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through variations of the Triangular and Trapezoid Lemmas involving reflexive and 
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0. Introduction

Regular Mal’tsev categories [8] extend 2-permutable varieties of universal algebras, also including many 
examples which are not necessarily varietal, such as topological groups, compact groups, torsion-free groups 
and C∗-algebras, for instance. These categories have the property that any pair of (internal) equivalence 
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relations R and S on the same object permute: RS = SR (see [6], for instance, and the references therein). 
It is well known that regular Mal’tsev categories have the property that the lattice of equivalence relations 
on any object is modular, so that they satisfy (the categorical version of) Gumm’s Shifting Lemma [15]. 
More generally, this is the case for Goursat categories [7], which are those regular categories for which the 
composition of equivalence relations on the same object is 3-permutable: RSR = SRS.

In [12] we proved that, for a regular category, the property of being a Mal’tsev category, or of being 
a Goursat category, can be both characterised through suitable variations of the Shifting Lemma. These 
variations considered the Shifting Lemma for relations which were not necessarily equivalence relations, 
but only reflexive or positive [31] ones, thus giving rise to stronger versions of the Shifting Lemma: the 
main part of those characterisations was to show that these stronger versions implied 2-permutability or 
3-permutability.

There are other properties a variety may possess which can be expressed similarly, as for instance the 
distributivity of the lattice of congruences. These properties are related to the Shifting Lemma, and are 
called the Triangular Lemma and the Trapezoid Lemma in the varietal context [9]. These properties were 
first introduced in [10,11] where the Trapezoid Lemma was called the Upright Principle. This led us to 
further study the connections between these results and the property, for a regular Mal’tsev (or a Goursat) 
category, of having distributive equivalence relation lattices on any of its objects.

From [9] we know that, for a variety V of universal algebras, the fact that both the Shifting Lemma 
and the Triangular Lemma hold in V is equivalent to V being a congruence distributive variety, and is 
also equivalent to the fact that the Trapezoid Lemma holds in V . Consequently, by considering stronger 
versions of the Triangular Lemma we were hoping to get at once 2-permutability (or 3-permutability) and 
congruence distributivity in a varietal context, and to extend these observations to a categorical context.

Explaining how this is indeed possible is the main goal of this paper, where suitable variations of the 
Triangular Lemma and of the Trapezoid Lemma are shown to be the right properties to characterise equiva-
lence distributive categories (the natural generalisation of congruence distributive varieties). More precisely, 
when C is a regular Mal’tsev category, or even a Goursat category, the Triangular Lemma is equivalent 
to the Trapezoid Lemma, and both of them are equivalent to C being equivalence distributive (Proposi-
tions 3.3 and 3.6). We also give new characterisations of equivalence distributive Mal’tsev categories through 
variations of the Triangular Lemma and of the Trapezoid Lemma (Theorem 4.1), which then apply to arith-
metical varieties [29] and arithmetical categories [28]. Inspired by the ternary Pixley term of arithmetical 
varieties [29], we consider a condition for relations, stronger than difunctionality [30], which captures the 
property for a regular category to be a Mal’tsev and equivalence distributive one (Theorem 4.4). In the last 
section we characterise equivalence distributive Goursat categories (Theorem 5.5) through variations on the 
Triangular and Trapezoid Lemmas involving reflexive and positive relations.

1. Shifting Lemma, Triangular Lemma and Trapezoid Lemma

For a variety V of universal algebras, Gumm’s Shifting Lemma [15] is stated as follows. Given congruences 
R, S and T on the same algebra X in V such that R ∧ S � T , whenever x, y, u, v are elements in X with 
(x, y) ∈ R∧T , (x, u) ∈ S, (y, v) ∈ S and (u, v) ∈ R, it then follows that (u, v) ∈ T . We display this condition 
as

x
S

RT

u

R T

y
S

v.

(1)
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A variety V of universal algebras satisfies the Shifting Lemma precisely when it is congruence modu-
lar [15], this meaning that the lattice of congruences Cong(X) on any algebra X in V is modular.

A variety V of universal algebras satisfies the Triangular Lemma [9] if, given congruences R, S and T on 
the same algebra X in V such that R∧S � T , whenever y, u, v are elements in X with (u, y) ∈ T , (y, v) ∈ S

and (u, v) ∈ R, it then follows that (u, v) ∈ T . We display this condition as

u

R
T

T

y
S

v.

(2)

A variety V of universal algebras satisfies the Trapezoid Lemma [9] if, given congruences R, S and T
on the same algebra X in V such that R ∧ S � T , whenever x, y, u, v are elements in X with (x, y) ∈ T , 
(x, u) ∈ S, (y, v) ∈ S and (u, v) ∈ R, it then follows that (u, v) ∈ T . We display this condition as
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(3)

If the Trapezoid Lemma holds in a variety, then also the Shifting Lemma and the Triangular Lemma 
hold, since they are weaker.

A categorical version of the Shifting Lemma (stated differently from the original formulation recalled 
above) may be considered in any finitely complete category, and this leads to the notion of a Gumm 
category [4,5]. One can easily check that both the properties expressed by the Triangular Lemma and by the 
Trapezoid Lemma only involve finite limits. It is then possible to speak of the validity of these properties 
in any finitely complete category. Nevertheless, since the main results of this paper will be obtained in 
3-permutable (= Goursat) categories [7], we shall need to be able to compose relations. For this reason we 
shall always require that the base category C is regular.

Recall that a finitely complete category C is regular [1] if any arrow f : A → B has a factorisation as 
a regular epimorphism (= a coequaliser) p : A → I followed by a monomorphism m : I → B, and these 
factorisations are pullback stable. The subobject determined by the monomorphism m : I → B is unique, 
and it is called the regular image of the arrow f .

In a regular category, it is possible to compose relations. If (R, r1, r2) is a relation from X to Y and 
(S, s1, s2) a relation from Y to Z, their composite SR is a relation from X to Z obtained as the regular 
image of the arrow

(r1π1, s2π2) : R×Y S → X × Z,

where (R×Y S, π1, π2) is the pullback of r2 along s1. The composition of relations is then associative, thanks 
to the fact that regular epimorphisms are assumed to be pullback stable.

In a regular category C, given equivalence relations R, S and T on the same object X such that R∧S � T , 
the lemmas recalled above can be interpreted as follows:

Shifting Lemma: R ∧ S(R ∧ T )S � T (SL)
Triangular Lemma: R ∧ ST � T (TL)
Trapezoid Lemma: R ∧ STS � T (TpL)
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We would like to point out that in some recent papers the notion of majority category has been introduced 
and investigated [17,18]. This notion is closely related to the validity of the properties just recalled. For a 
regular category C, the property of being a majority category can be equivalently defined as follows (see 
[18]): for any reflexive relations R, S and T on the same object X in C, the inequality

R ∧ (ST ) � (R ∧ S)(R ∧ T )

holds. We then observe that any regular majority category satisfies the Trapezoid Lemma (and, consequently, 
also the weaker Triangular Lemma and Shifting Lemma):

Lemma 1.1. [19] The Trapezoid Lemma holds true in any regular majority category C.

Proof. Given equivalence relations R, S and T on the same object such that R ∧ S � T , then

R ∧ (STS) � (R ∧ S)(R ∧ (TS)) � T (R ∧ T )(R ∧ S) � TTT = T. �
2. 2-Permutability and 3-permutability

A variety V of universal algebras is 2-permutable [32] when, given any congruences R and S on the same 
algebra X, we have the equality RS = SR. Such varieties are characterised by the existence of a ternary 
operation p such that p(x, y, y) = x = p(y, y, x) [26]. A variety V of universal algebras is called 3-permutable
when the strictly weaker equality RSR = SRS holds. Such varieties are characterised by the existence of 
two quaternary operations p and q satisfying the identities

p(x, y, y, z) = x

p(u, u, v, v) = q(u, u, v, v)
q(x, y, y, z) = z

(4)

(see [16]).
The notions of 2-permutability and 3-permutability can be extended from varieties to regular categories 

by replacing congruences with (internal) equivalence relations, allowing one to explore some interesting 
new (non-varietal) examples. Regular categories that are 2-permutable and 3-permutable are usually called 
Mal’tsev categories [8] and Goursat categories [7], respectively. As examples of regular Mal’tsev categories 
that are not (finitary) varieties of algebras we list: C∗-algebras, compact groups, topological groups [7], 
torsion-free abelian groups, reduced commutative rings, cocommutative Hopf algebras over a field [14], any 
abelian category, and the dual of any topos [7]. Any regular Mal’tsev category is a Goursat category. As 
examples of Goursat categories that are not regular Mal’tsev categories we have the category of implication 
algebras [27] and the category of right complemented semigroups [16].

It is well-known that any 2-permutable or 3-permutable variety is congruence modular [15,24], thus the 
Shifting Lemma holds. This result also extends to the regular categorical context. First note that in a 
regular category C, the preordered set Equiv(X) of equivalence relations on an object X in C is just a meet 
semilattice. If C is a Mal’tsev or a Goursat category, then the existence of binary joins is guaranteed (see 
Theorems 2.1(iii) and 2.2(iii)), so that Equiv(X) is a lattice which is, moreover, modular [7]. The modularity 
of the lattices of equivalence relations implies that the Shifting Lemma holds in C. However, the converse 
fails to be true even in the case of a variety of infinitary algebras, as it was shown in Example 12.5 in [20].

Regular Mal’tsev and Goursat categories are also characterised by other properties on (equivalence) 
relations, as follows:

Theorem 2.1. [8] Let C be a regular category. The following conditions are equivalent:
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(i) C is a Mal’tsev category;
(ii) ∀R, S ∈ Equiv(X), RS ∈ Equiv(X), for any object X in C;
(iii) ∀R, S ∈ Equiv(X), R ∨ S = RS(= SR), for any object X in C;
(iv) any reflexive relation E is symmetric: E◦ = E;
(v) any relation D is difunctional: DD◦D = D.

Theorem 2.2. [7] Let C be a regular category. The following conditions are equivalent:

(i) C is a Goursat category;
(ii) ∀R, S ∈ Equiv(X), RSR ∈ Equiv(X), for any object X in C;
(iii) ∀R, S ∈ Equiv(X), R ∨ S = RSR(= SRS), for any object X in C;
(iv) any relation P is such that PP ◦PP ◦ = PP ◦;
(v) any reflexive relation E is such that EE◦ = E◦E.

3. Equivalence distributivity

A lattice L is called distributive when

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),∀a, b, c ∈ L.

Equivalently, L is distributive if and only if it satisfies the Horn sentence

a ∧ b � c ⇒ a ∧ (b ∨ c) � c. (5)

A variety V of universal algebras is called congruence distributive when the lattice Cong(X) of congruences 
on any algebra X in V is distributive. Similarly, we shall call a regular category C equivalence distributive
when the meet semilattice Equiv(X) of equivalence relations is a distributive lattice, for all objects X in C.

Any distributive variety gives an example of an equivalence distributive category. The varieties of Boolean 
algebras, Heyting algebras and Von Neumann regular rings [13], or the dual of any (pre)topos are also 
examples. These are actually arithmetical categories [28], i.e. Barr-exact Mal’tsev equivalence distributive 
categories. Recall that a Barr-exact category C is a regular category where any equivalence relation in C is 
effective, i.e. the kernel pair of some arrow [1].

The congruence distributive varieties can be characterised as follows:

Theorem 3.1. [9] Let V be a variety of universal algebras. The following conditions are equivalent:

(i) V is congruence distributive;
(ii) the Trapezoid Lemma holds in V ;
(iii) the Shifting Lemma and the Triangular Lemma hold in V .

The equivalence between the Triangular Lemma and Trapezoid Lemma holds for any algebra X which 
is congruence permutable, meaning that 2-permutability holds in Cong(X):

Proposition 3.2. [9] Let V be a variety of universal algebras and X a congruence permutable algebra. The 
following conditions are equivalent:

(i) the Triangular Lemma holds for X;
(ii) the Trapezoid Lemma holds for X;
(iii) Cong(X) is distributive.
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This result may be extended to the context of regular categories. To do so we apply Barr’s Theorem [1]
which allows us to use part of the internal logic of a topos to develop proofs in a regular category. In 
particular, finite limits can be described elementwise as in the category of sets and regular epimorphisms 
via the usual formula describing surjections (see also Metatheorem A.5.7 in [2]).

Proposition 3.3. Let C be a regular Mal’tsev category. The following conditions are equivalent:

(i) the Triangular Lemma holds in C;
(ii) the Trapezoid Lemma holds in C;
(iii) C is equivalence distributive.

Proof. (i) ⇒ (ii) Let R, S and T be equivalence relations on an object X such that R ∧ S � T and 
suppose that x, y, u, v are related as in (3). Since C is a Mal’tsev category, then TS is an equivalence on X
(Theorem 2.1(ii)). We may apply the Triangular Lemma to

u
TS

R TS

y
S

v

(R ∧ S � T � TS), to conclude that (u, v) ∈ TS(= ST ). So, there exists a in X such that

u
T

R T

a
S

v.

Applying the Triangular Lemma again, we conclude that (u, v) ∈ T .
(ii) ⇒ (iii) We prove that (5) holds with respect to the lattice Equiv(X) of equivalence relations on an 

object X. Let R, S, T ∈ Equiv(X) be such that R ∧ S � T . Then

R ∧ (S ∨ T ) = R ∧ ST, by Theorem 2.1(iii)
� R ∧ STS

� T, by (TpL).

(iii) ⇒ (ii) Let R, S and T be equivalence relations in Equiv(X) such that R ∧ S � T . Then

R ∧ STS � R ∧ (S ∨ T )
� T, by (5)

thus (TpL) holds.
(ii) ⇒ (i) Obvious. �
Note that the implications (iii) ⇒ (ii) ⇒ (i) of Proposition 3.3 hold in any regular category.

Remark 3.4. It is known from Corollary 3.2 in [18] that a regular Mal’tsev category C is equivalence 
distributive if and only if C is a majority category. That every Mal’tsev equivalence distributive category 
is a majority category was already known from [17]. We remark that the converse implication also easily 
follows from Lemma 1.1 and Proposition 3.3.
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Next we show that the same equivalent conditions hold in the weaker context of Goursat categories. 
The most difficult implication to prove is that a Goursat category which satisfies the Triangular Lemma 
also satisfies the Trapezoid Lemma. We start by giving a direct proof of this fact in the varietal context to 
then obtain a categorical translation of the proof via matrix conditions [23]. Note that, for varieties, this 
result actually follows from Theorem 1 in [9]; however, we give an alternative proof which is suitable to be 
extended to the categorical context of regular categories.

Lemma 3.5. If V is a 3-permutable variety which satisfies the Triangular Lemma, then the Trapezoid Lemma 
also holds in V .

Proof. Let R, S and T be congruences on the same algebra X in V such that R ∧ S � T . Suppose that 
x, y, u, v are elements in X related as in (3). From the relations

xTxSxRx

xTxSuRu

xTySvRu

yTySyRy,

(6)

we may deduce the following ones by applying the quaternary operations p and q (see (4)), respectively:

xTp(x, x, y, y)Sp(x, u, v, y)Rx

and

yTq(x, x, y, y)Sq(x, u, v, y)Ry.

We apply the Triangular Lemma to

x

T
R T

p(x, x, y, y)
S

p(x, u, v, y)

(7)

and

y

T
R T

q(x, x, y, y)
S

q(x, u, v, y).

(8)

Next, we apply the Shifting Lemma to

x

RT (7)

S
u = p(u, u, u, v)

R T

p(x, u, v, y)
S

p(u, u, v, v)

(9)
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and

y

RT (8)

S
v = q(u, u, u, v)

R T

q(x, u, v, y)
S

q(u, u, v, v).

(10)

From (9) and (10), we obtain uTp(u, u, v, v) = q(u, u, v, v)Tv; it follows that (u, v) ∈ T . �
We adapt this varietal proof into a categorical one using an appropriate matrix and the corresponding 

relations which may be deduced from it (see [23] for more details). The kind of matrix we use translates the 
quaternary identities (4) into the property on relations given in Theorem 2.2(iv):

(
x y y z x z

u u v v α α

)
(11)

The first and second columns after the vertical separation in the matrix are the result of applying p and 
q, respectively, to the elements in the lines before the vertical separation. Thus, the introduction of a new 
element α, to represent the identity p(u, u, v, v) = q(u, u, v, v)(= α). We then “interpret” the matrix as giving 
relations between top elements and bottom elements as follows. Whenever the relations before the vertical 
separation in the matrix are assumed to hold, then we may conclude that the relations after the vertical 
separation also hold. For this matrix, the interpretation gives: for any binary relation P , if xPu, yPu, yPv

and zPv, then xPα and zPα, for some α; this gives the property PP ◦PP ◦ � PP ◦. Since PP ◦ � PP ◦PP ◦

is always true, we get precisely PP ◦PP ◦ = PP ◦ from Theorem 2.2(iv).

Proposition 3.6. Let C be a Goursat category. The following conditions are equivalent:

(i) the Triangular Lemma holds in C;
(ii) the Trapezoid Lemma holds in C;
(iii) C is equivalence distributive.

Proof. (i) ⇒ (ii) We extend the proof of Lemma 3.5 to a categorical context by constructing an appropriate 
matrix of the type (11). In that proof we applied p and q to the 4-tuples (x, x, x, y), (x, x, y, y), (x, u, u, y), 
(u, u, u, v) and (u, u, v, v). We put them in the matrix so that (x, x, x, y), (x, u, u, y) and (u, u, u, v) go to 
the top lines and (x, x, y, y) and (u, u, v, v) go to the bottom lines as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x x x y x y

x u u y x y

u u u v u v

x x y y α α

u u v v ε ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

We also used the 4-tuple (x, u, v, y), but it does not “fit” into this type of matrix; it will be used in the 
definition of the binary relation P . From the matrix, we see that the relation P should be defined from X3

to X2. The relations between the 4-tuples in the matrix above and (x, u, v, y) given in (6), and the bottom 
and right hand relations in (9) and (10) tell us that P should be defined as:
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(a, b, c)P (d, e) ⇔ ∃z such that aTdSzRb, zSe and eRc.

From the matrix we see that (x, x, u)PP ◦PP ◦(y, y, v), from which we conclude that (x, x, u)PP ◦(y, y, v). 
It then follows that (x, x, u)P (α, ε) and (y, y, v)P (α, ε), for some (α, ε), i.e. there exist β and δ such that

xTαSβRx, βSε and εRu

yTαSδRy, δSε and εRv.

Next we apply the Triangular Lemma to

x

T
R T

α
S

β

(12)

and

y

T
R T

α
S

δ.

(13)

We now apply the Shifting Lemma to

x

T

S

R(12)

u

R T

β
S

ε

(14)

and

y

T

S

R(13)

v

R T

δ
S

ε.

(15)

From (14) and (15) we obtain uTεTv, thus (u, v) ∈ T .
(ii) ⇒ (iii) We prove that (5) holds with respect to the lattice Equiv(X) of equivalence relations on an 

object X. Let R, S, T ∈ Equiv(X) be such that R ∧ S � T . Then

R ∧ (S ∨ T ) = R ∧ STS, by Theorem 2.2(iii)
� T, by (TpL).

The converse implications always hold in a regular context, as observed after the proof of Proposi-
tion 3.3. �
Remark 3.7. In a varietal context, we know that the validity of the Shifting Lemma and the Triangular 
Lemma is equivalent to the validity of the Trapezoid Lemma (Theorem 3.1). We do not know if this result 
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can be generalised to the context of a regular Gumm category [4,5]. However, Propositions 3.3 and 3.6 show 
that this equivalence between the validity of the Triangular Lemma and the Trapezoid Lemma does hold 
under the stronger conditions that the base category is regular Mal’tsev and Goursat, respectively.

Remark 3.8. Note that another characterisation of regular Goursat categories which are equivalence dis-
tributive is given in [3]. A regular Goursat category is equivalence distributive if and only if the regular 
image of equivalence relations preserves binary meets: f(R∧S) = f(R) ∧f(S), for any regular epimorphism 
f : X � Y and R, S ∈ Equiv(X).

4. Equivalence distributive Mal’tsev categories

In [12] we proved that regular Mal’tsev categories may be characterised through variations of the Shifting 
Lemma. Thanks to the results in the previous section we can now give some new characterisations of 
equivalence distributive Mal’tsev categories through similar variations of the Triangular and of the Trapezoid 
Lemmas.

The variations of the Triangular and of the Trapezoid Lemmas that we have in mind take R, S or T to be 
just reflexive relations. Note that, for diagrams such as (1), (2) or (3), where R, S or T are not symmetric, 
the relations are always to be considered from left to right and from top to bottom. To avoid ambiguity 

with the interpretation of such diagrams, from now on we will write x
U

y to mean that (x, y) ∈ U , 
whenever U is a non-symmetric relation.

Theorem 4.1. Let C be a regular category. The following conditions are equivalent:

(i) C is an equivalence distributive Mal’tsev category;
(ii) the Trapezoid Lemma holds in C when R, S and T are reflexive relations;
(iii) the Triangular Lemma holds in C when R, S and T are reflexive relations.

Proof. (i) ⇒ (ii) Since C is a Mal’tsev category, reflexive relations are necessarily equivalence relations. 
Since C is also equivalence distributive, by Proposition 3.3, the Trapezoid Lemma holds for any reflexive 
relations in C.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) We follow the proof of Theorem 3.2 of [12] with respect to the implication: if the Shifting Lemma 

holds in C for reflexive relations, then C is a Mal’tsev category. The main issue is to fit the rectangle to 
which we applied the Shifting Lemma in that result, into a suitable triangle to which we shall now apply 
the Triangular Lemma (to get the same conclusion that C is a Mal’tsev category).

To prove that C is a Mal’tsev category, we show that any reflexive relation 〈e1, e2〉 : E � X ×X in C
is also symmetric (Theorem 2.1(iv)). Suppose that (x, y) ∈ E, and consider the reflexive relations T and R
on E defined as follows:

(aEb, cEd) ∈ R if and only if (a, d) ∈ E, and
(aEb, cEd) ∈ T if and only if (c, b) ∈ E.

The third reflexive relation on E we consider is the kernel pair Eq(e2) of the second projection e2. Eq(e2) is an 
equivalence relation, with the property that Eq(e2) � R and Eq(e2) � T , so that R∧Eq(e2) = Eq(e2) � T . 
We can apply the assumption to the following relations given in solid lines
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xEx

T
R T

xEy
Eq(e2)

yEy

(xEx and yEy by the reflexivity of the relation E). We conclude that (xEx, yEy) ∈ T and, consequently, 
that (y, x) ∈ E, so that C is a Mal’tsev category.

Since the Triangular Lemma holds in C, by Proposition 3.3 the category C is equivalence distributive. �
In the proof of the implication (iii) ⇒ (i) we only used two “genuine” reflexive relations R and T . This 

observation gives:

Corollary 4.2. Let C be a regular category. The following conditions are equivalent:

(i) C is an equivalence distributive Mal’tsev category;
(ii) the Trapezoid Lemma holds in C when R and T are reflexive relations and S is an equivalence relation;
(iii) the Triangular Lemma holds in C when R and T are reflexive relations and S is an equivalence relation.

Remark 4.3. An arithmetical category C is an equivalence distributive and Mal’tsev category which is, 
moreover, Barr-exact. Note that in this article we do not assume the existence of coequalisers, differently 
from what was done in Pedicchio’s original definition of arithmetical category [28]. So, given a Barr-exact 
category C, the same equivalent conditions stated in Theorem 4.1(ii), Theorem 4.1(iii), Corollary 4.2(ii) 
and Corollary 4.2(iii) give characterisations of the fact that C is an arithmetical category.

We finish this section with a characterisation of equivalence distributive Mal’tsev categories through a 
property on ternary relations which is stronger than difunctionality (Theorem 2.1(v)). The difunctionality 
of a binary relation D � X × U , DD◦D = D can be pictured as

xDu

yDu

yDv

xDv.

Whenever the first three relations hold, we can conclude that the bottom relation xDv holds.
Recall from [29] that an arithmetical variety is such that there exists a Pixley term p(x, y, z) such that 

p(x, y, y) = x, p(x, x, y) = y and p(x, y, x) = x. We translate these Mal’tsev conditions into a property on 
relations (following the technique in [21]) which is expressed for ternary relations D � (X × A) × U , seen 
as binary relations from X ×A to U . It may be pictured as

(x, a)Du

(y, b)Du

(y, a)Dv

(x, a)Dv.

(16)

This condition on the relation D follows from applying the Pixley term to each column of elements, and 
writing the result in the bottom line. In a regular context, property (16) is equal to

(Eq(πA) ∧DD◦Eq(πX))D � D.
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Theorem 4.4. Let C be a regular category. The following conditions are equivalent:

(i) C is an equivalence distributive Mal’tsev category;
(ii) any relation D � (X ×A) × U has property (16).

Proof. (i) ⇒ (ii) Suppose that the first three relations in (16) hold. Consider the equivalence relations 
Eq(d1), Eq(d2) and Eq(d3) on D given by the kernel pairs of the projections of D. We have

(x, a, u) Eq(d2) (y, a, v) ⇒ (x, a, u) Eq(d1)Eq(d2) (y, a, v).
(x, a, u) Eq(d3) (y, b, u) Eq(d1) (y, a, v) ⇒ (x, a, u) Eq(d1)Eq(d3) (y, a, v)

By assumption, Eq(d1)(Eq(d2) ∧ Eq(d3)) = (Eq(d1)Eq(d2)) ∧ (Eq(d1)Eq(d3)) (distributivity and Theo-
rem 2.1(iii)). Thus

(x, a, u) Eq(d1)(Eq(d2) ∧ Eq(d3)) (y, a, v),

i.e.

(x, a, u) Eq(d2) ∧ Eq(d3) (y, a, u) Eq(d1) (y, a, v)

and, consequently, (y, a, u) ∈ D. Now we use the difunctionality of D (Theorem 2.1(v))

(x, a)Du

(y, a)Du

(y, a)Dv

(x, a)Dv,

to conclude that (x, a)Dv.
(ii) ⇒ (i) The assumption applied to the case when A = 1, is precisely difunctionality of any binary 

relation, so C is a Mal’tsev category (Theorem 2.1(v)).
Since C is a Mal’tsev category, we just need to prove the Triangular Lemma to conclude that C is 

equivalence distributive (Proposition 3.3). Consider equivalence relations R, S and T on an object X, such 
that R ∧ S � T and that the relations in (2) hold.

We consider a relation D � (X ×X) ×X defined by

(a, b)Dc ⇔ ∃d ∈ X : dSa, dTb and dRc.

We have the following first three relations for d = u, d = v and d = y, respectively,

(u, y)Dv

(y, v)Dv

(y, y)Dy

(u, y)Dy;

by assumption, we conclude that (u, y)Dy. By the definition of D, there exists w ∈ X such that wSu, wTy
and wRy. We can then apply the Shifting Lemma to
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w
S

RT

u

R T

y
S

v,

to conclude that uTv. �
5. Equivalence distributive Goursat categories

In [12] we showed that Goursat categories may be characterised through variations of the Shifting Lemma. 
Together with the results from Section 4, we are going to characterise equivalence distributive Goursat 
categories through similar variations of the Triangular and the Trapezoid Lemmas. Such variations use the 
notion of positive relation.

A relation E on X is called positive [31] when it is of the form E = RoR for some relation R � X × Y .

Lemma 5.1. Let C be a regular category. Then:

(i) any positive relation is symmetric;
(ii) any equivalence relation is positive.

Proof. (i) Let E be a positive relation and R a relation such that E = RoR. One has Eo = (RoR)o =
RoR = E.

(ii) When R is an equivalence relation, one has R = RoR. �
The following characterisation of Goursat categories through positive relations will be useful in the sequel:

Proposition 5.2. [12] A regular category C is a Goursat category if and only if any reflexive and positive 
relation in C is an equivalence relation.

Let us begin with the following observation:

Proposition 5.3. In any equivalence distributive Goursat category C, the Trapezoid Lemma holds when S is 
a reflexive relation and R and T are equivalence relations.

Proof. The proof of this result is based on that of Proposition 4.4 in [12] which claims that a Goursat 
category satisfies the Shifting Lemma when S is a reflexive relation and R and T are equivalence relations.

Let R and T be equivalence relations and let S be a reflexive relation on an object X such that R∧S � T . 
Suppose that we have (x, y) ∈ T , (x, u) ∈ S, (y, v) ∈ S and (u, v) ∈ R

x
T

S
u

R

y
S

v.

We are going to show that (u, v) ∈ T .
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Consider the two relations P and W on S defined as follows: (aSb, cSd) ∈ P if and only if aRc and bRd:

a
S

R

b

R

c
S

d

while (aSb, cSd) ∈ W if and only if aTc and bRd:

a
S

T

b

R

c
S

d

The relations P and W are equivalence relations on S since R and T are both equivalence relations. Given 
the equivalence relations P , Eq(s2) and W on S, since C is Goursat category, one has

(P ∧ Eq(s2) ) ∨ W = (P ∧ Eq(s2) )W (P ∧ Eq(s2) )
= W (P ∧ Eq(s2) )W,

which is an equivalence relation (Theorem 2.1 (iii)).
Since

P ∧ Eq(s2) � (P ∧ Eq(s2) ) ∨ W

and C is a Goursat and equivalence distributive category, by Proposition 3.6, we can apply the Trapezoid 
Lemma to the following diagram

xSu
(P∧Eq(s2) )∨W

Eq(s2)
uSu

P (P∧Eq(s2) )∨W

ySv
Eq(s2)

vSv.

Note that, uSu and vSv by the reflexivity of S. We then obtain

(uSu, vSv) ∈ (P ∧ Eq(s2) ) ∨ W = (P ∧ Eq(s2) )W (P ∧ Eq(s2) ),

this means that there are a and b in X such that

(uSu) (P ∧ Eq(s2)) (aSu)W (bSv) (P ∧ Eq(s2)) (vSv),

i.e.
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u
S

R

u

R

a
S

T

u

R

b

R

S
v

R

v
S

v.

Since aRu (R is symmetric), aSu and R ∧ S � T , it follows that aTu; similarly one checks that bTv. From 
uTa (T is symmetric), aTb and bTv, we conclude that uTv (T is transitive), as desired. �

Since the Trapezoid Lemma implies the Triangular Lemma, we get the following:

Corollary 5.4. In any equivalence distributive Goursat category C, the Triangular Lemma holds when S is 
a reflexive relation and R and T are equivalence relations.

We are now ready to prove the main result in this section:

Theorem 5.5. Let C be a regular category. The following conditions are equivalent:

(i) C is an equivalence distributive Goursat category;
(ii) the Trapezoid Lemma holds in C when S is a reflexive relation and R and T are reflexive and positive 

relations;
(iii) the Triangular Lemma holds in C when S is a reflexive relation and R and T are reflexive and positive 

relations.

Proof. (i) ⇒ (ii) Since C is a Goursat category, by Proposition 5.2, reflexive and positive relations are 
necessarily equivalence relations. Since C is also equivalence distributive, by Proposition 5.3, the Trapezoid 
Lemma holds when S is a reflexive relation and R and T are reflexive and positive relations.

(ii) ⇒ (iii) is obvious.
(iii) ⇒ (i) We follow the proof of Theorem 4.6 of [12] with respect to the implication: if the Shifting 

Lemma holds in C when S is a reflexive relation and R and T are reflexive and positive relations, then C
is a Goursat category. The main issue is to fit the rectangle to which we applied the Shifting Lemma in 
that result, into a suitable triangle to which we shall now apply the Triangular Lemma (to get the same 
conclusion that C is a Goursat category).

To prove that C is a Goursat category, we show that for any reflexive relation E on X in C, EE◦ = E◦E

(Theorem 2.2(v)). Suppose that (x, y) ∈ EE◦. Then, for some z in X, one has that (z, x) ∈ E and (z, y) ∈ E. 
Consider the reflexive and positive relations EE◦ and E◦E, and the reflexive relation E on X. From the 
reflexivity of E, we get E � EE◦ and E � E◦E; thus EE◦∧E = E � E◦E. We may apply our assumption 
(for R = EE◦, S = E, T = E◦E) to the following relations given in solid lines:

x

EE◦ E◦E
E◦E

z
E

y
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to conclude that (x, y) ∈ E◦E. Having proved that EE◦ � E◦E for every reflexive relation E, the equality 
E◦E � EE◦ follows immediately. �

We finish this section with a characterisation of equivalence distributive Goursat categories through a 
property on ternary relations which is stronger than condition (iv) of Theorem 2.2. The process to obtain 
such a characterisation is similar to what was done to obtain Theorem 4.4 for the Mal’tsev context. Therefore, 
we only give the main features leaving the proof for the reader to complete.

Recall from [25] that a 3-permutable congruence distributive variety is such that there exist ternary
terms r(x, y, z) and s(x, y, z) such that r(x, y, y) = x, r(x, x, y) = s(x, y, y), s(x, x, y) = y and r(x, y, x) =
x = s(x, y, x). It is easy to check that, equivalently, such varieties admit quaternary terms p(x, y, z, w) and 
q(x, y, z, w) such that p(x, y, y, z) = x, p(x, x, y, y) = q(x, x, y, y), q(x, y, y, z) = z and p(x, y, z, x) = x =
q(x, y, z, x).

These Mal’tsev conditions translate into a property on relations (following the technique in [22]) which 
is expressed for ternary relations P � (X ×A) × U , seen as binary relations from X ×A to U , as

(x, a)Pu

(y, b)Pu

(y, c)Pv

(z, a)Pv

(x, a)Pw

(z, a)Pw,

(17)

for some w in U .
In a regular context, property (17) is equal to

Eq(πA) ∧ PP ◦Eq(πX)PP ◦ � PP ◦,

and one can prove the following:

Theorem 5.6. Let C be a regular category. The following conditions are equivalent:

(i) C is an equivalence distributive Goursat category;
(ii) any relation P � (X ×A) × U has property (17).
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