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1. Introduction

Let V be a holomorphic vector field defined on a projective algebraic variety X. The zero subscheme Z
is the subspace of X defined by the ideal generated by VOX and we denote it by XV .

The existence of a holomorphic vector field with zeroes on a smooth projective variety imposes restrictions 
on the topology of the manifold. For examples, the Hodge numbers hp,q(X) = 0 if |p − q| > dimZ (see [5]). 
For a smooth complex projective variety X admitting a C∗-action, Bialynicki-Birula’ structure theorem 
describes the relation between the structure of X and that of the fixed points set ([3]).

According to Lieberman ([37]), the existence of a holomorphic vector field V on a complex algebraic 
projective variety X with nonempty zeroes is equivalent to the existence of the action a 1-parameter group 
G, which is isomorphic to a product of C∗’s and at most one C’s. This encourages us to study the structure 
of projective varieties admitting a C∗-action or a C-action.

In this paper, we consider the case that X is a singular projective variety admitting a C-action (resp. 
C∗-action). In this case, the relation between the structure of X and that of the fixed point set is subtle. A 
general result of Bialynicki-Birula says that X and the fixed point set are C-equivalent (resp. C∗-equivalent). 
In [27], we got the Chow group of zero cycles and Lawson homology group of 1-cycles for X admitting a 
C-action.

When X is singular and admitting a C∗-action, the Bialynicki-Birula type structure theorem also holds 
for singular homology groups if the action is “good” in sense of [4]. In general, it does not hold for a singular 
X admitting a C∗-action without additional conditions. For a singular variety X admitting the certain C∗-
action with isolated fixed points, Carrell asked if the odd Betti numbers of X vanish, etc. In section 3, we 
ask parallel questions to those of Carrell and give answers to all of them. We give negative answers to some 
of these questions. We compute the Chow groups of 0-cycles for singular varieties admitting a C∗-action 
with isolated fixed points. As a contrast to projective varieties admitting a C-action, the parallel result for 
Lawson homology group of 1-cycles does not hold any more (see Example 3.29).

In section 4, we briefly review and summarize some known algebraic and topological invariants for Chow 
varieties Cp,d(Pn) parameterizing effective p-cycles of degree d in the complex projective space Pn. We give 
a counterexample to the problem of Shafarevich on the rationality of the irreducible components of Chow 
varieties, based on the work of Eisenbud, Harris, Mumford, etc.

As applications of section 2 and 3, we compute the Chow group of zero cycles and Lawson homology 
groups of 1-cycles for Chow varieties.

2. Invariants under the additive group action

Let X be a possible singular complex projective algebraic variety which admits an additive group action. 
Our main purpose is to compare certain algebraic and topological invariants (such as the Chow group of 
zero cycles, Lawson homology, the singular homology, etc.) of X to those of the fixed point set XC. If X
is a smooth projective variety, then most of its topological invariants are studied and computed in details. 
However, some of algebro-geometric invariants are still hard to identify. Some of those invariants have been 
investigated even if X is singular. In this section, we will identify some of these invariants including the 
Chow groups of zero cycles, Lawson homology for 1-cycles, the singular homology with integer coefficients, 
etc.

2.1. A-equivalence

Let A be a fixed complex quasi-projective algebraic variety. Recall that an algebraic scheme X1 is simply 
A-equivalent to an algebraic variety X2 if X1 is isomorphic to a closed subvariety X ′

2 of X2 and there 
exists an isomorphism f : X2 − X ′

2 → Y × A, where Y is an algebraic variety. The smallest equivalence 
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relation containing the relation of simple A-equivalences is called the A-equivalence and we denote it by 
∼ (see [2]). A result of Bialynicki-Birula says that X∼XC if X is a quasi-projective variety admitting 
a C-action. A similar statement holds for X admitting a C∗-action. From this, Bialynicki-Birula showed 
that H0(X, Z) ∼= H0(XC, Z) and H1(X, Z) ∼= H1(XC, Z) in the case that X admits a C-action, where 
χ(X) = χ(XC∗) in the case that X admits a C-action (see [2]). Along this route, more additive invariants 
have been calculated for varieties admits a C or C∗-action (see [28]).

2.2. Chow groups and Lawson homology

Let X be any complex projective variety or scheme of dimension n and let Zp(X) be the group of algebraic 
p-cycles on X. Let Chp(X) be the Chow group of p-cycles on X, i.e.

Chp(X) = Zp(X)/{rational equivalence}.

Set Chp(X)Q := Chp(X) ⊗Q, Chp(X) =
⊕

p≥0 Chp(X). For more details on the Chow theory, the reader 
is referred to Fulton ([21]).

Proposition 2.1. [27] Let X be a (possible singular) connected complex projective variety. If X admits a 
C-action with isolated fixed points, then Ch0(X) ∼= Z.

Remark 2.2. More generally, by using the same method, we can show that if X admits a C-action with a 
fixed points set XC, then Ch0(X) ∼= Ch0(XC).

The Lawson homology LpHk(X) of p-cycles for a projective variety is defined by

LpHk(X) := πk−2p(Zp(X)) for k ≥ 2p ≥ 0,

where Zp(X) is provided with a natural topology (cf. [18], [34]).
In [19], Friedlander and Mazur showed that there are natural transformations, called Friedlander-Mazur 

cycle class maps

Φp,k : LpHk(X) → Hk(X,Z) (2.3)

for all k ≥ 2p ≥ 0.
Set

LpHk(X)hom := ker{Φp,k : LpHk(X) → Hk(X)};
LpHk(X)Q := LpHk(X) ⊗Q.

Denoted by Φp,k,Q the map Φp,k⊗Q : LpHk(X)Q → Hk(X, Q). The Griffiths group of dimension p-cycles 
is defined to be

Griffp(X) := Zp(X)hom/Zp(X)alg.

Set

Griffp(X)Q := Griffp(X) ⊗Q;

It was proved by Friedlander [18] that, for any smooth projective variety X,

LpH2p(X) ∼= Zp(X)/Zp(X)alg.
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Therefore

LpH2p(X)hom ∼= Griffp(X).

Proposition 2.4. [27] Under the same assumption as Proposition 2.1, we have

L1Hk(X) ∼= Hk(X,Z)

for all k ≥ 2. In particular, Griff1(X) = 0.

Remark 2.5. The isomorphism L0Hk(X) ∼= Hk(X, Z) holds for any integer k ≥ 0, which is the special case 
of the Dold-Thom Theorem.

Remark 2.6. The assumption of “connectedness” in Proposition 2.4 is not necessary. By the same reason, 
we can remove the connectedness in Proposition 2.1, while the conclusion “Ch0(X) ∼= Z” would be replaced 
by “Ch0(X) ∼= H0(X, Z)”.

2.3. The virtual Betti and Hodge numbers

Recall that the virtual Hodge polynomial H : V arC → Z[u, v] is defined by the following properties:

(1) HX(u, v) :=
∑

p,q(−1)p+q dimHq(X, Ωp
X)upvq if X is nonsingular and projective (or complete).

(2) HX(u, v) = HU (u, v) + HY (u, v) if Y is a closed algebraic subset of X and U = X − Y .
(3) If X = Y × Z, then HX(u, v) = HY (u, v) ·HZ(u, v).

The existence and uniqueness of such a polynomial follow from Deligne’s Mixed Hodge theory (see 
[12,13]). The coefficient of upvq of HX(u, v) is called the virtual Hodge (p, q)-number of X and we denote 
it by h̃p,q(X). Note that from the definition, h̃p,q(X) coincides with the usual Hodge number (p, q)-number 
hp,q(X) if X is a smooth projective variety. The sum β̃k(X) :=

∑
i+j=k h̃

p,q(X) is called the k-th virtual 
Betti number of X. The virtual Poincaré polynomial of X is defined to be

P̃X(t) :=
2 dimC X∑

k=0

βk(X)tk,

which coincides to the usual Poincaré polynomial defined through the corresponding usual Betti numbers.

3. Results related to the multiplicative group action

In this section we will give all kinds of relations between a complex variety (not necessarily smooth, 
irreducible) and the fixed point set of a multiplicative group action or an additive group action.

Let X be a smooth complex projective variety which admits a C∗-action with fixed point set XC∗ . Denote 
by F1, · · · , Fr the connected components. It was shown by Bialynicki-Birula that there is a homology basis 
formula ([3]):

Hk(X,Z) ∼=
r⊕

j=1
Hk−2λj

(Fj ,Z), (3.1)

where λj is the fiber dimension of the bundle in Pj : X+
j → Fj and X+

j := {x ∈ X : limt→0 t · x ∈ Fj}. This 
result has been generalized to compact Kähler manifolds without change by Carrell-Sommese [8] and Fujiki 
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independently. In fact, when X is a compact Kähler manifold, the Hodge structure on X is completely 
determined by that on the fixed point set in an obvious way.

Furthermore, there are similar basis formulas for Chow groups (see [10] for XC∗ finite and [40] for the 
general case) and Lawson homology (see [39] for XC∗ finite and [33] for the general case), as applications 
of Bialynicki-Birula’ structure theorem ([3]).

However, if X is a singular projective algebraic variety, Equation (3.1) would be failed in general. Under 
some additional conditions, Equation (3.1) may still hold. For example, if the C∗-action on X is “good” in 
the sense of Carrell and Goresky, Equation (3.1) has been shown to hold (cf. [4]).

There are several questions related to the structure of X and XC∗ . J. Carrell asked the question how 
does the mixed Hodge structure on X relate to the mixed Hodge structure on the fixed point set in the case 
of good action.

Question 3.2. ([6, p.21]) In the case of a good action, how does the mixed Hodge structure on X relate to 
the mixed Hodge structure on XC∗?

We will give an explicit relation on the mixed Hodge structure between X and XC∗ , especially the relation 
of their virtual Hodge numbers (see Proposition 3.10).

When X is a possibly singular complex projective variety with a C∗-action, where a “variety” means a 
reduced, not necessary irreducible scheme, Carrell and Goresky showed that there still exists an integral 
homology basis formula under the assumption that the C∗-action is “good” ([4]).

Carrell asked the following question.

Question 3.3. ([6, p.22]) If an irreducible complex projective variety X admits not necessarily good C∗-action 
with isolated fixed points, do the odd homology groups of X vanish?

The following example gives a negative answer to his question.

Example 3.4. Let C be a cubic plane curve with a node singular point p, e.g. (zy2 = x3 + x2z) ⊂ P 2. The 
normalization σ : C̃ → C of C is isomorphic to P 1. Let C∗ × P 1 → P 1 be the holomorphic C∗-action given 
by (t, [x : y]) �→ [tx : y]. The fixed point set of this action contains two points, [1 : 0] and [0 : 1]. We can 
always assume σ([1, 0]) = σ([0 : 1]) = p0 by composing a suitable automorphism of P 1, where p0 = [0 : 0 : 1]
is the singular point of C. The holomorphic C∗-action on P 1 descends to a holomorphic C∗-action on C
whose fixed point set is the single point p. More explicitly, such a map σ can be given by the formula: 
σ : P 1 → C, [s : t] �→ [st(s + t) : st(s − t) : (s + t)3].

However, the fundamental group of C is isomorphic to Z, so H1(C, Z) ∼= Z and β1(C) = 1 	= 0.

In each dimension n ≥ 1, there exists a projective variety X satisfying the assumption in Question 3.3
such that β1(X) 	= 0. To see this, note that Pn−1 admits a C∗-action with isolated fixed points for each 
integer n ≥ 1. Hence X := C×Pn−1 admits an induced C∗-action from each component with isolated fixed 
points. Therefore, we get β1(X) = β1(C) by the Künneth formula and the later is nonzero from Example 3.4.

In Example 3.4, X admits a C∗-action but the odd homology group H1(X, Z) is nonzero. However, the 
odd virtual Betti numbers and the virtual Hodge numbers h̃p,q(X) are zero, where p 	= q. To see this, we can 
write C = C∗ ∪ p0 and so HC(u, v) = (uv − 1) + 1 = uv. Hence h̃1,0(C) = h̃0,1(C) = 0 and β̃1(C) = 0.

In certain sense, the virtual Betti numbers are more suitable to reveal the topology of a singular variety. 
A natural question would be the following modified version of Carrell’s Question in virtual Betti numbers.

Question 3.5 (Modified version of Carrell). If an irreducible complex projective variety X admits not nec-
essarily good C∗-action with isolated fixed points, do the odd virtual Betti numbers of X vanish?



6 W. Hu / Journal of Pure and Applied Algebra 225 (2021) 106667
If X is irreducible and dimX = 1, the answer to the question is positive. In this case, X = C∗ ∪ Y and 
Y is a set of finite points. Then HX(u, v) = (uv − 1) + k = uv + k − 1 and the odd virtual Betti numbers 
of X are zero, where k is the number of points of Y .

If X is smooth projective, then the answer to the question is positive ([3]). Moreover, if the C∗-action on 
X is “good” in the sense of Carrell and Goresky, the answer is also positive (see Corollary 3.16 for a weaker 
condition such that the answer is positive).

The following example of a projective variety admits a not “good” C∗-action, but the answer to Ques-
tion 3.5 is positive.

Example 3.6. Let X := SPd(Pn) be the d-th symmetric product of the complex projective space Pn. The 
standard (C∗)n-action on Pn induces a (C∗)n-action on SPd(Pn) with isolated fixed points. It follows from 
Cheah [9] that the k-th virtual Betti number of SPd(Pn) is the coefficient of tdxk in the power series of ∏n

j=0(1 − tx2j)−1. Hence β̃k(SPd(Pn)) = 0 for and all d and all odd k.

Under a weaker condition than Carrell and Goresky’s “good” condition, the answer to Question 3.5 is 
positive (see Corollary 3.16).

However, in general, the answer to Question 3.5 is negative. There is an irreducible projective algebraic 
surface S admitting C∗-action with isolated zeroes such that the first virtual betti number β̃1(S) 	= 0. Such 
a surface was constructed by Lieberman ([38, p.111]) as a nonrational surface admitting a holomorphic 
vector field with isolated zeroes. A suitable modification fulfills our purpose. The following example gives a 
negative answer to Question 3.5.

Example 3.7. Let Y = P 1 × C, where C is a smooth projective curve with genus g(C) ≥ 1. Let us consider 
the C∗-action φ : C∗×Y → Y given by (t, ([u : v], z)) → ([u : tv], z), where [u : v] denotes the homogeneous 
coordinates for P 1 and z denotes the coordinate for the curve C. The fixed points of the action φ are 
C1 := [1 : 0] × C and C2 := [0 : 1] × C. Each of these curves has self-intersection zero. Let σ : S̃ → Y be 
obtained from Y by blowing up one point pi on each Ci (i = 1, 2), and let φ̃ : C× S̃ → S̃ be the equivariant 
lifting action. The fixed points of φ̃ are the proper transforms C̃i of Ci and two other isolated points. Since 
the self-intersection number of C̃i on S̃ is −1. One can blow down σ̃ : S̃ → S the C̃i to obtain a projective 
surface S, which admits the induced C∗-action. Moreover SC∗ are four isolated points. In explicitly, we have 
the following relations

S̃
σ̃

σ

S

Y P 1 × C.

(3.8)

Now we can compute the virtual Betti numbers from the construction. Since S̃− C̃1 − C̃2 ∼= S− σ̃(C̃1) −
σ̃(C̃2) and S̃ −E1 −E2 ∼= Y − p1 − p2, where E1 ∼= E2 ∼= P 1, we have by using the additive property of the 
virtual Poincaré polynomial

P̃S(t) = P̃S̃(t) − P̃C̃1
(t) − P̃C̃2

(t) + P̃σ̃(C̃1)(t) + P̃σ̃(C̃2)(t)
= P̃S̃(t) − 2P̃C(t) + 2
= P̃Y (t) + 2P̃P1(t) − 2 − 2P̃C(t) + 2
= P̃P1×C(t) + 2P̃P1(t) − 2 − 2P̃C(t) + 2
= P̃P1(t)P̃C(t) + 2P̃P1(t) − 2 − 2P̃C(t) + 2
= (t2 + 1)(t2 + 2g(C)t + 1) + 2(t2 + 1) − 2(t2 + 2g(C)t + 1)
= t4 + 2g(C)t3 + 2t2 − 2g(C)t + 1.



W. Hu / Journal of Pure and Applied Algebra 225 (2021) 106667 7
Since g(C) ≥ 1, β̃1(S) = −2g(C) 	= 0.

Remark 3.9. We can also construct examples of projective varieties in any dimension greater than or equals 
to 2 such that the answer to Question 3.5 is negative. Since Pn admits a C∗-action with isolated fixed 
points, so S × Pn admits a C∗-action with isolated points, where S is the projective surface constructed in 
Example 3.7. By using the product property of the virtual Poincaré polynomial, it is easy to compute that 
β̃1(S × Pn) = −2g(C).

Now we shall show that the answer to Question 3.5 is positive under certain not “good” condition. For a 
singular variety X with a C∗-action, one can always find an analytic Whitney stratification whose strata are 
C∗-invariant. Recall that the C∗-action on X is singularity preserving as t → 0 if there exists an equivariant 
Whiteny stratification of X such that for every stratum A, and for every x ∈ A, the limit x0 = limt→0 t · x
is also in A (cf. [4]). In this case, X =

⋃r
j=1 X

+
j , and X+

j → Fj is a topologically locally trivial affine space 
bundle (cf. [4, Lemma 1]). Denote mj be the dimension of the fiber of the bundle X+

j → Fj .
Then we have the following relation on virtual Hodge polynomials between X and the fixed point set.

Proposition 3.10. Suppose X admits a Whitney stratification which is singularity preserving as t → 0. Then

HX(u, v) =
r∑

j=1
HFj

(u, v)umjvmj ,

where Fj and mj are given as before.

Proof. Suppose X has a Whitney stratification that is singularity preserving as t → 0 and let Fj denote a 
fixed point component. For a stratum A, the map Fj ∩A, p−1

j (Fj ∩A) := {x ∈ X : limt→0(t · x) ∈ Fj ∩A}
is Zariski locally trivial affine space bundle (cf. [3], [7]). Since Fj = ∪A∈S(Fj ∩A), where S is the set of all 
strata of X in the given Whitney stratification. Hence the total space of the topological locally trivial affine 
space bundle X+

j → Fj can be written the disjoint union of subvarieties p−1
j (Fj ∩A).

Therefore, we have

HX(u, v) =
∑r

j=1 HX+
j

(u, v)
=

∑r
j=1

∑
A∈S Hp−1

j (Fj∩A)(u, v)
=

∑r
j=1

∑
A∈S HFj∩A(u, v) ·HCmj (u, v)

=
∑r

j=1 HFj
(u, v) ·HCmj (u, v)

=
∑r

j=1 HFj
(u, v)(uv)mj . �

Remark 3.11. Proposition 3.10 does not have to hold if the singularity preserving property fails. For example, 
X is the cone in Pn+1 over a smooth projective variety V ⊂ Pn = (zn+1 = 0) with vertex P 0 = [0 : · · · : 0 : 1], 
the C∗-action on X induced by the action (t, [z0 : · · · : zn : zn+1]) �→ [tz0 : · · · : tzn : zn+1] on Pn+1. The 
fixed point set is V and P 0, and the action is not singularity preserving as t → 0. In this case we observe 
that HX(u, v) 	= HV (u, v) +hP0(u, v)unvn. However, if the action is given as (t, [z0 : · · · : zn : zn+1]) �→ [z0 :
· · · : zn : tzn+1] on Pn+1, it is singularity preserving as t → 0. So HX(u, v) = HV (u, v)uv + HP0(u, v) =
HV (u, v)uv + 1.

From the proof of the above theorem, we see that if X can be decomposed as the disjoint union of locally 
closed subvarieties (not necessarily irreducible) Wj for j = 1, · · · , r, where Wi is a locally trivial affine space 
bundle over Fj with fiber Cmj in Zariski topology, then HX(u, v) =

∑r
HFj

(u, v)umjvmj .
j=1
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From Proposition 3.10, we see that the mixed Hodge structure of X is partially determined by the mixed 
Hodge structures of the fixed point set. One also obtains from Proposition 3.10 that the virtual Hodge 
numbers of X are nonnegative if all Fj are smooth projective varieties.

Corollary 3.12. Suppose X admits a Whitney stratification which is singularity preserving as t → 0. Then

h̃p,q(X) = 0, ∀|p− q| > dimXC∗
.

In particular, if XC∗ contains only isolated points, then h̃p,q(X) = 0 for all p 	= q.

One obtains the relations between virtual Betti numbers of X and those of the fixed point set immediately 
from Proposition 3.10.

Corollary 3.13. Suppose X admits a Whitney stratification which is singularity preserving as t → 0. Then

P̃X(t) =
r∑

j=1
P̃Fj

(t)t2mj . (3.14)

If the C∗-action on a projective variety X is “good” in the sense of Carrell and Goresky (cf. [4]), then the 
usual Poincaré polynomial PX(t) of X can be expressed in terms of that of the fixed point set as follows:

PX(t) =
r∑

j=1
PFj

(t)t2mj . (3.15)

Furthermore, if Fj are smooth projective varieties, then P̃X(t) = PX(t) since P̃Fj
(t) = PFj

(t) for each Fj

and Equation (3.14)-(3.15). In other words, the virtual Betti numbers and the usual Betti numbers coincide 
for such projective varieties. This gives us the following corollary.

Since the answer to Question 3.5 is negative in general, the following corollary gives a sufficient condition 
for the C∗-action such that the odd virtual Betti numbers vanish. This condition is much weaker than 
Carrell and Goresky’s “good” condition.

Corollary 3.16. Under the assumption in Question 3.5 and suppose X admits a Whitney stratification which 
is singularity preserving as t → 0. Then

β̃2k−1(X) = 0, ∀k > dimXC∗
.

In particular, if XC∗ contains only isolated points, then β̃k(X) = 0 for all odd k.

For a C∗-action on algebraic varieties, there is a relation between virtual Hodge numbers between X and 
XC∗ (see [28]), i.e., ∑

p−q=i

h̃p,q(X) =
∑

p−q=i

h̃p,q(XC∗
),∀i. (3.17)

If we set b̃even(X) :=
∑

i b̃2i(X) and b̃odd(X) :=
∑

i b̃2i−1(X), then we get from equation (3.17)

b̃even(X) = b̃even(XC∗)
b̃ (X) = b̃ (XC∗).

(3.18)

odd odd
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In particular, X admits a C∗-action with isolated zeroes, then b̃odd(X) = 0, i.e., the sum of all odd virtual 
Betti numbers is zero.

Note that the Euler characteristic χ(X) of X is equal to b̃even(X) − b̃odd(X) and Equation (3.18) implies 
the fixed point formula for the Euler characteristic: χ(X) = χ(XC∗).

When X admits C-action with isolated fixed point, it was shown that Ch0(X) ∼= Z (see Proposition 2.1). 
Inspired by this result, it is natural to ask if Ch0(X) ∼= Z holds for a C∗-action. Amazingly, such a statement 
still holds.

Proposition 3.19. If X is a connected projective variety admitting a C∗-action with isolated fixed points, 
then we have Ch0(X) ∼= Z.

Proof. Since X admits a C∗-action with isolated fixed points, there exists a C∗-invariant Zariski open set 
U ⊂ X such that U ∼= U ′ × C∗ (see [2]). Such U and U ′ can be assumed to be non-singular if necessary. 
Set Z = X − U . By the localization sequence of higher chow groups and homotopy invariance, we get 
Ch0(U ′×C∗, 1) ∼= Ch0(U ′). From the Poicaré duality, homotopy invariance of cohomology and the Künneth 
formula for the Borel-Moore homology, we obtain that HBM

1 (U ′ × C∗) ∼= H2n−1(U ′ × C∗) ∼= H2n−1(U ′ ×
S1) ∼= HBM

0 (U ′ × S1) ∼= HBM
0 (U ′). Note that the cycle class map Ch0(U ′) → HBM

0 (U ′, Z) is always 
surjective. Hence the higher cycle class map φ0(U, 1) : Ch0(U, 1) → HBM

1 (U, Z) is surjective.
By applying the localization sequence to (X, Z) and using the natural transform for the higher chow 

group to the singular homology group, we get

Ch0(U, 1) Ch0(Z)

∼=

Ch0(X) Ch0(U)

∼=

0

HBM
1 (U,Z) H0(Z,Z) H0(X,Z) HBM

0 (U,Z) 0.

(3.20)

By induction hypothesis, we have the isomorphism Ch0(Z) 
∼=→ H0(Z, Z). Note that Ch0(U) ∼= Ch0(U ′ ×

C∗) = 0 since a point moves in a C∗ direction to infinite, which is not on U . Therefore Ch0(U) = 0 =
HBM

0 (U, Z). Now we get the isomorphism Ch0(X) 
∼=→ H0(X, Z) by the Five Lemma. Hence Ch0(X) 

∼=→ Z

since X is connected. This completes the proof of the proposition. �
Remark 3.21. In fact, from the proof of Proposition 3.19, we have shown the following result: If X is a 
connected projective variety admitting a C∗-action with a nonempty fixed point set XC∗ , then the inclusion 
i : XC∗ → X induces a surjective Ch0(XC∗) → Ch0(X).

Remark 3.22. If X is smooth projective variety admitting a C∗-action with isolated fixed points, then X
admits a cellular decomposition (see [3]) and Chp(X) ∼= H2p(X, Z) for all p ≥ 0. However, in the case that 
X is singular, Chp(X) ∼= H2p(X, Z) can be wrong for p > 0 by the following example.

Example 3.23. Let S be the surface construction in Example 3.7, Ch1(S) � H2(S, Z). Moreover, 
Ch1(S)hom 	= 0. Recall that the relations among S̃, S and Y were given in diagram (3.8). By using 
σ̃ : S̃ → S and the localization sequence for Chow group of 1-cycles, we get the difference between 
Ch1(S̃) and Ch1(S) is at most rank 2 (generated by the cycle classes of C̃1 and C̃2) since the sequence 
Ch1(C̃1 ∪ C̃2) → Ch1(S̃) → Ch1(S) → 0 is exact and Ch1(C̃1 ∪ C̃2) ∼= Z ⊕ Z. So Ch1(S̃)hom ∼= Ch1(S)hom. 
On the other hand, Ch1(S̃) ∼= Ch1(Y ) ⊕Z2 ∼= (Ch0(C) ⊕Z) ⊕Z2. Hence Ch1(S̃)hom ∼= Ch0(C) ∼= J(C) 	= 0, 
where J(C) is the Jacobi of C of genus g(C) ≥ 1.

By applying to a possible singular projective variety carrying a holomorphic vector field with isolated 
zeroes, we have the following result.
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Corollary 3.24. Let X be a (possible singular) complex projective algebraic variety which admits a holomor-
phic vector field V whose zero set Z is isolated and nonempty. Then we have Ch0(X) ∼= Z.

Proof. Recall that a holomorphic vector field generates a G-action on X, where G ∼= (C∗)k×C or G ∼= (C∗)k. 
Write G ∼= G1 × C∗ and X1 := XC∗ . From Remark 3.21, the inclusion X1 → X induces a surjection 
Ch0(X1) → Ch0(X). If G ∼= (C∗)k, we get the surjection Ch0(V ) → Ch0(X) by induction. If G ∼= (C∗)k×C, 
we get the surjection Ch0(V1) → Ch0(X) by induction, where V1 := X(C∗)k . Note that V1 admits a C-action 
whose fixed point is V . By Proposition 2.1, we have Ch0(V ) ∼= Ch0(V1). Therefore, the inclusion V ↪→ X

induces a surjection Ch0(V ) → Ch0(X). By assumption, V is a set of finite points. Hence Ch0(X) is of 
finite rank and so Ch0(X) → H0(X, Z) ∼= Z is injective. Clearly, Ch0(X) 	= 0 and we get Ch0(X) ∼= Z. �

Applying to Lawson homology, we get the structure for 1-cycles.

Lemma 3.25. For any projective variety X and any integer k ≥ 2r ≥ 0 and n 	= 0, we have the following 
formula

LrHk(X ×C∗) ∼= Lr−1Hk−2(X) ⊕ LrHk−1(X). (3.26)

Proof. First, we note that the pair (X×C, X×{0}), we have the long exact sequence of Lawson homology:

...
∂→ LrHk(X) i∗→ LrHk(X ×C) Res−→ LrHk(X ×C∗) ∂→ LrHk−1(X) → ... (3.27)

where i : X = X × {0} → X ×C is the inclusion, Res is the restriction map and ∂ is the boundary map.
The long exact sequence of Lawson homology for the pair (X × P 1, X × {0}) is

...
∂→ LrHk(X) i∞∗→ LrHk(X × P 1) Res−→ LrHk(X ×C) ∂→ LrHk−1(X) → ...

where i∞ : X = X × {∞} → X × P 1 is the inclusion.
Then, from the C1-homotopy invariance of Lawson homology, we get i0∗ = i∞∗ : LpHk(X) → LpHk(X×

P 1), where i0 : X = X×{0} → X×P 1 is the inclusion. From the definition of i and i0, we have i∗ = Res ◦i0∗, 
where Res : LrHk(X × P 1) → LrHk(X ×C) is the restriction map. Hence we obtain

i∗ = Res ◦ i0∗ = Res ◦ i∞∗ = 0.

Therefore, Equation (3.27) is broken into short exact sequences

0→LrHk(X ×C) Res−→ LrHk(X ×C∗) ∂→ LrHk−1(X) → 0.

This sequence splits since the map Zr(X ×C∗) = Zr(X ×C)/Zr(X ×{0}) → Zr−1(X) � Zr(X ×C) given 
by c �→ c ∩ (X × {0}) gives a section of the projection Zr(X × C) → Zr(X × C)/Zr(X × {0}). So we get 
Equation (3.26). This completes the proof of the lemma. �

Now we study the structure of Lawson homology under a C∗-action. When X admits C-action with 
isolated fixed points, it was shown that L1Hk(X) ∼= Hk(X, Z) (see Proposition 2.4). Inspired by this result, 
it is natural to ask the following question.

Question 3.28. Let X be a complex projective variety admitting a C∗-action with isolated fixed point. Does 
L1Hk(X) ∼= Hk(X, Z) hold for k ≥ 2?
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The positive answer to this question would be an analogue of Proposition 2.4. Contrary to the analogue 
between Proposition 2.1 and 3.19, it is surprising to a certain degree that the answer to Question 3.28 is 
negative in the sense that for each k ≥ 2, we can find X (depending on k) satisfying conditions in the 
question such that L1Hk(X) � Hk(X, Z).

Example 3.29. Let S be the variety given in Example 3.7, then S×S admits a C∗-action with isolated fixed 
points induced by the C∗-action on S. We have

L1H2(S × S) ∼= H2(S × S,Z),

and

L1H3(S × S) � H3(S × S,Z).

Proof. The C∗-action φ : C∗ × S → S, (t, x) �→ φ(t, x) induces a C∗-action (t, (x, y)) �→ (tx, ty) on S × S. 
The fixed point set (S × S)C∗ ⊂ SC∗ × SC∗ is finite since SC∗ is.

By the construction of S, we have H1(S, Z) = 0. By the Künneth formula, H2(S × S, Z) ∼= H2(S, Z) ⊕
H2(S, Z). Note H2(S, Z) ∼= Z3 is generated by the homological classes of algebraic cycles σ̃(σ−1(P 1 × c0), 
σ̃(σ−1(pi)), where c0 is a point of C different from pi for i = 1, 2. Hence H2(S × S, Z) is generated by 
algebraic cycles and so the cycle class map L1H2(S × S) → H2(S × S, Z) is surjective.

From the construction in Example 3.7, σ : S̃ → Y = C×P 1 is the blow up of two point p1 ∈ C1, p2 ∈ C2. 
Set U := Y − C1 − C2 ∼= S̃ − σ−1(C1) − σ−1(C2), where σ−1(Ci) = C̃i ∪ Ei and Ei

∼= P 1. One gets 
U ∼= C × C∗. Since σ̃ : S̃ → S is the blow down and each C̃i collapses to a point, S − σ̃(E1) − σ̃(E2) ∼= U . 
Since only C̃i collapses under σ̃, σ̃(Ei) ∼= Ei

∼= P 1. Set Z := S × S − U × U and Ẽi := σ̃(Ei), then 
Z is the union 

(
(Ẽ1 ∪ Ẽ2) × S

)⋃ (
S × (Ẽ1 ∪ Ẽ2)

)
. Set Z̃ := S̃ × S̃ − U × U and then Z̃ is the union (

(σ−1(C1) ∪ σ−1(C2)) × S̃
)⋃ (

S̃ × (σ−1(C1) ∪ σ−1(C2))
)
. From the long localization exact sequence of 

Lawson homology for (S̃, Z̃) and (S, Z), we have the following commutative diagram

... L1H3(Ũ)

=

L1H2(Z̃) L1H2(S̃ × S̃)

(σ×σ)∗

L1H2(U)

... L1H3(Ũ) L1H2(Z) L1H2(S × S) L1H2(U)

By the homotopy invariance and localization sequences of Lawson homology, one gets L1Hk(Z) ∼=
Hk(Z, Z) and L1Hk(Z̃) ∼= Hk(Z̃, Z) for k ≥ 2. From the construction, the collapse Z̃ → Z induces a 
surjective map H2(Z̃, Z) → H2(Z, Z).

From U ∼= C ×C∗ and Lemma 3.25, we get isomorphisms

L1H2(U × U) ∼= L1H2(C × C ×C∗ ×C∗)
∼= L0H0(C × C ×C∗)
∼= HBM

0 (C × C ×C∗,Z)
= 0.

Therefore, (σ×σ)∗ is a surjective map. Note that S̃×S̃ is nonsingular and projective, a direct computation 
by the localization sequence and the blowup formula for Lawson homology (see [29]) yields L1H2(S̃×S̃)hom =
0. Hence L1H2(S × S)hom = 0 and L1H2(S × S) → H2(S × S, Z) is injective.

We need to identify L1H3(U × U) and HBM
3 (U × U, Z) so that one can compare the relation between 

L1H3(S × S) and H3(S × S, Z).
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By Lemma 3.25, we get

L1H3(U × U) ∼= L1H3(C × C ×C∗ ×C∗)
∼= L0H1(C × C ×C∗) ⊕ L1H2(C × C ×C∗)
∼= L0H0(C × C) ⊕ L0H0(C × C)
∼= Z⊕ Z.

Similarly, we get

HBM
3 (U × U,Z) ∼= HBM

3 (C × C ×C∗ ×C∗,Z)
∼= HBM

1 (C × C ×C∗,Z) ⊕HBM
2 (C × C ×C∗,Z)

∼= HBM
0 (C × C) ⊕HBM

0 (C × C) ⊕HBM
1 (C × C)

∼= Z⊕ Z⊕H1(C × C).

Hence the cycle class map

Φ1,3(U × U) : L1H3(U × U) → HBM
3 (U × U,Z)

is not surjective if g(C) > 0, as we chose. In particular, Φ1,3(U) is not an isomorphism.
For simplicity in diagram X := S × S, Ũ := U × U . From the following commutative diagram

L1H3(Z)

∼=

L1H3(X)

∼=?

L1H3(Ũ)

Φ1,3(Ũ)

L1H2(Z)

∼=

L1H2(X)

∼=

H3(Z,Z) H3(X,Z) HBM
3 (Ũ ,Z) H2(Z,Z) H2(X,Z)

and the Five lemma, we obtain that Φ1,3(U) is an isomorphism if Φ1,3(X) : L1H3(X) → H3(X, Z) is. 
Therefore, Φ1,3(X) is not an isomorphism. �
Remark 3.30. From Lemma 3.25 and Example 3.29, for each k ≥ 3, one can construct projective varieties 
X admitting C∗-action with isolated fixed points such that L1Hk(X) � Hk(X, Z). Such a X can be chosen 
as X := S × S × Ck−3, where C is the curve in Example 3.4. For k = 2, a direct calculation shows that 
L1H2(C × C) � H2(C × C, Z). The detail is left to the interested reader.

4. Applications to Chow varieties

In this section, we shall first very briefly review some known facts about Chow varieties, especially in 
algebraic and topological aspects and then give some new results. Unless otherwise specified, Chow varieties 
defined over the complex numbers.

One of our purpose is to understand the algebraic and topological structure on the complex Chow variety 
Cp,d(Pn

C) (or simply Cp,d(Pn) if there is no confusion) parameterizing effective p-cycles of degree d in the 
complex projective space Pn.

In degree 1 case, Cp,1(Pn) is exactly the Grassmannian of (p + 1)-planes in Cn+1, which is a space of 
fundamental importance in geometry and topology. In dimension 0 case, C0,d(Pn) is the d-th symmetric 
product of Pn, a “correct” object to realize homology when d tends to infinity. It is needless to explain here 
the importance of Chow varieties in the algebraic cycle theory. Until recent years, it is surprising that not 
many topological and algebraic invariants were known about Cp,d(Pn) for d > 1.
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4.1. The origin of Chow variety

Let X ⊂ Pn be a complex projective variety and let Cp,d(X) ⊂ Cp,d(Pn) be the subset containing 
those cycles c =

∑
aiVi ∈ Cp,d(Pn) whose support supp(c) = ∪Vi lies in X, where Vi is an irreducible 

projective variety of dimension dimVi = p, ai ∈ Z+ and 
∑

ai = d. It has been established by Chow and 
Van der Waerden in 1937 that each Cp,d(X) canonically carries the structure of a projective algebraic set 
(see [11]). More intrinsically, the space of all effective p-cycles can be written as a countable disjoint union ∐

α∈H2p(X,Z) Cp,α(X), where each Cp,α(X) carries the structure of a projective algebraic set.

4.2. The dimension and number of irreducible components

In general, Cp,d(Pn) is not irreducible. The simplest non-irreducible Chow variety is C1,2(P 3), which has 
two irreducible components. Moreover, the different irreducible components may have different dimension. 
Examples of Chow varieties including those parametrizing curves of low degrees (less than or equals to 4) 
in P 3 can be found in [22].

The exact number of irreducible components for Cp,d(Pn) is not known in general, even for C1,d(P 3). 

An upper bound of the number of irreducible components of Cp,d(Pn) was given by Np,d,n :=
(nd + d

n

)mp,d

, 

where mp,d := d
(d + p− 1

p

)
+

(d + p− 1
p− 1

)
(see Kollar [41, Exer.3.28]). We should mention that Kollar’s book 

contains an excellent exposition on families of cycles over arbitrary schemes. Of course, this upper bound is 
usually much higher than the actual number of irreducible components for Cp,d(Pn) in many known cases. 
For example, there is exactly one component for C0,d(Pn) for any d and n. For d = 1 and arbitrary n, p ≥ 0, 
Cp,1(Pn) is the Grassmannian parametering (p + 1)-vector spaces in Cn+1, which is irreducible. For d = 2
and arbitrary n, p ≥ 0, there are at most two irreducible components for Cp,2(Pn). By checking the possible 
genus of an irreducible curve with a given degree in P 3 (see [25, Ch. IV]), one can obtain that the irreducible 
components of C1,d(P 3) are 1,2,4,8,14,27,46 corresponding to d from 1 to 7. These numbers are really much 
smaller than the corresponding numbers Np,d,n.

The dimension of Cp,d(Pn) we mean the maximal number of the dimension of its irreducible components. 
Eisenbud and Harris in 1992 showed that the dimension of the space of effective 1-cycles of degree d in Pn

is

dimC1,d(Pn) = max{2d(n− 1), 3(n− 2) + d(d + 3)/2}

(see [14]).
The dimension of Cp,d(Pn) was computed by Azcue in 1992 in his Ph.D. thesis under the direct of Harris 

(see [1]). The explicit formula for dimCp,d(Pn) can be found in a paper by Lehmann in 2017 (see [36]), that 
is,

dimCp,d(Pn) = max
{
d(p + 1)(n− p),

(
d + p + 1
p + 1

)
− 1 + (p + 2)(n− p− 1)

}
.

4.3. Homotopy and homology groups

It is not hard to show that Cp,d(Pn) is connected as a topological space since every element c is path-
connected to d ·L, where L is any fixed p-plane in Pn. By comparing connectedness of the morphism between 
a variety and the fixed point set under the additive group action, Horrocks showed in 1969 that the algebraic 
fundamental group of the Chow variety Cp,d(Pn)K defined over an algebraically closed field K is trivial 
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(see [26]). By using the similar method to complex varieties, A. Fujiki showed in 1995 that the topological 
fundamental group of Cp,d(Pn) is trivial, i.e., Cp,d(Pn) is simply connected (see [20]).

In a complete different way, Lawson in 1989 gave a very short proof of the simply connectedness of 
Cp,d(Pn) by using Sard theorem for families (see [34]). More important, in that paper, Lawson has estab-
lished the Lawson homology theory and showed the famous Complex Suspension Theorem. The author 
has observed that the methods in proving the Complex Suspension Theorem can be used to compute the 
higher homotopy group of Cp,d(Pn). The author showed in 2010 that π2(Cp,d(Pn)) ∼= Z for all d ≥ 1 and 
0 ≤ p < n. This statement π2(Cp,d(Pn)) ∼= Z was conjectured by Lawson in 1995 in [35, p.141]. For p = n, 
Cp,d(Pn) is a single point and so π2(Cp,d(Pn)) is trivial. More results can be found in [30] on the stability 
of the homotopy group of Cp,d(Pn) when p or n increases.

For higher homotopy groups, a slightly weaker version of Lawson’s open question is that whether there 
is an isomorphism πk(Cp,d(Pn)) ∼= H̃k+2p(Pn, Z) for k ≤ 2d, where H̃.(−, Z) denotes the reduced singular 
homology with integer coefficients (see [34, p.256]). Lawson showed that there is a natural surjective map 
from πk(Cp,d(Pn)) to H̃k+2p(Pn, Z). The author showed in 2015 that the surjective map is actually an 
isomorphism. Moreover, as its corollary, the homology group of Cp,d(Pn) has been computed up to 2d (see 
[31]).

4.4. Euler characteristic

By establishing a fixed point formula for compact complex spaces under a weakly analytic S1-action, 
Lawson and Yau showed in 1987 that the Euler characteristic χ(Cp,d(Pn)) of the complex Chow variety is 
given by a beautiful formula

χ(Cp,d(Pn)) =
(vp,n + d− 1

d

)
,

where vp,n =
(
n+1
p+1

)
.

In 2013, the author gave a direct and elementary proof of this formula (see [32]). One of the main 
techniques is “pulling of normal cone” established by Fulton, which was used by Lawson in proving his 
Complex Suspension Theorem (see [34]). The key observation was that one can write Cp+1,d(Pn+1) as a 
disjoint union of quasi-projective varieties

Cp+1,d(Pn+1)i =
d∐

i=0
Cp+1,i(Pn) × Tp+1,d−i(Pn+1),

where Tp+1,d−i(Pn+1) is homotopic to Cp,d−i(Pn) by the technique “pulling of normal cone”. Hence one 
obtains by the additive property of the Euler characteristic a recursive formula

χ(Cp+1,d(Pn+1)) = χ(Cp,d(Pn)) +
d∑

i=1
χ(Cp+1,i(Pn)) · χ(Cp,d−i(Pn))

and give the short proof of Lawson and Yau’s formula.
The techniques above are also able to use the compute the l-adic Euler-Poincaré characteristic of the 

Chow varieties Cp,d(Pn)K defined over an algebraically closed field K. As an analogue in the complex case, 
Friedlander showed in 1991 that there is an algebraic homotopy from Tp+1,d−i(Pn+1) to Cp,d−i(Pn). One 
got the generalization of Lawson-Yau’s formula directly to Chow varieties over an algebraically closed field 
K:

χ(Cp,d(Pn)K , l) =
(
vp,n+d−1), where vp,n =

(
n+1),
d p+1
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where χ(XK , l) denotes the l-adic Euler-Poincaré Characteristic of an algebraic variety XK over K. The 
Euler Characteristic for the space of right-quaternionic cycles was also given with an explicit formula (see 
[32]).

It seems that there is no way to compute the Euler characteristic Cp,α(X) for X a generic projective 
variety. However, for special varieties, such as toric varieties, Elizondo gave a beautiful formula for their 
Euler characteristic in terms of the fans of the variety [16].

If one denotes the p-th Euler series of a toric variety X is defined by the following formal power series

Ep(X) :=
∑

α∈H2p(X,Z)

χ(Cp,α(X))α.

A toric variety X is a projective variety containing the algebraic group T = (C∗)×n as a Zariski open 
subset such that the action of (C∗)×n on itself extends to an action on X. The action of T on X induces 
action on Cp,α(X).

Denote by V1, ..., VN the p-dimensional invariant irreducible subvarieties of X. Let e[Vi] be the charac-
teristic function of the subset {[Vi], i = 1, 2, ..., N} of the homology group H2p(X, Z), where [V ] denotes its 
class in H2p(X, Z). Elizondo showed in 1994 that there is a beautiful formula for Ep(X):

Ep(X) =
∏

1≤i≤N

(
1

1 − e[Vi]

)
.

Elizondo and Lima-Filho showed 1998 that the Euler-Chow series of the projectivization of the direct 
sum of two algebraic vector bundles can be computed in terms of that of the projectivization of each of 
the vector bundles and their fiber product (see [17]). More specifically, let E1 and E2 be two algebraic 
vector bundles over a projective variety X. Let P (E1) (resp. P (E2)) be the projectivization of E1 (resp. 
E2). Then the Euler-Chow series Ep(P (E1 ⊕ E2)) can be computed in terms of that of P (E1), P (E2) and 
P (E1) ×X P (E2), where the last one is the fiber product of P (E1) and P (E2) over X. This result can be 
used to compute the Chow series of Grassmannian and certain flag varieties.

4.5. Virtual Betti and Hodge numbers

For integers n ≥ p ≥ 0 and d ≥ 0, the author showed in 2013 that the virtual Hodge (r, s)-number of the 
Chow variety Cp,d(Pn) satisfies the following equations:∑

r−s=i

h̃r,s(Cp,d(Pn)) = 0

for all i 	= 0, ∑
r≥0

h̃r,r(Cp,d(Pn)) = χ(Cp,d(Pn)),

h̃0,0(Cp,d(Pn)) = 1,

h̃r,0(Cp,d(Pn)) = 0,

and

h̃0,r(Cp,d(Pn)) = 0

for r > 0 (see [28]).
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This also implies that β̃0(Cp,d(Pn)) = 1 and β̃1(Cp,d(Pn)) = 0. It is worth to remark that for a complex 
singular projective variety X, β̃0(X) = 1 is independent of the connectedness of X, while β̃1(X) = 0 is 
independent of the simply connectedness of X.

Due to the lack understanding of the structure of Cp,d(Pn), we post the following wild conjecture on 
their virtual Hodge numbers and virtual Betti numbers.

Conjecture 4.1. h̃r,s(Cp,d(Pn)) = 0 for all r 	= s. In particular, we conjecture that β̃i(Cp,d(Pn)) = 0 for i
odd.

There are several examples supporting this conjecture. When p = 0, Cp,d(Pn) = SPd(Pn), its virtual 
Betti numbers and virtual Hodge numbers have been computed in [9] and all their odd virtual Betti and 

virtual Hodge numbers vanish. When p = n − 1, Cp,d(Pn) = Cn−1,d(Pn) = P (n+d
d )−1 and its virtual Betti 

(resp. virtual Hodge numbers) are the same as its usual Betti numbers (resp. usual Hodge numbers), which 
are zeroes. When d = 1, Cp,d(Pn) is the Grassmannian G(p +1, Cn+1), then one has h̃r,s(G(p +1, Cn+1)) =
hr,s(G(p + 1, Cn+1)) = 0 for all r 	= s, where hr,s(G(p + 1, Cn+1)) denotes the Hodge (r, s)-number of 
G(p + 1, Cn+1).

Example 4.2. For d = 2 and all p, n, one also has hr,s(Cp,2(Pn)) = 0 for r 	= s and β̃2i−1(Cp,2(Pn)) = 0 for 
i > 0.

Proof. Note that Cp,2(Pn) can be written as the union

Cp,2(Pn) = SP2(G(p + 1,Cn+1)) ∪Qp,n,

where Qp,n consists of effective irreducible p-cycles of degree 2 in Pn and Qp,n is a fiber bundle over the 
Grassmannian G(p +2, n +1) with fiber the space S of all smooth quadrics in Pp+1. Note that S is isomorphic 

to P (p+3
2 )−1 − SP2(Pp+1) (see [30]). Therefore,

P̃Cp,2(Pn)(t) = P̃SP2(G(p+1,Cn+1))(t) + P̃Qp,n
(t)

= P̃SP2(G(p+1,Cn+1))(t) + P̃G(p+2,n+1) · P̃
P(p+3

2 )−1−SP2(Pp+1)
(t)

= P̃SP2(G(p+1,Cn+1))(t) + P̃G(p+2,n+1) · (P̃
P(p+3

2 )−1
(t) − P̃SP2(Pp+1)(t)).

This implies that the odd betti numbers of Cp,2(Pn) are zeroes since those of Grassmannians and the sym-
metric product of Grassmannians are zeroes. Similar computations work for the virtual Hodge numbers. �
4.6. Ruledness and rationality of irreducible components

Since Cp,d(Pn) admits a C-action with an isolated fixed point ([26]), each of its irreducible component 
is preserved under the action. Hence each irreducible component of Cp,d(Pn) admits a C-action with an 
isolated fixed point. From Lieberman’s result ([37, Th.1]), we obtain that each component of Cp,d(Pn) is a 
ruled variety.

In general, the rationality of irreducible components of Cp,d(Pn) is an open problem, which can be found 
in Shafarevich’s book (see [42]). As a remark, Shafarevich said “Whether every irreducible component of 
them is rational, in general, is ‘an apparently very difficult but very fundamental problem’.”

Question 4.3 (Shafarevich). Is each irreducible component of Cp,d(Pn) is rational for all 0 ≤ p ≤ n and 
d ≥ 1?
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Surely, Cp,1(Pn) is rational for all 0 ≤ p ≤ n since Cp,1(Pn) is just the complex Grassmannian manfold 
G(p + 1, Cn+1), which is rational. When p = 1, n = 3, the irreducible components of C1,d(P 3) have been 
shown to be rational for d small ([42]). However, even if the proof of rationality for C0,d(Pn) is nontrivial 
(see [22, Ch.4,Th2.8] and references cited there).

For d = 2 and 0 ≤ p ≤ n, the explicit structure of each irreducible component has been studied in details 
in [30]. From that, one obtains that each irreducible component is rational since the symmetric products of 
complex Grassmannian manfolds are rational.

It is not hard to show that an irreducible component of the maximal dimension in Cp,d(Pn) is rational. 
This follows from the fact that the symmetric product of a rational variety is rational and at least one 
irreducible component of the maximal dimension either consists of all d-tuples p-dimensional linear spaces 
in Pn or irreducible p-dimensional hypersurfaces degree d in Pp+1 ⊂ Pn (see [36]).

However, the answer to Question 4.3 is negative, as explained in the following counterexample, which 
should be known earlier but it cannot be found in the literature.

Example 4.4. Let Mg (g ≥ 2) be the moduli space of smooth complex algebraic curves of genus g. Now 
we recall the construction of Mg from the geometric invariant theory (cf. [23]). Let Hd,g,r be the Hilbert 
scheme of curves of degree d and (arithmetic) genus g in P r. For any integer n ≥ 3, a smooth curve 
C can be embedded as a curve of degree 2(g − 1)n in PN by the complete linear series |nKC |, where 
N = (2n − 1)(g − 1) − 1. Let us consider pairs (C, ϕ : C → PN ), where C is a curve and ϕ : C → PN

is an n-canonical embedding. The family of all such pairs corresponds to a locally closed subset K of the 
Hilbert scheme Hd,g,N of smooth curves of degree d and genus g in PN , where d = 2(g−1)n. The projective 
general linear group PGL(N + 1, C) acts on K with quotient is Mg. The locally closed subset K is just a 
Zariski open set of an irreducible component of C1,d(PN ). Therefore, there exists an irreducible component 
of C1,d(PN ), denoted by I1,d(PN ), and a dominant rational map I1,d(PN ) ��� Mg for each g ≥ 2.

Note that it was shown in [15] and [24] that Mg is a quasi-projective variety of the general type for g ≥ 24. 
This together with the dominant rational map I1,d(PN ) ��� Mg implies that I1,d(PN ) is not rational since 
a variety dominated by an rational variety is a unirational variety. This completes the construction of the 
example.

One can go further to construct counterexamples to Shafarevich’s question for cycles in arbitrary dimen-
sions.

Fix a hyperplane Pn ⊂ Pn+1 and a point P = [0 : · · · : 0 : 1] ∈ Pn+1 − Pn. Let V ⊂ Pn be any closed 
algebraic subset. The algebraic suspension of V with vertex P (i.e., cone over P ) is the set

ΣPV := ∪{l | l is a projective line through P and intersects V }.

Set

Tp+1,d(Pn+1) :=
{
c =

∑
niVi ∈ Cp+1,d(Pn+1)|dim(Vi ∩ Pn) = p,∀i

}
.

It has been shown in [34] that Tp+1,d(Pn+1) ⊂ Cp+1,d(Pn+1) is a Zariski open set and there is a continuous 
algebraic surjective map Tp+1,d(Pn+1) → Cp,d(Pn) (cf. [18] for the case over arbitrary algebraically closed 
field). A continuous algebraic map is a rational map which can be extended to a continuous map in the 
complex topology. Hence, for each irreducible component Ip,d,n of Cp,d(Pn), there exists an irreducible 
component Jp+1,d,n+1 of Tp+1,d(Pn+1) such that Jp+1,d,n+1 → Ip,d,n is a continuous algebraic surjective map. 
In particular, it is a dominant rational map. Let Jp+1,d,n+1 be the closure of Jp+1,d,n+1 in Cp+1,d(Pn+1). 
Then we get a dominant rational map Jp+1,d,n+1 ��� Ip,d,n from Jp+1,d,n+1 → Ip,d,n. Since Tp+1,d(Pn+1) ⊂
Cp+1,d(Pn+1) is a Zariski open set, Jp+1,d,n+1 is an irreducible component Ip+1,d,n+1 of Cp+1,d(Pn+1). So 
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if Ip,d,n ��� Mg is a dominant rational map, then Jp+1,d,n+1 ��� Mg is also a dominant rational map. 
Therefore there is a dominant rational map is Ip+1,d,n+1 ��� Mg from the irreducible component Ip+1,d,n+1
of Cp+1,d,n+1 to the moduli space of curve of genus g. From the construction of Example 4.4, there exist 
d, n such that I1,d,n ��� Mg is a dominant rational map for g ≥ 2. Moreover, Mg is of general type if g ≥ 24
by results in [15] and [24]. Hence Ip+1,d,n+1 is not a rational variety since it dominates a variety of general 
type.

In summary, the above argument provides a proof to the following theorem by induction.

Theorem 4.5. For any p ≥ 1, there exists an irreducible component Ip,d,n of Cp,d(Pn) such that Ip,d,n is not 
rational if d, n large.

Remark 4.6. The Ip,d,n in Theorem 4.5 admits a C∗-action with isolated fixed points but it is not rational.

4.7. Chow groups and Lawson homology

By using the results in sections above, we shall compute Chow groups of 0-cycles and Lawson homology 
of 1-cycles for Chow varieties Cp,d(Pn).

We consider the action of C∗ on Pn given by setting

Φt([z0 : ... : zn]) = [t0z0 : ... : tnzn],

where t = (t0 : ... : tn) ∈ (C∗)n+1 and [z0 : ... : zn] are homogeneous coordinates for Pn+1.
This action on Pn induces an action of (C∗)n on Cp,d(Pn). From the definition of the action (C∗)n on 

Pn, it is clear that any irreducible subvariety V of dimV = p is invariant under the action (C∗)n if and 
only if V is spanned by (p + 1)-coordinate points in Pn and hence the fixed point set is finite.

Proposition 4.7. For all d > 0, 0 ≤ p ≤ n, we have

Ch0(Cp,d(Pn)) ∼= Z.

Proof. Since Cp,d(Pn) admits a (C∗)n-action with isolated fixed points, one obtains from the diagonal 
embedding Δ = {(ta0 , ..., tan)|t ∈ C∗} ⊂ (C∗)n to get a C∗-action on Cp,d(Pn) with isolated fixed points, 
where ai ∈ Z are different to each other. Now by Proposition 3.19, we get Ch0(Cp,d(Pn)) ∼= Z since Cp,d(Pn)
is connected. An alternative method is to use the induction on the number of C∗-action (a (C∗)n-action is a 
sequence of C∗-actions) and Remark 3.21 to obtain that Ch0(Cp,d(Pn))(C∗)n) → Ch0(Cp,d(Pn)) is surjective 
and hence is of finite rank. Then one gets Ch0(Cp,d(Pn)) ∼= H0(Cp,d(Pn), Z) ∼= Z by the connectedness of 
Cp,d(Pn). �
Proposition 4.8. For all d > 0, 0 ≤ p ≤ n, we have

L1Hk(Cp,d(Pn)) ∼= Hk(Cp,d(Pn),Z)

for all k ≥ 2. In particular, L1H2(Cp,d(Pn)) ∼= Z. Equivalently, the homotopy groups of the space of 1-
cycles of the Chow variety Cp,d(Pn) coincide with the corresponding singular homology groups with integer 
coefficients, i.e.,

πk−2Z1(Cp,d(Pn)) ∼= Hk(Cp,d(Pn),Z)

for all k ≥ 2.
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Proof. By [26], we know Cp,d(Pn) admits an action of a solvable group G with a single fixed point, where 
G = Gr ⊃ Gr−1 ⊃ · · · ⊃ G1 ⊃ G0 = {0} is a normal series with quotients Gi/Gi−1 isomorphic to the 
additive group scheme C.

By Proposition 2.4, we can show that if X admits an action of a solvable group G with a single fixed pint, 
then L1Hk(X) ∼= Hk(X, Z). In fact, we have the following inclusion XG = XGr ⊂ XGr−1 ⊂ · · · · · ·XG2 ⊂
XG1 ⊂ XG0 = X. Since Gr/Gr−1 ∼= C and XGr is a single point, we get by Proposition 2.4 that 
L1Hk(XGr−1) ∼= Hk(XGr−1 , Z) from the fact L1Hk(XGr ) ∼= Hk(XGr , Z). Since Gi/Gi−1 ∼= C for all 
i ≥ 1 and by induction and Proposition 2.4, we have

L1Hk(XG0) ∼= Hk(XG0 ,Z),

that is, L1Hk(X) ∼= Hk(X, Z).
By applying this to X = Cp,d(Pn), we have L1Hk(Cp,d(Pn)) ∼= Hk(Cp,d(Pn), Z) for all k ≥ 2. This 

completes the proof of the proposition. �
Similar to Conjecture 4.1, we post another wild conjecture on their Chow groups and Lawson homology 

groups.

Conjecture 4.9. For d ≥ 0 and 0 ≤ p ≤ n, one has

Chq(Cp,d(Pn)) ∼= H2q(Cp,d(Pn),Z)

for all q ≥ 0 and LqHk(Cp,d(Pn)) ∼= Hk(Cp,d(Pn), Z) for all k ≥ 2q ≥ 0.

Remark 4.10. For p = 0, Cp,d(Pn) ∼= SPd(Pn), one can show that these conjectures are true in rational coeffi-
cients. For 1 ≤ p ≤ n −2 and d large, we have no idea to show or disprove Chq(Cp,d(Pn)) ∼= H2q(Cp,d(Pn), Z)
even for q = 1.
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