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For the p-Sylow subgroups U of the finite classical groups of untwisted Lie type, 
p an odd prime, we construct a monomial CU-module M which is isomorphic to 
the regular representation of CU by a modification of Kirillov’s orbit method called 
monomial linearisation. We classify a certain subclass of orbits of the U-action on 
the monomial basis of M consisting of so called staircase orbits and show, that 
every orbit module in M is isomorphic to a staircase one. Finally we decompose the 
André-Neto supercharacters of U into a sum of U-characters afforded by staircase 
orbit modules contained in M .

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the early sixties of the last century, A. Kirillov devised his orbit method (now known also as Kirillov 
theory) for his investigation of irreducible unitary representations of nilpotent and other classes of Lie 
groups. Starting point in this approach is the observation, that the action of Lie group on the dual of its 
Lie algebra provides a lot of information on representations of the group. For example for nilpotent groups 
Kirillov established a correspondence between irreducible unitary representations and the orbits (called 
coadjoint orbits) of the group acting on the dual of its Lie algebra. For a good exposition of this theory, 
see [22].

C. André modified in a long series of paper [1–6] the orbit method for his investigation on the characters 
of finite general unitriangular groups Un(q). It is known that the classification of the conjugacy classes and 
irreducible characters of Un(q) simultaneously for all q and n is a wild problem in the categorical sense. 
Indeed by [12] they are considered unknowable. More precisely Gudivok et al. showed in [17] that a nice 
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description of the conjugacy classes leads to a nice description of wild quivers. Hence it seems to be a good 
idea to replace the problem with an easier, doable one. André just did this: His basic characters share 
important properties with irreducible ones and he classified them.

N. Yan developed in [23] a completely algebraic and combinatorial construction of André’s basic char-
acters. He showed that these are afforded by orbits of Un(q) acting monomially on the space û of linear 
characters of its Lie algebra u. In addition he investigated biorbits of Un(q) acting on u, yielding certain 
unions of conjugacy classes of Un(q). Indeed he constructed, what nowadays is called a supercharacter theory, 
a term which was coined in [14] by Diaconis and Isaacs. Such a theory consists of a set of characters, called 
supercharacters, and a set of unions of conjugacy classes, called superclasses, such that each irreducible 
character is constituent of precisely one supercharacter, each conjugacy class is contained in precisely one 
superclass, the superclasses and supercharacters are in one by one correspondence and supercharacters are 
constant on superclasses.

To extend directly André’s or Yan’s method to the p-Sylow subgroups U of other finite classical groups 
does not work, basically since these are not algebra groups. André and Neto hence defined in [7,8,9] su-
percharacter theories for U of Lie type of type Bn, Cn, Dn by restricting certain supercharacters from the 
overlying full unitriangular group UN(q) to Un, (see e.g. [8, 3.4]), respectively intersecting superclasses of 
UN (q) with Un. Here we set N = 2n for Dynkin types Cn, Dn and N = 2n + 1 for type Bn. More recently 
in [10] André, Freitas and Neto and in [11] Andrews generalized this work extending it among other things 
to all finite classical groups of Lie type in a uniform way.

André-Yan supercharacters for UN(q) are afforded by orbit modules of a monomial action of UN (q) on 
û. The subgroup U of UN (q) does in general not act on the latter transitively anymore. The main goal of 
this paper is to decompose the restrictions to U of the relevant monomial UN (q)-orbit modules into a direct 
sum of monomial U -orbit modules.

In order to establish this main result we apply the concept of monomial linearisation of a group, introduced 
by the second named author in his doctoral thesis [21]. It may be considered as a modification of the original 
orbit method of Kirillov. The basic idea is to exhibit a special basis of the group algebra CG on which G acts 
monomially by right multiplication exhibiting many orbits. So we may decompose the regular representation 
CG into a direct sum of many orbit modules.

In this paper we obtain a monomial linearisation of the regular representation for the p-Sylow subgroups 
U of finite classical groups of untwisted Lie type Bn, Cn, Dn, where p is the characteristic of their underlying 
field and, throughout, is different from 2. We will not obtain a full classification of the orbits of U acting on 
the monomial basis of CU . However we will show that there exists a certain subset of the collection of the 
orbits, called staircase orbits, such that every orbit module is isomorphic to the orbit module of a staircase 
orbit. Then we shall produce a classification of the staircase orbits. In the final section we shall construct 
the elementary André-Neto supercharacters as characters afforded by certain unions of our orbits. From this 
we finally obtain the desired decomposition of the relevant monomial UN(q)-orbits into a disjoint union of 
U -orbits.

This paper is based on ideas developed by the second named author in his doctoral thesis [21], containing 
part of the results there. Here we provide among other things in particular a generalization to all classical 
groups of untwisted Lie type.

2. p-Sylow subgroups of finite classical groups

Let p be an odd prime and q be some power of p and let U be a p-Sylow subgroup of classical group 
G(q) over Fq. We restrict ourselves here to groups G(q) of untwisted Lie type, that is of type B, C and 
D defined over Fq. For our purpose it is convenient to set up these groups as subgroups of the canonical 
overlying full unitriangular groups. More precisely let n be a natural number and set N = 2n +1, ̃n = n +1
for Dynkin type Bn and N = 2n, ̃n = n for types Cn, Dn. Let G = Gn(q) be a finite group of Lie type Bn, 
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Cn or Dn defined over Fq. We identify G with a corresponding orthogonal or symplectic group contained in 
GLN (q) and construct the p-Sylow subgroup U of G as subgroup G ∩ UN (q) of the group UN (q) of upper 
unitriangular N ×N -matrices over Fq.

For any rectangular matrix A, we denote the (i, j)-th entry of A by Aij , the transpose of A by At and 
the (i, j)-th matrix unit by eij . Moreover support(A) = {(i, j) | Aij �= 0}. Thus

A =
∑

(i,j)∈support(A)

Aijeij

We let ε = −1, if G is of type Cn and n + 1 � i � N and set ε = 1 otherwise. We define the mirror 
map¯: {1, . . . , N} → {1, . . . , N} : i �−→ ī := N + 1 − i which mirrors every entry on N+1

2 . It satisfies ¯̄i = i, 
i < j ⇐⇒ ī > j̄, and i = j ⇐⇒ ī = j̄ for all i, j ∈ {1, . . . , N}. Setting

S =
n∑

i=1
eīi +

N∑
i=n+1

εeīi

we define the bilinear form 〈 , 〉 : FN
q ×FN

q → Fq : (v, w) → 〈v, w〉 = vtSw, where the vectors of FN
q are written 

as column vectors. Then S is the Gram matrix of 〈 , 〉 with respect to the natural basis EN = {e1, . . . , eN} of 
FN
q , that is Sij = 〈ei, ej〉. Since S is invertible, 〈 , 〉 is nondegenerate and is symmetric for Lie types Bn, Dn

and symplectic for type Cn.
Then the corresponding classical group G is given as group of invertible N × N matrices leaving 〈 , 〉

invariant.
For A ∈ MatN×N (q) we define AR = S−1AtS, then A �→ AR is an Fq-algebra antiautomorphism of 

MatN×N (q), the algebra of N ×N -matrices, and g ∈ GLn(q) is contained in G if and only if gR = g−1.
For 1 � i, j � N , we define εij = SīiSj̄j . Then εij = 1 unless G is of type Cn and 1 � i � n and 

n + 1 � j � N or n + 1 � i � N and 1 � j � n. In this case we have εij = −1.
A direct calculation lets us express the map −R explicitly on the matrix entries:

2.1 Lemma. Let A be a N × N -matrix. Then (AR)ij = εijAj̄ ī for all 1 � i, j � N . Moreover for types 
Bn, Dn, the matrix AR is obtained from A by reflecting the entries of A along the antidiagonal and in type 
Cn this holds up to a sign. In particular, 

(
UN (q)

)R = UN (q). Thus, if A is R-invariant, then Aij = 0 if and 
only if Aj̄ ī = 0. �
2.2 Remark. For A ∈ MatN×N (q), AAR is R-invariant and hence in particular the last assertion of the 
lemma above applies to it. �

In the following we frequently work with various linear subspaces of MatN×N (q) defined as sets of all 
matrices being supported in special subsets of {(i, j) | 1 � i, j � N}. To help with the bookkeeping of those 
we shall use specially designed descriptive symbols for these subsets:

2.3 Notation.

1) Let = {(i, j) | 1 � i, j � N} = Φ̃, and = {(i, j) ∈ | i < j} = Φ̃+.
2) We denote the diagonal by := {(i, j) ∈ | i = j} and half of the antidiagonal by := {(i, j) ∈

| i = j̄}.
3) Let = {(i, j) ∈ | i < j < ī} and = {(i, j) ∈ | j̄ < i < j}, illustrated as follows:
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Thus = ∪ ∪ .

4) Set = ∪ and = ∪ .
5) To simplify notation we define to be for types Bn, Dn and for type Cn. �

2.4 Lemma. Let u ∈ UN (q). Then u ∈ U = G ∩UN (q) if and only if (uuR)rs = 0 for all (r, s) ∈ and then 

for all (r, s) ∈ :

urs = −εrsus̄ r̄ −
∑

r<l<s

εlsurlus̄ l̄. (2.5)

Proof. Recall that u ∈ U if and only if u−1 = uR or equivalently uuR = uRu = 1. Since u ∈ UN (q), we have 
(uuR)ii = 1 for 1 � i � N Since uuR = (uuR)R we have (uuR)ij = εij(uuR)j̄ ī by 2.1, hence (uuR)ij = 0 if 

and only if (uuR)j̄ ī = 0 for 1 � i < j � N . Thus u ∈ U if and only if (uuR)rs = 0 for all (r, s) ∈ . Thus 

suppose u ∈ U and let (r, s) ∈ . Then we obtain from 2.1 using the fact that u, uR ∈ UN (q):

0 = (uuR)rs =
N∑
l=1

url(uR)ls =
s∑

l=r

url(uR)ls

= urs + (uR)rs +
∑

r<l<s

url(uR)ls

= urs + εrsus̄ r̄ +
∑

r<l<s

εlsurlus̄ l̄.

Thus urs = −εrsus̄ r̄ −
∑

r<l<s εlsurlus̄ l̄. In addition, if r < l < s, then r̄ > l̄ > s̄ and hence (s̄, ̄l) ∈
since (s̄, ̄r) ∈ . �
2.6 Corollary. Let u ∈ U and (r, s) ∈ . Then urs is determined by the entries on the positions of row r to 
the left of (r, s) or of row s̄ to the left of or on (s̄, ̄r). �

We iterate the argument and obtain recursively:

2.7 Theorem.
If G is of type Bn or Dn let (r, s) ∈ , and if it is of type Cn, then let (r, s) ∈ . Then there exists a 

polynomial prs(tij) in variables tij with (i, j) ∈ such that urs = prs(uij). Moreover, for each (i, j) ∈
choose λij ∈ Fq. Then there exists a unique element u ∈ U such that uij = λij for all (i, j) ∈ .

Proof. Suppose G is of type Bn or Dn. Then we have εij = 1 for all 1 � i, j � N .
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Let (r, ̄r) ∈ . Then 2.5 becomes:

urr̄ = −1
2

∑
r<l<r̄

urlur l̄ (2.8)

Since r < l < r̄ we have r < l̄ < r̄ and hence (r, l), (r, ̄l) ∈ . Thus,

prr̄ = −1
2

∑
r<l<r̄

trltr l̄ (2.9)

is the desired polynomial for (r, ̄r) ∈ .
Now assume (r, s) ∈ then (s̄, ̄r) ∈ and hence (s̄, ̄l) ∈ for all r < l < s. Moreover the positions 

(r, l) in 2.5 are to the left of (r, s). Inductively we may assume that we have for all the positions (r, l) already 
defined polynomials prl in variables tij with (i, j) ∈ such that prl(tij) = url. Then, setting

prs = −ts̄ r̄ −
∑

r<l<s

ts̄ l̄prl (2.10)

we have obtained the polynomials we want. Moreover this proves as well that we can choose λij ∈ Fq for 

(i, j) ∈ freely and obtain values for the positions (r, s) with (r, s) ∈ using formulas 2.10 and 2.9 to 
produce u ∈ U satisfying uij = λij for all (i, j) ∈ . If G is of type Cn similar arguments apply observing 
that εij = −1 occurs. �
2.11 Remark. We remark in passing, that Theorem 2.7 shows among other things, that the groups U are 
indeed p-Sylow subgroups of the finite classical groups. This follows immediately from the well known order 
formulas for the finite classical groups, (see e.g. [16]), and the immediate consequence of 2.7 given as |U | = qa

with a = | |. �
2.12 Remark. Direct inspection of equation 2.5 in Lemma 2.4 yields in particular the following: If usr �= 0 and 
uij = 0 for all (s, r) �= (i, j) ∈ , then us̄ r̄ = −εrsurs and uij = 0 for all (i, j) ∈ with (i, j) �= (r, s), (s̄, ̄r)
for (r, s) ∈ , provided G is not of type Bn or r �= n + 1. If G is of type Bn, and r = n + 1, then u has 
one more additional nonzero entry, namely uss̄ = −1

2 (us,n+1)2. �
From standard arguments from Lie theory one sees easily, that for types Bn, Cn, Dn the positive roots Φ+

of the associated root system Φ are in bijection with the set (or rather pairs {(i, j), (j̄, ̄i)}, 1 < i < j � ñ, 
for details see e.g. [13, section 11.2]). Hence we may identify Φ+ and . For type AN−1 we identify Φ+

with .
We call J ⊆ Φ+ closed, if α, β ∈ J and α + β ∈ Φ+ implies α + β ∈ J . Translating this into a statement 

on subsets J of (respectively of ) one proves by direct calculation:

2.13 Lemma. Let J ⊆ be a set satisfying

(i) (i, j), (j, k) ∈ J ⇒ (i, k) ∈ J

and (ii) (i, j), (k̄, j̄) ∈ J, (i, k) ∈ ⇒ (i, k) ∈ J.

Then J is a closed subset of . In type AN−1, J ⊆ is closed if condition (i) is satisfied. Note that 
is closed in , that is (i, j), (j, k) ∈ implies (i, k) ∈ . �

For type AN−1 we denote Φ henceforth by Φ̃ = Φ̃+ ∪ Φ̃−, where Φ̃− = {(i, j) ∈ Φ̃ | i > j}.
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2.14 Lemma. For 1 � i < j � N and α ∈ Fq let x̃ij(α) = 1 + αeij ∈ UN (q) and X̃ij = {x̃ij(α) | α ∈ Fq}, 
then x̃ij(α)x̃ij(β) = x̃ij(α + β) for α, β ∈ Fq, and hence X̃ij

∼= (Fq, +). These are the root subgroups of 
UN (q) of type AN−1. Now Let (i, j) ∈ . We define

in type Bn: xij(α) = 1 + αeij − αej̄ ī = x̃ij(α)x̃j̄ ī(−α) where α ∈ Fq, if j �= n + 1,

xi,n+1(α) = 1 + αei,n+1 − αen+1,̄i − 1
2α

2ei,̄i

= x̃i,n+1(α)x̃n+1, ī(−α)x̃īi(1
2 − α2) where α ∈ Fq,

in type Cn: xij(α) = 1 + αeij − αej̄ ī = x̃ij(α)x̃j̄ ī(−α) where α ∈ Fq, if j � n,
xij(α) = 1 + αeij + αej̄ ī = x̃ij(α)x̃j̄ ī(α) where α ∈ Fq, if n < j < ī,
xīi(α) = 1 + αeīi = x̃īi(α) where α ∈ Fq,

in type Dn: xij(α) = 1 + αeij − αej̄ ī = x̃ij(α)x̃j̄ ī(−α) where α ∈ Fq.

We define Xij = {xij(α) | α ∈ Fq}. Then Xij
∼= (Fq, +) is the root subgroup of U associated to the position 

(i, j) ∈ .

Proof. This follows immediately from 2.12, (comp. [13, Section 11.3]). �
2.15 Definition. Let J ⊆ (resp. J ⊆ ) be closed. The pattern subgroup UJ (resp. ŨJ) is defined to 
be a subgroup of U (resp. UN (q)) generated by all root subgroups Xij (resp. X̃ij) with (i, j) ∈ J . Then in 
particular UN (q) = ŨΦ̃+ . We denote from now on UN (q) by Ũ . �

The following result is well known (see e.g. [13]):

2.16 Theorem. Let J be defined as in 2.15 and fix an arbitrary linear ordering on J . Then each u ∈ UJ

(resp. ŨJ) can be uniquely written as a product of xij(λ)’s (resp. x̃ij(λ)’s), where (i, j) runs through J and 
λ runs through Fq with the product taken in that fixed order. �

Obviously, if J ⊆ is closed, then J satisfies in particular condition (i) of 2.13, and hence is closed in 
too.

2.17 Definition. Let J ⊆ . Then J̃ denotes the set of positions of J considered as subset of and 

(abusing notation) ŨJ is the corresponding pattern subgroup of Ũ of type A. Note that obviously 
˜ is 

closed in and hence Ũ is a pattern subgroup of Ũ . Moreover, ŨJ is always contained in Ũ for all 
closed subsets J of . �
3. Monomial linearisation of CU

In this section we shall construct a basis of the group algebra CU on which U acts monomially. For the 
general background of monomial linearisation we refer the reader to [18,21]. We first need some notation 
and a few basic definitions:

3.1 Definition. For S ⊆ �, define VS = {A ∈ MatN×N (q) | supportA ⊆ S}. Then VS =
⊕

(i,j)∈S Fqeij . Note 
that V� = MatN×N (q). For the Dynkin type Xn = Bn, Cn or Dn, set V = V (Xn) = V =

⊕
(i,j)∈ Fqeij . 

Thus

V (Bn) = V (Dn) =
⊕

(i,j)∈

Fqeij and V (Cn) =
⊕

(i,j)∈

Fqeij . �
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Note that the so defined vector space V = V is in general not invariant under matrix multiplication by 
elements of U from the right.

Then κ : V� × V� → Fq : (A, B) �→ tr(AtB) is a nondegenerate symmetric bilinear form on V�. For 
S ⊆ �, T = � \ S we have V ⊥

S = {B ∈ V� | κ(A, B) = 0, ∀ A ∈ VS} = VT . In addition κ|VS×VS
is also a 

nondegenerate symmetric bilinear form. By direct calculation we have:

3.2 Lemma. The bilinear form κ satisfies

κ(A,B) = tr(AtB) =
∑

(i,j)∈�
AijBij =

∑
(i,j)∈support A ∩ support B

AijBij .

and κ(BtA, C) = κ(A, BC) = κ(ACt, B) for all A, B, C ∈ V�. Moreover, if A, B ∈ V� with supportA ∩
supportB = ∅, then κ(A, B) = 0. �

For S ⊆ � denote the natural projection V� → VS with kernel V ⊥
S = {A ∈ V� | supportA ∩ S = ∅} by 

πS .
Note that Ax̃ij(α) for A ∈ MatN×N (q), (i, j) ∈ Φ̃ and α ∈ Fq is obtained by adding α times column i to 

column j in A. Similarly x̃ij(α)A is obtained by adding α times row j to row i in A. Since Ũ = UN (q) is 
generated by the root subgroups X̃ij, (i, j) ∈ Φ̃+ = , one proves easily that support(Agt) ⊆ ∪ Φ̃− ∪

and support(Ag) ⊆ = Φ̃+ for A ∈ V , g ∈ UN (q).

3.3 Proposition. Let V = V , π = π . Then the map

V × Ũ → V : (A, u) �→ A.u := π(Au),

defines a group action, where the elements of Ũ act as (Fq-vector space) automorphisms.

Proof. We have to show A.(uv) = (A.u).v for A ∈ V and u, v ∈ Ũ . Observe that support(Bvt) ⊆ ∪
Φ̃− ∪ for all B ∈ V and support(Au) ⊆ . Moreover π(B) = B and ( ∪ Φ̃− ∪ ) ∩ = , and 
hence we obtain using 3.2:

κ
(
B,A.(uv)

)
= κ

(
B, π(Auv)

)
= κ(B,Auv)

= κ(Bvt, Au) =
∑

i,j∈
(Bvt)ij(Au)ij

= κ(Bvt, π(Au)) = κ(Bvt, A.u)

= κ(B, (A.u)v) = κ(π(B), (A.u)v) = κ(B, π((A.u)v))

= κ
(
B, (A.u).v

)
for all B ∈ V.

Since κ is nondegenerate on V we conclude A.uv = (A.u).v as desired. Obviously u acts Fq-linearly on V , 
since π is Fq-linear, and hence u acts as automorphism. �
3.4 Definition. Define f : Ũ → V to be the restriction of the projection map π = π to Ũ . �
3.5 Theorem. f satisfies f(uv) = f(u).v + f(v) and hence is a right 1-cocycle (see [21,18]). Moreover f is 
surjective and f |U is bijective.
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Proof. Let x, g ∈ Ũ , A ∈ V . Then, since A = π(A) and π(x) = π(x − 1), we have

κ(A, f(x).g) = κ
(
A, π(f(x)g)

)
= κ

(
A, f(x)g

)
= κ(Agt, f(x)) = κ

(
Agt, π(x)

)
= κ

(
Agt, π(x− 1)

)
= κ(Agt, x− 1) = κ(A, xg − g) = κ

(
A, π(xg) − π(g)

)
= κ

(
A, f(xg) − f(g)

)
,

using support(Agt) ⊆ ∪Φ̃−∪ , support(x −1) ⊆ = Φ̃+ and hence support(Agt) ∩support(x −1) ⊆
. Thus, since κ is nondegenerate on V , we conclude f(x).g = f(xg) −f(g) and hence f(xg) = f(x).g+f(g), 

that is f is a right 1-cocycle. By Theorem 2.7 it is easy to see f is surjective and that f |U is bijective. �
Henceforth we denote for any abelian group H the set of complex linear characters of H by Ĥ. Thus 

in particular V̂ is the set of linear characters of the additive group (V, +). For A ∈ V , the map τA =
κ(A, −) : V �→ Fq : B �→ κ(A, B) ∈ Fq defines an element of the dual space V ∗ = HomFq

(V, Fq) and the 
map τ : V �→ V ∗ : A �→ τA ∈ V ∗ is an Fq-isomorphism. Note that

τA =
∑

(i,j)∈
Aije

∗
ij , (3.6)

where e∗ij denotes the (i, j)-th coordinate function on V for (i, j) ∈ , dual to the matrix unit eij in the 
natural basis of V .

Throughout θ : Fq → C∗ denotes a fixed non trivial linear character of the additive group (Fq, +). Then 
the map θ ◦ − : V ∗ → V̂ : η �→ θ ◦ η ∈ V̂ for any η ∈ V ∗ is bijective and we have

V̂ = {χA = θ ◦ τA |A ∈ V }. (3.7)

Thus using 3.6 we have

χA(B) = θ ◦ τA(B) = θ
( ∑

(i,j),(r,s)∈
AijBrse

∗
ij(ers)

)
=

∏
(i,j)∈

θ(AijBij) = θ(κ(A,B)). (3.8)

Now Ũ acts on V̂ by χ.u : A �→ χ(A.u−1) for u ∈ G, χ ∈ V̂ and A ∈ V . Note that identifying the group 
algebra CV with the C-algebra CV of maps from V to C by τ �→

∑
v∈V τ(v)v for τ ∈ CV , the linear 

character χ ∈ V̂ is mapped to 
∑

v∈V χ(v)v = |V |eχ̄, where eχ̄ ∈ CV is the primitive idempotent affording 
the complex conjugate linear character χ̄ ∈ V̂ . Thus the group algebra CV ∼= CV has C-basis V̂ , and hence 
CV̂ ∼= CV ∼= CV .

We define f∗ : CV → CŨ ∼= CŨ by f∗(τ) = τ ◦ f for τ ∈ CV . Then it is not hard to see, that f∗ = f |−1
U

is injective with f∗(CV̂ ) ∼= f∗(CV ) = CU ⊆ CŨ is an Fq-isomorphism. We apply [21, 2.1.35] and [18] to 
obtain:

3.9 Theorem. The full upper unitriangular group Ũ = UN (q) acts monomially on V̂ = V̂ , where the action 

of u ∈ Ũ on χA ∈ V̂ for A ∈ V is given as

χAu = zχA.u = zχA.u−t = zχπ (Au−t),

with z = θ(κ(A, π (u−1))) = χA(f(u−1)) ∈ C∗. Moreover the restriction of f to U is bijective. The 

restriction to U of the monomial action of Ũ on V̂ induces a U -isomorphism between CV̂ and the right 
regular representation CUCU given by f∗ = f |−1

U , where



Q. Guo et al. / Journal of Pure and Applied Algebra 223 (2019) 4801–4826 4809
f∗(χA) =
∑
u∈U

θ ◦ κ(A, u)u ∈ CU forA ∈ V.

In particular

{
∑
u∈U

θ ◦ κ(A, u)u |A ∈ V } ⊆ CU

is a monomial basis of the group algebra CU . �
3.10 Remark. Note that the dot action χ.u : A �→ χ(A.u−1) for u ∈ Ũ , χ ∈ V̂ and A ∈ V above is precisely 
the permutation representation of Ũ underlying the monomial action on V̂ of 3.9. �
3.11 Remark. A quick calculation reveals, that and J = Φ̃+ \ are closed subsets of Φ̃+. Thus Ũ
and ŨJ are pattern subgroups of Ũ . Observe that obviously ker f = {u ∈ Ũ | f(u) = 0} = ŨJ . Moreover, 
both U and Ũ are complements of ŨJ in Ũ , that is Ũ = Ũ ŨJ = ŨJ Ũ and Ũ = UŨJ = ŨJU . �

By [15] we have the following result:

3.12 Theorem. As CŨ -module CV̂ ∼= IndŨ
ŨJ

CŨJ
, where CŨJ

is the trivial CŨJ -module. �
3.13 Notation. For A ∈ V we identify from now on χ−A ∈ CV with [A] :=

∑
B∈V χA(B)B ∈ CV . We set 

[A]ij = Aij for (i, j) ∈ . Thus V̂ = {[A] | A ∈ V } ⊆ CV . Let A ∈ V, u ∈ Ũ . Then applying Theorem 3.9
we get [A].u = [π (Au−t)]. Throughout we call the elements [A] ∈ V̂ linear characters or simply characters. 
However note that those are linear characters of the additive group (V, +) and not of U . �

Let 1 � i < j � N, α ∈ Fq and A ∈ V . Then by Theorem 3.9 we have

[A]x̃ij(α) = θ(κ(−A, π (x̃ij(α)−1)))[B] =
{
θ(αAij)[B] if (i, j) ∈
[B] otherwise.

(3.14)

where B = π (Ax̃ji(−α)). But Ax̃ji(−α) is obtained from A by adding −α times column j to column i in 
A. We have shown:

3.15 Proposition. Let A ∈ V and let x̃ij(α) ∈ Ũ with 1 � i < j � N and α ∈ Fq. Then [A].x̃ij(α) arises 
from A by adding −α times column j to column i in A and setting entries outside of to zero. �

We call the permutation action above restricted column operation.

3.16 Remark. The action of Ũ on V̂ in Theorem 3.9 yields part of the André-Yan supercharacters. More 
precisely, the map f̃ : Ũ → V : u �→ u −1 is a (left and right) 1-cocycle and yields a monomial linearisation 

of Ũ (see e.g. [18]). Moreover there is a natural map from V̂ to V̂ given by restriction of maps. Now 3.15

implies that this map is CŨ -linear. In addition ˆ̃
V = {[Ã] ∈ V̂ | support(A) ⊆ } is a CŨ -submodule 

of V̂ which is isomorphic to V̂ under the restriction map above. Thus we may identify the CŨ -modules 

V̂ and ˆ̃V . �
3.17 Remark. In illustration to come we picture linear characters [A] ∈ V̂ for A ∈ V as triangular shaped 

arrays of elements of Fq, omitting from matrix A all entries zero at positions not in . Moreover, indices 
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placed just below the diagonal denote both, row and column index of the corresponding matrix A. By 
Lemma 2.14 the elements of Xij with (i, j) ∈ can be written as products of elements of certain root 
subgroups X̃st ∈ Ũ with (s, t) ∈ Φ̃+. Combining this with 3.15 we can illustrate below the “.”-action of 
xij(α) for α ∈ Fq on V̂ in Theorem 3.9. Recall that ñ = n + 1 for type Bn, and ñ = n otherwise. Moreover 
if 1 � i < j � N , note that εij = −1 for type Cn and j > n and εij = 1 otherwise (see 2.1). If no ambiguity 
arises, we shall drop the indices and write ε = εij .
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����
n + 1

α

2©�����

−α

1© 	
	
		






�

1
2α

2

3©

Illustration 3): j = n + 1 for type Bn
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Illustration 4): j = ī for type Cn (3.18)

All the illustrations above are self-explaining, in view of Lemma 2.14 and Proposition 3.15, except maybe 
no. 3). Here we need to stick to an order as given by

xi,n+1(α) = x̃i,n+1(α)x̃n+1, ī(−α)x̃īi(−
1
2α

2),

labeled by 1©, 2© and 3© in the illustration.

3.19 Remark. For A ∈ V let OA = {[A].u | u ∈ U} be the U -orbit of [A] ∈ V̂ under the “.”-action of U . Note 
that in view of 2.14, every [B] ∈ OA (A ∈ V ) can be obtained from [A] by a sequence of restricted column 
operation in 3.17. �
4. Staircase orbits

To determine the precise decomposition of CV̂ ∼= CUCU into orbit modules COA we would need to classify 
the orbits OA, A ∈ V , that is e.g. by finding a special set R ⊆ V̂ of characters such that each orbit on V̂
contains precisely one [A] ∈ R. To find such a collection R will be subject to a future investigation. Instead 
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we shall first exhibit a special subset of all U -orbits on V̂ , called staircase orbits, and prove that each orbit 
module is isomorphic to a staircase orbit module. In a second step we shall classify then the staircase orbits 
by so called core characters by proving, that each staircase orbit contains precisely one core character. We 
first define staircase orbits.

4.1 Notation. We set = ∪̇ , where

= {(i, j) ∈ | j � ñ} and = {(i, j) ∈ | j > ñ}

Note that ⊆ for type Cn. �
4.2 Definition. Suppose A ∈ V . We call (i, j) ∈ a main condition of A (or of [A]) if Aij is the rightmost 
non-zero entry in the i-th row. We call a main condition (i, j) left main condition if (i, j) ∈ , and right 
main condition if (i, j) ∈ . Let

main(A) =
{
(i, j) ∈

∣∣ (i, j) is a main condition of A
}
,

l.main(A) =
{
(i, j) ∈

∣∣ (i, j) is a left main condition of A
}
⊆ ,

r.main(A) =
{
(i, j) ∈

∣∣ (i, j) is a right main condition of A
}
⊆ .

Note that we have main(A) = l.main(A) ∪̇ r.main(A), and that in view of Remark 3.19 main(A) = main(B)
for all [B] ∈ OA. �
4.3 Definition. Let [A] ∈ V̂ . We call [A] a staircase character, if the elements of main(A) lie in different 
columns and adopt a similar notation for U - and Ũ -orbits O, and for U - and Ũ -orbit modules M .

To show that every U -orbit module is isomorphic to a staircase one we need to investigate homomorphisms 
between orbit modules. By general theory, every U -linear map from any right ideal I of CU into CU is 
obtained by left multiplication λx : I −→ CU : y �→ xy by some x ∈ CU , since CU is a self-injective algebra. 
We may use the right CU -module isomorphism f : CU −→ CV̂ ∼= CV and its inverse f−1 = f∗ of 3.9 to 
induce an U -linear left action λx for x ∈ U on CV̂ through multiplication of x on CU . We obtain:

4.4 Lemma. Let x ∈ U, A ∈ V . Then, identifying CUCU and CV̂ ∼= CV by f and f∗ = f−1 we have:

λx[A] =
∑

u∈U
θ ◦ κ(−x−tA, u)π(u). (4.5)

Proof. Using [A] = χ−A and 3.9 we have:

λxf
∗([A]) = λx

∑
u∈U

θ ◦ κ(−A, u)u =
∑
u∈U

θ ◦ κ(−A, u)xu

=
∑
u∈U

θ ◦ κ(−A, x−1u)u =
∑
u∈U

θ ◦ κ(−x−tA, u)u,

and the claim follows by applying f on both sides of the formula above. �
4.6 Remark. Note that in the bilinear form of 4.5 we cannot replace u by π(u), since the intersection of 
the support of −x−tA and of u is not contained in in general. In fact, the projection π = π is not 
a left 1-cocycle on Ũ , not even on U (but on U , as we shall see below). The left action by λx does not 
take [A] to a multiple of x.[A] := [π(x−tA)] in general, but into a linear combination of many characters 
[C] ∈ V̂ . �
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4.7 Notation. Let = {(i, j) ∈ | 1 � j < ī}. Thus consists of all positions in above the 
anti-diagonal. Set = for types Bn and Dn, and = ∪ for type Cn. �
4.8 Theorem. Let x ∈ U, A ∈ V such that support(x−tA) ⊆ . Then support(x−tB) ⊆ for all [B] ∈ OA, 
and λx[B] = θ ◦ κ(−B, x−1)[π(x−tB)] = χ−B(π(x−1))[π(x−tB)].

Proof. Let [B] ∈ OA. It is easy to see, that x−tB arises from B by adding scalar multiples of rows to lower 
rows. Now [B] ∈ OA implies, that, the most right hand sided non zero entries in rows of B are on the 
main conditions with Bij = Aij for all (i, j) ∈ main(A) = main(B). Hence if support(x−tA) ⊆ , then 
support(x−tB) ⊆ for all [B] ∈ OA. By 4.4, we have:

λx[B] =
∑

u∈U
θ ◦ κ(−x−tB, u)π(u) =

∑
u∈U

θ ◦ κ(−x−tB, u− 1 + 1)π(u)

= θ ◦ κ(−x−tB, 1) ·
∑

u∈U
θ ◦ κ(−x−tB, u− 1)π(u)

= θ ◦ κ(−B, x−1) ·
∑

u∈U
θ ◦ κ(−x−tB, u− 1)π(u)

= χ−B(π(x−1)) ·
∑

u∈U
θ ◦ κ

(
− π(x−tB), π(u)

)
π(u) (4.9)

since support(x−tB) ∩ support(u − 1) ⊆ and π(u) = π(u − 1). Then the statement holds observing the 
following equation:∑

u∈U

θ ◦ κ
(
− π(x−tB), π(u)

)
π(u) =

∑
π(u)∈V

χ−π(x−tB)
(
π(u)

)
π(u) = [π(x−tB)]. �

Observe that V = V is invariant under left multiplication by elements of Ũ . Hence Ũ acts on CV . 
Indeed it permutes V̂ ⊆ CV . More precisely u.τ with u ∈ Ũ , τ ∈ CV acts on V by u.τ(B) = τ(u−1B) for 
B ∈ V . For the character [A] ∈ V̂ , A ∈ V , evaluation of u.[A] at B ∈ V proves immediately:

4.10 Lemma. Let A ∈ V and u ∈ Ũ . Then u.[A] = [π(u−tA)]. �
Let J = Φ̃+ \ . Then we have:

4.11 Corollary. Let 1 � i < j � N and α ∈ Fq. Then the permutation action of x̃ij(α) on V̂ is given by

x̃ij(α).[A] = [π(x̃ji(−α)A)] = [B] (4.12)

where B is obtained from A by a restricted row operation which adds −α times row i to row j and projects 
the resulting matrix into V . In particular, if ī < j then [A] = [B], that is X̃ij and hence ŨJ act trivially on 
V̂ . The left permutation action of Ũ = Ũ ŨJ on V̂ is completely determined by the action of Ũ and is 
generated by restricted row operations. �

Observe that the restriction of the projection map π = π : V� → V to Ũ is given as π|Ũ : Ũ →

V : u → u − 1. Obviously gπ(u) + π(g) = g(u − 1) + (g − 1) = gu − 1 = π(gu) for all g, u ∈ Ũ and hence 
π|Ũ is a left 1-cocycle.

The left hand sided version of Theorem 3.9 yields a left monomial Ũ -action on V̂ in addition to the 

already established right action. Indeed V is the additive group of the Lie algebra of Ũ and CV̂ = CV
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is a monomial CŨ -bimodule isomorphic to the regular CŨ -bimodule. This is in fact Yan’s original 
construction [23]. The action of g ∈ Ũ on V̂ is given as

g[A] = χ−A(π(g−1))[π(g−tA)] = θ ◦ κ(−A, g−1)[π(g−tA)]. (4.13)

Thus for the permutation action underlying the monomial left action of Ũ on V̂ is the one given in 4.10.
In general, the monomial left Ũ -action on V̂ = V̂ does not commute with the monomial right U -action, 

but there are special cases, where this holds. Let x ∈ U , then we find a uniquely determined element of 
Ũ , henceforth denoted by x̃, such that x = x̃z for some (as well uniquely determined) z ∈ ŨJ (see 3.11).

4.14 Lemma. Let x ∈ U and [A] ∈ V̂ . Then x.[A] = x̃.[A]. If in addition support(x−tA) ⊆ , then

λx[A] = θ ◦ κ(−A, x−1)[π(x−tA)] = x̃[A] (4.15)

Proof. The left hand sided equation of 4.15 holds by 4.8. From 4.11 we see that x.[A] = x̃.(z.[A]) = x̃.[A]. 
It remains to check the coefficient in 4.15. Now 4.11 implies in particular π(z−tA) = A and hence

θ ◦ κ(−A, x−1) = θ ◦ κ(−A, z−1x̃−1) = θ ◦ κ(−z−tA, x̃−1) = θ ◦ κ(−A, x̃−1)

and the lemma follows. �
If x ∈ U and A ∈ V we write from now on x[A] instead of λx[A], provided support(x−tA) ⊆ .

4.16 Corollary. Let A ∈ V = V and g ∈ U (respectively g ∈ Ũ ) such that support(g−tA) ⊆ . Then 
for all u ∈ U and all [B] ∈ OA we have

(g[B])u = g([B]u),

hence the monomial left action by g on COA commutes with the monomial right action by U . In particular 
the left operation of g on OA induces an U -isomorphism from COA onto COB where [B] = g.[A]. �
4.17 Theorem. Let A ∈ V . Then there exists B ∈ V such that [B] ∈ V̂ is staircase and COA

∼= COB as 
CU -module.

Proof. Suppose main(A) contains two positions (i, k), (j, k) in column k with 1 � k � N, 1 � i < j � n. By 
definition of main(A), we have Ail = 0 for l > k and hence support(x̃ji(−α)A) ⊆ .

Then x̃ij(β).[A] = [B] for β = Ajk/Aik ∈ Fq, where the main conditions of A and B coincide in all rows 
except the j-th one; Here the main condition (j, k) of A is deleted and possibly replaced by a new main 
condition (j, l) to the left of (j, k), with j < l < k. By Corollary 4.16, COA and COB are isomorphic as 
U -modules. Since new main conditions in this procedure appear only to the left of the deleted ones, one 
may repeat the process working through the columns from right to left to produce finally a (not necessarily 
unique) staircase character [C] ∈ V̂ such that COA

∼= COC . �
5. Core characters

Our Theorem 4.17 tells us that for finding the isomorphism classes of orbit module COA, A ∈ V , it 
suffices to classify the staircase orbits. This will be done in the next two sections. Our strategy consists of 
using restricted column operations to annihilate as many nonzero entries as possible. So we strip [A] all the 
way down to the assembly of positions with possibly non vanishing entries, called core of A, which we will 
define now:
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5.1 Definition. Let [A] ∈ V̂ be a staircase character.

1) The positions (i, ̄j) with (i, j) ∈ r.main(A) are called minor conditions of A (or [A], or OA) and we 
denote the set of minor conditions of [A] by minor(A) (or minor(OA)).

2) A position (i, j) ∈ is called supplementary condition for A or OA, if (i, j) is on the left of some 
minor condition or some left main condition of A, in the same column as some minor condition of A and 
is not itself a minor or main condition. The set of supplementary conditions is denoted by suppl(A). 
Note that suppl(A) ⊆ \ {column ñ}.

3) The core of A or OA is defined to be core(A) = main(A) ∪ minor(A) ∪ suppl(A) if U is of type Bn or 
Dn and core(A) = main(A) ∪ suppl(A) if U is of type Cn. Note that core(A) is determined by main(A)
and core(B) = core(A) for all B ∈ OA.

4) We define the verge of A to be verge(A) =
∑

(i,j)∈main(A) Aijeij . Note that support
(
verge(A)

)
=

main(A). The linear character [A] ∈ V̂ is called verge character, if A = verge(A).
5) A linear character [A] ∈ V̂ is called core character, if support(A) ⊆ core(A).

Note, that for type Cn minor condition associated with antidiagonal main conditions are located on the 
diagonal and hence are not contained in . �

We shall see, that every staircase orbit contains precisely one core character.

5.2 Definition. For (i, j) ∈ we define the arm at (i, j) to be A(i, j) = {(j̄, a) ∈ }, and the leg at 
(i, j) to be L(i, j) = {(a, j) ∈ | a > i}. If U is of type Cn we define in addition the arm at (i, ̄i) to be 
A(i, ̄i) = {(i, a) ∈ } = {(i, a) | i < a < ī} for 1 � i � n. (For an illustration for these objects see 5.5 part 
i) below).

Moreover we define for any (a, b) ∈ main(A) the reduced leg L(a, b)◦ to be obtained by removing from 
L(a, b) all positions which are contained in an arm of A attached to a right main condition. Then we define

L =
⋃

(i,j)∈main(A)
L(i, j), L◦ =

⋃
(i,j)∈main(A)

L(i, j)◦ and A =
⋃

(i,j)∈main(A)
A(i, j),

then Limb(A) = L ∪ A = L◦∪̇A, the second union being disjoint. �
5.3 Definition. Let [A] ∈ V̂ be a staircase character, and let (i, j) ∈ . Then (i, j) is called a place of A if 
(i, j) /∈ core(A) and is to the left of a main condition. Thus (i, j) is either

i) to the left of and in the same row of a left main condition and not a supplementary condition or
ii) to the left of and in the same row of a minor condition and not a supplementary condition or
iii) between and in the same row of a minor and a main condition or
iv) in the case of type Cn, a minor condition in .

Note that the set of places of A is determined by main(A) uniquely. It is hence denoted by PL(A), or 
PL(OA), or PL(main(A)). Note too that PL(A) ⊆ . �
5.4 Remark. Let [A] ∈ V̂ be a staircase character. Then the only nonzero entries of any [B] ∈ OA are at 
positions (i, j) ∈ core(A) ∪ PL(A), (disjoint union by definition of PL(A)). �

Here is an illustration of the four types of places. By M we denote main, by m minor and by s supple-
mentary conditions. The thick lines indicate the places attached to M and m respectively. The star dotted 
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lines indicate the positions of Limb(A) connected to the places by the bijection explained below in 5.7 and 
dotted lines additional legs and arms.

iv) of 5.3 is obtained from i), ii) and iii) by including minor conditions m. (5.5)

5.6 Definition. Let (i, j) ∈ main(A). Then we denote by p(i, j) the set of places of A to the left of (i, j) in 
row i if (i, j) is a left main condition, and to the left of the associated minor condition at position (i, ̄j), if 
(i, j) is a right main condition. For (k, l) ∈ r.main(A) define in addition m(k, l) to be the set of positions 
strictly between the right main condition (k, l) and the associated minor condition (k, ̄l) except in type Cn, 
where we include the minor condition itself in case k �= l̄. Moreover define

P =
⋃

(i,j)∈main(A)

p(i, j) and M =
⋃

(k,l)∈r.main(A)

m(k, l),

so PL(OA) = P ∪M. �
We define a map fA = f : Limb(A) → PL(A) as follows: For (i, j) ∈ l.main(A), we define f : L(i, j) →

{(i, a) ∈ | i < a < j} setting f(a, j) = (i, a). This is obviously a bijection. Moreover, by 5.1 part 2), 
inspecting figure. 5.5 one sees immediately, that f maps positions of the leg L(i, j) intersecting some arm (as 
position (l̄, j) denoted by a big filled circle in 5.5) bijectively to supplemental conditions in row i to the left of 
(i, j). Thus restricting f to L(i, j)◦ gives a bijection from L(i, j)◦ onto p(i, j). Similarly for (k, l) ∈ r.main(A)
setting f(b, l) = (k, b) we obtain a bijection f from L(i, j)◦ onto p(i, j). Finally, if (k, l) ∈ r.main(A) we define 
f : A(k, l) → m(k, l) by setting f(l̄, a) = (k, ̄a) for (l̄, a) ∈ A(k, l) and again obtain a bijection. Thus:

5.7 Lemma. Let [A] ∈ V̂ be staircase. Then fA is a bijection from Limb(A) to PL(A). �
Given a staircase character [A] we now want to construct a character [B] ∈ OA whose entries at places are 

prescribed values from Fq. So choose arbitrary field elements λij ∈ Fq for all (i, j) ∈ PL(A). To adjust the 
entry at the (i, j) to λij we shall act on the character by some particular root subgroup element xkl(α), where 
(k, l) ∈ Limb(OA) is uniquely determined by f(k, l) = (i, j). In addition we have to ensure, that the entries 
on places, which have been already dealt with, will not be changed any more by subsequent moves. This 
will be done, by choosing an order, in which we work through Limb(A), namely working first the reduced 
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legs of Limb(A) from left to right, each top down. Then we use the root subgroups on arms associated 
with right main conditions, ordering the latter from left to right as well as the positions on the arms itself. 
Note, that all this concerns only the permutation action underlying the monomial action of U on OA, thus 
we have not to worry about coefficients. So let (t, s) be a main condition. We assume that on positions 
(i, a) ∈ p(i, j) for main conditions (i, j) with j < s and on positions (t, b) ∈ p(t, s) with t < b < a < s we 
have already established Bia = λia and Btb = λtb for a [B] ∈ OA. We inspect [C] = [B].xas(β) ∈ OA. Note 
that f(a, s) = (t, a).

Using 3.18 one sees, that we obtain C by adding −β times column s to column a and εβ times column 
ā to column s̄ of B, if s �= n + 1. If s = n + 1, then U is of type Bn and C is obtained from B by adding 
−β times column n + 1 to column a, then β times column ā to column n + 1 and finally 1

2β
2 times column 

ā to column a. Thus we have for 1 � d < a:

Cda = Bda − βBds and Cds̄ = Bds̄ + εβBdā if s �= n + 1, (5.8)

where ε is defined as in 3.17, and

Cda = Bda − βBds + 1
2β

2Bdā and Cds = Bds + βBdā if s = s̄ = n + 1. (5.9)

In particular for d = t, since (t, s) is a main condition, we have Bts �= 0, but Btā = 0 and hence we can 
choose β ∈ Fq such, that Cta = λta. Moreover, since the position (t, ̄a) is to the right of the main condition 
(t, s), we have Cts̄ = Bts̄ and 0 = Btā.

Now let d �= t. If Bds or Bdā is nonzero, there must be a main condition (d, r) in row d in column r strictly 
to the right of column s. This can be a left or a right main condition and in the latter case the corresponding 
minor condition (d, ̄r) can be to right or to the left of (d, a). Thus (d, a) ∈ p(d, r), or (d, a) ∈ m(d, r) with 
s < r. However the entries of positions to the left of (d, r) will be adjusted later. Moreover, if (i, j) is a main 
condition in an earlier column than (t, s), that is if j < s, we assume that Bia = λia is already adjusted. But 
then, for d = i we see inspecting 5.8, that Cia = Bia, since Bis = 0, the position (i, s) being to the right of 
the main condition (i, j). Thus entries on places p(i, j) for earlier main conditions (i, j) remain unchanged 
under the action of xas(β).

Here is an illustration for the case s � n (the case s > n being similar):

(5.10)
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Note that the entry at position (t, a) is changed by the action of x(a,s)(β), that at position (d, a) is 
changed, if B(ds) �= 0, (both marked ×), whereas the entry at position (i, a) marked � is not changed in 
5.10 above).

5.11 Lemma. Let [A] ∈ V̂ be staircase. For each (t, a) ∈ P choose a scalar λta ∈ Fq. Then there exists 
a unique y =

∏
(a,s)∈L◦ xas(αas), where αas ∈ Fq for (a, s) ∈ L◦, such that [B] = [A].y ∈ OA satisfies 

Bta = λta for all (t, a) ∈ P.

Proof. Note that by our construction (t, a) = f(a, s) ∈ p(t, s) ⊆ P. Everything but the uniqueness part has 
been proved in our discussion above. Recall that we ordered L◦ by going through main conditions from left 
to right and each leg top down. This is obviously the order in which the product in y =

∏
(a,s)∈L◦ xas(αas)

has to be taken. To determine the β in 5.8 (replacing B by A and C by B) such that Bts = λts, amounts 
to solve a linear equation with a unique solution, and hence y is unique. �

For later use we need the following auxiliary lemma:

5.12 Lemma. Let [B] ∈ V̂ be staircase, (t, s) ∈ main(B) and (a, s) ∈ L◦(t, s). Thus f(a, s) = (t, a) ∈ p(t, s). 
Let [C] = [B].xas(β) with β ∈ Fq. Assume in addition Brw = 0 for all (r, w) ∈ M, then Crw = 0 for all 
(r, w) ∈ M as well and Ccd = Bcd for all (c, d) ∈ core(A).

Proof. Recall that B and C differ only in columns a and s̄ (compare 5.10). If (r, a) ∈ M then we have a 
minor condition (r, c) with c < a < s < ā < c̄ and c < s̄ and hence (r, a), (r, s), (r, ̄s), (r, ̄a) ∈ m(r, ̄c). With 
5.8 and 5.9 we conclude Br,a = Cr,a = 0. Moreover B and C coincide on main conditions because they are 
elements of the same U -orbit of V̂ . Now (a, s) ∈ L◦(t, s) implies that (t, a) /∈ minor(B) ∪ suppl(B), and 
hence there is neither a minor nor a supplemental condition in column a by 5.1. If (t, s) ∈ l.main(A), then 
s = n +1 or column s̄ ⊆ . In both cases column s̄ does not contain any minor or supplementary condition. 
So let (t, s) ∈ r.main(A). As before we argue, that column a does not contain any minor or supplementary 
condition. Moreover, for the minor condition (t, ̄s) in column s̄ we have Cts̄ = Bts̄ by 5.8 and 5.9, since (t, ̄a)
is to the right of the main condition (t, s) and therefore Btā = 0. If (i, ̄s) ∈ suppl(B) with i �= t is another 
supplemental condition in column s̄, there must be a minor or left main condition (i, ̄j) in row i to the right 
of (i, ̄s). Thus s̄ < j̄ and hence j̄ < j < s < ā. Since either (i, j) or (i, ̄j) is a main condition, we conclude 
Biā = 0. Again by 5.8 and 5.9 we obtain Cis̄ = Bis̄, as desired. �

Recall that in 3.17 we defined for the action of Xij on V̂ always ε = 1 except for type Cn and j > n, 
where we set ε = −1.

5.13 Lemma. Let [B] ∈ V̂ be staircase and let (k, l) ∈ r.main(B). Suppose l̄ < a < l or l̄ � a < l, if U is of 
type Cn. Then (l̄, ̄a) ∈ A(k, l) and [C] = [B].xl̄ā(β) with β ∈ Fq satisfies:

(1) Cra = Bra +εβBrl, for 1 � r < l̄. Moreover Crl̄ = Brl̄−βBrā unless U is of type Bn and a = ā = n +1. 
In this case Crl̄ = Brl̄ − βBr,a + 1

2β
2Brl.

(2) Let (r, s) ∈ P or (r, s) ∈ m(d, t) with (d, t) ∈ r.main(B) with t < l. Then Crs = Brs.

Proof. Part (1) follows immediately from 3.17. To prove (2) observe that C and B differ only in columns 
a and l̄ and that we may assume that r �= k. Suppose Brl �= 0 for some r �= k. Then (r, t) ∈ r.main(B) for 
some t with l < t, since ñ < l and [B] is staircase. Thus (r, ̄t) is a minor condition with t̄ < l̄ < a. This 
implies that (r, a) ∈ m(r, t) with l < t and hence (2) holds for s = a. The case s = l̄ follows similarly. �
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5.14 Corollary. Let [B] ∈ V̂ be staircase. Choose λka ∈ Fq for each (k, a) ∈ M and let (l̄, ̄a) ∈ A be such, 
that f(l̄, ̄a) = (k, a). Then there exists a unique y =

∏
(l̄,ā)∈A xl̄ā(αl̄ā) with αl̄ā ∈ Fq such that [C] = [B].y

satisfies Cka = λka for all (k, a) ∈ M and Crs = Brs for all (r, s) ∈ P.

Proof. Obviously we can find a uniquely determined β ∈ Fq in 5.13 such that Cka = λka. Now the claim 
follows, applying 5.13 several times working through the arms associated with right main conditions in our 
previously defined order. �

Combining 5.11 and 5.14 the main result of this section follows:

5.15 Theorem. Let [A] ∈ V̂ be staircase. Choose λkl ∈ Fq for all (k, l) ∈ PL(A). Then there exist uniquely 
determined αij ∈ Fq for (i, j) ∈ Limb(A) such that [B] = [A]. 

∏
(i,j)∈Limb(A) xij(αij) satisfies Bkl = λkl for 

all (k, l) ∈ PL(A). �
As a further consequence we obtain a lower bound for the size of the orbit OA for [A] ∈ V̂ being a 

staircase:

5.16 Corollary. Let a = |PL(A)|, the number of places of linear characters in OA. Then a = | Limb(A)| and 
|OA| � qa. �

Choosing λkl = 0 for all (k, l) ∈ PL(A) we get as special case of 5.15:

5.17 Corollary. Each staircase orbit contains a core character. �
For later use, we state a technical lemma:

5.18 Lemma. Let [A] ∈ V̂ be staircase such that Arw = 0 for all positions (r, w) ∈ M. Let [C] ∈ OA be the 
core character derived by 5.17. Then

C =
∑

(i,j)∈core(A)

Aijeij . (5.19)

Proof. By 5.15 there exists a unique y such that [C] = [A].y with y written as y = y1y2 where

y1 =
∏

(i,j)∈L◦

xij(αij); y2 =
∏

(i,j)∈A
xij(αij)

with uniquely determined αij ∈ Fq for (i, j) ∈ Limb(A). Let [B] = A.y1. Then by 5.14, we have [C]ab = [B]ab
for all (a, b) ∈ P. Since [C] is a core, we have [B]ab = [C]ab = 0 for all (a, b) ∈ P. Moreover by 5.12 we have 
[B]ab = [C]ab = 0 for all (a, b) ∈ M, since [A] satisfies assumption: Arw = 0 for all positions (r, w) ∈ M. 
Thus [B]ab = [C]ab = 0 for all (a, b) ∈ PL(A) = P ∪M. This implies [B] = [C] and y2 = 1. Then the formula 
(5.19) follows by the statements of the values on positions (c, d) ∈ core(A) in 5.12 and 5.11. �
5.20 Remark. By the lemma above, we can also derive a core character in a staircase orbit by first putting 
zeros in positions of M, then zeros in positions of P. In the next section we shall show the core character 
is unique in a staircase orbit. �
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6. Classification of staircase orbits

In the last section we have seen that every staircase orbit OA, A ∈ V contains a core character [C] ∈ OA. 
Now we shall show that this core character is unique. Thus the core characters classify the staircase U -orbits 
in V̂ .

6.1 Lemma. Let [A] ∈ V̂ be a staircase character. Then J(A) = \ Limb(A) is a closed subset of . 
Therefore the subgroup UJ(A) of U generated by the root subgroups Xij with (i, j) ∈ J(A) is a pattern 
subgroup of U .

Proof. Firstly let (i, j), (j, k) ∈ and assume that (i, k) ∈ Limb(A). Suppose (i, k) ∈ L(l, k) with (l, k) ∈
main(A). Then l < i. Since (i, j) ∈ , we have l < i < j and hence (j, k) ∈ implies (j, k) ∈ L(l, k). 
Now suppose (i, k) ∈ A(s, ̄i) with (s, ̄i) ∈ main(A). Since i < j < k, we have (i, j) ∈ A(s, ̄i). Thus 
(i, j), (j, k) /∈ Limb(A) implies (i, k) /∈ Limb(A).

Secondly suppose (i, j), (k̄, ̄j) ∈ and assume that (i, k) ∈ Limb(A). Suppose (i, k) ∈ L(l, k) with 

(l, k) ∈ main(A). Since (k̄, ̄j) ∈ we have 1 � k̄ � n and hence k > n. Then A(l, k) is well-defined and 

(k̄, ̄j) ∈ A(l, k) since (k̄, ̄j) ∈ . Now suppose (i, k) ∈ A(s, ̄i) with (s, ̄i) ∈ main(A). Since (i, j), (k̄, ̄j) ∈
we have i < j < k and hence (i, j) ∈ A(s, ̄i). Thus (i, j), (k̄, ̄j) /∈ Limb(A) implies (i, k) /∈ Limb(A). The 
lemma follows by 2.13 and 2.15. �

Now Corollary 5.16 and Lemmata 5.7 and 6.1 imply immediately:

6.2 Corollary. For [A] ∈ V̂ define StabU [A] = {u ∈ U | [A].u = [A]}. Let J(A) = \ Limb(A), m = |J(A)|
and a = | Limb(A)|. Then a = |PL(A)| and | | = m + a. Moreover qa � |OA| = [U : StabU [A]] and hence 
| StabU [A]| � qm = |UJ(A)|. �
6.3 Lemma. Let [A] ∈ V̂ be a staircase character and J(A) be defined as in Lemma 6.1. If support(A) ∩ =
r.main(A), then [B] = [A].xij(α) = [A].x̃ij(α) for all (i, j) ∈ J(A), α ∈ Fq. Moreover for u ∈ UJ(A) we have 
([A].u)st = [A]st, ∀ (s, t) ∈ core(A).

Proof. If column ̄i contains a nonzero value at position (k, ̄i) ∈ r.main, position (i, j) is on A(k, ̄i) and hence 
not contained in J(A). Thus (i, j) ∈ J(A) implies that column ī is a zero column and inspecting 3.18 we 
see that the first claim of the lemma holds. Moreover A and B differ only in column i and in particular 
support(B) ∩ = r.main(A) = r.main(B). By the same argument column i cannot contain a minor 
condition and hence no supplementary conditions as well. Moreover, if it contains a left main condition (l, i)
then Alj = 0 and hence adding a multiple of column j to column i will not change Ali. Thus (l, i) is then 
the only core position on column i, and we conclude Bst = Ast for all (s, t) ∈ core(A). From this the second 
claim of the lemma follows immediately. �
6.4 Corollary. Let [A] ∈ V̂ be a verge character, and J(A) be defined as in Lemma 6.1. Then UJ(A) =
StabU [A].

Proof. By 6.2 it suffices to show UJ(A) ⊆ StabU [A]. Let (i, j) ∈ J(A) and α ∈ Fq and let [B] = [A].xij(α). 
Since [A] is a verge, it is a core. By 6.3 [B] and [A] differ at most in column i, and this happens only, if 
column j of A contains a nonzero entry above row i. Since [A] is a verge, such a nonzero entry has to be a 
main condition, forcing (i, j) ∈ Limb(A), a contradiction. Thus [B] = [A] and the assertion of the lemma 
follows. �
6.5 Lemma. Let [A] be a core character and let J(A) be defined as in Lemma 6.1. Then |UJ(A)| = | StabU (A)|.
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Proof. By 6.2 we only need to show |UJ(A)| � | StabU (A)|. Let u ∈ UJ(A), [B] = [A].u and [A0] = verge(A)
and A1 = A − A0 ∈ V . By 6.4, we have [A0] = [A0].u, and hence A0 = π(A0u

−t) with π = π as in 3.3. 
Thus B = A.u−t = π(Au−t) = π((A0 + A1)u−t) = A0 + A1.u

−t. Since [A] is a core character, we have 
main(A1) ⊆ minor(A) ∪ suppl(A), and hence [B] can be different from [A] only at positions in the row and 
to the left of minor or supplementary conditions. Therefore [B] satisfies the assumption of Corollary 5.18
and Lemma 6.3. By 5.17 there exists λij ∈ Fq for each (i, j) ∈ Limb(A), such that [B].yu is a core character, 
and by 5.15, yu is uniquely determined, where yu =

∏
(i,j)∈Limb(A) xij(λij), the product is taken again in 

the order of Limb(A) defined in the previous section. By 5.18

[A].uyu = [B].yu with B =
∑

(s,t)∈core(B)

Bstest =
∑

(s,t)∈core(A)

Bstest. (6.6)

Moreover by 6.3, we have [B]st = ([A].u)st = [A]st for all (s, t) ∈ core(A). Observing that [A] is a core 
character, equation 6.6 implies [A].uyu = [A]. Thus uyu ∈ StabU (A). Now we define a map:

φ : UJ(A) → StabU (A) : u �→ uyu.

We prove that φ is injective, then we have shown |UJ(A)| � | StabU (A)|. For u, v ∈ UJ(A) we define the 

corresponding yu and yv as in 5.17. Assume uyu = vyv. Recall that is the disjoint union J(A)∪̇Limb(A). 
Thus fixing a linear ordering of J(A), using the linear ordering of Limb(A) defined in the last section and 
defining the positions in Limb(A) to come after all elements of J(A) defines a linear ordering of . The 
uniqueness part of 2.16 ensures u = v. Therefore φ is injective as desired. �
6.7 Theorem. Let [A] ∈ V̂ be staircase. Then for Λ : PL(A) −→ Fq : (i, j) �→ λij there exists precisely one 
[B] = [B(Λ)] ∈ OA with Bij = λij for all (i, j) ∈ Limb(A). Moreover

OA = {[B(Λ)] |Λ : PL(A) −→ Fq}

In particular, OA contains precisely one core character [A0] = [B(Λ0)] with Λ0 : PL(A) −→ Fq : (i, j) �→ 0
for all (i, j) ∈ PL(A). As a consequence

|OA| = q|PL(A)| = q| Limb(A)| = q| Limb(verge(A))| = [U : UJ(A)].

Proof. In 5.11 and 5.14 we constructed for each Λ an element [B] = [B(Λ)] ∈ OA. Thus |OA| � qa with 
a = |PL(A)| (comp 5.16). By 5.7 we have |PL(A)| = a = | Limb(A)|. If |J(A)| = m, we have | | = a + m

and hence qa = [U : UJ(A)]. By 6.5 we obtain

qa � |OA| = [U : StabU ([A])] = [U : UJ(A)] = qa,

and therefore we have equality. From this all claims of the theorem follow immediately. �
7. André-Neto supercharacters

In this last section we shall decompose the André-Neto supercharacters of U into characters afforded by 
orbit modules COA, for certain [A] ∈ V̂ . First we briefly describe the André-Neto elementary characters 
and relate those to our set up. Recall that ñ = n + 1 for type Bn and ñ = n otherwise.

7.1 Definition. For (i, j) ∈ we define (compare [7, p. 398]).

�i,j =
{
{(i, k) ∈ | i < k < j } if (i, j) ∈
{(i, k) ∈ | i < k � n } ∪ {(j̄, l) ∈ | j̄ < l � n } if (i, j) ∈

. (7.2)



Q. Guo et al. / Journal of Pure and Applied Algebra 223 (2019) 4801–4826 4821
Note that the second case includes j = ī for type Cn, where �i,̄i = {(i, k) ∈ | i < k � n }.
We set Ji,j = \ �i,j and note that Ji,j is closed in as well as J◦

i,j = Ji,j \ (i, j). Thus Ji,j arises by 

removing from parts of row i respectively of rows i and j̄. We denote the pattern subgroups UJi,j
and 

U◦
Ji,j

by Ui,j and U◦
i,j respectively for short. Moreover it is not hard to check that U◦

i,j is a normal subgroup 
of Ui,j , (see [7, p. 399]). �

Recall that we fixed a non trivial linear character θ : (Fq, +) → C∗. For α ∈ Fq define

θα : (Fq,+) → C∗ : λ �→ θ(αλ).

Then {θα | α ∈ Fq } is the set of all linear characters of the additive group of Fq.

7.3 Lemma. (see [7, p.399]) Let (i, j) ∈ and 0 �= α ∈ Fq. Then χi,j
α : Ui,j → C∗ : u �→ θα(uij) = θ(αuij)

defines a nontrivial linear character of Ui,j. �
The induced character ξi,jα = IndU

Ui,j
(χi,j

α ) is called elementary character associated with (i, j) ∈ and 
α ∈ F∗

q in [7]. From 7.2 one sees by direct inspection that

deg(ξi,jα ) = q|�i,j | = [U : Ui,j ] =
{
qj−i−1 if (i, j) ∈
qn−i if j = ī.

(7.4)

Let [A] ∈ V̂ be a core with main(A) = {(i, j)} and Aij = α. Thus by 5.1 verge(A) = αeij and in 
particular [A] is a staircase core. Obviously A = αeij if j � ñ or U is of type Cn and A = αeij + βeij̄ for 
some β ∈ Fq if n < j and U is of type Bn or Dn. In this case (i, ̄j) is the unique minor condition and there 
are no supplementary conditions. Using 5.15 and 5.3 we can describe the orbit OA by filling the positions 
in

PL(OA) =
{
�i,j = {(i, k) ∈ | i < k < j } if (i, j) ∈
{(i, k) ∈ | i < k < j } \ {(i, j̄)} if (i, j) ∈ ,

(7.5)

by arbitrary elements of Fq. Note that all of these positions are in row i. In particular

|OA| =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
qj−i−1 = deg(ξi,jα ) if (i, j) ∈
qj−i−2 = q−1 deg(ξi,jα ) for types Bn,Dn, if (i, j) ∈
qj−i−1 = deg(ξi,jα ) for type Cn if (i, ī) �= (i, j) ∈
q2(n−i) = (deg(ξi,jα ))2 for type Cn if j = ī.

(7.6)

We write Oi,j
A = {[A].u | u ∈ Ui.j }. Note that support(B) ⊆ row i and Bij = Aij = α for all [B] ∈ OA.

7.7 Lemma. Let [A] ∈ V̂ as above. Then

Oi,j
A =

⎧⎪⎪⎨⎪⎪⎩
{[B] ∈ OA |Bij = α, support(B) ⊆ �i,j ∪ {(i, j)} } = OA if (i, j) ∈
{[B] ∈ OA |Bik = 0 for n < k < j } if (i, ī) �= (i, j) ∈
{[B] ∈ OA |Bīi = α, support(B) ⊆ �i,j ∪ {(i, ī)} } if j = ī in case of type Cn.

Therefore in all cases support(B) ∩ Ji,j = {(i, j)} and in addition Bij = α for all [B] ∈ Oi,j
A . In particular

[B]u = χi,j
α (u)[B].u for all [B] ∈ Oi,j

A and allu ∈ Ui,j .
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Proof. Inspecting 5.11 and 5.14 one checks all but the last assertions of the lemma immediately. By 3.9
we have [B]u = θ(κ(B, u))[B].u and θ(κ(B, u)) = θ(Bijuij) = θ(αuij) = θα(uij) = χi,j

α (u) by 3.2, since 
{(i, j)} ⊆ support(B) ∩ support(u) ⊆ support(B) ∩ Ji,j = {(i, j)}. �

Fix (i, j) ∈ and α ∈ F∗
q and let f ∈ CUi,j be the central idempotent such that Cf affords the linear 

character χ = χi,j
α . Then M = IndU

Ui,j
(Cf) affords ξ = ξi,jα .

7.8 Lemma. Keep the notation introduced above and let

x =
∑

B∈Oi,j

[B] ∈ COi,j
A ⊆ COA.

Then Cx is a one dimensional submodule of ResUUij
(COA) isomorphic to Cf . As a consequence there is a 

nontrivial U -homomorphism from M to COA.

Proof. Applying Lemma 7.7 we obtain for any u ∈ Ui,j :

xu =
∑

B∈Oi,j

[B]u = χ(u)
∑

B∈Oi,j

[B].u = χ(u)u

As a consequence, using Frobenius reciprocity, we get:

(0) �= HomCUi,j
(Cf,ResUUi,j

(COA)) ∼= HomCU (M,COA),

proving the lemma. �
If U is of type Bn or Dn and if (i, j) ∈ and β ∈ Fq we want to distinguish cores [A] with entry β

at the minor condition. Thus we write Aβ = βeij̄ + αeij ∈ V , if ñ < j < ī and A = A0 = αeij ∈ V for all 
types and all j. In particular Aβ is a core with A0 = A = verge(Aβ) for all β ∈ Fq.

7.9 Lemma. Suppose U is of type Bn or Dn and let (i, j) ∈ . Then the distinct orbit modules COAβ
, β ∈

Fq have no irreducible constituent in common and hence afford orthogonal characters.

Proof. Inspecting 3.17 we see that the Xij̄ is contained in the stabilizer StabU [B] for all [B] ∈ OAβ
and 

acts on [B] by the linear character θβ (see 3.9 and 3.14). Therefore, if β, γ ∈ Fq with β �= γ, the orbit 
modules COAβ

and COAγ
cannot have an irreducible constituent in common and hence afford orthogonal 

characters. �
7.10 Definition. For any staircase character [A] ∈ V̂ we let V(A) be the set of characters [B] ∈ V̂ satisfying 
verge(B) = verge(A) and let CV(A) be the CU -module with monomial basis V(A). Thus

CV(A) =
⊕

verge(OB)=verge(A)

COB

It is an immediate consequence of Theorem 3.9 and Remark 3.16, that V(A) = ÕA = {[A].u | u ∈ Ũ} is an 
André-Yan orbit yielding a supercharacter of Ũ . �

We can now describe the elementary André-Neto characters in terms of our orbit modules:

7.11 Theorem. Let (i, j) ∈ , 0 �= α ∈ Fq and let A = αeij ∈ V . As above let M be a CU -module affording 
the elementary character ξi,jα .
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1) If (i, j) ∈ , or if U is of type Cn and (i, j) ∈ , then M is irreducible and M ∼= COA.
2) If U is of type Bn or Dn and (i, j) ∈ , then

M ∼=
⊕
β∈Fq

COAβ
=

⊕
[B]∈V̂ ,verge[B]=[A]

[B] = CV(A)

is a decomposition of M into a direct sum of q many irreducible CU -modules.
3) If U is of type Cn and j = ī, then M is irreducible and occurs with multiplicity 1 in COA.

Proof. By [7, 2.1] M is irreducible in cases 1) and 3) and decomposes into a sum of q many irreducible 
pairwise non isomorphic CU -modules in case 2). Now 7.8 implies, that M and COAβ

have a composition 
factor in common for all β ∈ Fq. Consequently M is a submodule of COA = COA0 in cases 1) and 3), and 
hence M ∼= COA in case 1) by 7.6. This proves case 1).

If U is of type Bn or Dn and (i, j) ∈ , then 7.9 implies that the common composition factors Sβ of 
M and COAβ

for β ∈ Fq are pairwise non isomorphic and we conclude M ∼= ⊕β∈Fq
Sβ . Again by 7.6 we find 

COAβ
∼= Sβ is irreducible and case 2) follows. Finally case 3) follows directly from [8,2.6], (indeed there are 

the other irreducible constituents of COA determined as well). �
7.12 Remark. In [20] by different methods some irreducible characters of p-Sylow subgroups of untwisted 
finite Chevalley groups are investigated in terms of certain families. These are labeled by single positive 
roots of the Lie type in question. Each family of single root characters contains a collection of characters of 
minimal degree, called midafi. In case of p-Sylow subgroups U of classical untwisted type these are afforded 
by our orbit modules generated by cores with one main condition corresponding to the single root there.

As an immediate consequence in view of 3.16 we obtain:

7.13 Corollary. The elementary character ξi,jα is afforded by the restriction to U of the Ũ -orbit module 
CV(A) with A = αeij , except if U is of type Cn and j = ī, where ξi,̄iα is an irreducible constituent hereof. �

Next we inspect the notion of basic subsets of positive roots as defined in [7, p.396] in view of our setting.

7.14 Definition. A subset D ⊆ = Φ̃+ = {(i, j) | 1 � i < j � N} of the set of positions to the north 
of the diagonal is called basic, if it satisfies:

i) (i, j) ∈ D if and only if (j̄, ̄i) ∈ D, (so D is mirror symmetric with respect to the antidiagonal).
ii) Each row and each column of contains at most one element of D. �

Note that i) ensures, that D ∩ already determines D completely and hence D can be interpreted as 
set of positive roots of type Bn, Cn and Dn respectively. Obviously if D satisfies ii) then D ∩ does as 
well, but condition ii) for all of D (in conjunction with condition i)) is stronger: It implies as well, that on 
the arm A(i, ̄j) = {(j, k) ∈ | j < k � j̄} as defined in 5.2, there is no further position contained in D, if 
(i, ̄j) ∈ D ∩ .

7.15 Example. If 1 < j < k < n and M1 = (i, ̄j), M2 = (j, ̄k) are contained in D then M̄2 = (k, ̄j) is 
contained in D as well as M1, contradicting ii):
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Since D∩ satisfies ii), it can be interpreted as main conditions of characters [A] ∈ V̂ . Then condition 

ii) for D in conjunction with condition i) translates into the requirement for main(A) = D∩ to be main 
separated according to the following definition:

7.16 Definition. The main conditions main(A) of a character [A] ∈ V̂ are called separated if Limb(A) ∩
main(A) = ∅. If so, we call [A] and OA main separated. �

Note, that if [A] is main separated, then [A] is staircase as well, since a character [A] which is not staircase, 
contains at least one column with two main conditions, such that the lower one is on the leg of the higher 
one or is on the antidiagonal with the higher one being a right main condition. For staircase characters 
[A] ∈ V̂ main separated requires in addition, that on the arms to right main conditions there are no further 
main conditions.

7.17 Definition. (see [7]). Given a nonempty basic subset D of and a map Φ : D ∩ → F∗
q the 

André-Neto supercharacter ξD,Φ is defined as follows:

ξD,Φ =
∏

(i,j)∈D∩

ξi,jΦ(i,j),

where the elementary character ξi,jΦ(i,j) has been defined above. If D is the empty set, the corresponding 
supercharacter is defined to be the trivial one. �

We set B(i, j) = Φ(i, j)eij ∈ V for (i, j) ∈ D. Moreover we define

ÕC = {[C].u |u ∈ Ũ} for [C] ∈ V̂ ,

identifying the CŨ -modules V̂ and ˆ̃V as in 3.16.
If U is not of type Cn or (i, j) ∈ for all (i, j) ∈ D∩ we obtain applying 7.13, that ξD,Φ is afforded 

by the restriction to U of the CŨ -module ⊗
(i,j)∈D∩

CÕB(i,j), (7.18)

which is ⊗
(i,j)∈D∩

CV(B(i, j)). (7.19)

In any case ξD,Φ is afforded by a direct summand of the tensor product 7.19. We call the CŨ -module of 
7.18 André-Neto module.
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One checks easily that the condition ii) of 7.14 says that the hypothesis of [23, 6.2] is satisfied. Applying 
this we have shown that the André-Neto module 7.18 is an André-Yan Ũ -orbit module and we can describe 
its restriction to U :

7.20 Theorem. Let ∅ �= D ⊆ be a basic set and let Φ : D ∩ → F∗
q be a map. Set

A = A(D,Φ) =
∑

(i,j)∈D∩

Φ(i, j)eij ∈ V � V .

If j �= ī for all (i, j) ∈ D ∩ , the André-Neto supercharacter ξD,Φ is afforded by the restriction to U
of the Ũ -orbit module CÕA. If (i, ̄i) ∈ D for some 1 � i � n, then ξD,Φ is afforded by a direct summand 
hereof. Moreover, [A] ∈ V̂ is a main separated verge and ÕA decomposes under the action of U � Ũ into 
the disjoint union of all U -orbits of the form OB with [B] ∈ V̂ a main separated core with verge(B) = A. 
Thus

resŨU (CÕA) = CV(A) =
⊕

cores [B]∈V̂
verge(B)=A

COB

is a direct sum decomposition of the André-Neto module attached to the supercharacter ξD,Φ into U -orbit 
modules. �

Rewriting tensor products in 7.18 using [23, 6.2] into Ũ -orbit modules works for any D ⊆ satisfying 
condition ii) of 7.14. The requirement that D satisfies in addition condition i) of 7.14 is needed to show, 
that the André-Neto supercharacters of U are pairwise orthogonal.

In [19] we determine the stabilizers in U of main separated cores and prove, that every irreducible 
CU -module is constituent of some main separated orbit module. Moreover we show, that the U -orbit modules 
OA for main separated cores [A] ∈ V̂ with support(A) ⊆ are either isomorphic or afford orthogonal 
characters. In type Cn if support(A) � , that is, if (i, ̄i) ∈ main(A) for some 1 � i < n this is not true in 
view of part 3) of Theorem 7.11. This case requires a modification of the original setting and is presently 
under investigation.
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