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We study some properties of quadratic forms with values in a field whose underlying 
vector spaces are endowed with the structure of right vector spaces over a division 
ring extension of that field. Some generalized notions of isotropy, metabolicity and 
isometry are introduced and used to find a Witt decomposition for these forms. 
We then associate to every (skew) hermitian form over a division algebra with 
involution of the first kind a quadratic form defined on its underlying vector space. 
It is shown that this quadratic form, with its generalized notions of isotropy and 
isometry, can be used to determine the isotropy behaviour and the isometry class 
of (skew) hermitian forms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

An important problem in the theory of hermitian forms is to associate some quadratic form over the base 
field to a hermitian form capturing information about it. This is inspired by the fact that hermitian forms 
over division algebras with involution are natural generalizations of bilinear and quadratic forms. Using 
some results in the literature, one can find a solution to this problem in certain special cases, either in its 
current form or in the context of central simple algebras with involution (see for example [4], [13], [6, §16], 
[1], [14], [12], [2], [9] and [10]). Among them, the most elementary case is Jacobson’s construction [4] which 
can be summarized by saying that the theory of hermitian forms over a quaternion division algebra (or a 
quadratic separable extension) with the canonical involution reduces to the theory of quadratic forms.

Jacobson’s construction was generalized in [8] by associating to every (skew) hermitian form a system 
of quadratic forms given by transfers via linear maps from the space of (skew) symmetric elements to the 
base field. This construction determines the isometry class of (skew) hermitian forms and their isotropy 
behaviour. Also, using this system and the analogue of Springer’s theorem for a system of two quadratic 

E-mail address: a.nokhodkar@kashanu.ac.ir.
https://doi.org/10.1016/j.jpaa.2019.106259
0022-4049/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpaa.2019.106259
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpaa
mailto:a.nokhodkar@kashanu.ac.ir
https://doi.org/10.1016/j.jpaa.2019.106259


JID:JPAA AID:106259 /FLA [m3L; v1.261; Prn:21/10/2019; 13:28] P.2 (1-14)
2 A.-H. Nokhodkar / Journal of Pure and Applied Algebra ••• (••••) ••••••
forms, it was shown in [8] that an anisotropic hermitian form over a quaternion algebra with involution of 
the first kind in characteristic two remains anisotropic over all odd degree extensions of the ground field.

In this work, we study another generalization of Jacobson’s construction. Let F be a field and let (D, σ)
be a division algebra with involution of the first kind over F . Our aim is to associate to every (skew) 
hermitian space (V, h) over (D, σ) a quadratic form on V with values in F which reflects some important 
properties of h. Such a quadratic form has an additional property, namely that its underlying vector space 
is endowed with the structure of a right vector space over D. The approach we follow is to enrich the 
structure of quadratic forms with this property such that the D-structure of V is taken into account. This 
point of view will be developed in section 3 by introducing a class of quadratic forms, called quadratic 
D-forms. Other related notions for quadratic forms, such as D-isometry, D-isotropy and D-metabolicity 
will also be defined accordingly. In section 4, we study a decomposition theorem for quadratic D-forms, 
which is a generalization of the classical Witt decomposition theorem (see Theorem 4.6). These elementary 
results show that the study of quadratic D-forms is interesting in itself. They also motivate one to generalize 
other important properties of quadratic forms to the context of quadratic D-forms. For example, one may 
consider the question of whether a D-anisotropic quadratic D-form remains D-anisotropic over odd degree 
extensions of the base field (see Question 4.7).

In section 5, we use quadratic D-forms to classify hermitian and skew hermitian forms. Let (D, σ) be a 
division algebra with involution of the first kind over a field F and let (V, h) be a λ-hermitian space over 
(D, σ), where λ = ±1. Suppose that either D �= F or λ �= −1. For every F -linear map π : Symλ(D, σ) → F

whose restriction to Symdλ(D, σ) is nontrivial, we associate a quadratic D-form qh,π to h. It is shown in 
Theorem 5.5 that two λ-hermitian forms h and h′ are isometric if and only if qh,π and qh′,π are D-isometric. 
It is also shown in Proposition 5.7 and Corollary 5.8 that h is isotropic (resp. metabolic) if and only if qh,π
is D-isotropic (resp. D-metabolic). Using this, one may consider Question 4.7 as a generalization of the 
question of whether an anisotropic λ-hermitian form over (D, σ) remains anisotropic over all odd degree 
extensions of F . Finally, we consider quadratic forms which admit D in section 6, to show that some familiar 
quadratic forms studied earlier in the literature are examples of quadratic D-forms. It is shown that in the 
case where π satisfies certain symmetry property, a quadratic D-form can be realised as the π-invariant of 
a λ-hermitian form if and only if it admits D (see Proposition 6.7).

2. Preliminaries

In this section, we recall some basic notions of quadratic and hermitian forms. The reader is referred to 
[3] and [5] for general references on these topics.

Let V be a vector space of finite dimension over a field F . A quadratic form on V is a map q : V → F

satisfying q(au + bv) = a2q(u) + b2q(v) + abbq(u, v) for every u, v ∈ V and a, b ∈ F , where bq : V × V → F

is a bilinear form. The pair (V, q) is called a quadratic space over F and the bilinear form bq is called the 
polar form of q. For a subspace W of V we use the notation

W⊥q = {v ∈ V | bq(v, w) = 0 for all w ∈ W}.

We will simply denote W⊥q by W⊥ if the form q is clear from the context. Set radV = V ⊥. The form q is 
called nonsingular if radV = {0}, or equivalently, bq is nondegenerate. Also, q is called totally singular if 
bq is trivial. A subspace W of V is called nonsingular if W ∩W⊥ = {0}, or equivalently, q|W is nonsingular.

The orthogonal sum of two quadratic spaces (V, q) and (V ′, q′) is the quadratic space (V ⊥ V ′, q ⊥ q′), 
where V ⊥ V ′ = V ⊕V ′ and (q ⊥ q′)((v, v′)) = q(v) + q′(v′) for all v ∈ V and v′ ∈ V ′. An isometry between 
(V, q) and (V ′, q′), denoted by (V, q) � (V ′, q′) or q � q′ for short, is an isomorphism f : V → V ′ of vector 
spaces satisfying q′(f(v)) = q(v) for all v ∈ V . For α ∈ F×, the scaled quadratic space (V, α · q) is defined 
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by α · q(v) = αq(v) for all v ∈ V . We will simply denote (−1) · q by −q. Also, for a1, · · · , an ∈ F× the 
quadratic form a1x

2
1 + · · · + anx

2
n is denoted by 〈a1, · · · , an〉.

A quadratic space (V, q) (or the form q itself) is called isotropic if there exists a nonzero vector v ∈ V

such that q(v) = 0. Otherwise, it is called anisotropic. A subspace W of V is called totally isotropic if q|W is 
trivial. A nonsingular quadratic space (V, q) (or the form q itself) is called metabolic if there exists a totally 
isotropic subspace L of V such that dimD L = 1

2 dimD V . Such a subspace L is called a lagrangian of (V, q). 
Note that L⊥ = L for every lagrangian L of (V, q).

Let A be a central simple algebra over a field F . An involution on A is an antiautomorphism σ of A
satisfying σ2 = id. An involution σ on A is said to be of the first kind if σ|F = id, and of the second kind
otherwise. For an algebra with involution (A, σ) and λ = ±1 we use the notation

Symλ(A, σ) = {x ∈ A | σ(x) = λx},
Symdλ(A, σ) = {x + λσ(x) | x ∈ A}.

It is easy to see that if s ∈ Symdλ(A, σ) then σ(d)sd ∈ Symdλ(A, σ) for all d ∈ D. We will drop the index 
λ from Symλ(A, σ) and Symdλ(A, σ) if λ = 1.

Let (D, σ) be a finite dimensional division algebra with involution of the first kind over a field F and let 
λ = ±1. Let V be a finite dimensional right vector space over D. A λ-hermitian form on V is a bi-additive 
map h : V × V → D such that h(uα, vβ) = σ(α)h(u, v)β and h(v, u) = λσ(h(u, v)) for all u, v ∈ V and 
α, β ∈ D. The pair (V, h) is called a λ-hermitian space over (D, σ). If λ = 1 (resp. λ = −1), we will call h a 
hermitian (resp. skew hermitian) form. Note that if (D, σ) = (F, id) then a λ-hermitian form on (D, σ) is a 
symmetric or antisymmetric bilinear form over F .

A λ-hermitian space (V, h) (or the form h itself) is called nondegenerate if there is no nonzero vector 
u ∈ V such that h(u, v) = 0 for all v ∈ V . The form h is called diagonalizable if (V, h) has an orthogonal 
basis, i.e., a basis (v1, · · · , vn) of V over D satisfying h(vi, vj) = 0 for all i �= j. In this case, the form h is 
denoted by 〈α1, · · · , αn〉(D,σ), where αi = h(vi, vi) ∈ D for i = 1, · · · , n.

Let (V, h) be a λ-hermitian space over (D, σ). It is easily seen that h(v, v) ∈ Symλ(D, σ) for all v ∈ V . 
We say that (V, h) (or the form h itself) is even if h(v, v) ∈ Symdλ(D, σ) for every v ∈ V . If charF �= 2
then all λ-hermitian forms are even, because Symλ(D, σ) = Symdλ(D, σ) in this case.

A λ-hermitian space (V, h) (or the form h) is called isotropic if there exists a nonzero vector v ∈ V

such that h(v, v) = 0. Such a vector v is called an isotropic vector. The form h is called anisotropic if 
it is not isotropic. A nondegenerate λ-hermitian space (V, h) (or the form h) is called metabolic if there 
exists a subspace L of V with dimD L = 1

2 dimD V such that h|L×L is trivial. Such a subspace L is called a 
lagrangian of (V, h).

The orthogonal sum of two λ-hermitian spaces (V, h) and (V ′, h′) over (D, σ), denoted by (V ⊥ V ′, h ⊥ h′), 
is given by

(h ⊥ h′)((u, u′), (v, v′)) = h(u, v) + h′(u′, v′) for all u, v ∈ V and u′, v′ ∈ V ′.

An isometry between (V, h) and (V ′, h′), denoted by (V, h) � (V ′, h′) or simply h � h′, is an isomorphism 
f : V → V ′ of right vector spaces over D satisfying h′(f(u), f(v)) = h(u, v) for all u, v ∈ V .

3. Quadratic D-forms

Throughout this section, F denotes a field of arbitrary characteristic and D denotes a finite dimensional 
division algebra over F .

Let V be a finite dimensional right vector space over D. Then V is also a vector space over F and we 
may consider a quadratic form q : V → F . We say that q is a quadratic D-form if W⊥ is a vector space 
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over D for every D-subspace W of V . In this case, we say that (V, q) is a quadratic D-space. Note that if 
D = F , then a quadratic D-form is just a quadratic form. Also, if (V, q) is a quadratic D-space and W is 
a D-subspace of V , then q|W is a quadratic D-form. This follows from the equality S⊥q|W = S⊥q ∩W for 
every subspace S of W .

Lemma 3.1. Let V be a one-dimensional right vector space over D. A quadratic form q : V → F is a 
quadratic D-form if and only if it is either nonsingular or totally singular.

Proof. The claim follows from the fact that V has exactly two D-subspaces. �
Corollary 3.2. Let (V, q) be a quadratic D-space. Then for every v ∈ V , q|vD is either nonsingular or totally 
singular.

Proof. The result follows from Lemma 3.1. �
Remark 3.3. The orthogonal sum of quadratic D-spaces is not necessarily a quadratic D-space if D �= F . 
To construct a counterexample, let {d1, · · · , dn} be a basis of D over F , where n = dimF D � 4. Consider 
the F -subspace

U = d3F + · · · + dnF ⊆ D.

Let ρ be a nonsingular quadratic form on U . Let ϕ and ϕ′ be nonsingular quadratic forms on d1F + d2F

satisfying

bϕ(d1, d2) = 1 and bϕ′(d1, d2) �= 1. (1)

Set q = ϕ ⊥ ρ and q′ = ϕ′ ⊥ ρ. Then q and q′ are quadratic D-forms on V by Lemma 3.1. However, 
q ⊥ (−q′) is not a quadratic D-form. Indeed, in the quadratic space (V ⊥ V, q ⊥ (−q′)), one has

(d3, d3) ∈ ((1, 1)D)⊥,

while (d1, d1) /∈ ((1, 1)D)⊥, because bq⊥(−q′)((d1, d1), (d2, d2)) �= 0 by (1).

Definition 3.4. Let (V, q) and (V ′, q′) be two quadratic D-spaces. We say that q and q′ are D-compatible if 
q ⊥ q′ is a quadratic D-form.

Let V and V ′ be two finite dimensional right vector spaces over D and let q : V → F and q′ : V ′ → F

be quadratic forms. We say that q is D-isometric to q′ if there exists an isomorphism f : V → V ′ of right 
vector spaces over D such that q′(f(v)) = q(v) for every v ∈ V . In this case, we write (V, q) �D (V ′, q′), 
or simply q �D q′. Also, the map f is called a D-isometry. It is readily verified that if q �D q′ then q is a 
quadratic D-form if and only if q′ is a quadratic D-form.

Lemma 3.5. Let (V, q) be a quadratic D-space and let W ⊆ V be a nonsingular D-subspace of V . Then 
(V, q) �D (W, q|W ) ⊥ (W⊥, q|W⊥). In particular, q|W and q|W⊥ are D-compatible.

Proof. Since W is nonsingular, we have W +W⊥ = V and W ∩W⊥ = {0}. As W and W⊥ are D-subspaces 
of V , the natural isometry f : (W, q|W ) ⊥ (W⊥, q|W⊥) � (V, q) defined by f((w, w′)) = w + w′ is an 
isomorphism of right vector spaces. Hence, it is a D-isometry. �

The following result is similarly verified.
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Lemma 3.6. Let (V, q) be a quadratic D-space and let W be any D-subspace of V for which V = radV ⊕W . 
Then q|W is nonsingular and q �D q|rad V ⊥ q|W .

Let V be a right vector space over D and let q : V → F be a quadratic form. A basis {v1, · · · , vn} of V
over D is called an orthogonal D-basis of (V, q) if for every i �= j, the D-subspace viD is orthogonal to vjD, 
i.e., bq(vid, vjd′) = 0 for every d, d′ ∈ D. In this case, we say that (V, q) is D-diagonalizable.

Lemma 3.7. Let (V, q) be a quadratic D-space. Suppose that either D �= F or charF �= 2. If the restriction 
q|vD is totally singular for all v ∈ V , then q is totally singular.

Proof. Observe first that if charF �= 2, the claim is evident, because q is trivial in this case. Suppose that 
charF = 2, and hence D �= F . The hypothesis implies that bq(v, vd) = 0 for all v ∈ V and d ∈ D. Applying 
this relation to the vector u + v ∈ V , one concludes that

bq(u, vd) = bq(ud, v) for all u, v ∈ V and d ∈ D. (2)

Let d1, d2 ∈ D and u, v ∈ V . Then using (2) we have

bq(u, vd1d2) = bq(u, (vd1)d2) = bq(ud2, vd1)

= bq((ud2)d1, v) = bq(u(d2d1), v) = bq(u, vd2d1).

Hence,

bq(u, v(d1d2 − d2d1)) = 0 for all u, v ∈ V and d1, d2 ∈ D. (3)

Choose d1, d2 ∈ D such that d1d2 �= d2d1 and set d′ = d1d2 − d2d1 ∈ D. Let v ∈ V be an arbitrary vector. 
Then (3) implies that bq(u, vd′) = 0 for every u ∈ V , hence vd′ ∈ radV . Since radV is a D-space and 
d′ �= 0, one concludes that v ∈ radV . It follows that radV = V , i.e., q is totally singular. �
Proposition 3.8. If either D �= F or charF �= 2 then every quadratic D-space is D-diagonalizable.

Proof. Let (V, q) be a quadratic D-space. In view of Lemma 3.6, it suffices to consider the case where q
is nonsingular. By Lemma 3.7 and Corollary 3.2, there exists v ∈ V such that q|vD is nonsingular. Hence, 
q �D q|vD ⊥ q|(vD)⊥ by Lemma 3.5. The result now follows by induction on dimD V . �
4. Witt decomposition of quadratic D-forms

We continue to assume that D is a finite dimensional division algebra over a field F .
Let V be a right vector space over D and let q : V → F be a quadratic form. A nonzero vector v ∈ V

is called D-isotropic if q|vD = 0, i.e., vD is a totally isotropic subspace of V . We say that (V, q) (or simply 
q) is D-isotropic if there exists a D-isotropic vector v ∈ V . Otherwise, q is called D-anisotropic. We say 
that (V, q) (or the form q itself) is D-metabolic if (i) q is nonsingular; (ii) there exists a totally isotropic 
D-subspace L of V such that dimD L = 1

2 dimD V . Such a subspace L is called a D-lagrangian of (V, q). 
Note that for every D-lagrangian L of (V, q) we have L⊥ = L. Clearly, D-isotropy and D-metabolicity are 
preserved under D-isometry.

Lemma 4.1. Let (V, q) be a nonsingular quadratic D-space. Let v ∈ V be a D-isotropic vector. Then for 
every w ∈ V \ (vD)⊥, the restriction q|vD+wD is D-metabolic.
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Proof. Set W = vD + wD. Since vD ⊆ (vD)⊥ and w /∈ (vD)⊥, W is a two-dimensional D-subspace of V . 
Hence, it suffices to show that q|W is nonsingular. Let u = vd1 + wd2 ∈ W ∩W⊥, where d1, d2 ∈ D. The 
relation bq(u, vd) = 0 implies that bq(wd2, vd) = 0 for all d ∈ D, because q|vD = 0. Since w /∈ (vD)⊥ and 
(vD)⊥ is a D-subspace, we obtain d2 = 0, hence u = vd1. As w ∈ W , one has vd1 ∈ (wD)⊥. If d1 �= 0, then 
vD ⊆ (wD)⊥, because (wD)⊥ is a D-subspace of V . This contradicts w /∈ (vD)⊥. Hence, d1 = 0, which 
implies that W ∩W⊥ = {0}. �
Corollary 4.2. Let (V, q) be a nonsingular quadratic D-space. If q is D-isotropic then there exists a 
D-subspace W of V with dimD W = 2 such that q|W is D-metabolic and q �D q|W ⊥ q|W⊥ . Moreover, if v
is a D-isotropic vector of (V, q) then the subspace W can be chosen in such a way that v ∈ W .

Proof. Choose a vector w ∈ V such that bq(v, w) �= 0. Then the D-subspace W = vD +wD is the required 
subspace, thanks to Lemmas 4.1 and 3.5. �
Lemma 4.3. Every D-metabolic quadratic D-form is D-isometric to the orthogonal sum of two-dimensional 
D-metabolic quadratic D-forms.

Proof. Let (V, q) be a D-metabolic quadratic D-space. Let L be a D-lagrangian of (V, q) with a basis 
{v1, · · · , vn} over D. Set W = (v2D+ · · ·+vnD)⊥. Since L = L⊥ � W , one can choose a vector u1 ∈ W \L. 
Hence, u1 /∈ (v1D)⊥. Set W = u1D+ v1D. By Lemma 4.1, W is a two-dimensional D-subspace of V , q|W is 
D-metabolic and q �D q|W ⊥ q|W⊥ . We also have v2, · · · , vn ∈ W⊥. By dimension count, v2D + · · · + vnD

is a D-lagrangian of q|W⊥ . The result now follows by induction on n. �
Proposition 4.4. Let U , V and W be finite dimensional right vector spaces over D and let (V, q) �D (U, ρ) ⊥
(W, ϕ) be a D-isometry of nonsingular quadratic spaces. Suppose further that ϕ is a quadratic D-form. If q
and ϕ are D-metabolic then ρ is also D-metabolic.

Proof. The proof is very similar to that of [3, (1.26)]. Since ϕ is a D-metabolic quadratic D-form, it is 
D-isometric to the orthogonal sum of two-dimensional D-metabolic quadratic D-forms by Lemma 4.3. 
Hence, it suffices to consider the case where dimD W = 2. We identify U and W with subspaces of V , so 
that V = U +W and U ∩W = {0}. Let L be a D-lagrangian of (V, q). Let π : L → W be the projection map 
and set L0 = kerπ = L ∩U . If π is not surjective, then dimD L0 � dimD L − 1. Hence, L0 is a D-lagrangian 
of (U, ρ) and the result follows.

Suppose that π is surjective, so dimD L0 = dimD L − 2. Choose a D-isotropic vector w ∈ W . As π is 
surjective, there exists v ∈ L such that π(v) = w, hence v = u + w for some u ∈ U . It follows that

ρ(ud) = q(ud + wd) − ϕ(wd) = q(vd) − ϕ(wd) = 0 for all d ∈ D,

i.e., u is a D-isotropic vector of (U, ρ). Since L0 ⊆ U and w ∈ W , we have wd ∈ L
⊥q

0 for every d ∈ D. Hence, 
ud ∈ L

⊥q

0 for every d ∈ D, because vd = ud + wd ∈ L ⊆ L
⊥q

0 for all d ∈ D. Note that ud ∈ U and L0 ⊆ U , 
hence ud ∈ L

⊥q

0 ∩ U = L
⊥ρ

0 .
We claim that w /∈ L. Since ϕ is nonsingular, there exists w′ ∈ W such that

bϕ(w,w′) �= 0. (4)

As π is surjective, there exists v′ ∈ L such that π(v′) = w′, i.e., v′ = u′ +w′ for some u′ ∈ U . Now, if w ∈ L

then

0 = bq(w, v′) = bq(w, u′ + w′) = bq(w,w′) = bϕ(w,w′),
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contradicting (4). Hence, w /∈ L, as claimed. Since u + w = v ∈ L, we have u /∈ L, or equivalently, u /∈ L0. 
By dimension count, L0 ⊕ uD is a D-lagrangian of U , proving the result. �
Lemma 4.5. Let V and V ′ be right vector spaces over D and let q : V → F and q′ : V ′ → F be nonsingular 
quadratic forms. If q �D q′ then q ⊥ (−q′) is D-metabolic. The converse is also true if q and q′ are 
D-anisotropic.

Proof. We identify V and V ′ with D-subspaces of V ⊕ V ′, so that V ⊕ V ′ = V + V ′ and V ∩ V ′ = {0}. 
Suppose first that q �D q′. Let f : (V, q) → (V ′, q′) be a D-isometry and let {v1, · · · , vn} be a basis of 
V over D. Then the D-subspace of V ⊕ V ′ spanned by v1 + f(v1), · · · , vn + f(vn) is a D-lagrangian of 
q ⊥ (−q′). Hence, q ⊥ (−q′) is D-metabolic.

Conversely, suppose that q ⊥ (−q′) is D-metabolic, and the forms q and q′ are D-anisotropic. Let L
be a D-lagrangian of (V ⊥ V ′, q ⊥ (−q′)). Since q is D-anisotropic, the intersection L ∩ V is trivial. 
Hence, the projection π′ : L → V ′ is injective, which implies that dimD L � dimD V ′. Similarly, we have 
dimD L � dimD V . The equality dimD L = 1

2(dimD V + dimD V ′) yields

dimDV = dimDV ′ = dimDL.

Hence, the projections π : L → V and π′ : L → V ′ are isomorphisms of right vector spaces over D. It is 
now readily verified that the map π′ ◦ π−1 : V → V ′ is a D-isometry (V, q) �D (V ′, q′). �

We are now ready to state a Witt decomposition theorem for quadratic D-forms.

Theorem 4.6. Let (V, q) be a nonsingular quadratic D-space. Then q �D qmet ⊥ qan, where qmet is 
D-metabolic and qan is D-anisotropic. Moreover, qan is uniquely determined, up to D-isometry.

Proof. The existence of such a decomposition follows from Corollary 4.2 and induction on dimD V . To prove 
the uniqueness, suppose that

q �D qmet ⊥ qan �D q′met ⊥ q′an,

where qan and q′an are D-anisotropic, and qmet and q′met are D-metabolic. Then

qmet ⊥ qan ⊥ (−q′an) �D q′met ⊥ q′an ⊥ (−q′an),

is D-metabolic by Lemma 4.5. Note that qmet is a quadratic D-form, as it is a subform of q. Since qmet is 
D-metabolic, the form qan ⊥ (−q′an) is also D-metabolic by Proposition 4.4. Hence, Lemma 4.5 implies that 
qan �D q′an. �

Since basic properties of quadratic forms naturally extend to quadratic D-forms, one may consider the 
following question as a generalization of Springer’s theorem.

Question 4.7. Let K/F be a finite field extension of odd degree and let V be a right vector space over F . If 
q : V → F is a D-anisotropic quadratic D-form, does it imply that qK : VK → K is DK -anisotropic?

5. The π-invariant of hermitian and skew hermitian forms

In this section, we fix (D, σ) as a finite dimensional division algebra with involution of the first kind over 
a field F and λ = ±1. Suppose that either D �= F or λ �= −1, which implies that Symdλ(D, σ) �= {0}, thanks 
to [6, (2.6)]. We also fix π : Symλ(D, σ) → F as an F -linear map such that π|Symd (D,σ) is nontrivial.
λ
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Let (V, h) be a λ-hermitian space over (D, σ). Define a map qh,π : V → F via

qh,π(v) = π(h(v, v)) for all v ∈ V.

We call qh,π the π-invariant of (V, h).

Lemma 5.1. Let (V, h) be a λ-hermitian space over (D, σ). Then the map qh,π : V → F is a quadratic 
D-form with the polar form

bh,π(u, v) = π(h(u, v) + h(v, u)) for all u, v ∈ V. (5)

Proof. That qh,π is a quadratic form and bh,π is its polar form is easily verified (see [8, (3.1)]). We claim 
that W⊥ is a vector space over D for every D-subspace W of V , i.e., qh,π is a quadratic D-form. Let W
be a D-subspace of V and let w ∈ W⊥. We should prove that wd ∈ W⊥ for every d ∈ D. Let d ∈ D and 
v ∈ W . If h(w, v) = 0 then

bh,π(wd, v) = π(h(wd, v) + h(v, wd)) = 0.

Otherwise, let d′ = h(w, v)−1h(v, w)d ∈ D. Then d = h(v, w)−1h(w, v)d′ and

bh,π(wd, v) = π(h(wd, v) + h(v, wd))

= π(σ(d)h(w, v) + h(v, w)d)

= π(σ(d′)h(v, w) + h(w, v)d′)

= π(h(vd′, w) + h(w, vd′))

= bh,π(w, vd′) = 0.

Hence, bh,π(wd, v) = 0 for all v ∈ W and d ∈ D. It follows that wd ∈ W⊥ for every d ∈ D, proving the 
claim. �
Lemma 5.2. Let (V, h) be a λ-hermitian space over (D, σ). Then h is nondegenerate if and only if qh,π is 
nonsingular.

Proof. If there exists u ∈ V such that h(u, v) = 0 for all v ∈ V then bh,π(u, v) = 0 for all v ∈ V . Hence, h is 
nondegenerate if qh,π is nonsingular. Conversely, suppose that h is nondegenerate. Choose x ∈ Symdλ(D, σ)
such that π(x) �= 0. Let v ∈ V be an arbitrary nonzero vector. By [8, (3.5)] there exists w ∈ V such that 
h(v, w) + h(w, v) = x. It follows that

bh,π(v, w) = π(h(v, w) + h(w, v)) = π(x) �= 0,

i.e., qh,π is nonsingular. �
Remark 5.3. Let (V, h) be a λ-hermitian space over (D, σ). It is worth noting that if π|Symdλ(D,σ) is trivial 
then qh,π is totally singular. Indeed, if charF �= 2 then π is trivial, because Symλ(D, σ) = Symdλ(D, σ). 
Hence, qh,π is the zero form and does not give any information about h. Otherwise, since h(u, v) +h(v, u) ∈
Symdλ(D, σ) for every u, v ∈ V , assuming π|Symdλ(D,σ) = 0, one concludes that

bh,π(u, v) = π(h(u, v) + h(v, u)) = 0 for all u, v ∈ V.

Hence, qh,π is totally singular.
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Note that Remark 5.3 also applies in the exceptional case where D = F and λ = −1. In this case, one 
has Symdλ(D, σ) = {0}. Hence, π|Symdλ(D,σ) is trivial, which implies that the form qh,π is totally singular.

Lemma 5.4. Let (A, τ) be a central simple algebra with involution of the first kind over F and let S be 
a subspace of A. If there exists a unit x ∈ Symλ(A, τ) such that τ(y)xy ∈ S for every y ∈ A, then 
Symdλ(A, τ) ⊆ S.

Proof. Let z ∈ Symdλ(A, τ) be an arbitrary element. We prove that z ∈ S. Write z = z′ + λτ(z′) for some 
z′ ∈ A and set y = x−1z′ ∈ A. Then

z = z′ + λτ(z′) = xy + λτ(xy) = xy + τ(y)x

= τ(y + 1)x(y + 1) − τ(y)xy − τ(1) · x · 1 ∈ S. �
We now show that the form qh,π can be used to classify hermitian and skew hermitian forms, up to 

isometry.

Theorem 5.5. Let (V, h) and (V ′, h′) be two λ-hermitian spaces over (D, σ). Then h � h′ if and only if 
qh,π �D qh′,π.

Proof. If f : (V, h) � (V ′, h′) is an isometry then f is an isomorphism of right vector spaces satisfying

qh′,π(f(v)) = π(h′(f(v), f(v))) = π(h(v, v)) = qh,π(v),

for every v ∈ V . Hence, f : (V, qh,π) → (V ′, qh′,π) is a D-isometry.
Conversely, let f : (V, qh,π) �D (V ′, qh′,π) be a D-isometry. We prove that f : (V, h) � (V ′, h′) is an 

isometry. Since f : V → V ′ is an isomorphism of right vector spaces over D, it suffices to show that

h′(f(u), f(v)) = h(u, v) for every u, v ∈ V. (6)

The equality qh′,π(f(v)) = qh,π(v) for every v ∈ V implies that

h′(f(v), f(v)) − h(v, v) ∈ kerπ for every v ∈ V.

If h′(f(v), f(v)) �= h(v, v) for some v ∈ V then x := h′(f(v), f(v)) −h(v, v) ∈ kerπ∩Symλ(D, σ) is a nonzero 
element satisfying

σ(d)xd = h′(f(vd), f(vd)) − h(vd, vd) ∈ kerπ for every d ∈ D.

Hence, Symdλ(D, σ) ⊆ kerπ by Lemma 5.4, contradicting π|Symdλ(D,σ) �= 0. Thus,

h′(f(v), f(v)) = h(v, v) for every v ∈ V. (7)

It is easily seen that the map h′′ : V × V → D defined by

h′′(u, v) = h(u, v) − h′(f(u), f(v)),

is a λ-hermitian form. Using (7), one has h′′(v, v) = 0 for all v ∈ V . Let u, v ∈ V . Expanding the left side 
of the equality h′′(u + v, u + v) = 0, one concludes that

h′′(u, v) = −h′′(v, u) for all u, v ∈ V. (8)
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Note that the set of values of a λ-hermitian form over (D, σ) is either {0} or D. Hence, in view of (8), either 
h′′ is trivial or λσ(x) = −x for all x ∈ D. If the latter condition holds, taking x = 1, one concludes that 
λ = −1 and σ = id. It follows that D is commutative, i.e., D = F , because σ(xy) = σ(y)σ(x) for all x, y ∈ D. 
This contradicts the assumption either D �= F or λ �= −1. Hence, h′′ is trivial, i.e., h′(f(u), f(v)) = h(u, v)
for all u, v ∈ V , proving (6). �
Remark 5.6. Theorem 5.5 does not necessarily hold if π|Symdλ(D,σ) is trivial. This is obvious if charF �= 2, 
because qh,π is trivial in this case. Suppose that charF = 2, so that Symd(D, σ) � Sym(D, σ). Choose 
α ∈ Sym(D, σ) \ Symd(D, σ). Consider one-dimensional hermitian forms h and h′ on V = D satisfying 
h(1, 1) = α and h′(1, 1) = α + β, where β ∈ Symd(D, σ) is a nonzero element. Then for every d ∈ D, one 
has

qh′,π(d) = π(h′(d, d)) = π(σ(d)(α + β)d)

= π(σ(d)αd) = π(h(d, d)) = qh,π(d),

because σ(d)βd ∈ Symd(D, σ) and π|Symd(D,σ) = 0. Hence, qh′,π �D qh,π. However, h and h′ are not 
isometric, since otherwise there exists d ∈ D such that h(d, d) = α + β, hence σ(d)αd = α + β. It then 
follows that σ(d)αd + α = β ∈ Symd(D, σ). Set x = σ(d + 1)α(d + 1) ∈ D. Then

x = σ(d)αd + α + σ(d)α + αd = σ(d)αd + α + αd + σ(αd) ∈ Symd(D,σ). (9)

Note that as β �= 0, we have d �= 1. Hence, (9) leads to the contradiction α = σ((d + 1)−1)x(d + 1)−1 ∈
Symd(D, σ).

Proposition 5.7. Let (V, h) be a λ-hermitian space over (D, σ). A nonzero vector v ∈ V is an isotropic 
vector of h if and only if it is a D-isotropic vector of qh,π. In particular, h is isotropic if and only if qh,π is 
D-isotropic.

Proof. If v ∈ V is an isotropic vector of h, then h(vd, vd) = 0 for all d ∈ D. Hence, qh,π|vD = 0, i.e., v is a 
D-isotropic vector of qh,π.

Conversely, suppose that qh,π|vD = 0 for some nonzero vector v ∈ V . We claim that h(v, v) = 0. Choose 
x ∈ Symdλ(D, σ) such that π(x) �= 0. Write x = y + λσ(y) for some y ∈ D. Suppose that h(v, v) �= 0 and 
set d = h(v, v)−1y ∈ D. Then

bh,π(v, vd) = π(h(v, vd) + h(vd, v))

= π(h(v, v)d + λσ(h(v, v)d))

= π(y + λσ(y)) = π(x) �= 0.

This contradicts the assumption qh,π|vD = 0. �
Corollary 5.8. Let (V, h) be a λ-hermitian space over (D, σ). Then h is metabolic if and only if qh,π is 
D-metabolic.

Proof. Suppose first that h is metabolic. Then h is nondegenerate, hence qh,π is nonsingular by Lemma 5.1. 
Let L be a lagrangian of h. Then L is a D-subspace of V satisfying dimD L = 1

2 dimD V and h|L×L = 0. It 
follows that qh,π|L = 0. Hence, L is a D-lagrangian of qh,π, i.e., qh,π is D-metabolic.
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Conversely, suppose that qh,π is D-metabolic. Then it is nonsingular, hence h is nondegenerate by 
Lemma 5.1. Let L be a D-lagrangian of qh,π. Since every v ∈ L is a D-isotropic vector of qh,π, Propo-
sition 5.7 shows that h(v, v) = 0 for every v ∈ V . The assumption either D �= F or λ �= −1 then implies 
that h|L×L = 0. Hence, L is a lagrangian of (V, h), i.e., h is metabolic. �
Remark 5.9. The ‘if’ implications in Proposition 5.7 and Corollary 5.8 are not necessarily true if π|Symdλ(D,σ)
is trivial. This is obvious if charF �= 2, because qh,π is trivial in this case. If charF = 2, as already 
observed in Remark 5.3, the form qh,π is totally singular. Hence, it cannot be metabolic, even if h is 
metabolic. This proves the claim for metabolicity. Finally, to prove the claim for isotropy, let (V, h) be an 
anisotropic hermitian space over (D, σ) satisfying h(v, v) ∈ Symd(D, σ) for some nonzero vector v ∈ V . 
Since σ(d)h(v, v)d ∈ Symd(D, σ) for every d ∈ D we have qh,π(vd) = π(σ(d)h(v, v)d) = 0 for all d ∈ D. 
Hence, qh,π is D-isotropic.

The following result is easily verified.

Lemma 5.10. If (V, h) and (V ′, h′) are two λ-hermitian spaces over (D, σ) then qh⊥h′,π �D qh,π ⊥ qh′,π. In 
particular, qh,π and qh′,π are D-compatible.

Remark 5.11. Let (V, h) and (V ′, h′) be two λ-hermitian spaces over (D, σ). In the case where (V, h) and 
(V ′, h′) are even, one can find a shorter proof of the ‘if’ implication in Theorem 5.5 as follows (compare 
[8, (4.5)]): since every λ-hermitian form is an orthogonal sum of a zero form and a nondegenerate form, 
it suffices to prove the claim in the case where h and h′ are nondegenerate. If qh,π �D qh′,π then using 
Lemma 5.10, one has qh⊥(−h′),π �D qh,π ⊥ −(qh′,π). Hence, qh⊥(−h′),π is D-metabolic by Lemma 4.5, which 
implies that h ⊥ (−h′) is metabolic, thanks to Corollary 5.8. It follows from [5, Ch. I, (6.4.5)] that h � h′.

Let K/F be a finite field extension such that DK := D ⊗F K is a division algebra and let (V, h) be a 
λ-hermitian space over (D, σ). Then there exists a λ-hermitian space (VK , hK) over (DK , σK) satisfying

hK(u⊗ a, v ⊗ b) = h(u, v) ⊗ ab for all u, v ∈ V and a, b ∈ K,

where σK = σ⊗ id. Note that Symλ(DK , σK) = Symλ(D, σ) ⊗K, hence the map π induces a K-linear map

πK : Symλ(DK , σK) → K,

satisfying πK(x ⊗ a) = aπ(x) for all x ∈ Symλ(D, σ) and a ∈ K. Therefore, we obtain a quadratic form 
qhK ,πK

: VK → K satisfying

qhK ,πK
(v ⊗ a) = πK(h(v, v) ⊗ a2) = π(h(v, v))a2 = qh,π(v)a2,

for all v ∈ V and a ∈ K. Clearly, the definition of qh,π is functorial, i.e.,

qhK ,πK
� (qh,π)K .

Let K/F be a field extension of odd degree and let (V, h) be an anisotropic λ-hermitian space over 
(D, σ). In view of the functoriality of qh,π, the problem of whether hK is anisotropic can be generalized 
to Question 4.7. It should be mentioned that this problem has an affirmative answer for hermitian forms 
over a quaternion division algebra with involution of the first kind (see [11]). However, for general division 
algebras the problem is still open.
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6. Quadratic forms which admit D

We now fix F as a field of characteristic not two and (D, σ) as a division algebra with involution of the 
first kind over F .

Let V be a finite dimensional right vector space over D and let q : V → F be a quadratic form. As in [5, 
Ch. I, §7.4], we say that q admits D if

bq(ud, v) = bq(u, vσ(d)) for all u, v ∈ V and d ∈ D.

Lemma 6.1. Every quadratic form which admits D is a quadratic D-form.

Proof. Let V be a finite dimensional right vector space over D and let q : V → F be a quadratic form which 
admits D. Let W be a D-subspace of V and let w ∈ W⊥. Then for every d ∈ D and v ∈ W we have

bq(wd, v) = bq(w, vσ(d)) = 0.

Hence, wd ∈ W⊥, proving that W⊥ is a D-subspace of V . �
Example 6.2. Suppose that D is a quaternion division algebra and σ is its canonical involution, defined by 
σ(x) = TrdD(x) −x for x ∈ D, where TrdD(x) is the reduced trace of x in D. Let V be a finite dimensional 
right vector space over D and let q : V → F be a quadratic form which admits D. Then q is isotropic if and 
only if it is D-isotropic. This follows from the fact that

q(vd) = 1
2bq(vd, vd) = 1

2bq(v, vdσ(d)) = 1
2bq(v, v)dσ(d),

for all v ∈ V and d ∈ D (note that dσ(d) ∈ F for every d ∈ D). In particular, using Springer’s theorem [3, 
(18.5)], one can find an affirmative answer to Question 4.7 in this special case.

Definition 6.3. Let π : Symdλ(D, σ) → F be an F -linear map. We say that π is symmetric if

π(xy + λσ(xy)) = π(yx + λσ(yx)) for all x, y ∈ D.

Lemma 6.4. Let A be a central simple algebra over F and let l : A → F be an F -linear map. If l(xy) = l(yx)
for all x, y ∈ A then l is a scalar multiple of the reduced trace TrdA : A → F .

Proof. By scalar extension to a splitting field, it is enough to consider the case where A = Mn(F ) is the 
full matrix algebra over F . Let eij ∈ Mn(F ) be the matrix whose ij-entry is 1 and whose other entries are 
zero. Then for all i, j, k we have l(eij) = l(eikekj) = l(ekjeik). Hence, l(eij) = 0 if i �= j. Also, taking i = j, 
one concludes that l(eii) = l(ekk) for all i, k. Hence, l = α · TrdA, where α = l(e11) ∈ F . �
Lemma 6.5. Let π : Symdλ(D, σ) → F be an F -linear map. If π is symmetric then there exists α ∈ F such 
that π = α · TrdD |Symdλ(D,σ).

Proof. Define lπ : D → F via lπ(x) = 1
2π(x + λσ(x)). Then lπ is an F -linear map satisfying

lπ(xy) = 1
2π(xy + λσ(xy)) = 1

2π(yx + λσ(yx)) = lπ(yx),

for all x, y ∈ D. By Lemma 6.4, there exists α ∈ F such that lπ = α · TrdD. Note that if x ∈ Symdλ(D, σ)
then lπ(x) = 1π(x + λσ(x)) = π(x), hence lπ|Symd (D,σ) = π, proving the claim. �
2 λ
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Let π : Symdλ(D, σ) → F be a symmetric F -linear map. By Lemma 6.5, π is the restriction to 
Symdλ(D, σ) of a scalar multiple of TrdD. Since TrdD(σ(x)) = TrdD(x) for all x ∈ D, one concludes 
that π is trivial if λ = −1. Hence, for the rest of this section we only consider the case where λ = 1 for 
studying symmetric linear maps.

Lemma 6.6. Let (V, h) be a nontrivial hermitian space over (D, σ) and let π : Symd(D, σ) → F be a nonzero 
linear map. Then qh,π admits D if and only if π is symmetric.

Proof. Suppose first that qh,π admits D. Let x, y ∈ D and set d = σ(x) ∈ D. As h is nontrivial there exist 
u, v ∈ V such that h(u, v) = y. Then

π(xy + σ(xy)) = π(σ(d)h(u, v) + σ(σ(d)h(u, v)))

= π(h(ud, v) + σ(h(ud, v)))

= π(h(ud, v) + h(v, ud))

= bh,π(ud, v)

= bh,π(u, vσ(d))

= π(h(u, vσ(d)) + h(vσ(d), u))

= π(h(u, v)σ(d) + σ(h(u, v)σ(d)))

= π(yx + σ(yx)).

Hence, π is symmetric. Conversely, suppose that π is symmetric. By Lemma 6.5, π = α · TrdD for some 
α ∈ F×. Hence, for every u, v ∈ V and d ∈ D we have

bh,π(ud, v) = π(h(ud, v) + h(v, ud))

= αTrdD(σ(d)h(u, v) + h(v, u)d)

= αTrdD(h(u, v)σ(d) + dh(v, u))

= αTrdD(h(u, vσ(d)) + h(vσ(d), u))

= π(h(u, vσ(d)) + h(vσ(d), u)) = bh,π(u, vσ(d)).

Hence, qh,π admits D. �
Let (V, q) be a quadratic D-space. Since the π-invariant of every hermitian form on V is a quadratic 

D-form, a natural question is whether every quadratic D-form can be realised as the π-invariant of a 
hermitian form. Using [7, (2.3)], one can find a solution to this question in the case where π is symmetric:

Proposition 6.7. Let (V, q) be a quadratic D-space and let π : Symd(D, σ) → F be a nonzero symmetric 
F -linear map. Then there exists a hermitian form h on V such that q = qh,π if and only if q admits D.

Proof. The ‘only if’ implication follows from Lemma 6.6. Conversely, assume that q admits D. Since π is 
symmetric, π = α · TrdD for some α ∈ F×, thanks to Lemma 6.5. Since TrdD(xy) = TrdD(yx) for all 
x, y ∈ D, the assignment (x, y) �→ αTrdD(xy) defines a symmetric bilinear form b : D×D → F . Note that 
b is associative, i.e.,

b(x, yz) = b(xy, z) for all x, y, z ∈ D.
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Hence, D is a symmetric algebra, in the sense of [7]. By [7, (2.3)] there exists a hermitian form h : V ×V → D

such that b(h(x, y), 1) = bq(x, y) for all x, y ∈ V . Hence,

αTrdD(h(x, x)) = b(h(x, x), 1) = bq(x, x) = 2q(x) for all x ∈ V.

It follows that 1
2π(h(x, x)) = q(x) for every x ∈ V . The scaled form 1

2 ·h is therefore the required hermitian 
form. �
Acknowledgement

The author thanks the referee for careful reading of the manuscript and for several useful comments and 
corrections. This research is partially supported by University of Kashan under the grant number 790035/2.

References

[1] E. Bayer-Fluckiger, R. Parimala, A. Quéguiner-Mathieu, Pfister involutions, Proc. Indian Acad. Sci. Math. Sci. 113 (4) 
(2003) 365–377.

[2] A. Dolphin, Orthogonal Pfister involutions in characteristic two, J. Pure Appl. Algebra 218 (10) (2014) 1900–1915.
[3] R. Elman, N. Karpenko, A. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, American Mathematical 

Society Colloquium Publications, vol. 56, American Mathematical Society, Providence, RI, 2008.
[4] N. Jacobson, A note on hermitian forms, Bull. Am. Math. Soc. 46 (1940) 264–268.
[5] M.-A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften, vol. 294, 

Springer-Verlag, 1991.
[6] M.-A. Knus, A.S. Merkurjev, M. Rost, J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium 

Publications, vol. 44, American Mathematical Society, Providence, RI, 1998.
[7] D.W. Lewis, Frobenius algebras and Hermitian forms, J. Pure Appl. Algebra 14 (1) (1979) 51–58.
[8] A.-H. Nokhodkar, Hermitian forms and systems of quadratic forms, Doc. Math. 23 (2018) 747–758.
[9] A.-H. Nokhodkar, Isotropy of orthogonal involutions in characteristic two, J. Algebra Appl. 17 (12) (2018) 1850240.

[10] A.-H. Nokhodkar, Orthogonal involutions and totally singular quadratic forms in characteristic two, Manuscr. Math. 
154 (3–4) (2017) 429–440.

[11] R. Parimala, R. Sridharan, V. Suresh, Hermitian analogue of a theorem of Springer, J. Algebra 243 (2) (2001) 780–789.
[12] A. Quéguiner-Mathieu, J.-P. Tignol, Algebras with involution that become hyperbolic over the function field of a conic, 

Isr. J. Math. 180 (2010) 317–344.
[13] C.-H. Sah, A note on Hermitian forms over fields of characteristic 2, Am. J. Math. 86 (1964) 262–270.
[14] A.S. Sivatski, Applications of Clifford algebras to involutions and quadratic forms, Commun. Algebra 33 (3) (2005) 937–951.

http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6261796572s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6261796572s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib646F6Cs1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib656C6D616Es1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib656C6D616Es1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6A61636F62s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6B6E757331s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6B6E757331s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6B6E7573s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6B6E7573s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6C65776973s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6D6568s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6D6569s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6D6571s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib6D6571s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib70617269s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib7469676E6F6Cs1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib7469676E6F6Cs1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib736168s1
http://refhub.elsevier.com/S0022-4049(19)30272-5/bib736976s1

	Quadratic D-forms with applications to hermitian forms
	1 Introduction
	2 Preliminaries
	3 Quadratic D-forms
	4 Witt decomposition of quadratic D-forms
	5 The π-invariant of hermitian and skew hermitian forms
	6 Quadratic forms which admit D
	Acknowledgement
	References


