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1. Introduction

An important problem in the theory of hermitian forms is to associate some quadratic form over the base
field to a hermitian form capturing information about it. This is inspired by the fact that hermitian forms
over division algebras with involution are natural generalizations of bilinear and quadratic forms. Using
some results in the literature, one can find a solution to this problem in certain special cases, either in its
current form or in the context of central simple algebras with involution (see for example [4], [13], [6, §16],
(1], [14], [12], [2], [9] and [10]). Among them, the most elementary case is Jacobson’s construction [4] which
can be summarized by saying that the theory of hermitian forms over a quaternion division algebra (or a
quadratic separable extension) with the canonical involution reduces to the theory of quadratic forms.

Jacobson’s construction was generalized in [8] by associating to every (skew) hermitian form a system
of quadratic forms given by transfers via linear maps from the space of (skew) symmetric elements to the
base field. This construction determines the isometry class of (skew) hermitian forms and their isotropy
behaviour. Also, using this system and the analogue of Springer’s theorem for a system of two quadratic
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forms, it was shown in [8] that an anisotropic hermitian form over a quaternion algebra with involution of
the first kind in characteristic two remains anisotropic over all odd degree extensions of the ground field.

In this work, we study another generalization of Jacobson’s construction. Let F' be a field and let (D, o)
be a division algebra with involution of the first kind over F. Our aim is to associate to every (skew)
hermitian space (V,h) over (D, o) a quadratic form on V with values in F' which reflects some important
properties of h. Such a quadratic form has an additional property, namely that its underlying vector space
is endowed with the structure of a right vector space over D. The approach we follow is to enrich the
structure of quadratic forms with this property such that the D-structure of V' is taken into account. This
point of view will be developed in section 3 by introducing a class of quadratic forms, called quadratic
D-forms. Other related notions for quadratic forms, such as D-isometry, D-isotropy and D-metabolicity
will also be defined accordingly. In section 4, we study a decomposition theorem for quadratic D-forms,
which is a generalization of the classical Witt decomposition theorem (see Theorem 4.6). These elementary
results show that the study of quadratic D-forms is interesting in itself. They also motivate one to generalize
other important properties of quadratic forms to the context of quadratic D-forms. For example, one may
consider the question of whether a D-anisotropic quadratic D-form remains D-anisotropic over odd degree
extensions of the base field (see Question 4.7).

In section 5, we use quadratic D-forms to classify hermitian and skew hermitian forms. Let (D, o) be a
division algebra with involution of the first kind over a field F' and let (V,h) be a A-hermitian space over
(D, o), where A = £1. Suppose that either D # F or A # —1. For every F-linear map = : Sym, (D,o) — F
whose restriction to Symd, (D, o) is nontrivial, we associate a quadratic D-form ¢, to h. It is shown in
Theorem 5.5 that two A-hermitian forms h and k' are isometric if and only if gj, » and gp/ » are D-isometric.
It is also shown in Proposition 5.7 and Corollary 5.8 that h is isotropic (resp. metabolic) if and only if g »
is D-isotropic (resp. D-metabolic). Using this, one may consider Question 4.7 as a generalization of the
question of whether an anisotropic A\-hermitian form over (D, o) remains anisotropic over all odd degree
extensions of F'. Finally, we consider quadratic forms which admit D in section 6, to show that some familiar
quadratic forms studied earlier in the literature are examples of quadratic D-forms. It is shown that in the
case where 7 satisfies certain symmetry property, a quadratic D-form can be realised as the m-invariant of
a A-hermitian form if and only if it admits D (see Proposition 6.7).

2. Preliminaries

In this section, we recall some basic notions of quadratic and hermitian forms. The reader is referred to
[3] and [5] for general references on these topics.

Let V be a vector space of finite dimension over a field F. A quadratic form on Visamap q:V — F
satisfying g(au + bv) = a?q(u) + b*q(v) + abb,(u,v) for every u,v € V and a,b € F, where b, : V xV — F
is a bilinear form. The pair (V, q) is called a quadratic space over F' and the bilinear form b, is called the
polar form of q. For a subspace W of V' we use the notation

Whe = {v eV | by(v,w) =0 for all w € W}.

We will simply denote We by W+ if the form g is clear from the context. Set rad V' = VL. The form g is
called nonsingular if rad V' = {0}, or equivalently, b, is nondegenerate. Also, ¢ is called totally singular if
b, is trivial. A subspace W of V is called nonsingular if W NW+ = {0}, or equivalently, q|w is nonsingular.

The orthogonal sum of two quadratic spaces (V,q) and (V',¢’) is the quadratic space (V L V', q L ¢'),
where VL V' =V®V and (¢ L ¢')((v,0")) = q(v)+¢'(v') for all v € V and v € V'. An isometry between
(V,q) and (V',q’), denoted by (V,q) ~ (V’,q’) or q¢ ~ ¢’ for short, is an isomorphism f : V — V'’ of vector
spaces satistying ¢'(f(v)) = ¢(v) for all v € V. For a € F*, the scaled quadratic space (V,a - q) is defined
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by « - q(v) = ag(v) for all v € V. We will simply denote (—1) - ¢ by —q. Also, for a1,---,a, € F* the
quadratic form ayz? + - -+ + a,z?2 is denoted by (a1, ,a,).

A quadratic space (V,q) (or the form ¢ itself) is called isotropic if there exists a nonzero vector v € V
such that ¢(v) = 0. Otherwise, it is called anisotropic. A subspace W of V' is called totally isotropic if q|lw is
trivial. A nonsingular quadratic space (V, q) (or the form q itself) is called metabolic if there exists a totally
isotropic subspace L of V such that dimp L = % dimp V. Such a subspace L is called a lagrangian of (V,q).
Note that L+ = L for every lagrangian L of (V,q).

Let A be a central simple algebra over a field F. An involution on A is an antiautomorphism o of A
satisfying 02 = id. An involution o on A is said to be of the first kind if o|r = id, and of the second kind
otherwise. For an algebra with involution (A, o) and A = £1 we use the notation

Symy(A,0) ={x € A|o(x) = Az},
Symd,(A,0) ={z+ Ao(z) | z € A}.

It is easy to see that if s € Symd, (A, o) then o(d)sd € Symd, (A, o) for all d € D. We will drop the index
A from Sym, (A, o) and Symd, (4, 0) if A = 1.

Let (D, o) be a finite dimensional division algebra with involution of the first kind over a field F and let
A = =£1. Let V be a finite dimensional right vector space over D. A A-hermitian form on V is a bi-additive
map h : V xV — D such that h(ua,v8) = o(a)h(u,v)s and h(v,u) = Ao(h(u,v)) for all u,v € V and
a, B € D. The pair (V, h) is called a A-hermitian space over (D,o). If A =1 (resp. A = —1), we will call h a
hermitian (resp. skew hermitian) form. Note that if (D, o) = (F,id) then a A-hermitian form on (D, o) is a
symmetric or antisymmetric bilinear form over F'.

A A-hermitian space (V,h) (or the form h itself) is called nondegenerate if there is no nonzero vector
u € V such that h(u,v) = 0 for all v € V. The form h is called diagonalizable if (V,h) has an orthogonal
basis, i.e., a basis (vi,---,v,) of V over D satisfying h(v;,v;) = 0 for all i # j. In this case, the form h is
denoted by (a1, -+, an)(p,0), Where a; = h(v;,v;) € D for i = 1,--- ,n.

Let (V,h) be a A-hermitian space over (D, o). It is easily seen that h(v,v) € Sym,(D,o) for all v € V.
We say that (V,h) (or the form h itself) is even if h(v,v) € Symd, (D, o) for every v € V. If char F # 2
then all Ad-hermitian forms are even, because Sym, (D, o) = Symd, (D, o) in this case.

A A-hermitian space (V,h) (or the form h) is called isotropic if there exists a nonzero vector v € V
such that h(v,v) = 0. Such a vector v is called an isotropic vector. The form h is called anisotropic if
it is not isotropic. A nondegenerate A-hermitian space (V,h) (or the form h) is called metabolic if there
exists a subspace L of V with dimp L = % dimp V such that h|pp is trivial. Such a subspace L is called a
lagrangian of (V, h).

The orthogonal sum of two A-hermitian spaces (V, h) and (V’, h’) over (D, o), denoted by (V' L V', h L h'),
is given by

(h L 1) ((u,u'), (v,0") = h(u,v) + h'(u',0")  for all u,v € V and u',v" € V'.

An isometry between (V,h) and (V',h'), denoted by (V,h) ~ (V’',h’) or simply h ~ h’, is an isomorphism
f:V = V' of right vector spaces over D satisfying h'(f(u), f(v)) = h(u,v) for all u,v € V.

3. Quadratic D-forms

Throughout this section, F' denotes a field of arbitrary characteristic and D denotes a finite dimensional
division algebra over F'.

Let V be a finite dimensional right vector space over D. Then V is also a vector space over F and we
may consider a quadratic form ¢ : V' — F. We say that ¢ is a quadratic D-form if W+ is a vector space

Please cite this article in press as: A.-H. Nokhodkar, Quadratic D-forms with applications to hermitian forms, J. Pure Appl.
Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.106259




JPAA:106259
4 A.-H. Nokhodkar / Journal of Pure and Applied Algebra sss (sees) esseee
over D for every D-subspace W of V. In this case, we say that (V| q) is a quadratic D-space. Note that if
D = F, then a quadratic D-form is just a quadratic form. Also, if (V| ¢q) is a quadratic D-space and W is

a D-subspace of V, then ¢|w is a quadratic D-form. This follows from the equality Staw = §La N W for
every subspace S of W.

Lemma 3.1. Let V be a one-dimensional right vector space over D. A quadratic form q : V — F is a
quadratic D-form if and only if it is either nonsingular or totally singular.

Proof. The claim follows from the fact that V' has exactly two D-subspaces. O

Corollary 3.2. Let (V,q) be a quadratic D-space. Then for everyv € V, qlyp is either nonsingular or totally
singular.

Proof. The result follows from Lemma 3.1. O

Remark 3.3. The orthogonal sum of quadratic D-spaces is not necessarily a quadratic D-space if D # F.
To construct a counterexample, let {dy,--- ,d,} be a basis of D over F, where n = dimp D > 4. Consider
the F-subspace

U=d3sF+---+d,FCD.

Let p be a nonsingular quadratic form on U. Let ¢ and ¢’ be nonsingular quadratic forms on diF + doF'
satisfying

bw(d17d2) =1 and bg,/(dl,dg) 75 1. (1)

Set ¢ = ¢ L pand ¢ = ¢’ L p. Then ¢ and ¢’ are quadratic D-forms on V by Lemma 3.1. However,
q L (—¢’) is not a quadratic D-form. Indeed, in the quadratic space (V L V,q L (—¢’)), one has

(ds, d3) € ((1,1)D)*,
while (di,dq) ¢ ((1,1)D)*, because by (—q((d1,d1), (d2,d2)) # 0 by (1).

Definition 3.4. Let (V,¢) and (V’,¢’) be two quadratic D-spaces. We say that ¢ and ¢’ are D-compatible if
q L ¢ is a quadratic D-form.

Let V and V' be two finite dimensional right vector spaces over D and let ¢ : V — Fand ¢ : V' — F
be quadratic forms. We say that ¢ is D-isometric to ¢’ if there exists an isomorphism f : V — V' of right
vector spaces over D such that ¢'(f(v)) = ¢q(v) for every v € V. In this case, we write (V,q) ~p (V',¢'),
or simply ¢ ~p ¢'. Also, the map f is called a D-isometry. It is readily verified that if ¢ ~p ¢’ then ¢ is a
quadratic D-form if and only if ¢’ is a quadratic D-form.

Lemma 3.5. Let (V,q) be a quadratic D-space and let W C V be a nonsingular D-subspace of V. Then
(V,q) ~p W, qlw) L (WL, qlw). In particular, qlw and q|yw . are D-compatible.

Proof. Since W is nonsingular, we have W+ W+ =V and WNW+ = {0}. As W and W+ are D-subspaces
of V, the natural isometry f : (W, qlw) L (WL qlws) =~ (V,q) defined by f((w,w’')) = w+ w' is an
isomorphism of right vector spaces. Hence, it is a D-isometry. O

The following result is similarly verified.
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Lemma 3.6. Let (V,q) be a quadratic D-space and let W be any D-subspace of V' for which V. =radV @ W.
Then qlw is nonsingular and ¢ ~p qlradav L qlw-

Let V be a right vector space over D and let ¢ : V' — F be a quadratic form. A basis {vy, - ,v,} of V
over D is called an orthogonal D-basis of (V,q) if for every i # j, the D-subspace v; D is orthogonal to v; D,
ie., bg(vid,v;d") =0 for every d,d’ € D. In this case, we say that (V. q) is D-diagonalizable.

Lemma 3.7. Let (V,q) be a quadratic D-space. Suppose that either D # F or char F' # 2. If the restriction
qlup s totally singular for all v € V', then q is totally singular.

Proof. Observe first that if char F' # 2, the claim is evident, because ¢ is trivial in this case. Suppose that
char F' = 2, and hence D # F. The hypothesis implies that b, (v,vd) = 0 for all v € V and d € D. Applying
this relation to the vector u 4+ v € V', one concludes that

by (u,vd) = bg(ud,v) forall u,v € V and d € D. (2)
Let dy,dy € D and u,v € V. Then using (2) we have

bq(u, Udldg) (u, (’Udl)dg) = bq(udg, ’Udl)

= bq
= bq((udQ)d1,U) = bq(u(dgdl),’l}) = bq(u,vd2d1).
Hence,
by(u,v(didy —dady)) =0 for all u,v € V and dy,ds € D. (3)

Choose di,ds € D such that dids # dady and set d' = didy — dady € D. Let v € V be an arbitrary vector.
Then (3) implies that by (u,vd’) = 0 for every w € V, hence vd’ € rad V. Since rad V' is a D-space and
d' # 0, one concludes that v € rad V. It follows that rad V =V, i.e., q is totally singular. O

Proposition 3.8. If either D # F or char F # 2 then every quadratic D-space is D-diagonalizable.

Proof. Let (V,q) be a quadratic D-space. In view of Lemma 3.6, it suffices to consider the case where ¢
is nonsingular. By Lemma 3.7 and Corollary 3.2, there exists v € V such that ¢|,p is nonsingular. Hence,
q~p qlvp L q|wpyr by Lemma 3.5. The result now follows by induction on dimp V. O

4. Witt decomposition of quadratic D-forms

We continue to assume that D is a finite dimensional division algebra over a field F.

Let V be a right vector space over D and let ¢ : V' — F be a quadratic form. A nonzero vector v € V
is called D-isotropic if q|,p = 0, i.e., vD is a totally isotropic subspace of V. We say that (V,¢) (or simply
q) is D-isotropic if there exists a D-isotropic vector v € V. Otherwise, ¢ is called D-anisotropic. We say
that (V,q) (or the form q itself) is D-metabolic if (i) g is nonsingular; (i7) there exists a totally isotropic
D-subspace L of V such that dimp L = %dimD V. Such a subspace L is called a D-lagrangian of (V,q).
Note that for every D-lagrangian L of (V,q) we have L+ = L. Clearly, D-isotropy and D-metabolicity are
preserved under D-isometry.

Lemma 4.1. Let (V,q) be a nonsingular quadratic D-space. Let v € V be a D-isotropic vector. Then for
every w € V' \ (vD)*, the restriction q|,pywp is D-metabolic.
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Proof. Set W = vD + wD. Since vD C (vD)* and w ¢ (vD)*, W is a two-dimensional D-subspace of V.
Hence, it suffices to show that g|w is nonsingular. Let u = vd; + wds € W N W+, where dy,dy € D. The
relation b,(u,vd) = 0 implies that b,(wda,vd) = 0 for all d € D, because q|,p = 0. Since w ¢ (vD)* and
(vD)* is a D-subspace, we obtain da = 0, hence u = vd;. As w € W, one has vd; € (wD)*. If dy # 0, then
vD C (wD)*, because (wD)* is a D-subspace of V. This contradicts w ¢ (vD)*. Hence, d; = 0, which
implies that W N W+ = {0}. O

Corollary 4.2. Let (V,q) be a nonsingular quadratic D-space. If q is D-isotropic then there exists a
D-subspace W of V' with dimp W = 2 such that q|w is D-metabolic and ¢ ~p q|lw L qlw 1. Moreover, if v
is a D-isotropic vector of (V,q) then the subspace W can be chosen in such a way that v € W.

Proof. Choose a vector w € V such that by (v, w) # 0. Then the D-subspace W = vD + wD is the required
subspace, thanks to Lemmas 4.1 and 3.5. O

Lemma 4.3. Fvery D-metabolic quadratic D-form is D-isometric to the orthogonal sum of two-dimensional
D-metabolic quadratic D-forms.

Proof. Let (V,q) be a D-metabolic quadratic D-space. Let L be a D-lagrangian of (V,q) with a basis
{v1, -+ ,v,} over D. Set W = (voD+---+v, D). Since L = L+ C W, one can choose a vector u; € W\ L.
Hence, u1 ¢ (v1D)*. Set W = u1 D +v; D. By Lemma 4.1, W is a two-dimensional D-subspace of V, q|w is
D-metabolic and ¢ ~p qlw L q|y . We also have va, - -+ ,v, € WL. By dimension count, voD + - -+ + v, D
is a D-lagrangian of ¢l 1. The result now follows by induction on n. O

Proposition 4.4. Let U, V and W be finite dimensional right vector spaces over D and let (V,q) ~p (U,p) L
(W, ) be a D-isometry of nonsingular quadratic spaces. Suppose further that ¢ is a quadratic D-form. If q
and ¢ are D-metabolic then p is also D-metabolic.

Proof. The proof is very similar to that of [3, (1.26)]. Since ¢ is a D-metabolic quadratic D-form, it is
D-isometric to the orthogonal sum of two-dimensional D-metabolic quadratic D-forms by Lemma 4.3.
Hence, it suffices to consider the case where dimp W = 2. We identify U and W with subspaces of V, so
that V = U+ W and UNW = {0}. Let L be a D-lagrangian of (V, q). Let m : L — W be the projection map
and set Lo = kerm = LNU. If 7 is not surjective, then dimp Ly > dimp L — 1. Hence, Lg is a D-lagrangian
of (U, p) and the result follows.

Suppose that 7 is surjective, so dimp Lo = dimp L — 2. Choose a D-isotropic vector w € W. As 7 is
surjective, there exists v € L such that 7(v) = w, hence v = u + w for some u € U. It follows that

p(ud) = q(ud + wd) — p(wd) = g(vd) — p(wd) =0 for all d € D,

i.e., u is a D-isotropic vector of (U, p). Since Ly C U and w € W, we have wd € Lé‘q for every d € D. Hence,
ud € Lé‘q for every d € D, because vd = ud + wd € L C Lé‘q for all d € D. Note that ud € U and Ly C U,
hence udeLé‘q ﬂU:Lé"’.

We claim that w ¢ L. Since ¢ is nonsingular, there exists w’ € W such that

by (w, w') 0. (4)

As 7 is surjective, there exists v’ € L such that w(v') = v/, i.e., v' = v’ +w’ for some v’ € U. Now, if w € L
then

0 =b,(w,v") =bg(w,u +w') =by(w,w) = by,(w,w'),
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contradicting (4). Hence, w ¢ L, as claimed. Since u +w = v € L, we have u ¢ L, or equivalently, u ¢ L.
By dimension count, Ly ® uD is a D-lagrangian of U, proving the result. O

Lemma 4.5. Let V and V' be right vector spaces over D and let q: V — F and ¢' : V! — F be nonsingular
quadratic forms. If ¢ ~p ¢ then q L (—q') is D-metabolic. The converse is also true if ¢ and ¢ are
D-anisotropic.

Proof. We identify V' and V' with D-subspaces of V@V’  so that V@ V' =V + V' and VNV’ = {0}.
Suppose first that ¢ ~p ¢'. Let f : (V,q) — (V',¢') be a D-isometry and let {v1, -+ ,v,} be a basis of
V over D. Then the D-subspace of V & V'’ spanned by vy + f(v1), -+ ,vn + f(v,) is a D-lagrangian of
q L (—¢'). Hence, ¢ L (—¢') is D-metabolic.

Conversely, suppose that ¢ L (—¢') is D-metabolic, and the forms ¢ and ¢’ are D-anisotropic. Let L
be a D-lagrangian of (V L V' ;¢ L (—¢’)). Since ¢ is D-anisotropic, the intersection L NV is trivial.
Hence, the projection 7’ : L — V' is injective, which implies that dimp L < dimp V’. Similarly, we have
dimp L < dimp V. The equality dimp L = %(dimD V 4+ dimp V') yields

dimDV = dimDV' = dimDL.

Hence, the projections 7 : L — V and «’ : L — V' are isomorphisms of right vector spaces over D. It is
now readily verified that the map 7’ o7n~!: V — V' is a D-isometry (V,q) ~p (V',¢'). O

We are now ready to state a Witt decomposition theorem for quadratic D-forms.

Theorem 4.6. Let (V,q) be a monsingular quadratic D-space. Then ¢ ~p Gmet L Gan, where Gmet 1S
D-metabolic and q.,, is D-anisotropic. Moreover, qan is uniquely determined, up to D-isometry.

Proof. The existence of such a decomposition follows from Corollary 4.2 and induction on dimp V. To prove
the uniqueness, suppose that

q =D Gmet L Gan =D anet 1 q;n,
where ¢,y and ¢, are D-anisotropic, and gmet and ¢l,., are D-metabolic. Then
Gmet 1 Gan 1 (—(];m) =bD qllnet 1 qz/a,n 1 (_qian)7

is D-metabolic by Lemma 4.5. Note that guet is a quadratic D-form, as it is a subform of ¢. Since et is
D-metabolic, the form ga, L (—¢.,) is also D-metabolic by Proposition 4.4. Hence, Lemma 4.5 implies that
GQan =D q;n‘ o

Since basic properties of quadratic forms naturally extend to quadratic D-forms, one may consider the
following question as a generalization of Springer’s theorem.

Question 4.7. Let K/F be a finite field extension of odd degree and let V' be a right vector space over F'. If
q:V — F is a D-anisotropic quadratic D-form, does it imply that qx : Vx — K is Dg-anisotropic?

5. The m-invariant of hermitian and skew hermitian forms
In this section, we fix (D, o) as a finite dimensional division algebra with involution of the first kind over

a field F and A = £1. Suppose that either D # F or A # —1, which implies that Symd, (D, o) # {0}, thanks
to [6, (2.6)]. We also fix 7 : Sym, (D, o) — F as an F-linear map such that 7|symq, (p,s) is nontrivial.

Please cite this article in press as: A.-H. Nokhodkar, Quadratic D-forms with applications to hermitian forms, J. Pure Appl.
Algebra (2019), https://doi.org/10.1016/j.jpaa.2019.106259




JPAA:106259

8 A.-H. Nokhodkar / Journal of Pure and Applied Algebra sss (sees) esseee

Let (V,h) be a Ac-hermitian space over (D, o). Define a map ¢, . : V — F via
gh,=(v) = w(h(v,v)) forallveV.
We call gp,  the m-invariant of (V, h).

Lemma 5.1. Let (V,h) be a A-hermitian space over (D,o). Then the map qnr : V — F is a quadratic
D-form with the polar form

by« (u,v) = w(h(u,v) + h(v,u)) for all u,v € V. (5)

Proof. That g - is a quadratic form and by, , is its polar form is easily verified (see [8, (3.1)]). We claim
that W+ is a vector space over D for every D-subspace W of V| i.e., gn,» is a quadratic D-form. Let W
be a D-subspace of V and let w € W-. We should prove that wd € W+ for every d € D. Let d € D and
veW. If h(w,v) =0 then

by (wd,v) = w(h(wd,v) + h(v,wd)) = 0.

Otherwise, let d’ = h(w,v)"'h(v,w)d € D. Then d = h(v,w)  h(w,v)d" and

Hence, by, »(wd,v) = 0 for all v € W and d € D. It follows that wd € W+ for every d € D, proving the
claim. O

Lemma 5.2. Let (V,h) be a A\-hermitian space over (D, o). Then h is nondegenerate if and only if qn ~ s
nonsingular.

Proof. If there exists u € V such that h(u,v) =0 for all v € V then by, »(u,v) = 0 for all v € V. Hence, h is
nondegenerate if g  is nonsingular. Conversely, suppose that h is nondegenerate. Choose « € Symd, (D, o)
such that 7(z) # 0. Let v € V be an arbitrary nonzero vector. By [8, (3.5)] there exists w € V such that
h(v,w) + h(w,v) = z. It follows that

by (v, w) = w(h(v,w) + h(w,v)) = 7(z) # 0,
i.e., gn,r is nonsingular. O

Remark 5.3. Let (V,h) be a A-hermitian space over (D, o). It is worth noting that if 7|syma, (p,s) is trivial
then g, - is totally singular. Indeed, if char F' # 2 then = is trivial, because Sym, (D, o) = Symd, (D, o).
Hence, gy, is the zero form and does not give any information about h. Otherwise, since h(u,v) +h(v,u) €
Symd, (D, o) for every u,v € V, assuming 7|symd, (p,s) = 0, one concludes that

by« (u,v) = w(h(u,v) + h(v,u)) =0 for all u,v € V.

Hence, g3, is totally singular.
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Note that Remark 5.3 also applies in the exceptional case where D = F and A = —1. In this case, one
has Symd, (D, o) = {0}. Hence, T|syma, (Do) is trivial, which implies that the form gy . is totally singular.

Lemma 5.4. Let (A,7) be a central simple algebra with involution of the first kind over F and let S be
a subspace of A. If there exists a unit x € Sym,(A,T) such that 7(y)zy € S for every y € A, then
Symd, (4,7) C S.

Proof. Let z € Symd, (4, 7) be an arbitrary element. We prove that z € S. Write z = 2’ + A7 (z) for some
2/ € Aand set y =27 'z € A. Then

z2=2 + () =2y + A(vy) = vy + 7(y)z
=7(y+Dzly+1)—7(y)zy—7(1)-z-1€S. O

We now show that the form ¢ . can be used to classify hermitian and skew hermitian forms, up to
isometry.

Theorem 5.5. Let (V,h) and (V',h') be two \-hermitian spaces over (D,o). Then h ~ h' if and only if

qh,m =D qh' -
Proof. If f: (V,h) =~ (V' 1) is an isometry then f is an isomorphism of right vector spaces satisfying
'« (f(v)) = 7 (W' (f(v), f(v)) = 7(h(v,)) = qnx(v),

for every v € V. Hence, f: (V,qnx) = (V',qn =) is a D-isometry.
Conversely, let f: (V,gnx) ~p (V',qun =) be a D-isometry. We prove that f : (V,h) ~ (V', ') is an
isometry. Since f : V — V' is an isomorphism of right vector spaces over D, it suffices to show that

R (f(u), f(v)) = h(u,v) for every u,v € V. (6)
The equality gp/ (f(v)) = gn,~(v) for every v € V implies that
B (f(v), f(v)) — h(v,v) € kert for every v € V.

If W' (f(v), f(v)) # h(v,v) for some v € V then z := h'(f(v), f(v)) —h(v,v) € ker sNSym, (D, o) is a nonzero
element satisfying

o(d)xzd = h'(f(vd), f(vd)) — h(vd,vd) € kerm  for every d € D.
Hence, Symd, (D, o) C ker 7 by Lemma 5.4, contradicting |gymd, (p,o) 7 0. Thus,
B (f(v), f(v)) = h(v,v) for every v € V. (7)
It is easily seen that the map h” : V x V — D defined by
W, 0) = By v) — B (F (), £(0),

is a A-hermitian form. Using (7), one has h’(v,v) = 0 for all v € V. Let u,v € V. Expanding the left side
of the equality h”(u + v, u + v) = 0, one concludes that

' (u,v) = —h'"(v,u) for all u,v € V. (8)
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Note that the set of values of a A\-hermitian form over (D, o) is either {0} or D. Hence, in view of (8), either
R is trivial or Ao(z) = —x for all z € D. If the latter condition holds, taking 2 = 1, one concludes that
A = —1and o = id. It follows that D is commutative, i.e., D = F, because o(xy) = o(y)o(x) for all z,y € D.
This contradicts the assumption either D # F or A # —1. Hence, h” is trivial, i.e., h'(f(u), f(v)) = h(u,v)
for all w,v € V, proving (6). O

Remark 5.6. Theorem 5.5 does not necessarily hold if 7[gyma, (Do) is trivial. This is obvious if char F' # 2,
because g, - is trivial in this case. Suppose that char F = 2, so that Symd(D, o) ¢ Sym(D, o). Choose
a € Sym(D, o) \ Symd(D, o). Consider one-dimensional hermitian forms h and ' on V = D satisfying
h(1,1) = @ and h'(1,1) = a + B, where § € Symd(D, o) is a nonzero element. Then for every d € D, one
has

g (d) = 7(W'(d, d)) = (o (d) (@ + B)d)
— n(o(d)ad) = w(h(d, d)) = gn.x(d),

because o(d)fd € Symd(D, o) and 7|gyma(p,.) = 0. Hence, qn' x ~p qn . However, h and h’ are not
isometric, since otherwise there exists d € D such that h(d,d) = « + 3, hence o(d)ad = a + 8. It then
follows that o(d)ad + a = 8 € Symd(D, o). Set = o(d+ 1)a(d + 1) € D. Then

x=o(d)ad+ a+o(d)a+ ad =o(d)ad + o + ad + o(ad) € Symd(D, o). 9)

Note that as 3 # 0, we have d # 1. Hence, (9) leads to the contradiction a = o((d + 1) Y (d + 1)t €
Symd(D, o).

Proposition 5.7. Let (V,h) be a A-hermitian space over (D,o). A nonzero vector v € V is an isotropic
vector of h if and only if it is a D-isotropic vector of qn . In particular, h is isotropic if and only if qn » is
D-isotropic.

Proof. If v € V is an isotropic vector of h, then h(vd,vd) = 0 for all d € D. Hence, g »|vp =0, i.e., v is a
D-isotropic vector of g, .

Conversely, suppose that gs |,p = 0 for some nonzero vector v € V. We claim that h(v,v) = 0. Choose
x € Symd, (D, o) such that w(x) # 0. Write x = y + Ao(y) for some y € D. Suppose that h(v,v) # 0 and
set d = h(v,v) "ty € D. Then

by, (v, vd) = w(h(v,vd) + h(vd,v))
= mw(h(v,v)d + Ao (h(v,v)d))
=n(y+ Ao(y)) =n(z) #0.

This contradicts the assumption Qh’ﬂ—‘vD =0. O

Corollary 5.8. Let (V,h) be a A-hermitian space over (D,o). Then h is metabolic if and only if qpn . is
D-metabolic.

Proof. Suppose first that i is metabolic. Then h is nondegenerate, hence gy, . is nonsingular by Lemma 5.1.
Let L be a lagrangian of h. Then L is a D-subspace of V satisfying dimp L = %dimD Vand h|lpxr =0. It
follows that g |z, = 0. Hence, L is a D-lagrangian of g, x, i.e., gn, is D-metabolic.
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Conversely, suppose that g, is D-metabolic. Then it is nonsingular, hence h is nondegenerate by
Lemma 5.1. Let L be a D-lagrangian of g .. Since every v € L is a D-isotropic vector of ¢ ., Propo-
sition 5.7 shows that h(v,v) = 0 for every v € V. The assumption either D # F or A # —1 then implies
that h

xr, = 0. Hence, L is a lagrangian of (V, h), i.e., h is metabolic. O

Remark 5.9. The ‘if” implications in Proposition 5.7 and Corollary 5.8 are not necessarily true if F'Symdk( D,o)
is trivial. This is obvious if char F' # 2, because g, is trivial in this case. If char ' = 2, as already
observed in Remark 5.3, the form ¢ . is totally singular. Hence, it cannot be metabolic, even if h is
metabolic. This proves the claim for metabolicity. Finally, to prove the claim for isotropy, let (V,h) be an
anisotropic hermitian space over (D, o) satisfying h(v,v) € Symd(D, o) for some nonzero vector v € V.
Since o(d)h(v,v)d € Symd(D, o) for every d € D we have g, »(vd) = w(o(d)h(v,v)d) = 0 for all d € D.
Hence, g, is D-isotropic.

The following result is easily verified.

Lemma 5.10. If (V,h) and (V', k') are two A-hermitian spaces over (D, o) then qnin x ~p qhx L qnx- In
particular, qp - and qn » are D-compatible.

Remark 5.11. Let (V,h) and (V’, ') be two A-hermitian spaces over (D,o). In the case where (V,h) and
(V',h') are even, one can find a shorter proof of the ‘if’ implication in Theorem 5.5 as follows (compare
[8, (4.5)]): since every A-hermitian form is an orthogonal sum of a zero form and a nondegenerate form,
it suffices to prove the claim in the case where h and h’ are nondegenerate. If ¢, » ~p g/ » then using
Lemma 5.10, one has g1 (—p/),x =D qn,x L —(qn’ ). Hence, qn1(—h'),x is D-metabolic by Lemma 4.5, which
implies that A L (—h') is metabolic, thanks to Corollary 5.8. It follows from [5, Ch. I, (6.4.5)] that h ~ &'

Let K/F be a finite field extension such that Di := D ®p K is a division algebra and let (V,h) be a
A-hermitian space over (D, o). Then there exists a A\-hermitian space (Vi , hi) over (Dg, o) satisfying

hx(u®a,v®b) = h(u,v) ® ab for all u,v € V and a,b € K,
where o = o ®id. Note that Sym, (Dg,ox) = Sym, (D, o) ® K, hence the map 7 induces a K-linear map
7wk 2 Symy(Dg,ox) — K,

satisfying 7 (z ® a) = an(x) for all x € Sym, (D, o) and a € K. Therefore, we obtain a quadratic form
Qhy nx © VK — K satisfying

Ghyme(V®a) =7g(h(v,v) ® a®) = w(h(v,v))a® = qhm(v)aQ,

for all v € V and a € K. Clearly, the definition of ¢, - is functorial, i.e.,

Qhiceie > (Qhyr) K-

Let K/F be a field extension of odd degree and let (V,h) be an anisotropic A-hermitian space over
(D, o). In view of the functoriality of g, », the problem of whether hx is anisotropic can be generalized
to Question 4.7. It should be mentioned that this problem has an affirmative answer for hermitian forms
over a quaternion division algebra with involution of the first kind (see [11]). However, for general division
algebras the problem is still open.
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6. Quadratic forms which admit D

We now fix F' as a field of characteristic not two and (D, o) as a division algebra with involution of the
first kind over F.

Let V be a finite dimensional right vector space over D and let ¢ : V — F be a quadratic form. As in [5,
Ch. I, §7.4], we say that ¢ admits D if

by(ud,v) = bg(u,vo(d)) for allu,v €V and d € D.
Lemma 6.1. Every quadratic form which admits D is a quadratic D-form.

Proof. Let V be a finite dimensional right vector space over D and let ¢ : V' — F be a quadratic form which
admits D. Let W be a D-subspace of V and let w € W=. Then for every d € D and v € W we have

by(wd, v) = by(w,vo(d)) = 0.
Hence, wd € W+, proving that W+ is a D-subspace of V. O

Example 6.2. Suppose that D is a quaternion division algebra and o is its canonical involution, defined by
o(x) = Trdp(z) — z for © € D, where Trdp(x) is the reduced trace of z in D. Let V be a finite dimensional
right vector space over D and let ¢ : V' — F be a quadratic form which admits D. Then g is isotropic if and
only if it is D-isotropic. This follows from the fact that

q(vd) = %bq(vd, vd) = %bq(vmda(d)) = %bq(v,v)da(d)7

for all v € V and d € D (note that do(d) € F for every d € D). In particular, using Springer’s theorem [3,
(18.5)], one can find an affirmative answer to Question 4.7 in this special case.

Definition 6.3. Let 7 : Symd, (D, o) — F be an F-linear map. We say that 7 is symmetric if
m(xy + Ao(xy)) = w(yx + Ao(yx)) for all z,y € D.

Lemma 6.4. Let A be a central simple algebra over F and letl : A — F be an F-linear map. If l(xy) = I(yx)
for all z,y € A thenl is a scalar multiple of the reduced trace Trdy : A — F.

Proof. By scalar extension to a splitting field, it is enough to consider the case where A = M, (F’) is the
full matrix algebra over F. Let e;; € M, (F') be the matrix whose ij-entry is 1 and whose other entries are
zero. Then for all ¢, j, k we have [(e;;) = l(e;rer;) = l(exjeir). Hence, i(e;;) = 0if ¢ # j. Also, taking i = j,
one concludes that [(e;;) = l(egx) for all i, k. Hence, | = - Trd 4, where a =l(e1;) € F. O

Lemma 6.5. Let 7w : Symd, (D, o) — F be an F-linear map. If © is symmetric then there exists « € F such
that m = o - Trdp [symd, (D,0)-

Proof. Define I, : D — F via lr(z) = 37(z 4+ Ao (z)). Then I, is an F-linear map satisfying

In(ary) = gty + Ao(ey) = 5mlye + Ao(y)) = la(ye),

for all z,y € D. By Lemma 6.4, there exists a € F' such that I, = a- Trdp. Note that if 2 € Symd, (D, o)
then I(z) = 3m(z + Ao(z)) = m(z), hence lx|Symd, (D,0) = T, proving the claim. O
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Let m : Symd,(D,0) — F be a symmetric F-lincar map. By Lemma 6.5, m is the restriction to
Symd, (D, o) of a scalar multiple of Trdp. Since Trdp(o(z)) = Trdp(z) for all x € D, one concludes
that 7 is trivial if A = —1. Hence, for the rest of this section we only consider the case where A = 1 for

studying symmetric linear maps.

Lemma 6.6. Let (V, h) be a nontrivial hermitian space over (D, o) and let 7w : Symd(D, o) — F be a nonzero
linear map. Then qn . admits D if and only if m is symmetric.

Proof. Suppose first that ¢, » admits D. Let z,y € D and set d = o(z) € D. As h is nontrivial there exist
u,v € V such that h(u,v) = y. Then

m(zy + o(zy)) = w(o(d)h(u,v) + o(c(d)h(u,v)))
= 7m(h(ud,v) + o(h(ud,v)))

m(h(ud,v) + h(v,ud))

= by »(ud,v)

= bp,x(u,v0(d))

= w(h(u,vo(d)) + h(va(d),u))
(h(u,v)o(d) + o(h(u,v)o(d)))

= 7(yx +o(yz)).

=T

Hence, 7 is symmetric. Conversely, suppose that 7 is symmetric. By Lemma 6.5, 7 = « - Trdp for some
a € F*. Hence, for every u,v € V and d € D we have

bpx(ud,v) = w(h(ud,v) + h(v,ud))
= aTrdp(o(d)h(u,v) + h(v,u)d)
= aTrdp(h(u,v)o(d) + dh(v,u))
= aTrdp (h(u,vo(d)) + h(vo(d),u))
= m(h(u,vo(d)) + h(vo(d),u)) = by »(u, vo(d)).

Hence, g, admits D. O

Let (V,q) be a quadratic D-space. Since the m-invariant of every hermitian form on V' is a quadratic
D-form, a natural question is whether every quadratic D-form can be realised as the w-invariant of a
hermitian form. Using [7, (2.3)], one can find a solution to this question in the case where 7 is symmetric:

Proposition 6.7. Let (V,q) be a quadratic D-space and let m : Symd(D,0) — F be a nonzero symmeltric
F-linear map. Then there exists a hermitian form h on 'V such that q = g if and only if ¢ admits D.

Proof. The ‘only if” implication follows from Lemma 6.6. Conversely, assume that ¢ admits D. Since 7 is
symmetric, 7 = a - Trdp for some o € F*, thanks to Lemma 6.5. Since Trdp(zy) = Trdp(yx) for all
x,y € D, the assignment (x,y) — «aTrdp(zy) defines a symmetric bilinear form b : D x D — F. Note that
b is associative, i.e.,

b(z,yz) = b(zy,z) forall z,y,z € D.
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Hence, D is a symmetric algebra, in the sense of [7]. By [7, (2.3)] there exists a hermitian form h : VxV — D
such that b(h(z,y),1) = by(x,y) for all z,y € V. Hence,

aTrdp(h(z,z)) = b(h(z,z),1) = by(z,x) = 2¢(x) forallxz e V.

It follows that 17w (h(z,z)) = q(z) for every € V. The scaled form 1 - h is therefore the required hermitian
form. 0O
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