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1. Introduction

In the last decade there has been an active study of various categories of modules over finitary simple 
Lie algebras. Over the field of complex numbers C, up to isomorphism there are three such Lie algebras: 
sl(∞), sp(∞) and o(∞) [1]. In [18,4] categories of integrable modules have been studied. More recently, in 
[14,2,19], analogs of the category O have been investigated.

In [22], V. Serganova has demonstrated that passing to the super setting is very useful. In particular, she 
showed that the equivalence of the categories of tensor modules over o(∞) and sp(∞), discovered in [23]
and [4], admits a natural explanation in terms of the category of tensor modules over the Lie superalgebra 
osp(∞|∞). Moreover, this latter category turns out to be equivalent to both former categories.

Motivated by this, we decided to study the extension, to the Lie superalgebra setting, of the recent 
classification of integrable bounded simple weight modules of sl(∞), sp(∞) and o(∞) obtained in [8]. The 
Lie superalgebras we consider are listed in Table 1 below. Beyond the technical challenge of classifying 
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integrable bounded simple weight modules over these Lie superalgebras, we have been interested in the 
respective categories of integrable bounded weight modules. Over finitary Lie algebras, the category of 
bounded weight modules is semisimple due to an extension of Hermann Weyl’s semisimplicity theorem 
proved by the second author and V. Serganova in [18]. It is natural to ask whether semisimplicity holds 
also in the superalgebra case. We show that the categories of integrable bounded weight modules are indeed 
semisimple for all superalgebras g we consider, except for g isomorphic to sl(∞|1) or to q(∞) where the 
category is “almost” semisimple. This semisimplicity result shows how special integrable bounded weight 
modules are.

The paper is organized as follows. In Section 2 we give some relevant basic definitions. In Section 3 we 
discuss the classification of integrable bounded simple weight modules of the Lie algebra gl(∞). Our main 
classification result is presented in Section 5. The categories of integrable bounded weight modules for the 
various Lie superalgebras g are discussed in Section 6. Finally, in the Appendix, we discuss the Ext’s in the 
category of weight modules and provide a sufficient condition for splitting of extensions of locally simple 
g-modules in a more general setting.

Notation. Set Z× := Z \ {0}. All vector spaces, algebras, and tensor products are defined over the field of 
complex numbers C, unless otherwise stated. The superscript ∗ always indicates dual vector space. For any 
Lie superalgebra k = k0̄ ⊕ k1̄, set k′ := [k, k], and denote by U(k) the universal enveloping algebra of k. If 
T ⊆ U(k) is a subset, then we let CU(k)(T ) := {x ∈ U(k) | [x, T ] = 0} denote the centralizer of T in U(k). 
The symbol � (or �) stands for semidirect sum of Lie superalgebras, the round side pointing toward the 
ideal. By 〈·〉R we denote span over a ring R. If M = M0̄ ⊕ M1̄ is a Z2-graded vector space, then ΠM is 
the space with changed parity, i.e., (ΠM)0̄ = M1̄ and (ΠM)1̄ = M0̄. The parity of a homogeneous vector 
v ∈ M will be denoted by |v| ∈ Z2, and the dimension of M is denoted by dimM0̄| dimM1̄. Unless otherwise 
stated, by homomorphisms of Z2-graded vector spaces we mean linear transformations that preserve parity. 
For a ∈ Z>0, the a-th symmetric and exterior powers of a Z2-graded vector space M are given, respectively, 
by

SaM :=
⊕

i+j=a

SiM0̄ ⊗ΛjM1̄, ΛaM :=
⊕

i+j=a

ΛiM0̄ ⊗ SjM1̄,

where Si and Λi denote the usual i-th symmetric and exterior powers of a vector space.

Acknowledgments. I.P. has been supported in part by DFG grant PE 980-7/1. L.C. was supported by 
CAPES grant 88881.119190/2016-01. L.C. acknowledges the hospitality of Jacobs University. The authors 
would like to thank Vera Serganova for helpful discussions and a referee for the thorough reading of our 
paper.

2. Preliminaries

Throughout the paper we denote by g = lim−−→ g(n) one of the Lie superalgebras defined as the direct limit 
of the following embeddings g(n) ↪→ g(n + 1):

(a) sl(∞|m) : sl(n|m) ↪→ sl(n + 1|m);
(b) sl(∞|∞) : sl(n + 1|n) ↪→ sl(n + 2|n + 1);
(c) ospB(∞|2k) : osp(2n + 1|2k) ↪→ osp(2n + 3|2k);
(d) ospB(∞|∞) : osp(2n + 1|2n) ↪→ osp(2n + 3|2n + 2);
(e) ospB(m|∞) : osp(m|2n) ↪→ osp(m|2n + 2), for m odd;
(f) ospC(2|∞) : osp(2|2n) ↪→ osp(2|2n + 2);
(g) ospD(∞|2k) : osp(2n|2k) ↪→ osp(2n + 2|2k);
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Table 1
Classical Lie superalgebras at infinity, their even part and their 0-th degree component.
g g0̄ g0

sl(∞|m) gl(∞) ⊕ sl(m) gl(∞) ⊕ sl(m)
sl(∞|∞) gl(∞) ⊕ sl(∞) gl(∞) ⊕ sl(∞)
ospB(∞|2k) oB(∞) ⊕ sp(2k) oB(∞) ⊕ gl(k)
ospB(∞|∞) oB(∞) ⊕ sp(∞) oB(∞) ⊕ gl(∞)
ospB(m|∞), m odd o(m) ⊕ sp(∞) o(m) ⊕ gl(∞)
ospC(2|∞) C ⊕ sp(∞) C ⊕ sp(∞)
ospD(∞|2k) oD(∞) ⊕ sp(2k) oD(∞) ⊕ gl(k)
ospD(∞|∞) oD(∞) ⊕ sp(∞) oD(∞) ⊕ gl(∞)
ospD(m|∞), m even, m �= 2 o(m) ⊕ sp(∞) o(m) ⊕ gl(∞)
sp(∞) sl(∞) sl(∞)
q(∞) gl(∞)

(h) ospD(∞|∞) : osp(2n|2n) ↪→ osp(2n + 2|2n + 2);
(i) ospD(m|∞) : osp(m|2n) ↪→ osp(m|2n + 2), for m even, m 
= 2;
(j) sp(∞) : sp(n) ↪→ sp(n + 1);
(k) q(∞) : q(n) ↪→ q(n + 1),

see [16] for details. The first two embeddings are given respectively by

(
A B

C D

)
�→

⎛⎜⎝ 0 0 0
0 A B

0 C D

⎞⎟⎠ and
(

A B

C D

)
�→

⎛⎜⎜⎜⎝
0 0 0 0
0 A B 0
0 C D 0
0 0 0 0

⎞⎟⎟⎟⎠ , (2.1)

where the matrices 0 are assumed to be of the appropriate size. The embeddings in (a)-(k) are respective 
restrictions of the embeddings in (2.1). If g is given by (a) or (b), then g is of type A; if g is given by (c), 
(d) or (e), then g is of type B; if g is given by (g), (h) or (i), then g is of type D. In all cases except (k), 
g admits a Z-grading g =

⊕
i∈Z gi compatible with the Z2-grading, i.e. g0̄ =

⊕
2i gi and g1̄ =

⊕
2i+1 gi. 

Table 1 shows explicitly the Lie algebras g0̄ and g0. We refer to [6, Tables on Lie superalgebras, page 342]
for a description of g(n)0̄ and g(n)0.

We point out that the pairs (ospB(∞|2k), ospD(∞|2k)) and (ospB(∞|∞), ospD(∞|∞)) are pairs of iso-
morphic Lie superalgebras. The reader will check this using the well known fact that the Lie algebras 
oB(∞) := lim−−→ o(2n + 1) and oD(∞) := lim−−→ o(2n) are isomorphic. However, in this paper we consider the 
Lie superalgebras in a pair separately, as we equip them (see the next section) with non-conjugate Car-
tan subalgebras. This makes the Lie superalgebras in a pair “different” from the point of view of weight 
modules.

2.1. Generalities on g-modules

We call a g-module M integrable if for every m ∈ M , g ∈ g one has

dim〈m, gm, g2m, . . .〉C < ∞.

Let h ⊆ g denote the splitting Cartan subalgebra of diagonal matrices in the Lie algebra g0̄ [3]. In other 
words, h is the direct limit of the diagonal Cartan subalgebras of the Lie algebras g(n)0̄ under the fixed 
embeddings g(n)0̄ ↪→ g(n + 1)0̄. A g-module M is a weight module (with respect to h) if

M =
⊕

∗

Mλ,

λ∈h
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where Mλ := {m ∈ M | hm = λ(h)m, ∀ h ∈ h}. The support of M is the set SuppM := {λ ∈ h∗ | Mλ 
=
0} ⊆ h∗. The elements λ ∈ SuppM are the weights of M , and nonzero vectors in Mλ are called weight 
vectors of weight λ. A weight module M is said to be bounded if there exists k ∈ Z>0 such that dimMλ ≤ k

for all λ ∈ SuppM .
Under the adjoint action of h on g we have the decomposition

g = g0 ⊕
⊕
α∈Δ

gα,

where g0 = h if g � q(∞), and Δ := Supp g \ {0}. The elements of Δ are the roots of g, and Δ is the root 
system of g. To describe Δ, we note first that g ⊆ gl(∞|∞) = lim−−→ gl(n|n) and that matrices in gl(∞|∞)
are indexed by Z× × Z×, where (0, 0) is identified with the intersection of the two orthogonal lines that 
separate the blocks of the matrices in gl(∞|∞). Let Ei,j ∈ gl(∞|∞) denote the elementary matrix with 
entry 1 at position (i, j) and zeros elsewhere. For any i ∈ Z× we let εi ∈ h∗ be the linear functional defined 
by εi(Ej,j) = δi,j for all j ∈ Z×, and we set δi := ε−i, for any i ∈ Z>0. We should point out that the εi’s 
could be indexed by an arbitrary countable set, not necessarily Z×. We fix Z× for convenience.

The root system of g is given as follows:

sl(∞|m) : Δ = {εi − εj , δr − δs, ±(εi − δr) | i, j ∈ Z>0 ∩ [0,m], r, s ∈ Z>0};

sl(∞|∞) : Δ = {εi − εj , δr − δs, ±(εi − δr) | i, j ∈ Z>0, r, s ∈ Z>0};

ospB(∞|2k) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0 ∩ [0, k], r, s ∈ Z>0};

ospB(∞|∞) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0, r, s ∈ Z>0};

ospB(m|∞) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±δr, ±εi ± δr, ±εi | i, j ∈ Z>0, r, s ∈ Z>0 ∩ [−m, 0]};

ospC(2|∞) : Δ = {±εi ± εj , ±2εi, ±εi ± δ1 | i, j ∈ Z>0};

ospD(∞|2k) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0, r, s ∈ Z>0 ∩ [−k, 0]};

ospD(∞|∞) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0, r, s ∈ Z>0};

ospD(m|∞) : Δ = {±εi ± εj , ±δr ± δs, ±2εi, ±εi ± δr | i, j ∈ Z>0 ∩ [0,m], r, s ∈ Z>0};

sp(∞) : Δ = {εi − εj , −εi − εj , εi + εj , 2εi) | i, j ∈ Z>0};

q(∞) : Δ = {εi − εj | i, j ∈ Z>0}.

If g � q(∞), then dim gα = 1|0 or dim gα = 0|1 for every α ∈ Δ. In that case, given ±α ∈ Δ we 
fix X±α ∈ g±α \ {0} so that the nonzero coordinates of hα := [Xα, X−α] ∈ h with respect to the basis 
{Ei,i | i ∈ Z×} of the subalgebra of diagonal matrices in gl(∞|∞) are equal to 1 or −1. The root spaces 
of q(∞) have dimension 1|1. In addition, here g0 = h ⊕ h1̄, and dim h1̄ = 0|∞. Finally, for any g and any 
n ∈ Z>0, we define

h(n) := h ∩ g(n), and Δ(n) := {α ∈ Δ | gα ⊆ g(n)}.

Let n, m ∈ Z>0 ∪ {∞}. Throughout the paper, the expression 
∑n

i λiδi +
∑m

i μiεi will be identified with 
the vector (λ|μ) := (. . . , λ2, λ1|μ1, μ2, . . .) ∈ Cn×Cm; the vector (. . . , c, c|d, d, . . .) ∈ Cn×Cm with c, d ∈ C

will be denoted by (c(n)|d(m)). Therefore, for g = gl(n|m) or g = osp(n|m) we can identify h(n)∗ with 
Cn × Cm. If g = sl(n|m) with n 
= m, then we also can think of (λ|μ) ∈ Cn × Cm as a weight of g: we 
consider the image of (λ|μ) in h(n)∗ under the projection (λ|μ) �→ (λ|μ) + C(1(n)| − 1(m)). If g = sl(n) or 
g = sp(n), then we can think of λ ∈ Cn as a weight of g by considering the image of λ in h(n)∗.
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In what follows, we normalize the marks of a weight of sl(n) in such a way that the last mark is zero. 
Then we have a well-defined correspondence between weights and partitions.

2.2. Splitting Borel subalgebras

Splitting Borel subalgebras of g are determined by triangular decompositions of Δ, which in turn are 
determined by (non-unique) elements of (〈Δ〉R)∗ (see [5, Proposition 2]). Namely, a given φ ∈ (〈Δ〉R)∗
determines the decomposition

Δ = Δ− � Δ+ where Δ± = {α ∈ Δ | φ(α) ≷ 0}.

The set Δ+ is called the set of positive roots associated to φ. The splitting Borel subalgebra corresponding 
to this decomposition is b := h � n, where

n =
⊕

α∈Δ+

gα.

We now present an explicit description of splitting Borel subalgebras in terms of linear orders on countable 
sets. Recall that δi := ε−i for every i ∈ Z>0. Suppose g = sl(∞|∞). In this case, splitting Borel subalgebras 
of g are parameterized by linear orders ≺ on Z×. More precisely, the set of positive roots corresponding to 
a linear order ≺ is

Δ(≺) = {δi − δj | −i ≺ −j, i, j ∈ Z>0} ∪ {εi − εj | i ≺ j, i, j ∈ Z>0}
∪ {δi − εj | −i ≺ j, i, j ∈ Z>0}.

If g = sl(∞|n) or q(∞), then Z× must be replaced respectively by Z×
≤n and Z×

>0. For g = ospB(∞|∞)
splitting Borel subalgebras of g are parameterized by pairs (≺, σ), where ≺ is a linear order on Z× and σ
is a map σ : Z× → {±1}. The set of positive roots corresponding (≺, σ) is

Δ(≺, σ) = {σ(i)δi − σ(j)δj | −i ≺ −j, i, j ∈ Z>0} ∪ {σ(i)δi + σ(j)δj | i 
= j ∈ Z>0}
∪ {σ(i)εi − σ(j)εj | i ≺ j, i, j ∈ Z>0} ∪ {σ(i)εi + σ(j)εj | i 
= j ∈ Z>0}
∪ {σ(i)δi | i ∈ Z>0} ∪ {σ(i)εi | i ∈ Z<0} ∪ {σ(i)2εi | i ∈ Z>0}
∪ {σ(i)δi ± σ(j)εj | i ∈ Z<0, j ∈ Z>0}.

If g is of type ospB(∞|2k) or ospB(m|∞), then Z× gets replaced respectively by Z×
≤k and Z×

≥−m. For 
g = ospD(∞|∞) the construction is analogous to that for ospB(∞|∞), however in this case we need an 
extra condition on σ : Z× → {±1}: if ≺ admits a maximal element i0 ∈ Z<0 then σ(i0) = 1. Hence Δ(≺, σ)
is given similarly to the previous case, but now there are no roots of the form σ(i)εi, σ(i)δi. If g is of type 
ospD(∞|2k), ospD(m|∞) or ospC(2|∞), then Z× is replaced by Z×

≤k, Z
×
≥−m or Z×

≥−1, respectively. We point 
out that for ospC(2|∞) we do not require the additional condition on the map σ. Finally, for g = sp(∞) we 
replace Z× by Z>0 in the above discussion, and we define

Δ(≺, σ) = {σ(i)εi − σ(j)εj | i ≺ j, i, j ∈ Z>0} ∪ {σ(i)εi + σ(j)εj | i 
= j ∈ Z>0}
∪ {2εi | i ∈ Z>0, σ(i) = 1}.

The splitting Borel subalgebra corresponding to Δ(≺) (respectively, Δ(≺, σ)) is denoted by b(≺) (re-
spectively, b(≺, σ)), and n(≺) (respectively, n(≺, σ)) denotes its locally nilpotent radical. Moreover, for every 
n ∈ Z>0, we set b(≺n) := b(≺) ∩ g(n) (respectively, b(≺n, σ) := b(≺, σ) ∩ g(n)).

Throughout the paper, we denote by < the standard order on Z.
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2.3. Highest weight modules

Let b = h � n be a splitting Borel subalgebra of g, and M be a weight module. A weight vector 
0 
= v ∈ Mλ is a b-singular vector if n · v = 0. If M is a cyclic g-module generated by a b-singular vector of 
weight λ, we say that M is a b-highest weight module, and λ is the b-highest weight of M . Given an element 
λ ∈ h∗, we consider the Verma type module associated to λ and b

Mb(λ) := Indg

b
Uλ := U(g) ⊗U(b) U

λ,

where Uλ is a simple b-module on which h acts via λ and n acts trivially. If g � q(∞), we require Uλ to 
have dimension 1|0. If g ∼= q(∞), then the dimension of Uλ is 2[#λ/2] where #λ denotes the number of 
nonzero marks of λ, and [a] denotes the greatest integer in the number a ∈ Q. The g-module Mb(λ) admits 
a unique simple quotient which we denote by Lb(λ). Accordingly, ΠLb(λ) admits a b-highest weight space 
of weight λ whose dimension is dimUλ

1̄ | dimUλ
0̄ .

The Lie superalgebra g admits a natural module V with support

SuppV =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{δi, εi} if g = sl(∞|∞), sl(∞|m)
{±δi, 0,±εi} if g = ospB(∞|∞), ospB(m|∞), ospB(∞, 2k)
{±δ1,±εi} if g = ospC(2|∞)
{±δi,±εi} if g = ospD(∞|∞), ospD(m|∞), ospD(∞|2k)
{εi} if g = q(∞)
{±εi} if g = sp(∞),

where the index i runs over the respective obvious subset of Z×. To determine V up to isomorphism for 
g 
= q(∞), sp(∞), we require that the weight spaces with weights δi belong to V0̄. For g = q(∞), the support 
determines V up to isomorphism, and for g = sp(∞) the weight spaces εi belong to V0̄. Furthermore, when 
g equals sl(∞|m) for m ∈ Z≥1 ∪{∞} or q(∞), then g admits a conatural module V∗ which is characterized 
(up to isomorphism) by the requirement that Supp (V∗)z = − SuppVz for z ∈ Z2.

Remark 2.1. Throughout the paper, for convenience, if g is a Lie algebra we write Lb(λ), V , and V∗ instead 
of Lb(λ), V, and V∗, respectively. �

3. Integrable bounded modules of gl(∞)

In what follows let hgl and hsl denote the Cartan subalgebras consisting of diagonal matrices in gl(∞) :=
lim−−→ gl(n) and sl(∞) := lim−−→ sl(n), respectively.

Let M be a weight sl(∞)-module such that M = U(sl(∞)) ·m for some m ∈ Mλ, where λ ∈ SuppM ⊆ h∗sl. 
For any c ∈ C we extend λ to an element of hgl, which we denote also by λ, by setting λ(E1,1) := c. Now 
we define the gl(∞)-module M(m, c) as follows: M(m, c) equals M as a vector space; the action of sl(∞)
on M(m, c) coincides with its action on M ; the action of E1,1 on m is via multiplication by c, and, for any 
u ∈ U(sl(∞))β (U(sl(∞))β being a weight space of U(sl(∞)) with respect to the adjoint sl(∞)-module 
structure)

E1,1um := (β + λ)(E1,1)um = (β(E1,1) + c)um. (3.1)

It is easy to see that the gl(∞)-module M(m, c) is well defined.
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Remark 3.1. Notice that any element ν ∈ SuppM ⊆ λ +ZΔ can be extended to an element of h∗gl via (3.1): 
if ν = λ +β then ν(E1,1) = (c +β)(E1,1). By a slight abuse of notation, we denote such an extension also by 
ν. Hence, M(m, c) is a weight gl(∞)-module. Moreover, since for any ν, ν′ ∈ SuppM(m, c) the weight ν−ν′

lies in the root lattice of gl(∞) (and hence of sl(∞)), we have ν 
= ν′ if and only if (ν − ν′)|hsl

= 0. This 

shows that SuppM(m, c) is obtained by extending SuppM via (3.1), and any two hgl-weights of M(m, c)
are equal if and only if their corresponding restrictions to hsl are equal. �

Let k(1) ⊂ k(2) ⊂ k(3) · · · be a sequence of inclusions of Lie superalgebras, and let k =
⋃

n k(n) = lim−−→ k(n). 
A k-module M is locally simple if for each m ∈ M \ {0} the k(n)-module U(k(n))m is simple for n � 0, and 
M =

⋃
n�0 U(k(n))m.

Lemma 3.2. Suppose M is a locally simple weight gl(∞)-module. Then, for any λ ∈ SuppM |sl(∞) and 
m ∈ (M |sl(∞))λ \ {0}, there is c ∈ C for which M ∼= M |sl(∞)(m, c).

Proof. Recall that gl(∞) = lim−−→ gl(n). Set M� := U(gl(�))m for � ≥ 1. Since M� is a simple gl(�)-module for 
� � 0, there is c ∈ C such that the action of E1,1 on M� is given by (3.1). As M =

⋃
��0 M� the result 

follows. �
We recall from [8, Proposition 4.5] that any integrable bounded simple weight sl(∞)-module is isomorphic 

to a direct limit lim−−→Lb(<n)(λ(n)), where, for every n, λ(n) is a weight of the following types:

(a) (1(bn), 0(n−bn)),
(b) (an, 0(n−1)),
(c) (0(n−1), −an),
(d) (μ1, . . . , μk, 0(n−k)),
(e) (0(n−k), −μk, . . . , −μ1).

Here B = {b1 ≤ b2 ≤ . . .} ⊆ Z>0 is a semi-infinite set (that is, |B| = |Z>0 \ B| = ∞) satisfying bn+1 ∈
{bn, bn + 1}, A = {a1 ≤ a2 ≤ . . .} ⊆ Z>0 is an infinite set, and μ := (μ1 ≥ · · · ≥ μk) is a partition. These 
locally simple sl(∞)-modules are denoted respectively by Λ

∞
2
B V , S∞

A V , S∞
A V∗, SμV and SμV∗.

Fix nonzero weight vectors:

(a) vμ ∈ SμV of weight μ :=
∑k

i=1 μiεi ∈ h∗sl,
(b) v∗μ ∈ SμV of weight μ∗ :=

∑k
i=1 −μiεi ∈ h∗sl,

(c) eA ∈ Λ
∞
2
B V of weight εA :=

∑
i∈A εi ∈ h∗sl,

(d) vA ∈ S∞
A V of weight λA :=

∑
i≥1(ai − ai−1)εi ∈ h∗sl,

(e) v∗A ∈ S∞
A V of weight λ∗

A :=
∑

i≥1(ai−1 − ai)εi ∈ h∗sl.

Now we are ready to state the main result of this section.

Theorem 3.3. An integrable simple weight gl(∞)-module M is bounded if and only if M is isomorphic to one 
of the following modules: Λ

∞
2
A V (eA, c), S∞

A V (vA, c), S∞
A V∗(v∗A, c), SμV (vμ, c), or SμV∗(v∗μ, c), where c ∈ C

is a scalar.

Proof. Set U(gl(n))0 := CU(gl(n))(hgl(n)), and fix a weight λ ∈ SuppM . Since M is simple and bounded, 
Lemma A.1 from the Appendix claims that the weight space Mλ is simple as a U(gl(n))0-module for n � 0. 
Let m ∈ Mλ and let Mn := U(gl(n))m. The simplicity of Mλ as a U(gl(n))0-module and the fact that M
is integrable imply the simplicity of Mn as a gl(n)-module. Therefore, M ∼= lim Mn is locally simple. 
−−→n�0
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Hence, by Lemma 3.2 we have an isomorphism of gl(∞)-modules M ∼= M |sl(∞)(m, c) for some c ∈ C, and 
by Remark 3.1 we know that M |sl(∞) is bounded as an sl(∞)-module. Now the statement follows from [8, 
Theorem 5.1]. �
Proposition 3.4. The following statements hold.

(a) The modules S∞
A V (vA, c), S∞

A V∗(v∗A, c) are not highest weight modules with respect to any Borel subal-
gebra of gl(∞).

(b) The module Λ
∞
2
A V (eA, c) is a b(≺)-highest weight module if and only if A ≺ (Z>0 \A). In this case, we 

have Λ
∞
2
A V (eA, c) ∼= Lb(≺)(εA) where εA|hsl

=
∑

i∈A εi and εA is extended to hgl via (3.1).
(c) The module SμV (vμ, c) (respectively, SμV∗(v∗μ, c)) is a b(≺)-highest weight module if and only if i1 ≺

· · · ≺ ik ≺ j for all j ∈ Z>0 \ {i1, . . . , ik} (respectively, i1 � · · · � ik � j for all j ∈ Z>0 \ {i1, . . . , ik}). 
In this case, we have SμV (vμ, c) ∼= Lb(≺)(μ) (respectively, SμV∗(v∗μ, c) ∼= Lb(≺)(μ∗)) where μ|hsl

=∑
j>0 μjεij (respectively, μ∗|hsl

=
∑

i>0 −μjεij ) and μ (respectively, μ∗) is extended to h∗gl via (3.1).

Proof. Let b be an arbitrary splitting Borel subalgebra of gl(∞). The fact that a weight module M is 
a b-highest weight gl(∞)-module if and only if M is a b-highest weight sl(∞)-module, along with [8, 
Proposition 5.2], implies the statement. �
4. A general lemma

In this section g is one of the Lie superalgebras introduced in Section 2.

Lemma 4.1. Let k be equal to g0 or g0̄. If M is an integrable simple weight g-module with finite-dimensional 
weight spaces, then there is an isomorphism of Z2-graded k′ := [k, k]-modules

M |k′ ∼=
⊕
i

M(i),

where each M(i) is an integrable simple weight k′-module with finite-dimensional weight spaces. Moreover, 
each M(i) is also an integrable simple weight module with finite-dimensional weight spaces over k.

Proof. Let μ be a weight of M , and consider the k-submodule N(μ) := U(k)Mμ of M |k′ . Notice that the 
(k′ ∩ h)-weight spaces of N(μ) coincide with its h-weight spaces. Indeed, the reason is basically the same as 
in Remark 3.1: since λ − λ′ is an element of the root lattice of k′ for any two h-weights λ, λ′ of N(μ), we 
have λ 
= λ′ if and only if (λ − λ′)|h∩k′ 
= 0. Thus N(μ)ν|h∩k′ = N(μ)ν ⊆ Mν for any ν ∈ SuppN(μ), which 
implies that, as a k′-module, N(μ) has finite-dimensional weight spaces.

As M |k′ is obviously integrable as a k′-module, so is N(μ). Then we can use [18, Theorem 3.7] to 
conclude that each N(μ), and hence also M |k′ =

∑
μ∈SuppM N(μ) (by the general result [11, Chapter XVII, 

Lemma 2.1]), can be written as a direct sum 
⊕

i M(i), where each M(i) is an integrable simple weight k′-
module with finite-dimensional weight spaces. This proves the first statement. The second statement follows 
from the fact that the (k′ ∩ h)-weight spaces of each M(i) are also h-weight spaces. �
5. Classification results

5.1. Type A

In this section

g = sl(∞|m) for m ∈ Z≥1 ∪ {∞}.
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Recall from Theorem 3.3 that any integrable bounded simple weight gl(∞)-module is isomorphic to 
M(m, c), for some integrable bounded simple weight sl(∞)-module M , some fixed weight vector m ∈ M , 
and some scalar c ∈ C. Moreover, by Remark 3.1, we know that SuppM(m, c) is obtained by extending 
SuppM via (3.1). In particular, if λ = (λ1, λ2, . . .) ∈ C∞ is in SuppM then its extension through (3.1) to 
an element of h∗gl will be of the form λd := λ + ((d − λ1)(∞)) ∈ C∞, for some d ∈ c + Z.

Consider now the isomorphism of Lie algebras gl(∞) ⊕ sl(m) → sl(∞|m)0 such that

(A,B) �→
(
A 0
0 B

)
, E1,1 �→ hδ1−ε1 :=

(
E−1,−1 0

0 E1,1

)
,

where A ∈ sl(∞) and B ∈ sl(m). This isomorphism induces the following correspondence of weights:

h∗gl × h∗sl � (. . . , (λ3 − λ1) + c, (λ2 − λ1) + c, c) × (ν1, ν2, . . .)

↔ (. . . , (λ3 − λ1) + c, (λ2 − λ1) + c, c|0, ν2 − ν1, ν3 − ν1, . . .) := (λc|ν) ∈ h∗.

By Lemma 4.1, for an integrable bounded simple g-module M we have an isomorphism of g0-modules

M |g0
∼=

⊕
i

M(i),

where each M(i) is an integrable bounded simple weight g0-module. For the rest of this section we fix such 
a decomposition of M |g0 .

Recall that m ∈ Z≥1 ∪ {∞}. In order to consider both cases m < ∞ and m = ∞, simultaneously, we 
define, for every n ∈ Z≥2, the elements

xn :=
{
m if m ∈ Z≥1

n− 1 if m = ∞.

In particular, we have

sl(∞|m) ∼= lim−−→(g(n) := sl(n|xn)).

Recall that (unless otherwise stated) by homomorphisms of Z2-graded vector spaces we mean linear 
transformations that preserve parity.

The modules S∞
A V, S∞

A V∗, Λ∞
A V and Λ∞

A V∗. By Vn we denote the natural g(n)-module, and by V∗
n its dual. 

For a, b ∈ Z>0 with b ≤ a, it is easy to check that there are unique (up to scalar) embeddings of g(n − 1)-
modules SbVn−1 ↪→ SaVn, ΛbVn−1 ↪→ ΛaVn, and respectively, ΠSbVn−1 ↪→ ΠSaVn, ΠΛbVn−1 ↪→
ΠΛaVn. If b < a and xn−1 < xn, then we also have unique (up to scalar) embeddings of g(n − 1)-modules 
SbVn−1 ↪→ ΠSaVn, ΛbVn−1 ↪→ ΠΛaVn, and respectively, ΠSbVn−1 ↪→ SaVn, ΠΛbVn−1 ↪→ ΛaVn. 
Similar statements hold for the g(n)-modules SaV∗

n and ΛaV∗
n. Notice that the inequality xn−1 < xn holds 

whenever m = ∞.
Let A = (a1 ≤ a2 ≤ · · · ) be a sequence of positive integers, and A be a sequence of ordered pairs (an, bn), 

where bn ∈ {0, 1} and bn = bn+1 if an = an+1. Then we define the g-modules

S∞
A V := lim−−→ΠbnSanVn, S∞

A V∗ := lim−−→ΠbnSanV∗
n

Λ∞
A V := lim ΠbnΛanVn, Λ∞

A V∗ := lim ΠbnΛanV∗
n,
−−→ −−→



10 L. Calixto, I. Penkov / Journal of Pure and Applied Algebra 226 (2022) 106847
where Π0 is the identity functor. For m = ∞ this definition makes sense for any sequence A as above, but 
for m < ∞ the g-modules Λ∞

A V and Λ∞
A V∗ are well defined only under the additional assumption that 

an+1 ∈ {an, an + 1} and bn is constant for all n ≥ m + 1.

The modules SμV and SμV∗. Let μ := (μ1 ≥ · · · ≥ μk) be a partition, and for every n ≥ k consider 
the weight λ(n) := (μ1, . . . , μk, 0(n−k)|0(xn)) ∈ h(n)∗. There are unique (up to scalar) embeddings of g(n)0-
modules Lb(<n)0(λ(n)) ↪→ Lb(<n+1)0(λ(n +1)) sending a b(<n)0-highest weight vector to a b(<n+1)0-highest 
weight vector. Thus Proposition 6.3 below implies that there are unique (up to scalar) embeddings of g(n)-
modules Lb(<n)(λ(n)) ↪→ Lb(<n+1)(λ(n + 1)) sending a b(<n)-highest weight vector to a b(<n+1)-highest 
weight vector. Similar statements hold for the g(n)-modules Lb(>n)(λ(n))∗. Finally, we define the g-modules

SμV ∼= lim−−→Lb(<n)(λ(n)), SμV∗ ∼= lim−−→Lb(>n)(λ(n))∗.

For all n, let λ(n) ∈ h(n)∗ be a weight of the following form:

(Ω1) (an, 0(n−1)|0(xn)),
(Ω2) (−an, 0(n−1)|0(xn)),
(Ω3) (0(n)|0(n−1), an),
(Ω4) (0(n)|0(xn−1), −an),
(Ω5) (μ1, . . . , μk, 0(n−k)|0(xn)),
(Ω6) (−μ1, . . . , −μk, 0(n−k)|0(xn)),

where A = (a1 ≤ a2 ≤ . . .) will be clear from the context, and μ := (μ1 ≥ · · · ≥ μk) is a partition. Notice 
that

(Ω′
1) S∞

A V = lim−−→ΠbnSanVn
∼= lim−−→ΠbnLb(<n)(λ(n)),

(Ω′
2) S∞

A V∗ = lim−−→ΠbnSanV∗
n
∼= lim−−→ΠbnLb(>n)(λ(n)),

(Ω′
3) Λ∞

A V = lim−−→ΠbnΛbnVn
∼= lim−−→ΠbnLb(>n)(λ(n)),

(Ω′
4) Λ∞

A V∗ = lim−−→ΠbnΛbnV∗
n
∼= lim−−→ΠbnLb(<n)(λ(n)),

(Ω′
5) SμV ∼= lim−−→(SμVn := Lb(<n)(λ(n))), ΠSμV ∼= lim−−→(ΠSμVn := ΠLb(<n)(λ(n))),

(Ω′
6) SμV∗ ∼= lim−−→(SμV∗

n := Lb(>n)(λ(n))), ΠSμV∗ ∼= lim−−→(ΠSμV∗
n := ΠLb(>n)(λ(n))).

Extensions. For n, m ∈ Z>0, we set

ρ(n|m) := (n, . . . , 2, 1| − 1,−2, . . . ,−m),

and, for any given weight λ = (a1, . . . , an|b1, . . . , bm) of sl(m|n), we define the left side (respectively, right 
side) of λ to be (a1, . . . , an) (respectively, (b1, . . . , bm)).

Let F be the set of all functions from Z to the set of symbols {<, >, ×, ◦} such that f(z) = ◦ for all but 
finitely many z ∈ Z. Define

#f := |f−1(×)|, coreL(f) := f−1(>), coreR(f) := f−1(<),

and let the core of f be

core(f) := (coreL(f), coreR(f)).

If f ∈ F , we define the weight diagram Dwt(f) to be the graph of the function f , i.e. a number line 
with the symbol f(z) drawn at each z ∈ Z. Also, if #f = k, then we set ×(f) := (a1, . . . , ak), where 
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f−1(×) = {a1, . . . , ak}, and a1 > · · · > ak. If a, b ∈ Z satisfy f(a) = ×, f(b) = ◦ and b < a, we define 
fa
b ∈ F to be the map with same core as f , and such that

×(fa
b ) = (a1, . . . , aj−1, b, aj+1, . . . , ak),

where a = aj and aj−1 < b < aj+1. Let lf (b, a) denote the number of occurrences of the symbol × minus 
the number of occurrences of the symbol ◦ strictly between b and a in Dwt(f). We say that g is obtained 
from f by a legal move of weight zero if g = fa

b for some a, b ∈ Z with lf (b, a) = 0.
Let P ⊆ Zn × Zm (respectively, P+ ⊆ Zn × Zm) denote the set of integral (respectively, dominant 

integral) weights of gl(m|n). Any (λ1, . . . , λm|λ′
1, . . . , λ

′
n) ∈ P can be identified with the following ρ(m|n)-

shifted element

(a1 := λ1 + n, . . . , an := λn + 1|b1 := 1 − λ′
1, . . . , bm := m− λ′

m).

Via this identification, P+ corresponds to the set of elements λ = (a1, . . . , an|b1, . . . , bm) ∈ P such that

a1 > · · · > an, b1 < · · · < bm.

For any f ∈ F , write

coreL(f) ∪ ×(f) = (a1 > · · · > an) and coreR(f) ∪ ×(f) = (b1 < · · · < bm),

and set

λf := (a1, . . . , an|b1, . . . , bm) ∈ P+.

The map F � f �→ λf ∈ P+ is a bijection between F and P+, and its inverse is P+ � λ �→ fλ ∈ F .
Given f, g ∈ F , we write

f → g, g → f

if g is obtained from f by a legal move of weight zero, or f is obtained from g by a legal move of weight zero, 
respectively. Let Lgl(n|m)(ν) denote a simple highest weight gl(n|m)-module of highest weight ν with respect 
to the Borel subalgebra of gl(n|m) given by upper triangular matrices. Let h(m|n) be the diagonal subalgebra 
of gl(m|n). Then it follows from [12, Theorem B] that Ext1gl(n|m),h(m|n)(Lgl(n|m)(λf ), Lgl(n|m)(λg)) 
= 0 if 
and only if f → g or g → f , where the subscripts on Ext1 indicate that we consider extensions in the 
category of weight modules.

Remark 5.1. If n 
= m then we have a direct sum of ideals gl(n|m) = Cz ⊕ sl(n|m), where the identity 
matrix z = In+m is central in gl(n|m). Let M be a simple object in the category of weight modules over 
gl(n|m). Since z lies in the center of gl(n|m), we have an isomorphism of gl(n|m)-modules M ∼= Cc � S, 
where S = M |sl(n|m) is a simple weight sl(n|m)-module and Cc is one-dimensional with z acting on Cc via 
multiplication by c. Let Cc � S and Cd � T be two simple weight gl(n|m)-modules. Then

Ext1Cz⊕sl(n|m)(Cc � S,Cd � T ) ∼= Ext1Cz(Cc,Cd) ⊗ Homsl(n|m)(S, T )

⊕ HomCz(Cc,Cd) ⊗ Ext1sl(n|m)(S, T ),

where in this remark we skip the Cartan subalgebras in the subscripts. Thus, if we assume that S � T and 
c = d, we obtain
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Ext1Cz⊕sl(n|m)(Cc � S,Cc � T ) ∼= Ext1sl(n|m)(S, T ).

Let Lb(<n)(λ|λ′) be a simple highest weight sl(n|m)-module and consider c(λ) :=
∑

λi +
∑

λ′
i. In what 

follows we denote the gl(n|m)-module Cc(λ) � Lb(<n)(λ|λ′) by Lgl(λ|λ′). Notice that for any other weight 
(ν|ν′) there exists d(λ) ∈ C such that Cc(λ) � Lb(<n)(ν|ν′) ∼= Lgl(ν + d(λ)(n)|ν′ − d(λ)(m)). Then

Ext1sl(n|m)(Lb(<n)(λ|λ′),Lb(<n)(ν|ν′)) ∼= Ext1gl(n|m)(Lgl(λ|λ′),Lgl(ν + d(λ)(n)|ν′ − d(λ)(m))) �

For the next result we need to write the g(n)-modules appearing in (Ω′
1)-(Ω′

6) as b(<n)-highest weight 
modules. The following isomorphisms of g(n)-modules can be obtained via odd reflections (see [22, 
Lemma 10.2], or [17, Lemma 3]):

(a) SanV∗
n = Lb(>n)(−an, 0(n−1)|0(xn)) ∼= Lb(<n)(λ(n)),

(b) ΛanVn = Lb(>n)(0(n)|0(xn−1), an) ∼= Lb(<n)(λ(n)),
(c) SμV∗

n = Lb(>n)(−μ1, . . . , −μk, 0(n−k)|0(xn)) ∼= Lb(<n)(λ(n)),

where for n > k, the respective λ(n) is as follows:

(Ω̃2) (0(n)|0(xn−an), −1(an)) if an ≤ xn, or (0(n−1), −an + xn|(−1)(xn)) otherwise,
(Ω̃3) (1(an), 0(n−an)|0(xn)) if an ≤ n, or (1(n)|an − n, 0(xn−1)) otherwise,
(Ω̃6) (0(n−l), −μl + xn, . . . , −μ1 + xn| − l(xn−μl+1), . . . , −k(μk)) if μl ≥ xn and μl+1 < xn for some l, or 

(0(n)|0(xn−μ1), −i(μ1−μi+1), . . . , −k(μk)) otherwise (in the latter case i is such that μ1 = · · · = μi

and μi > μi+1). In fact, both types of weights can be described by partitions: in the former case, 
to any pair of partitions ν = (ν′1 ≥ · · · ≥ ν′xn

) and ν = (ν1 ≥ · · · ≥ νp) we associate the weight 
(0(n−p), −νp, . . . , −ν1| − ν′xn

, . . . , −ν′1); in the latter case, to any partition ν = (ν1 ≥ · · · ≥ νp) with 
p ≤ xn we associate the weight (0(n)|0(xn−p), −νp, . . . , −ν1).

In the proof of the next result we use the symbol “�” for a mark of a weight whose explicit form does 
not matter.

Lemma 5.2. Assume that xn > 1 in g(n) = sl(n|xn), and let P, Q be simple g(n)-modules occurring in
(Ω′

1)-(Ω′
6). Assume in addition that, if P or Q has type (Ω′

5) or (Ω′
6) then the length of the respective 

partition μ is much smaller than n. Then Ext1g(n),h(n)(P, Q) = 0.

Proof. Let λ be the b(<n)-highest weight of a module appearing in (Ω′
1)-(Ω′

6), and set f := fλ. We claim 
that if a < b satisfy f(a) = ×, f(b) = ◦ and c ∈ C, then for n � 0 the weight λfa

b
+ (c(n)| − c(xn))

does not occur as a b(<n)-highest weight of a module in (Ω′
1)-(Ω′

6). Below we prove this claim for λ of 
the form (an, 0(n−1)|0(xn)) or (0(n)|0(xn−1), −an) for an ∈ Z>0, or (μ1, . . . , μk, 0(n−k)|0(xn)) for a partition 
μ = (μ1 ≥ · · · ≥ μk). The other cases follow by dualization.

Performing an arbitrary legal move of weight zero on f yields a weight whose ρ(n|xn)-shifted form is 
given by

λfa
b

= (�, . . . , �, b′, b|b, c, �, . . . , �),

where |b′ − b| > 1 and |c − b| > 1. Since we are assuming xn ≥ 2, we conclude that λfa
b

is not equal the ρ(n|xn)-shifted form of the following weights: (bn, 0(n−1)|0(xn)), (0(n)|0(xn−1), −bn), 
(0(n)|0(xn−bn), −1(bn)), (0(n−1), −bn + xn|(−1)(xn)), (1(bn), 0(n−bn)|0(xn)) or (1(n)|bn − n, 0(xn−1)) for bn ∈
Z>0, (ν1, . . . , νl, 0(n−l)|0(xn)), (0(n)|0(xn−ν1), −i(ν1−νi+1), . . . , −l(νl)) for a partition ν = (ν1 ≥ · · · ≥ νl).
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To prove that the weight λfa
b

is not equal the ρ(n|xn)-shifted form of a weight (0(n−l), −νl+xn, . . . , −ν1+
xn| − l(xn−νl+1), . . . , −k(νl)) for a partition ν = (ν1 ≥ · · · ≥ νl), we notice that if λ equals (an, 0(n−1)|0(xn))
(respectively, (μ1, . . . , μk, 0(n−k)|0(xn))), the difference of the n-th and (n −1)-th (respectively, the k-th and 
(k + 1)-th) marks in the left side of λfa

b
is bigger than zero (here we are assuming that n � 0 so that 

n − l > k). For λ = (0(n)|0(xn−1), −an) we take min{n, an} � 0 so that xn + an � l, and: the difference of 
the xn-th and (xn − 1)-th marks in the right side of λfb

a
is bigger than k (if a = xn + an), or the difference 

of the (xn + an − 2)-th and (xn + an − 1)-th marks in the left side of λfa
b

is bigger than 1 (if a < xn + an). 
This proves the claim.

Let ν be the b(<n)-highest weight of a module occurring in (Ω′
1)-(Ω′

6). We have shown in all cases that 
there exists a pair of marks of λfa

b
whose difference does not coincide with the difference of the respective 

pair of marks of the ρ(n|xn)-shifted form of ν. Since for any c ∈ C the difference of any pair of marks of 
λfa

b
+(c(n)| − c(xn)) coincides with the difference of the respective pair of marks of λfa

b
, we conclude (1): for 

any c ∈ C the non-shifted form of λfa
b

+ (c(n)| − c(xn)) cannot occur as a b(<n)-highest weight of a module 
in (Ω′

1)-(Ω′
6).

Assume now μ is one of the b(<n)-highest weights appearing in (Ω̃2), (Ω̃3), (Ω̃6) and set g = fμ. Similarly 
to (1) we show (2): if gab is obtained from g by a legal move of weight zero, then for any c ∈ C the non-shifted 
form of λga

b
+(c(n)| − c(xn)) does not occur as a b(<n)-highest weight of a module in (Ω′

1)-(Ω′
6). Now we can 

combine (1) and (2) above with [12] to obtain Ext1gl(n|xn)⊕Cz(Lgl(ν), Lgl(λ + (c(n)| − c(xn))) = 0 for every 
c ∈ C and any weight ν occurring as a b(<n)-highest weight of a module in (Ω′

1)-(Ω′
6). Finally, Remark 5.1

gives

Ext1sl(n|xn),h(n)(Lb(<n)(ν),Lb(<n)(λ)) ∼= Ext1gl(n|xn),h(n)⊕Cz(Lgl(ν),Lgl(λ + (c(ν)(n)| − c(ν)(xn))) = 0,

and the statement follows. �
5.2. Main results

Recall the sl(∞)-modules Λ
∞
2
A V , S∞

A V , S∞
A V∗, SμV and SμV∗ defined in Section 3. The support of each 

of these modules equals the projection to h∗sl of a respective subset of C∞:

(i) ΛA := {εB =
∑

i∈B εi | B ≈ A}, where B ≈ A means that there exist disjoint finite subsets FA ⊆ A

and FB ⊆ B, such that |FA| = |FB | and A \ FA = B \ FB ,
(ii) SA := {λ | λi ≥ 0, ∃n :

∑n
i=1 λi = an, λi = (ai − ai−1) for i > n}, where ai ∈ A,

(iii) S∗
A := {λ | λi ≤ 0, ∃n :

∑n
i=1 λi = −an, λi = (ai−1 − ai) for i > n}, where ai ∈ A,

(iv) Sμ := {λ | 0 ≤ λi ≤ μi},
(v) S∗

μ := {λ | 0 ≤ −λi ≤ μi}.

Let m ∈ Z≥1 ∪ {∞}. In this section M is assumed to be a simple integrable bounded sl(∞|m)-module. 
We use the symbol “�” for a weight whose explicit form does not matter.

Lemma 5.3. Any weight of M can be obtained as the projection of a vector (ν|�), where ν lies in one of the 
subsets displayed in (i)-(v).

Proof. Any weight of M is a weight of some M(i), and hence, as discussed in the beginning of Section 5.1, 
it can be obtained as the projection of some vector (νc|�) ∈ C∞ × Cm, where c ∈ C and ν lies in one 
of the subsets displayed in (i)-(v). Since the projection of (νc|�) to h∗ coincides with the projection of 
(νc − c(∞) + ν

(∞)
1 | � +c(m) − ν

(m)
1 ) = (ν| � +c(m) − ν

(m)
1 ), the statement follows. �
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Let v ∈ M(i) ⊆ M be a nonzero weight vector with M(i)|g′
0

isomorphic to S � T , where S (respectively, 
T ) is an integrable bounded simple weight sl(∞)-module (respectively, sl(m)-module). If S is isomorphic to 
Λ

∞
2
A V , S∞

A V , S∞
A V∗, SμV , or SμV∗, then we say that v has type (i), (ii), (iii), (iv), or (v), respectively.

Lemma 5.4. Let v ∈ M (ν|�) be a nonzero weight vector with type (∗) ∈ {(i)−(v)}. If w ∈ M is a nonzero 
weight vector, then w also has type (∗).

Proof. Since M is simple, it is enough to prove that the action of g1̄ on v does not change the type of 
v. Assume that v ∈ M(i) ∼= S � T , where S (respectively, T ) is an integrable bounded simple weight 
sl(∞)-module (respectively, sl(m)-module). Let w := Xαv, where Xα ∈ gα ⊆ g1̄. Take n � 0 so that the 
root vectors X±(δi−δj) commute with Xα for all i, j ≥ n. Let s denote the Lie subalgebra of g0 generated 
by all such root vectors. Notice that s ∼= sl(∞), and U(s)w = XαU(s)v. Thus we have an isomorphism 
of s-modules U(s)w ∼= U(s)v, and using the fact that S is isomorphic to one of the modules listed in the 
beginning of this section, we easily check that the type of U(s)w coincides with the type of S. Precisely, 
if S is isomorphic to S∞

A V or S∞
A V∗ for an infinite set A ⊆ Z>0, to Λ

∞
2
A V for a semi-infinite set A ⊆ Z>0, 

or to SμV , SμV∗ for a partition μ = (μ1 ≥ · · · ≥ μk), then U(s)w is isomorphic respectively to S∞
B V , 

S∞
B V∗, Λ

∞
2
B V , SηV or SηV∗, where B = {b1 ≤ b2 ≤ · · · } ⊆ Z≥n satisfies bi = an+i for all i ≥ n, and 

η = (η1 ≥ · · · ≥ ηl) is the partition determined by the weight μ|h∩s ∈ (h ∩ s)∗. Therefore, the assumption 
that v and w have different types would contradict to the fact that both s ∼= sl(∞)-modules U(s)v and 
U(s)w have the type of S. �

If v, w ∈ M are nonzero weight vectors then Lemma 5.4 allows us to claim that v and w have the same 
type according to (i)-(v). Moreover, it follows from Lemma 5.3 that if v has type (∗) ∈ {(i) − (v)} then its 
weight can be represented by the vector (ν, �), with ν lying in a set of type (∗). In what follows we often 
use this fact.

Lemma 5.5. Let v ∈ M (�|�) be a nonzero weight vector, and consider the finite-dimensional g(n)-module 
Mn := U(g(n))v. Let P be a simple subquotient of Mn and let (λ|γ) ∈ SuppP . Then the following statements 
hold for n � 0:

(a) If v is of type (iv), then any b(<n)-singular weight (λ|γ) of P is of the form (μ1, . . . , μk, 0(n−k)|0(xn))
for a partition μ = (μ1 ≥ · · · ≥ μk), or (1(n)|a, 0(xn−1)) for some a ∈ Z≥0, or (0(∞)|0(xn)).

(b) If v is of type (v), then any b(>n)-singular weight (λ|γ) of P is of the form (−μ1, . . . , −μk, 0(n−k)|0(xn))
for a partition μ = (μ1 ≥ · · · ≥ μk), or (−1(n)| − a, 0(xn−1)) for some a ∈ Z≥0, or (0(∞)|0(xn)).

(c) If v is of type (ii), then any b(<n)-singular weight (λ|γ) of P is of the form (a, 0(n−1)|0(xn)) for some 
a ∈ Z>0, or (0(∞)|0(xn)).

(d) If v is of type (iii), then any b(>n)-singular weight (λ|γ) of P is of the form (−a, 0(n−1)|0(xn)) for some 
a ∈ Z>0, or (0(∞)|0(xn)).

(e) If v is of type (i), then any b(<n)-singular weight (λ|γ) of P is of the form (1(a), 0(n−a)|0(xn)), or 
(1(n)|a, 0(xn−1)) for some a ∈ Z≥0, or (0(∞)|0(xn)).

Moreover, in all above cases (λ|γ) = (0(∞)|0(xn)) implies g(n)P = 0.

Proof. Write (λ|γ) = (λn, . . . , λ1|γ1, . . . , γxn
) and let w ∈ P be a nonzero vector of weight (λ|γ). Since 

Mn is a finite-dimensional (and hence a semisimple) weight module of g(n)0 we may assume that P is a 
g(n)0-submodule of Mn, and therefore that w is a b(<n)0-singular vector of Mn.

(a). Since (λ|γ) is a b(<n)0-singular weight and w has the same type of v by Lemma 5.4, we must have 
λ = (μ1, . . . , μk, 0(n−k)) for some partition μ = (μ1 ≥ · · · ≥ μk) where k = 1, . . . , n. Assuming k < n, we 
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will show that γ = 0. For any 1 ≤ � ≤ xn we have Xε�−δ1w = 0 as otherwise Xε�−δ1w would be a vector 
of weight (μ1, . . . , μk, 0(n−k−1), −1|�) in contradiction to Lemma 5.4. Indeed, a weight vector with such a 
weight cannot have the type of v. Thus Xε�−δ1w = 0. Since w is a b(<n)-singular weight vector, we conclude 
that hε�−δ1w = γ�w = 0, which shows γ� = 0. Since � was arbitrary, this proves that γ = 0.

If k = n for all n � 0, then we must have λi = 1 for all i = 1, . . . , n as otherwise, by [8, Theorem 5.1], 
M would not be a bounded g0-module. Thus (λ|γ) = (1(n)|γ), and we claim that γ = (a, 0(xn−1)) or 
γ = (−1(xn−1), −a) for some a ∈ Z≥0. Indeed, if γ1 /∈ Z or γ1 ∈ Z≤−2 then, as in the previous case, we get 
a contradiction due to Lemma 5.4 since Xε2−δ1Xε1−δ1w would be a nonzero vector of weight (1(n−1), −1|�). 
If γ1 ∈ Z≥0 then γi = 0 for all i ≥ 2 by the same reason. Finally, if γ1 = −1 we can use again Lemma 5.4
to show that γi = −1 for all 2 ≤ i ≤ xn − 1 and that γxn

= −a for some a ∈ Z≥0. The claim is proved.
Notice that there are isomorphisms of g(n)-modules

Lb(<n)(1(n)|a, 0(xn−1)) ∼= Λn+aVn,

Lb(<n)(1(n)| − 1(xn−1),−a) = Lb(<n)(0(n)|0(xn−1),−a + 1) ∼= Λa−1V∗
n,

and, by Lemma 5.4, the latter module cannot occur as a g(n)-subfactor of M since vectors of Λa−1V∗
n

cannot have the type of v.
To prove that (λ|γ) = (0(∞)|0(xn)) implies g(n)P = 0 in case (a), notice that (g(n)0 ⊕ g(n)1)w = 0 since 

w is a b(<n)-singular vector of weight (0(∞)|0(xn)). Furthermore, g(n)−1w 
= 0 contradicts Lemma 5.4. 
Therefore g(n)w = 0 for any b(<n)-singular vector of P , and consequently g(n)P = 0.

The remaining claims are proven in a similar way. �
Remark 5.6. For g = sl(n|1), we have a weaker version of Lemma 5.2: if P , Q are finite-dimensional simple 
g(n)-modules whose respective b(<n)-highest weights λ, μ are as in Lemma 5.5 (a) (respectively, (b)-(e)), 
then Ext1g(n),h(n)(P, Q) = 0. To prove this, we proceed as in Lemma 5.2: we show that fλ cannot be obtained 
from fμ by a legal move of weight zero and vice-versa, and then we apply [12]. �

Corollary 5.7. Let v ∈ M be a nonzero weight vector, and consider the finite-dimensional g(n)-module 
Mn = U(g(n))v. If P, Q are simple subquotients of Mn, then Ext1g(n),h(n)(P, Q) = 0. In particular, Mn is a 
semisimple g(n)-module.

Proof. The highest weights allowed for P and Q are the ones occurring in Lemma 5.5 (a) (respectively, 
(b)-(e)). The statement now follows from Lemma 5.2 for m > 1, and from Remark 5.6 for m = 1. �
Lemma 5.8. If v ∈ M (λ|γ) is a nonzero vector, then Mn = U(g(n))v is a simple g(n)-module for all n � 0.

Proof. By Lemma A.1 from the Appendix, there exists N � 0 such that M (λ|γ) is a simple U0
N -module. 

A standard argument shows that Mn is a simple g(n)-module for all n ≥ N . Indeed, by Corollary 5.7, any 
submodule K ⊆ Mn yields a split exact sequence of g(n)-modules

0 → K → Mn → W → 0.

This sequence provides an exact sequence of U0
n-modules

0 → K(λ|γ) → M (λ|γ)
n → W (λ|γ) → 0.

Since M (λ|γ)
n is a simple U0

n-module, we have K(λ|γ) = 0 or K(λ|γ) = M
(λ|γ)
n . If K(λ|γ) = 0 then v ∈ W and 

Mn = U(g(n))v = W , which implies K = 0. Similarly, if K(λ|γ) = M
(λ|γ)
n we conclude that Mn = K. �



16 L. Calixto, I. Penkov / Journal of Pure and Applied Algebra 226 (2022) 106847
Theorem 5.9. Let g = sl(∞|m) for m ∈ Z≥1 ∪ {∞} and let M be an integrable bounded simple weight 
g-module. Then the following statements hold:

(a) M is locally simple.
(b) M is isomorphic to one of the following modules: SμV, SμV∗, ΠSμV, ΠSμV∗, S∞

A V, S∞
A V∗, Λ∞

A V, 
or Λ∞

A V∗.
(c) All isomorphisms between simple modules appearing in (b) are: S∞

A V ∼= S∞
A′V, S∞

A V∗ ∼= S∞
A′V∗, Λ∞

A V ∼=
Λ∞
A′V and Λ∞

A V∗ ∼= Λ∞
A′V∗ if and only if there exists N > 0 such that (ai, bi) = (a′i, b′i) for all i ≥ N ; 

S∅V ∼= S∅V∗ ∼= C and ΠS∅V ∼= ΠS∅V∗ ∼= ΠC (∅ stands for the empty partition).

Proof. Let v ∈ M (λ|γ) \ {0}. By Lemma 5.8 the g(n)-module Mn = U(g(n))v is simple for all n � 0. In 
particular, M =

⋃
n Mn and M is locally simple. This proves part (a). Part (b) follows from Lemma 5.5. 

Finally, one direction of (c) is clear, the other follows from the observation that if a locally simple module 
M is isomorphic to lim−−→Mn and to lim−−→M ′

n, then Mn
∼= M ′

n for n � 0. �
Suppose that g = sl(∞|m) with m < ∞, and that M is isomorphic to S∞

A V. Notice that, for all 
n ≥ m + 1, if Mn

∼= SanVn (respectively, Mn
∼= ΠSanVn) then Mn+1 ∼= San+1Vn+1 (respectively, Mn+1 ∼=

ΠSan+1Vn+1). For the case where M is isomorphic to S∞
A V∗, Λ∞

A V or Λ∞
A V∗ the situation is analogous. 

Thus Theorem 5.9 can be refined as follows:

Corollary 5.10. If M is an integrable bounded simple weight sl(∞|m)-module (m < ∞), then M is isomorphic 
to one of the following modules: SμV, SμV∗, ΠSμV, ΠSμV∗, S∞

A V, S∞
A V∗, Λ∞

A V, or Λ∞
A V∗, where the 

sequence (bn) is constant.

Proposition 5.11. The following statements hold:

(a) The modules SμV and ΠSμV (respectively, SμV∗ and ΠSμV∗) are b(≺)-highest weight modules if 
and only if there are i1, . . . , ik ∈ Z<0 such that i1 ≺ · · · ≺ ik ≺ Z<0 \ {i1, . . . , ik} (respectively, 
Z<0 \ {i1, . . . , ik} ≺ ik ≺ · · · ≺ i1).

(b) If either |{n ∈ Z>0 | an+1 − an > 1}| = ∞ or |{bn = p}| = ∞ for all p ∈ {Id, Π}, then the g-
modules Λ∞

A V and Λ∞
A V∗ are not highest weight modules with respect to any Borel subalgebra of g. 

If |{n ∈ Z>0 | an+1 − an > 1}| < ∞ and |{bn = p}| < ∞ for some p ∈ {Id, Π}, then the g-module 
Λ∞
A V (respectively, Λ∞

A V∗) is a b(≺)-highest weight module if and only if A ≺ (Z>0 \A) (respectively, 
(Z>0 \A) ≺ A).

(c) The modules S∞
A V, S∞

A V∗ are not highest weight modules with respect to any Borel subalgebra of g.

Proof. For an arbitrary splitting Borel subalgebra b ⊆ g, every b-highest weight vector v ∈ M is a b0-
singular weight vector. Now the result follows from Proposition 3.4. �
5.3. The case of q(∞)

Let λ ∈ C∞. Recall that #λ denotes the number of nonzero marks of λ, and [a] denotes the greatest 
integer in the number a ∈ Q.

Theorem 5.12. An integrable simple weight q(∞)-module M is bounded if and only if M ∼= SγV :=
Lb(<)(

∑k
i=1 γiεi) or M ∼= SγV∗ := Lb(>)(

∑k
i=1 −γiεi), for some partition γγγ = (γ1 > γ2 > · · · > γk). 

Moreover, SγV ∼= ΠSγV and SγV∗ ∼= ΠSγV∗ if and only if k is odd.
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Proof. Notice that SγV (respectively, SγV∗) is bounded as it is a submodule of the bounded module ⊗k
i=1 S

γiV (respectively, 
⊗k

i=1 S
γiV∗). This proves one direction of the statement. For the other direction, 

note that the dimension formula for the weight spaces of M from Section 2.3 shows that the number of 
nonzero marks of the weights of M is bounded by some l > 0. This implies that for any i, M(i) ∼= SμiV or 
M(i) ∼= SμiV∗ for appropriate μi. Fix i0 and assume that M(i0) ∼= Sμ0V . Let vμ0 be a b(<)0-highest weight 
vector of M(i0). Pick a b(<l)-singular vector w0 in U(b(<l))vμ0 = U(b(<l)1)vμ0 . Then b(<l)w0 = 0, and 
gεi−εjw0 = 0 for all i > 0 and j > l, which implies that w0 is a b(<)-highest weight vector of M . Since M is 
simple, this shows the existence of isomorphism M ∼= Lb(<)(

∑
γiεi) for some partition γ1 > γ2 > · · · > γk

given by the weight of w0. The strict inequality γi > γi+1 follows from the fact that γi = γi+1 implies that the 
simple q(2)-module Lb(<2)(γi, γi+1) generated by w0 is infinite dimensional [15], and hence non-integrable. 
The case where M(i) ∼= Sμ0V∗ is considered in a similar way.

The statement that SγV ∼= ΠSγV and SγV∗ ∼= ΠSγV∗ if and only if k is odd follows from [15, 
Proposition 4]. �
5.4. The remaining cases

Let g equal ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospC(2|∞), ospD(∞|∞), ospD(∞|2k), ospD(m|∞), 
or sp(∞). In this section, τ denotes the map from the set of indices that label the standard basis of the 
Cartan subalgebra of g to the one-element set {1}.

Up to isomorphism, there are just two non-isomorphic spinor o(2n)-modules, S+
n and S−

n , and there 
is a unique spinor o(2n + 1)-module Sn. More precisely, consider S+

n = Lb(<n,τ)(1/2, . . . , 1/2), S−
n =

Lb(<n,τ)(1/2, . . . , 1/2, −1/2), and Sn = Lb(<n,τ)(1/2, . . . , 1/2). Up to scalar, there are only two embed-
dings ι±n : Sn−1 ↪→ Sn and unique embeddings S+

n−1 ↪→ S+
n , S+

n−1 ↪→ S−
n , S−

n−1 ↪→ S+
n , and S−

n−1 ↪→ S−
n . For 

a given subset A ⊆ Z>0 we define the oB(∞)-module SB
A to be the direct limit of o(2n +1)-modules obtained 

from the sequence of embeddings {ϕn : Sn−1 ↪→ Sn} such that ϕn = ι+n if n ∈ A and ϕn = ι−n otherwise. 
In a similar way we define the oD(∞)-module SD

A to be the direct limit of o(2n)-modules obtained from 
the sequence of embeddings {ϕn : Mn−1 ↪→ Mn} such that Mi = S+

i if i ∈ A and Mi = S−
i otherwise. It 

follows from [8, Proposition 5.3 and Theorem 5.5] that any integrable bounded simple weight o(∞)-module 
is isomorphic to SB

A , SD
A , or to the natural o(∞)-module Vo.

Let ωA ∈ C∞ be defined by setting (ωA)k = 1
2 if k ∈ A and (ωA)k = −1

2 otherwise. For A, A′ ⊆ Z>0
we write A′ ∼B A if A and A′ differ by finitely many elements, and we write A′ ∼D A if A and A′

differ by an even number of elements. By [8, § 5.2], we have SuppSB
A = {ωA′ ∈ CZ>0 | A′ ∼B A} and 

SuppSD
A = {ωA′ ∈ CZ>0 | A′ ∼D A}.

Finally, it also follows from [8, Proposition 5.7] that any nontrivial integrable bounded simple weight 
sp(∞)-module is isomorphic to the natural sp(∞)-module Vsp.

In Theorem 5.14 below we will make use of the following remarks several times.

Remark 5.13.

(a) Assume g equals ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospC(2|∞), ospD(∞|∞), ospD(∞|2k),
ospD(m|∞), or sp(∞). Notice that in all cases g0̄

∼= s1 ⊕ s2, where s1 is isomorphic to o(∞) or s2
is isomorphic to sp(∞). In particular, for any constituent M(i) of M , we have an isomorphism of (non-
graded) g0̄-modules M(i) ∼= S(i) � T (i), where S(i) is isomorphic to an s1-module of the form SB

A , SD
A , 

Vo or C if s1 ∼= o(∞), and T (i) is isomorphic to an s2-module of the form Vsp or C if s2 ∼= sp(∞). 
Since M is a simple g-module, any two weights of M must differ from each other only by finitely many 
marks. This shows that once S(i) is isomorphic to Vo or C, then we are not allowed to have any S(j)
isomorphic to SB

A or SD
A . Similarly, if S(i) is isomorphic to SB

A or SD
A , then we are not allowed to have 

any S(j) isomorphic to Vo or C. Also observe that if S(i) ∼= C (respectively, T (i) ∼= C) for all i, then 
g1̄M = 0. Since h ⊆ [g1̄, g1̄], we obtain hM = 0, which implies M ∼= C.
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(b) (Support arguments) Let L be a weight g-module, α ∈ Δ be a root of g, and v ∈ Lλ be a nonzero 
weight vector. In what follows, by writing that support arguments imply that Xαv = 0, we mean that 
the vector α + λ ∈ h∗ cannot lie in SuppL.

(c) Let M be a b-highest weight g-module with nonzero b-highest weight vector v. We define

|M | :=
{
M if |v| = 0̄
ΠM if |v| = 1̄.

�

We are now ready to state the main result of this section.

Theorem 5.14. Let g equal ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospD(∞|∞), ospD(∞|2k), ospD(m|∞), 
ospC(2|∞) or sp(∞). A nontrivial integrable simple weight g-module M is bounded if and only if M ∼= V
or M ∼= ΠV. In particular, M is locally simple.

Proof. Throughout this proof ≺ denotes the linear order

−1 ≺ 1 ≺ −2 ≺ 2 ≺ · · ·

on Z×, and A will be a subset of Z>0. The general idea is to base the proof on Lemma 4.1, and we consider 
several cases in order to deal more effectively with the technical details. Since M is nontrivial, Remark 5.13
implies that in each case below we can assume that there is at least one S(i) or T (i) that is not isomorphic 
to the trivial module C.

Case g = ospB(∞|∞), ospD(∞|∞). Recall that g0̄
∼= o(∞) ⊕ sp(∞), where o(∞) = oB(∞) or o(∞) =

oD(∞), respectively. Assume first that, for some i, there is an isomorphism of (non-graded) g0̄-modules 
M(i) ∼= Vo �N for a simple bounded integrable weight sp(∞)-module N . By [8, Proposition 5.7] we have 
either N ∼= Vsp or N ∼= C. Suppose N ∼= Vsp. Then M(i) ∼= Lb(≺,τ)0(δ1 + ε1). Moreover, support arguments 
imply that a b(≺, τ)0-highest weight vector v is also a b(≺, τ)-highest weight vector (see Remark 5.13). 
In particular, Xδ2+ε1v = 0. But support arguments show also that X−δ2−ε1v = 0, and hence we get a 
contradiction:

0 = hδ2+ε1v = −v.

Thus N ∼= C, and consequently

|M | ∼= Lb(≺,τ)(δ1) ∼= V.

Assume now there is an isomorphism of g0̄-modules M(i) ∼= SB
A �N . We claim that this is not possible. 

Indeed, we know that N ∼= C or N ∼= Vsp. Suppose N ∼= Vsp, and define σ : Z× → {±1} by setting 
σ(j) = 1 for j ∈ Z>0, σ(j) = 1 for j ∈ −A, and σ(j) = −1 otherwise. In particular, we have M(i) ∼=
Lb(≺,σ)0(ωA + ε1), and a b(≺, σ)0-highest weight vector v of M(i) is also a b(≺, σ)-highest weight vector of 
M . Then X−δj−ε1v = 0 for any j /∈ −A. On the other hand, support arguments (see Remark 5.13) show 
that Xδj+ε1v = 0, and hence we get a contradiction:

0 = h−δj−ε1v = −v.

Case g = ospB(m|∞), ospD(m|∞). We have g0̄
∼= o(m) ⊕ sp(∞). Assume there is an isomorphism of g0̄-

modules M(i) ∼= Lb(<m,τ)(λ) �Vsp for some weight λ ∈ h(m)∗. We claim that λ = 0. Indeed, our assumption 
implies that M(i) is a b(≺, τ)0-highest weight module. Moreover, if v ∈ M(i) is a b(≺, τ)0-highest weight 
vector, then support arguments (see Remark 5.13) show that Xδj+ε2v = 0 and X−δj−ε2v = 0 for all j. Thus
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0 = hδj+ε2v = λjv,

which implies λj = 0, and hence λ = 0.
Next we claim that w := Xδ1−ε1v 
= 0. Indeed, support arguments imply that Xεj−δj+1v = 0 for 1 ≤ j ≤

m − 1, Xδj−εjv = 0 for 2 ≤ j ≤ m, and Xεj−εj+1v = 0 for j ≥ m. Thus w = 0 yields

|M | ∼= Lb(≺,τ)(ε1) ∼= Lb(<,τ)(ε1) ∼= lim−−→Lb(<n,τ)(ε1).

But, by [10, Proposition 2.3], the modules Lb(<n,τ)(ε1) are not finite dimensional, and since they are simple, 
this is a contradiction. Thus w 
= 0.

Now we notice that Xδ1−ε1w = 0, and again using support arguments we conclude that Xεj−δj+1w = 0
for 1 ≤ j ≤ m − 1, Xδj−εjw = 0 for 2 ≤ j ≤ m, and Xεj−εj+1w = 0 for j ≥ m. In particular, n(≺, τ)w = 0, 
and since the weight of w is δ1 we have an isomorphism |M | ∼= Lb(≺,τ)(δ1) ∼= V as desired.

Case g = ospB(∞|2k), ospD(∞|2k). Recall that g0̄
∼= o(∞) ⊕ sp(2k) where o(∞) = oB(∞) or o(∞) =

oD(∞), respectively. Assume first that there exists an isomorphism of g0̄-modules M(i) ∼= Vo �N for some 
simple finite-dimensional weight sp(∞)-module N . We will show that, also in this case, |M | is isomorphic 
to V. Indeed, we have M(i) ∼= Lb(≺,τ)0(δ1 +

∑
λiεi) for some partition λ = (λ1 ≥ · · · ≥ λk), and support 

arguments imply that a b(≺, τ)0-highest weight vector v of M(i) is also a b(≺, τ)-highest weight vector of 
M . Then Xδ2+ε1v = 0, and again using support arguments we obtain X−δ2−ε1v = 0. Hence

0 = hδ2+ε1v = −λ1v,

which implies λ = 0. Consequently, |M | ∼= Lb(≺,τ)(δ1) ∼= V.
Assume now there is an isomorphism of g0̄-modules M(i) ∼= SB

A �N for some simple finite-dimensional 
weight sp(∞)-module N . We claim that this cannot happen. Recall the map σ and the weight ωA from case 
1 above. Then we have an isomorphism of g0̄-modules M(i) ∼= Lb(≺,σ)0(ωA +

∑
λiεi) for some partition λ. 

Support arguments imply that a b(≺, σ)0-highest weight vector v of M(i) is also a b(≺, σ)-highest weight 
vector of M . Hence

|M | ∼= lim−−→Lb(<n,τ)(ν(n) +
∑

λiεi),

where ν(n) is a half-integer weight for every n. In particular, Lb(<n,τ)(ν(n) +
∑

λiεi) is a g(n)-submodule of 
|M | for any n larger than the length of the partition λ. But a necessary condition for Lb(<n,τ)(ν(n) +

∑
λiεi)

to be finite dimensional is λk ≥ n (see [10, Proposition 2.3]). Since λ is a finite partition and n → ∞, this 
yields a contradiction as desired.

Case g = ospB(2|∞). Recall that g0̄
∼= C ⊕ sp(∞). Suppose that for some i there is an isomorphism of 

g0̄-modules M(i) ∼= Ccδ1 � Vsp, where Ccδ1 is a 1-dimensional C-module of weight cδ1. In other words, we 
have M(i) ∼= Lb(<,τ)0(cδ1 + ε1). Let v be a b(<, τ)0-highest weight vector of M(i). Then Xδ1−ε1v = 0 or 
Xδ1−ε1v = w 
= 0. In the former case, v is a b(<, τ)-highest weight vector of M , and M ∼= Lb(<,τ)(cδ1 + ε1). 
In the latter case, w a b(<, τ)-highest weight vector of M , and |M | ∼= Lb(<,τ)((c + 1)δ1).

Let’s prove that an isomorphism |M | ∼= Lb(<,τ)(cδ1 + ε1) is contradictory. Our argument relies on some 
material reviewed in Section 6.2 below. Consider the Kac module K(cδ1 + ε1) and notice that there is a 
canonical surjective homomorphism K(cδ1 + ε1) → Lb(<,τ)(cδ1 + ε1) which is an isomorphism whenever 
Lb(<,τ)(cδ1 + ε1) is typical. Since K(cδ1 + ε1) is not a bounded g-module (in fact, this module does not 
have finite-dimensional weight spaces), we obtain that Lb(<,τ)(cδ1 + ε1) has to be atypical. This means that 
c ∈ {−1, 1, 2, . . .}. Then X−δ+ε2v 
= 0, since otherwise

0 = hδ−ε2v = −cv,
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which is a contradiction. Thus (c|1, 1, 0 . . .) is a weight of Lb(<,τ)(cδ1 + ε1), and support arguments imply 
that Lb(<,τ)(cδ1 + ε1) is not bounded.

Next we consider the case where |M | ∼= Lb(<,τ)(cδ1). Again, since the nontrivial g-module Lb(<,τ)(cδ1)
must be atypical, we have c ∈ Z≥1. We claim that c = 1. Indeed, if c ∈ Z≥2 then w = X−δ−ε1v 
= 0, since 
hδ+ε1v = cv 
= 0. If Xδ+ε2w 
= 0, then (2| − 1, 1, 0, . . .) is a weight of Lb(<,τ)(cδ1), and support arguments 
show that Lb(<,τ)(cδ1) is not bounded. If Xδ+ε2w = 0, then X−δ−ε2w 
= 0 (since hδ+ε2w = w 
= 0) and 
(0| − 1, −1, 0, . . .) is a weight of Lb(<,τ)(cδ1). Again, if this is so, support arguments imply that Lb(<,τ)(cδ1)
is not bounded. Therefore, c = 1 and |M | ∼= Lb(<,τ)(δ1) ∼= V.

Case g = sp(∞). Recall that g0̄
∼= sl(∞). Suppose first that, for some i, there is an isomorphism of g0̄-

modules M(i) ∼= SμV for a partition μ = (μ1 ≥ · · · ≥ μk). Let v0 ∈ SμV be a b(<)0̄-highest weight vector 
of M(i), and let u ∈ U(g1) be a longest monomial of the form · · ·Xt4

ε2+ε3X
t3
2ε2X

t2
ε1+ε2X

t1
2ε1 with ti ∈ {0, 1}

such that uv0 
= 0. Such a monomial exists since the vectors of the form uv0 lie in sl(∞)-submodules of 
M isomorphic (up to parity) to SνV for certain partitions ν, where the length of ν grows along with the 
length of the monomial. Thus, the non-existence of a monomial u of maximal length with uv0 = 0 would 
imply that M is not bounded. Notice that uv0 is a b(<)-highest weight vector of M , and hence we have an 
isomorphism of g-modules |M | ∼= Lb(<)(

∑�
j=1 γiεj) for some γ ∈ C∞ such that γ1 ≥ γ2 ≥ . . . ≥ γ�.

We claim that γj = 0 for all j ≥ 2. Indeed, let j � 0 such that γj = 0. Then, since v is b(<)-highest 
weight, we have Xε2+εjv = 0. On the other hand, support arguments show that X−ε2−εjv = 0. Thus

0 = hε2+εjv = γ2v,

which implies γj = 0 for all j ≥ 2. If j = 1, then similarly we have Xε1+ε2v = 0. But now X−ε1−ε2v = 0 if 
and only if γ1 
= 1. In other words, we have an isomorphism |M | ∼= Lb(<)(ε1) ∼= V.

If M(i) ∼= SμV∗, then we prove in a similar way an isomorphism |M | ∼= Lb(>)(−ε1) ∼= V.
Next we assume that there is an isomorphism of g0̄-modules M(i) ∼= Λ

∞
2
A V for some i. Let ≺ be a 

linear order on Z>0 satisfying the following conditions: A ≺ (Z>0 \ A), and for any i, j ∈ A (respectively, 
i, j ∈ Z>0 \ A) we have |{p ∈ A | i ≺ p ≺ j}| < ∞ (respectively, |{p ∈ Z>0 \ A | i ≺ p ≺ j}| < ∞). 
Therefore we can write Z>0 = {jn1 ≺ jn2 ≺ · · · ≺ jN2 ≺ jN1}, where A = {jn1 ≺ jn2 ≺ · · · } and 
Z>0 \A = {· · · ≺ jN2 ≺ jN1}. Let τ : Z>0 → {1}, and let v ∈ Λ

∞
2
A V be a b(≺, τ)0-highest weight vector. In 

particular, the weight of v is εA :=
∑

j∈A εj . Since X2εin1
is a b(≺, τ)0-highest weight vector of g1, we must 

have w = X2εin1
v = 0, as otherwise w would be a b(≺, τ)0-singular vector of M of weight 3εin1

+ εA\{in1}, 
which is a contradiction, as sl(∞) does not admit any simple bounded highest weight module with such a 
weight. Similarly, we must also have X−εiN1

−εiN2
v = 0.

Take now n � 0 so that jn1 , jN1 ∈ [1, n]. Using that X2εjn1
v = 0, and that sl(∞) does not admit a simple 

bounded integrable highest weight module with highest weight 2εjn1
+ 2εjn2

+ εA\{jn1 ,jn2}, we obtain that 
Xεjn1

+εjn2
v = 0. Continuing this way, one shows that

X2εjv = Xεjt+εjt+1
v = 0, for every j, t ∈ [1, n].

On the other hand, for jm, jm+1 ∈ [1, n] such that jm ∈ A and jm+1 /∈ A, we can use support arguments to 
obtain that X−εjm−εjm+1

v = 0. Thus we have proved that X±(εjm+εjm+1 )v = 0. Since jm+1 /∈ A, this yields 
the following contradiction

0 = hεjm−εjm+1
v = −v.

In conclusion, the isomorphism of g0̄-modules M(i) ∼= Λ
∞
2
A V is contradictory.

Finally, assume that, for some i, we have an isomorphism of g0̄-modules M(i) ∼= S∞
A V for an infinite 

set A = {a1 ≤ a2 ≤ · · · } ⊆ Z>0. For n � 0, let wn ∈ M(i) denote the equivalence class a b(<n)0-highest 
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weight vector of a g(n)0̄-submodule of M(i) isomorphic to Lb(<n)0(anε1). Consider W = U(g(n))wn and 
let w ∈ W be a b(<n)-singular weight vector of W . In particular, w is a b(<n)0-singular weight vector, and 
hence, it must have weight of the form bnε1 for some bn ≥ an. Thus Xε1+ε2w = 0, and support arguments 
imply X−ε1−ε2w = 0. But this yields a contradiction

0 = hε1−ε2w = bnw.

A similar argument shows that an isomorphism of g0̄-modules M(i) ∼= S∞
A V∗ is also contradictory. �

6. The category BInt

Let BInt denote the full subcategory of g-mod whose objects are integrable bounded weight g-modules.

6.1. The case g � sl(∞|1)

Theorem 6.1. Let g equal sl(∞|m) with m ∈ {Z>1, ∞}, ospB(∞|∞), ospB(∞|2k), ospB(m|∞), ospC(2|∞), 
ospD(∞|∞), ospD(∞|2k), ospD(m|∞), or sp(∞). Then the category BInt is semisimple.

Proof. Let g = sl(∞|m) with m ∈ {Z>1, ∞} and let M and N be two simple objects in BInt. By Theorem 5.9, 
M ∼= lim−−→Mn and N ∼= lim−−→Nn are locally simple. Since M and N are isomorphic to modules appearing in
(Ω′

1)-(Ω′
6), Lemma 5.2 implies that Ext1g(n),h(n)(Mn, Nn) = 0 for n � 0. Now the claim follows from 

Corollary A.3.
If g � sl(∞|m), the result follows from Theorem 5.14 and Corollary A.3 by noting that all Exts between 

the modules Vn, ΠVn, C or ΠC vanish for all n. �
Theorem 6.2. If g = q(∞) and M and N are two non-isomorphic objects of BInt, then Ext1g,h(M, N) = 0
and

Ext1g,h(M,M) =
{

0 if M � ΠM

C if M ∼= ΠM
.

Proof. Recall from Theorem 5.12 that any integrable bounded simple weight g-module is isomorphic to

Lb(<)(
k∑

i=1
γiεi) ∼= lim−−→Lb(<n)(

k∑
i=1

γiεi) or Lb(>)(
k∑

i=1
−γiεi) ∼= lim−−→Lb(>n)(

k∑
i=1

−γiεi)

for some partition γ = (γ1 > γ2 > · · · > γk). Let vM and vN be the respective highest weight vectors of M
and N . Then the q(n)-modules U(q(n))vM and U(q(n))vN for n � 0 have different central characters. This 
follows from A. Sergeev’s description [21] of the center of U(q(n)). Corollary A.3 in the Appendix implies 
now Ext1g,h(M, N) = 0.

Our statement about Ext1g,h(M, M) follows directly from [9]. There the authors consider the case of q(n)
but present an argument that extensions over q(n) extend to q(n + 1), i.e., in fact prove that

Ext1g,h(M,M) =
{

0 if M � ΠM

C if M ∼= ΠM
. �
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6.2. Kac modules and the case g = sl(∞|1)

We start by recalling the definition of Kac module. Assume g equals sl(∞|m) for m ∈ Z≥1 ∪ {∞}, or 
ospC(2|∞). Put g+ :=

⊕
i≥0 gi and g≷ :=

⊕
i≷0 gi, where gi is defined in Section 2. Let L be a simple 

weight g0-module. Set g>L = 0. The Kac module (cf. [10]) is the induced g-module

K(L) := U(g) ⊗U(g+) L.

The Kac module Kn(Ln) for g(n) is defined similarly. When L ∼= Lb(<)0̄(λ), the module K(L) is usually 
denoted by K(λ). The module K(L) is indecomposable and admits a unique maximal proper submodule 
N(L), yielding the short exact sequence

0 → N(L) f−→ K(L) g−→ L(L) → 0

where L(L) := K(L)/N(L). Similarly, Kn(Ln) has a unique maximal proper submodule Nn(Ln), and 
Ln(Ln) := Kn(Ln)/Nn(Ln).

Proposition 6.3. Let φn,n+1 : Ln ↪→ Ln+1 be an embedding of g(n)0-modules, and consider the embedding 
of g(n)-modules ϕn,n+1 : Kn(Ln) ↪→ Kn+1(Ln+1) mapping u ⊗ v to u ⊗ φn,n+1(v) for all u ∈ U(g(n)), 
v ∈ Ln. Then ϕn,n+1(Nn(Ln)) ⊆ Nn+1(Ln+1) and ϕn,n+1 induces an embedding of g(n)-modules ψn,n+1 :
Ln(Ln) ↪→ Ln+1(Ln+1).

Proof. Set Nn = Nn(Ln). We claim that U(g(n + 1))ϕn,n+1(Nn) is a proper submodule of Kn+1(Ln+1). 
Indeed, Nn ⊆ U(g(n)−1)+⊗Ln, where U(g(n)−1)+ denotes the augmentation ideal of U(g(n)−1), and hence 
it is clear that g(n +1)−1ϕn,n+1(Nn) ⊆ U(g(n +1)−1)+ ⊗Ln+1. Now we show that g(n +1)+ϕn,n+1(Nn) ⊆
U(g(n +1)−1)+⊗Ln+1. For this it is enough to prove that Xαϕn,n+1(Nn) ⊆ U(g(n +1)−1)+⊗Ln+1, where 
Xα is a simple root vector of g(n + 1) \ g(n). Since Xα commutes with g(n)−1 we obtain Xαϕn,n+1(Nn) ⊆
XαU(g(n)−1)+⊗φn,n+1(Ln) ⊆ U(g(n)−1)+⊗XαLn+1 ⊆ U(g(n)−1)+⊗Ln+1. Therefore, the map ψn,n+1(v+
Nn) = ϕn,n+1(v) + Nn+1 defines the desired embedding. �
Corollary 6.4. Let L := lim−−→Ln be a locally simple weight g0-module. Then N(L) = lim−−→Nn(Ln), and L(L) ∼=
lim−−→ψ

Ln(Ln) where the latter limit is taken over the sequence of embeddings {Ln(Ln) ↪→ Ln+1(Ln+1)}
provided by Proposition 6.3. Moreover, L(L)g1 = lim−−→Ln(Ln)g(n)1 ∼= L.

Proof. Proposition 6.3 implies that the following diagram of g(n)-modules is commutative

0 Nn(Ln) Kn(Ln) Ln(Ln) 0

0 Nn+1(Ln+1) Kn+1(Ln+1) Ln+1(Ln+1) 0.

fn

ϕn,n+1

gn

ϕn,n+1 ψn,n+1

fn+1 gn+1

Since, for every n, the g(n)-module Nn(Ln) is the unique maximal proper submodule of Kn(Ln), we conclude 
that N(L) = lim−−→Nn(Ln) and L(L) ∼= lim−−→ψ

Ln(Ln). The claim that L(L)g1 = lim−−→Ln(Ln)g(n)1 ∼= L follows 
from the fact that Ln(Ln)g(n)1 ∼= Ln. �

Observe that for g = sl(∞|m) with m ∈ Z≥2 ∪ {∞} or g = ospC(2|∞), the Kac module K(L) is not 
bounded for any choice of L since Λ(g−1) :=

⊕∞
k=0 Λk(g−1) is not bounded as a g0-module (in fact, K(L)

does not have finite-dimensional weight spaces).
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Assume that M = lim−−→Lb(<n)(λ(n)) is a locally simple integrable g-module for a given chain of embeddings 
of g(n)-modules Lb(<n)(λ(n)) ↪→ Lb(<n+1)(λ(n + 1)). We call the module M typical if there exists N ∈ Z>0
for which (λ(n) + ρn, β) 
= 0 for every β ∈ Δ(n)1 and n ≥ N , and atypical otherwise. Suppose in addition 
that L = lim−−→Lb(<n)0̄(λ(n)) and the embeddings Lb(<n)(λ(n)) ↪→ Lb(<n+1)(λ(n + 1)) are defined as in 
Proposition 6.3. Then if M = lim−−→Lb(<n)(λ(n)) is typical, there is an isomorphism of g-modules M ∼= K(L). 
This follows from the well known fact that Kn(λ(n)) is simple whenever (λ(n) +ρn, β) 
= 0 for all β ∈ Δ(n)1.

A weight μ(n) ∈ h(n)∗ is singly atypical if (μ(n), β) = 0 for a unique pair of mutually opposite odd roots 
±β ∈ Δ(n)1. It is known that if g(n) equals sl(m|1) or osp(2|2n) and λ(n) dominant integral, then the 
g(n)-module Lb(<n)(λ(n)) is atypical if and only if the weight λ(n) + ρn is singly atypical with respect to 
an odd root αn. In the latter case the module Kn(λ(n)) has length 2 and its maximal proper submodule 
is isomorphic to ΠpnLb(<n)(λ(n)αn

), where the weight λ(n)αn
is obtained by subtracting from λ(n) a sum 

of positive odd roots which are uniquely determined by λ(n) (see [24, § 6 and 7] for details). Moreover, if 
β1 + · · ·+βkn

is this sum of odd roots then pn = kn. We also notice that λ(n)αn
can be obtained from λ(n)

by a legal move of weight zero (see [12, Corollary 6.4] where there is a typo in the statement: it should be 
λ(f) > λ(g)). Since for sl(m|1) and osp(2|2n) there is at most one such legal move, there is no ambiguity 
in defining λ(n)αn

in this way.

Corollary 6.5. Suppose g equals sl(∞|1) or ospC(2|∞). Let L = lim−−→Lb(<n)0(λ(n)) be any locally simple 
integrable weight g0-module. Then either N(L) = 0 and L(L) ∼= K(L), or N(L) ∼= lim−−→ΠpnLb(<n)(λ(n)α). 
In particular, the g-module K(L) is either simple or has length 2.

Proof. The statement follows from the above discussion and Corollary 6.4. �
Let C be the category of weight modules with finite-dimensional weight spaces over g or g(n). For any 

M ∈ C we can consider the restricted dual g-module M∗ ∈ C which is defined in (A.1). The functor M �→ M∗
defines a contravariant auto-equivalence of C. Next, let ω be the automorphism of g defined by taking the 
direct limit of the automorphisms defined in [13, § 5.2], and let M∨ denote the g-module M∗ with action 
twisted by ω (see [12, pg. 20]). The functor M → M∨ is also a contravariant auto-equivalence of C, now 
with the additional property that S∨ ∼= S for all simple modules S ∈ C.

We will show that, up to applying Π, the following example provides all nontrivial extensions between 
simple objects of BInt for g = sl(∞|1).

Example 6.6. Let g = sl(∞|1) and C = lim−−→Lb(<n)0(0(n)|0) be the trivial one-dimensional g0 = gl(∞)-
module. For every n, the weight ρn ∈ h(n)∗ is singly atypical with respect to the odd root α = δ1 − ε, and 
(0(n)|0)α = −α = (0(n−1), −1|1). Then

N(C) ∼= lim−−→ΠLb(<n)(0(n−1),−1|1) ∼= lim−−→ΠLb(<n)(1(n−1), 0|0) ∼= lim−−→ΠΛn−1Vn,

and in the category of bounded weight modules over sl(∞|1) we have the following non-split short exact 
sequence

0 → Λ∞
A V → K(C) → C → 0,

where A is the sequence of ordered pairs (an = n − 1, bn = 1) for all n ∈ Z>1. Application of (·)∗ on this 
short exact sequence yields the non-split short exact sequence

0 → C → K(C)∗ → Λ∞
A V∗ → 0,

where Λ∞
A V∗ ∼= lim ΠΛn−1V∗

n
∼= limLb(<n)(0(n)|1 − n).
−−→ −−→
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Set λ(n) := (0(n)|1 − n), μ(n) := (−1(n)|1) and ν(n) := (−1(n−1), −2|2) (here we choose representatives 
of the weights defining Λ∞

A V∗, C and Λ∞
A V, respectively, so that the action of the center of gl(n|1) on the 

modules Lgl(λ(n)), Lgl(μ(n)) and Lgl(ν(n)) coincides, see Remark 5.1). Then we have a sequence of legal 
moves of weight zero:

fλ(n) → fμ(n) → fν(n).

Moreover, we can check that if γ(n) is a weight such that fγ(n) → fλ(n) or fν(n) → fγ(n), then 
lim−−→Lb(<n)(γ(n)) is not an object in BInt. Thus the sequence fλ(n) → fμ(n) → fν(n) is maximal with 
the property that all objects lim−−→L(<n)(λ(n)), lim−−→L(<n)(μ(n)) and lim−−→L(<n)(ν(n)) are in BInt. �

In the following proposition we assume that g = sl(∞|1). Let L = lim−−→Lb(<n)0(λ(n)), L′ =
lim−−→Lb(<n)0(μ(n)) be locally simple integrable weight g0-modules and p, q ∈ {0, 1}. Assume also that 
M := ΠpL(L) and N := ΠqL(L′) have finite-dimensional weight spaces.

Proposition 6.7. If M = ΠpL(L) and N = ΠqL(L′), then dim Ext1g,h(M, N) ≤ 1. Moreover, dim Ext1g,h(M,

N) = 1 precisely when, for sufficient large n, all λ(n) +ρn are singly atypical with respect to an odd root αn

and μ(n) = λ(n)αn
, or vice-versa. In the latter case, if E is a nontrivial extension of M by N , then either 

E ∼= ΠpK(L) and N ∼= ΠpN(L), or E ∼= (ΠqK(L′))∨ and M ∼= ΠqN(L′).

Proof. Let 0 → N → E → M → 0 be a non-split short exact sequence. Since the category of integrable 
weight g0-modules with finite-dimensional weight spaces is semisimple (see Lemma 4.1), we can regard 
Mg1 ∼= L and Ng1 ∼= L′ as simple g0-submodules of E. As E is a nontrivial extension, we obtain E = U(g)L, 
and we have two possibilities: (1) g1L = 0 or (2) g1L 
= 0.

(1): There exists a surjective map of g-modules ΠpK(L) → E. Since Corollary 6.5 implies that ΠpK(L)
has length 2 precisely when for sufficiently large n the weights λ(n) + ρn are singly atypical with respect to 
odd roots αn (possibly depending on n), we conclude that E ∼= ΠpK(L) and μ(n) = λ(n)αn

.
(2): Consider the non-split exact sequence 0 → M → E∨ → N → 0. Then E∨ = U(g)L′ and support 

arguments imply that g1L
′ = 0. Indeed, first notice that SuppE = SuppM ∪ SuppN and set Δ(g+) :=

{β ∈ Δ | gβ ⊆ g+}. Now, for any fixed λ ∈ SuppL, λ′ ∈ SuppL′ we have SuppM ⊆ λ − Z≥0Δ(g+) and 
SuppN ⊆ λ′−Z≥0Δ(g+). Since g1L 
= 0 by assumption, we have g1L ∩N 
= 0. Thus λ ∈ λ′−Z≥0Δ(g+), and 
hence SuppE ⊆ λ′ −Z≥0Δ(g+). Therefore g1L

′ = 0, and as in (1) we obtain an isomorphism of g-modules 
E∨ ∼= ΠqK(L′), from which we conclude that E ∼= (ΠqK(L′))∨ and λ(n) = μ(n)αn

for all sufficient large 
n. �

Recall that two simple modules M, N ∈ BInt are in the same block if and only if M ∼= N , or there are 
simple modules M = L1, L2, . . . , Lk = N of BInt such that Ext1BInt(Li, Li+1) 
= 0 for all i = 1, . . . , k−1. The 
block of M ∈ BInt will be denoted by [M ]. A block [M ] is trivial if [M ] = {M}. The next result describes 
the blocks of simple modules in BInt.

Corollary 6.8. Up to application of Π, the only nontrivial block of simple modules in BInt is [C] = [Λ∞
A V] =

[Λ∞
A V∗] = {C, Λ∞

A V, Λ∞
A V∗}, where A is the sequence of ordered pairs (an = n −1, bn = 1) for all n ∈ Z>1.

Proof. Corollary 5.10 implies that it is enough to compute the blocks [C], [SμV], [S∞
A V] and [Λ∞

A V]. 
The other cases will follow by application of (·)∗ and possibly Π. The g-modules C, SμV, S∞

A V and 
Λ∞
A V can be obtained as respective direct limits lim−−→ψ

Lb(<n)0(λ(n)) where the weights λ(n) of the three 
latter modules are as in (Ω1), (Ω4) or (Ω5), respectively. Now, we can check: (1) for sufficiently large 
n, all weights λ(n) + ρn are atypical with respect to α = δ1 − ε, and in particular λ(n)α = λ(n) − α; 
(2) if lim Lb(<n)0(λ(n)) � C, Λ∞

A V∗ where A is as in the statement, then for any c ∈ C the weights 
−−→ψ
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λ(n)α + (c(n)| − c) do not occur as b(<n)-highest weights of modules in (Ω′
1)-(Ω′

6), nor do they define the 
trivial module C; (3) if lim−−→ψ

Lb(<n)0(λ(n)) � C, Λ∞
A V, where A is as in the statement and if μ(n) is a 

sequence of weights such that fμ(n) → fλ(n), then for any c ∈ C the weights μ(n) + (c(n)| − c) do not 
occur as b(<n)-highest weights of modules in (Ω′

1)-(Ω′
6). Finally, (1)-(3) and Proposition 6.7 imply that up 

to application of Π the only nontrivial extensions of simple objects in BInt are given in Example 6.6. The 
statement follows. �
Appendix A

For every n ∈ Z>0, let g(n) be a finite-dimensional Lie superalgebra and let h(n) ⊆ g(n)0̄ be a fixed 
toral subalgebra of g(n)0̄, that is, each nonzero element of h(n) acts semisimply on g(n) under the adjoint 
representation. It is well known that h(n) is an abelian subalgebra of g(n) and that h(n) acts semisimply on 
g(n) under the adjoint representation. An h(n)-weight g(n)-module is by definition a g(n)-module on which 
h(n) acts semisimply.

An embedding of Lie superalgebras ϕ : g(n) ↪→ g(n +1) is an h(n)-weight embedding if ϕ(h(n)) ⊆ h(n +1)
and ϕ maps every h(n)-weight space of g(n) into one h(n + 1)-weight space of g(n + 1). In this section, 
we assume that g is a Lie superalgebra isomorphic to the direct limit of a chain of weight embeddings 
g(n) ↪→ g(n +1). Although we are mainly interested in the Lie superalgebras listed in Section 2, the class of 
Lie superalgebras we consider here is much more general, for instance g(n) may be a simple finite-dimensional 
Lie superalgebra of Cartan type.

Define

U0 := CU(g)(h), U0
n := U0 ∩ U(g(n)) for every n ∈ Z>0.

The following Lemma is a version of [8, Lemma 4.2].

Lemma A.1. If M is a finite-dimensional simple U0-module, then there exists K > 0 such that M is a 
simple U0

n-module for every n > K.

Proof. The U0-module structure on M provides a sequence of maps φn : U0
n → EndM such that imφn ⊆

imφk for k ≥ n. Since dimM < ∞, there exists K ∈ N with imφn = imφk for every n ≥ K. The simplicity 
of M as an U0-module implies, via the Jacobson Density Theorem, that im(φ : U0 → EndM) = EndM . 
Since U0 =

⋃
n≥1 U0

n, we have imφ =
⋃

n≥1 imφn = imφK . Therefore imφK = EndM , and the statement 
is proved. �

Let L =
⊕

μ∈h∗ Lμ be an h-weight g-module with finite-dimensional h-weight spaces Lμ. Define

L∗ :=
⊕
μ∈h∗

(Lμ)∗ ⊆ L∗. (A.1)

Then for any α ∈ Supp g, x ∈ gα, and λ ∈ SuppL, we have x(Lλ)∗ ⊆ (Lλ+α)∗. Therefore L∗ is an h-weight 
g-submodule of L∗.

In what follows we consider the extension groups Extig,h(M, N) in the category of h-weight g-modules 
(see for instance [7] and also [13]).

The following proposition is due to V. Serganova.

Proposition A.2. Assume that M and L are h-weight g-modules and that L has finite-dimensional weight 
spaces. Then Extig,h(M, L) = (Hi(g, h; M ⊗ L∗))∗ for any i ∈ Z≥0.
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Proof. Since dimLμ < ∞ for every weight μ, we have

Homh(M,L) = Homh

(⊕
λ

Mλ,
⊕
μ

Lμ

)

=
∏
λ

((Mλ)∗ ⊗ Lλ) =
(⊕

λ

Mλ ⊗ (Lλ)∗
)∗

=
(
(M ⊗ L∗)h

)∗
,

(A.2)

where Homh stands for parity preserving homomorphisms of h-modules. The statement now follows from 
to the fact that Extig,h(M, L) := Hi(g, h; HomC(M, L)) can be computed through the cochain complex

Ci := Homh(Λi(g/h) ⊗M,L) ∼=
(
(Λi(g/h) ⊗M ⊗ L∗)h

)∗ = C∗
i ,

Ci being the chain complex computing the relative homology Hi(g, h; M ⊗ L∗). �
Corollary A.3. Let M = lim−−→Mn and L = lim−−→Ln be h-weight g-modules, and assume that L has finite-
dimensional h-weight spaces. If Extig(n),h(n)(Mn, Ln) = 0 for all n � 0 then Extig,h(M, L) = 0.

Proof. This follows directly from Proposition A.2:

Extig,h(M,L) = (Hi(g, h;M ⊗ L∗))∗

= (lim−−→Hi(g(n), h(n);Mn ⊗ L∗
n))∗

= lim←−−(Hi(g(n), h(n);Mn ⊗ L∗
n)∗)

= lim←−−Extig(n),h(n)(Mn, Ln) = 0. �
The following result reproves [18, Theorem 3.7].

Corollary A.4. Let g equal a direct limit of finite-dimensional semisimple Lie algebras. If M = lim−−→Mn and 
L = lim−−→Ln, where Mn and Ln are finite-dimensional h(n)-weight g(n)-modules and L has finite-dimensional 
h-weight spaces, then Ext1g,h(M, L) = 0.

Remark A.5. If g = osp(1|∞), then Corollary A.4 also holds, since the category of finite-dimensional 
osp(1|2n)-modules is semisimple for all n ∈ Z>0. �

Remark A.6. We would like to point out also that Corollary A.3 does not hold without the assumption of 
finite-dimensionality of weight spaces. For instance,

Ext1Tsl(∞)
(C, sl(∞)) 
= 0

where Tsl(∞) is the category of sl(∞)-modules studied in [18,4,20]. �
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