |β|, βγ) | αγ ∈ U, βγ ∈ V }

is a basic compact open set of G
(1)
E . Of particular importance are the compact open sets Z(α, β) =

(Z(α), α, β, Z(β)) = {(αγ, |α| − |β|, βγ) ∈ G (1)} where α, β are finite paths ending at the same vertex. 
It is well known, and easy to see, that GE is Hausdorff.

There is an isomorphism LR(E) −→ RGE sending v ∈ E(0) to the characteristic function of Z(εv, εv)
and, for e ∈ E(1), sending e to the characteristic function of Z(e, εr(e)) and e∗ to the characteristic function 
of Z(εr(e), e), cf. [13,16,18,39] or [19, Example 3.2].

By a cycle in a directed graph E, we mean a simple, directed, closed circuit. A cycle is said to have an 
exit if some vertex on the cycle has out-degree at least two. It is well known that the isotropy group at an 
element γ ∈ ∂E is trivial unless γ is eventually periodic, that is, γ = ραα · · · with α a cycle, in which case 
the isotropy group is infinite cyclic, cf. [40].

If u, v ∈ E(0), we write u ≥ v if there is a path (possibly empty) from u to v. The graph E is said to be 
downward directed (or to satisfy condition (MT3), cf. [2,4]) if, for each pair of vertices u, v ∈ E(0), there is 
a vertex w such that u, v ≥ w. Our first goal is to verify that condition (MT3) is satisfied if and only if GE

is topologically transitive.

Proposition 5.1. The graph E is downward directed if and only if GE is topologically transitive.

Proof. Notice that α, β ∈ ∂E belong to the same orbit if and only if they have a common suffix. Suppose first 
that GE is topologically transitive and let u, v ∈ E(0). Then r−1(Z(εu)) ∩d−1(Z(εv)) 	= ∅ by Proposition 3.3. 
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Hence we can find (αγ, |α| −|β|, βγ) ∈ G
(1)
E with βγ ∈ Z(εv) and αγ ∈ Z(εu). Then if w is the initial vertex 

of γ, we have that α, β are paths from u, v to w, respectively. Thus E is downward directed.
Suppose now that E is downward directed. Suppose first that E has a sink w. Then since E is downward 

directed, it follows v ≥ w for all v ∈ E(0) and in particular w is the unique sink. Then the orbit of εw is 
dense. Indeed, if ∅ 	= V = Z(α) \ (Z(αe1) ∪ · · · ∪ Z(αen)), then either α ends at w and so α ∈ V ∩ Oεw or 
there is an edge e 	= e1, . . . , en with αe a path. Then there is a path β from r(e) to w and αeβ ∈ V ∩ Oεw . 
Thus Oεw is dense and hence GE is topologically transitive by Proposition 3.4.

Assume now that E does not have a sink. Let ∅ 	= U ⊆ ∂E be open and invariant. Let ∅ 	= V =
Z(α) \ (Z(αe1) ∪ · · · ∪ Z(αen)) be a basic neighborhood and let ∅ 	= W = Z(β) \ (Z(βf1) ∪ · · · ∪ Z(βfm))
be a basic neighborhood contained in U . Then since V and W are non-empty, there are edges e, f with αe
and βf paths and e 	= ei and f 	= fj for all i, j. Then, by the downward directed property, we can find 
w ∈ E(0) with r(e), r(f) ≥ w. Let γ ∈ ∂E begin at w. Then αeργ, βfσγ ∈ ∂E for some paths ρ, σ. Then 
αeργ ∈ V and βfσγ ∈ W ⊆ U and hence αeργ ∈ U ∩ V , as U is invariant. Therefore, U is dense and so GE

is topologically transitive in this case, as well. �
The graph E is said to satisfy condition (L) if every cycle has an exit. It is well known that GE is effective 

if and only if each cycle has an exit, cf. [16]. Since many of the references assume that E is countable or 
row-finite, we shall prove it here. Note that if a Hausdorff étale groupoid has a dense set of objects with 
trivial isotropy groups, then it is effective. Indeed, if U is an open subset contained in the isotropy bundle, 
then V = U \ G (0) is open (as G (0) is closed). If V 	= ∅, then there exists x ∈ d(V ) with trivial isotropy 
group. But then if g ∈ V with d(g) = x, we have g ∈ V ∩ G (0), a contradiction. Thus G (0) is the interior of 
the isotropy bundle.

Proposition 5.2. The graph E satisfies condition (L) if and only if GE is effective.

Proof. Suppose that E does not satisfy condition (L) and that α is a cycle with no exit. In particular, 
no vertex of α is a sink or infinite emitter. Then Z(α, α) contains precisely the elements of the form 
(αα · · · , k|α|, αα · · · ) ∈ Gαα··· with k ∈ Z and hence GE is not effective. Conversely, assume that E satisfies 
condition (L). Note that since every cycle has an exit, each basic open subset of ∂E contains an element 
τ that is not eventually periodic. As the non-eventually periodic elements have trivial isotropy and GE is 
Hausdorff, it follows that GE is effective. �

We now prove the following theorem from [4].

Theorem 5.3. Let E be a graph and R be a commutative ring with unit. Then LR(E) is a prime ring if and 
only if R is an integral domain and E is downward directed.

Proof. If LR(E) is a prime ring, then R is an integral domain and E is downward directed by Proposition 4.3
and Proposition 5.1. Suppose, conversely, that R is an integral domain and E is downward directed. There 
are two cases. Suppose first that E satisfies condition (L). Then GE is a Hausdorff, effective and topologically 
transitive groupoid by Proposition 5.1 and Proposition 5.2. Thus LR(E) is prime by Theorem 4.5. On the 
other hand, suppose that E contains a cycle α with no exit. Let u ∈ E(0) and v be a vertex of α. Then, 
since E is downward directed, there exists w ∈ E(0) with u, v ≥ w. But w is a vertex of α because α has no 
exit. Thus every vertex u has a path to a vertex of α. In particular, E has no sinks and if β is any finite 
path in E, then βταα · · · ∈ ∂E for some path τ . It then follows from the definition of the topology on ∂E
that the orbit of αα · · · is dense. (Recall that orbit of γ ∈ ∂E consists of all strings with a common suffix 
with γ.) But the isotropy group at αα · · · is infinite cyclic and so RGαα··· ∼= R[x, x−1] is an integral domain 
and hence a prime ring. Therefore, LR(E) is a prime ring by Theorem 4.9. This completes the proof. �
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Note that since Laurent polynomial rings over reduced rings are reduced, we have the following corollary 
of Theorem 4.10.

Corollary 5.4. Let E be a graph and R a commutative ring with unit. Then LR(E) is semiprime if and only 
if R is reduced.

The following example is from [4]. Let X be an uncountable set and let E be the graph whose vertices 
are all finite subsets of X and there is an edge from A to B if A is a proper subset of B. Note that all 
vertices are infinite emitters and there are no sinks. Thus every finite and infinite path belongs to ∂E. This 
graph is clearly downward directed since there is a path (possibly empty) from A to B if and only if A is 
a subset of B and we can take unions of finite sets. Therefore, LR(E) is prime for any integral domain. 
However, GE has no dense orbit. Indeed, if γ ∈ ∂E and Y is the set of elements of X that appear in some 
vertex of γ, then Y is countable (being a countable union of finite sets). So there exists x ∈ X \ Y . But 
then Z(ε{x}) is an open set missing the orbit of elements with suffix γ (as the vertices of an element of ∂E
form an increasing chain). It follows that, for any field k, we have that Lk(E) is prime but not primitive 
(since primitivity for a groupoid algebra implies the existence of a dense orbit by [39, Prop. 4.9]). This was 
already observed in [4] via a groupoid-free argument. As E has no cycles, and hence satisfies condition (L), 
we see that GE is an effective Hausdorff groupoid that is topologically transitive with no dense orbit and 
hence second countability really is required in Corollary 4.6.

We shall present here a proof of the primitivity criterion for Leavitt path algebras from [4] using the 
results of [39], as we neglected to do so in that paper (we just said it was straightforward to do so). A graph 
E is said to satisfy the countable separation property (CSP) if there is a countable (finite or countably 
infinite) set of vertices X such that, for all v ∈ E(0), there exists x ∈ X with v ≥ x. The result of [4] is the 
following, which we prove using groupoids.

Theorem 5.5. Let E be a directed graph and k a field. Then Lk(E) is primitive if and only if:

(1) E satisfies condition (L);
(2) E is downward directed;
(3) E has the countable separation property.

Proof. Assume first that Lk(E) ∼= kGE is primitive. Then kGE is prime and hence GE is topologically 
transitive by Proposition 4.3. Thus E is downward directed by Proposition 5.1. If α is a cycle in E without 
an exit, then Z(α) is a neighborhood of γ = αα · · · containing no other element of ∂E and so γ is isolated. 
Therefore kGγ is primitive by [39, Prop. 4.7]. But Gγ

∼= Z [40] and so kGγ
∼= k[x, x−1], which is not 

primitive. We conclude that E satisfies condition (L). Thus GE is an effective Hausdorff groupoid and hence 
has a dense orbit by [39, Thm. 4.10]. Let γ ∈ ∂E belong to this dense orbit and let X be the set of vertices 
of γ. Note that X is countable. If v ∈ E(0), then Z(εv) intersects the orbit of Γ. Hence we can find α, β
finite paths such that γ = βτ and ατ ∈ Z(εv). But then α is a path from v to a vertex of γ. Thus E has 
the countable separation property.

Conversely, suppose that E satisfies condition (L), is downward directed and has CSP. Then GE is effective 
and Hausdorff and so it suffices to show that it has a dense orbit by [39, Thm. 4.10]. Let X be a countable 
set as in the definition of the countable separation property. First assume that X is finite. Then since E is 
downward directed, we can find v with x ≥ v for all x ∈ X. By definition of CSP, it follows that w ≥ v for 
all w ∈ E(0). Choose γ ∈ ∂E originating from v. Then any finite path α can be continued to a path ending 
at v and hence αβγ ∈ ∂E for some finite path β. It follows from the definition of the topology on ∂E that 
the orbit of γ is dense. Next suppose that X = {v1, v2, . . .} is countably infinite. Set x1 = v1 and assume 
inductively we have chosen x1, . . . , xn such that x1 ≥ x2 ≥ · · · ≥ xn and vi ≥ xi for 1 ≤ i ≤ n. Then since 
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E is downward directed, we can find xn+1 with x1, . . . , xn, vn+1 ≥ xn+1. Thus we can find an infinite path 
γ = α1α2 · · · where αi is a directed path from xi to xi+1. We claim that the orbit of γ is dense. Again, any 
finite path α has a continuation to a vertex vn of X and hence, by construction, to a vertex xn of γ. Hence, 
any finite path has a continuation to an infinite path having a common suffix with γ. It follows from the 
definition of the topology that the orbit of γ is dense. This completes the proof. �
5.2. Inverse semigroup algebras

To apply the above results to inverse semigroups, we need to discuss first how to realize an inverse 
semigroup algebra as an ample groupoid algebra. Fix an inverse semigroup S for the rest of this subsection. 
First we recall the construction of the universal groupoid G (S) of an inverse semigroup and the contracted 
universal groupoid G0(S) for an inverse semigroup with zero. See [23,33,37,39] for details.

A character of a semilattice E is a non-zero homomorphism θ : E −→ {0, 1} where {0, 1} is a semilattice 
under multiplication. The spectrum of E is the space Ê of characters of E, topologized as a subspace of 
{0, 1}E . Note that Ê is Hausdorff with a basis of compact open sets. Indeed, if we put D(e) = {θ ∈ Ê |
θ(e) = 1} for e ∈ E(S), then the sets of the form D(e) ∩ D(e1)c ∩ · · ·D(en)c form a basis of compact 
open sets for the topology, where Xc denotes the complement of X. If e ∈ E, then the principal character
θe : E −→ {0, 1} is defined by

θe(f) =
{

1, if f ≥ e

0, else.

The principal characters are dense in Ê. If E has a zero element, then a character θ is called proper if 
θ(0) = 0 or, equivalently, θ 	= θ0. The set of proper characters will be denoted Ê0. Notice that D(0) = {θ0}
and so θ0 is always an isolated point of Ê.

Let S be an inverse semigroup. Then S acts on Ê(S). The domain of the action of s is D(s∗s). If 
θ ∈ D(s∗s), then (sθ)(e) = θ(s∗es). If S has a zero, then Ê(S)0 is invariant under S. The universal groupoid
of S is the groupoid of germs G (S) = S � Ê(S). Note that the isotropy group Gθe of a principal character 
θe is isomorphic to the maximal subgroup Ge and two principal characters θe, θf are in the same orbit if 
and only if there exists s ∈ S with s∗s = e and ss∗ = f (cf. [37]).

If S has a zero, we put G0(S) = S � Ê(S)0 and call it the contracted universal groupoid of S.
The following theorem is fundamental to the subject. See [37,39].

Theorem 5.6. Let S be an inverse semigroup and R a commutative ring with unit. Then RS ∼= RG (S). The 
isomorphism sends s ∈ S to χ(s,D(s∗s)). If S has a zero, then R0S ∼= RG0(S).

A semilattice E is pseudofinite [29] if, for all e ∈ E, the set of elements strictly below e is finitely 
generated as a lower set. In [37, Prop. 2.5], it was shown that this is equivalent to the principal characters 
being isolated points of Ê.

It is proved in [39] that the principal characters are R-dense in Ê(S) for any commutative ring with 
unit R. We recall that an inverse semigroup S (with zero) is said to be (0-)bisimple if, for all e, f ∈ E(S)
(non-zero), there exists s ∈ S with s∗s = e and ss∗ = f . In a (0-)bisimple inverse semigroup, all (non-zero) 
idempotents have isomorphic maximal subgroups, cf. [26]. The following result was originally proved by 
Munn [30].

Theorem 5.7. Let S be an inverse semigroup (with zero). Then if S is (0-)bisimple with maximal subgroup G

(at a non-zero idempotent) and R is a commutative ring with unit such that RG is prime, then RS (R0S) 
is prime. The converse holds if E(S) is pseudofinite.



B. Steinberg / Journal of Pure and Applied Algebra 223 (2019) 2474–2488 2487
Proof. We just handle the case without zero, as the case of semigroups with zero is identical. The hypoth-
esis that S is bisimple is equivalent to the principal characters forming a single orbit. Thus the principal 
characters form an R-dense orbit with isotropy group G and the first statement follows from Theorem 4.9.

Conversely, suppose that E(S) is pseudofinite and RS is prime. Then each principal character is isolated 
and the orbit of a principal character is an open invariant set. Since G (S) must be topologically transitive 
by Proposition 4.3, we deduce that there is only one orbit of principal characters. But this is equivalent to 
S being bisimple. Moreover, as each principal character is isolated, if G is the maximal subgroup of S, then 
RG is prime by Proposition 4.4. �

Let us consider the analogue for semiprimeness. The following result is due to Munn [30].

Theorem 5.8. Let S be an inverse semigroup (with zero) and R a commutative ring with unit. If RGe is 
semiprime for each idempotent e, then RS (R0S) is semiprime. The converse holds if E(S) is pseudofinite.

Proof. Since the principal characters are R-dense the sufficiency follows from Theorem 4.10. If E(S) is 
pseudofinite, then the principal characters are isolated and Proposition 4.4 provides the desired conclu-
sion. �

We remark that it is a long-standing, and most likely difficult, question to describe all prime or semiprime 
inverse semigroup algebras.
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