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Let D be a commutative domain with field of fractions K, let A be a torsion-free 
D-algebra, and let B be the extension of A to a K-algebra. The set of integer-valued 
polynomials on A is Int(A) = {f ∈ B[X] | f(A) ⊆ A}, and the intersection of Int(A)
with K[X] is IntK(A), which is a commutative subring of K[X]. The set Int(A) may 
or may not be a ring, but it always has the structure of a left IntK(A)-module.
A D-algebra A which is free as a D-module and of finite rank is called 
IntK -decomposable if a D-module basis for A is also an IntK(A)-module basis for 
Int(A); in other words, if Int(A) can be generated by IntK(A) and A. A classification 
of such algebras has been given when D is a Dedekind domain with finite residue 
rings. In the present article, we modify the definition of IntK -decomposable so 
that it can be applied to D-algebras that are not necessarily free by defining A
to be IntK -decomposable when Int(A) is isomorphic to IntK(A) ⊗D A. We then 
provide multiple characterizations of such algebras in the case where D is a discrete 
valuation ring or a Dedekind domain with finite residue rings. In particular, if D
is the ring of integers of a number field K, we show that an IntK -decomposable 
algebra A must be a maximal D-order in a separable K-algebra B, whose simple 
components have as center the same finite unramified Galois extension F of K and 
are unramified at each finite place of F . Finally, when both D and A are rings of 
integers in number fields, we prove that IntK -decomposable algebras correspond to 
unramified Galois extensions of K.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Let D be a commutative integral domain with field of fractions K. The ring of integer-valued polynomials 
over D is defined to be Int(D) := {f ∈ K[X] | f(D) ⊆ D}. The ring Int(D), its elements, and its properties 
have been popular objects of study over the past several decades and continue to be so today. The book [4]
is the standard reference on the topic.
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Beginning around 2010, attention turned to polynomials that are evaluated on D-algebras rather than 
on D itself. This can be seen in the work of Evrard, Fares and Johnson [6,7], Frisch [8–11], Loper [15], 
Peruginelli [5,13,20–23,25], Werner [30,32,33], and Naghipour, Rismanchian, and Sedighi Hafshejani [17]. 
A good example of these new rings of integer-valued polynomials comes from considering the polynomials 
in K[X] that map each element of the matrix algebra Mn(D) back to Mn(D).

Example 1.1. Associate K with the scalar matrices in Mn(K). Then, for any matrix a ∈ Mn(D) and any 
polynomial f(X) =

∑t
i=0 qiX

i ∈ K[X], we can evaluate f at a to produce the matrix f(a) =
∑t

i=0 qia
i. 

If f(a) ∈ Mn(D) for each a ∈ Mn(D), then f is said to be integer-valued on Mn(D). The set of all such 
polynomials is denoted by

IntK(Mn(D)) := {f ∈ K[X] | f(Mn(D)) ⊆ Mn(D)},

and it is easy to verify that IntK(Mn(D)) is a subring of K[X].
We can form a larger collection of polynomials that are integer-valued on Mn(D) by considering polyno-

mials whose coefficients come from Mn(K) rather than from K. That is, we form the set

Int(Mn(D)) := {f ∈ Mn(K)[X] | f(Mn(D)) ⊆ Mn(D)}.

Since Mn(K) is noncommutative, we follow standard conventions regarding polynomials with non-
commuting coefficients, as in [14, §16]. In Mn(K)[X], we assume that the indeterminate X commutes 
with each element of Mn(K), and we define evaluation to occur when the indeterminate is to the right of 
any coefficients. So, given f(X) =

∑t
i=0 qiX

i ∈ Mn(K)[X], we consider f(X) to be equal to 
∑t

i=0 X
iqi

as an element of Mn(K)[X], but to evaluate f(X) at a matrix a ∈ Mn(D), we must first write f(X) in 
the form f(X) =

∑t
i=0 qiX

i, and then f(a) =
∑t

i=0 qia
i. A consequence of this is that evaluation is no 

longer a multiplicative homomorphism; that is, if f(X) = g(X)h(X) in Mn(K)[X], then it may not be 
true that f(a) equals g(a)h(a). Because of this difficulty, it is not clear whether Int(Mn(D)) is closed under 
multiplication. Despite the complications associated with evaluation of polynomials in this setting, one may 
prove that Int(Mn(D)) is a (noncommutative) subring of Mn(K)[X] [31, Thm. 1.2]. Thus, we are able to 
construct a noncommutative ring of integer-valued polynomials.

We can actually say more. In [8, Thm. 7.2], Sophie Frisch proved that Int(Mn(D)) is itself a matrix ring. 
Specifically, Int(Mn(D)) ∼= Mn(IntK(Mn(D))), where the isomorphism is given by associating a polynomial 
with matrix coefficients to a matrix with polynomial entries. (This isomorphism is the restriction of the 
classical isomorphism between the polynomial ring Mn(K)[X] and the matrix ring Mn(K[X]).) Because of 
Frisch’s theorem, many questions about Int(Mn(D)) can be reduced to questions about IntK(Mn(D)), and 
the latter ring—being commutative—is usually easier to work with.

Broadly speaking, the point of this paper is to study the relationship between a commutative ring of 
integer-valued polynomials such as IntK(Mn(D)) and its extension Int(Mn(D)). In particular, we wish to 
determine when and how Frisch’s theorem [8, Thm. 7.2] can be generalized to algebras other than matrix 
rings. While matrix rings will be prominent in our work, the majority of our theorems deal with general 
algebras. However, our basic definitions are inspired by the situation described in Example 1.1.

We begin by giving notation and conventions for working with polynomials over algebras. As before, let 
D be a commutative integral domain with field of fractions K. Let A be a torsion-free D-algebra and take 
B = K⊗DA to be the extension of A to a K-algebra. We associate K and A with their canonical images in B

via the maps k �→ k⊗ 1 and a �→ 1 ⊗ a. Much of our work will involve polynomials in B[X]. The algebra B

may be noncommutative, but we will assume that X commutes with all elements of B. Moreover, we define 
evaluation of polynomials in B[X] at elements of A just as we did in Example 1.1 where A = Mn(D) and 
B = Mn(K). Given f(X) =

∑t
ciX

i ∈ B[X] and b ∈ B, we define
i=0
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f(b) :=
t∑

i=0
cib

i.

Note that the map B[X] → B given by evaluation at b is not a multiplicative homomorphism unless b lies 
in the center of B.

Finally, we define

Int(A) := {f ∈ B[X] | f(A) ⊆ A}

and

IntK(A) := Int(A) ∩K[X] = {f ∈ K[X] | f(A) ⊆ A}.

We will also require that A ∩K = D; this assumption is equivalent to the containment IntK(A) ⊆ Int(D).

Definition 1.2. When A is a torsion-free D-algebra such that A ∩K = D, we say that A is a D-algebra with 
standard assumptions. When A is finitely generated as a D-module, we say that A is of finite type.

With these definitions, it is clear that IntK(A) is always a subring of the commutative ring K[X]. The 
algebraic structure of Int(A) is more difficult to analyze. It is straightforward to verify that Int(A) is 
closed under addition, and in fact has the structure of a left IntK(A)-module. However, because B[X] may 
contain polynomials with non-commuting coefficients, there is no guarantee that Int(A) is closed under 
multiplication. Indeed, let g, h ∈ Int(A) and let f = gh be the product of g and h in B[X]. Then, we have 
g(a), h(a) ∈ A for all a ∈ A, but because f(a) need not equal g(a)h(a), it is not clear whether or not f(a)
is in A. Thus, we arrive at an important question: is Int(A) a ring when B is noncommutative?

There are cases where Int(A) has been proved to be closed under multiplication, and thus has a ring 
structure under the usual operations inherited from B[X]. For instance, this will be true if A itself is a 
commutative ring. More generally, if each element of A is a sum of units and central elements, then Int(A)
is a ring [31, Thm. 1.2]. In particular, this theorem applies when A = Mn(D), the algebra of n ×n matrices 
with entries in D, because Mn(D) has a D-module basis consisting of invertible matrices. The condition in 
[31, Thm. 1.2] is sufficient for Int(A) to be a ring, but is not necessary; counterexamples may be found in 
[33, Ex. 3.8] and in [11]. To date, no example has been given of a noncommutative D-algebra A for which 
Int(A) is not a ring.

As mentioned in Example 1.1, Frisch proved in [8, Thm. 7.2] that the rings Int(Mn(D)) and 
Mn(IntK(Mn(D))) are isomorphic. This result led the second author to search for other algebras with 
a similar property [30]. To do this, the problem was recast in the following way. Assume that A, as a 
D-module, is free of finite rank, with D-basis α1, . . . , αt. Then, when does α1, . . . , αt form a basis for Int(A)
as an IntK(A)-module? With this formulation, Frisch’s theorem shows that

Int(Mn(D)) =
⊕

1≤i,j≤n

IntK(Mn(D))Eij (1.3)

where the Eij are the standard matrix units that form a D-basis of Mn(D). An algebra A =
⊕

i Dαi such 
that

Int(A) =
⊕
i

IntK(A)αi (1.4)

is called IntK-decomposable with respect to {αi}i. By [30, Prop. 1.4], this property is independent of the 
D-basis chosen for A. Thus, a free D-algebra A such that (1.4) holds is called simply IntK-decomposable. 
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We will use the adjective Int-decomposable (with no subscript K) when we wish to speak of these algebras 
collectively, without reference to a specific domain D or base field K.

The main theorem of [30] proved that there is a close connection between Int-decomposable algebras and 
direct sums of matrix algebras. In [30, Thm. 6.1] it is shown that for D a Dedekind domain with finite 
residue rings and A a free D-algebra of finite rank, A is IntK-decomposable if and only if for each nonzero 
prime P of D, there exist n, t ∈ N and a finite field Fq such that A/PA ∼=

⊕t
i=1 Mn(Fq).

The work in [30] depended crucially on the presence of a D-module basis for A, and it was desirable to 
know if Int-decomposable algebras could be defined and studied without assuming that A was free. This 
is indeed possible, and doing so is the focus of the current paper. The key insight was to notice that an 
IntK -decomposable algebra is one for which Int(A) can be generated (as a subring of B[X]) by A and 
IntK(A), and this property can be precisely expressed in terms of tensor products of D-algebras. We say 
that A is IntK-decomposable if and only if Int(A) ∼= IntK(A) ⊗D A (see Definition 2.3); the only limitations 
we impose on A are our standard assumptions that A is torsion-free and A ∩K = D. Note that for the case 
of the full matrix algebra A = Mn(D) considered initially by Frisch, the matrix ring Mn(IntK(Mn(D))) is 
canonically isomorphic to the ring IntK(Mn(D)) ⊗D Mn(D).

If D is Dedekind with finite residue rings and A is finitely generated as a D-module, then we are able to 
extend the classification given by [30, Thm. 6.1] (Theorem 2.10). Hence, IntK-decomposable algebras are 
those which are residually a direct sum of copies of a matrix ring over a finite field. Moreover, we are able to 
obtain two alternate characterizations of Int-decomposability, one in terms of the completions of A at primes 
of D (Theorem 3.6) and the other in terms of the extended K-algebra B = K ⊗D A (Theorem 4.10). We 
are also able to describe when IntK(A) = Int(D) (Theorem 2.11), which answers a question raised in [10].

In Section 2, we state the more general definition of IntK-decomposable and prove several of the the-
orems mentioned above. Section 3 discusses the classification of IntK -decomposable algebras in terms of 
completions. As our work will show, IntK-decomposable algebras are related to matrix algebras via their 
residue rings and completions, but the two types of algebras are not the same. Theorem 3.11 clarifies this 
situation by presenting various counterexamples.

We close the paper by studying the consequences of Theorems 2.10 and 3.6. An easy corollary of our clas-
sification theorems is that an IntK-decomposable algebra A must be a maximal D-order in the K-algebra B, 
and B must be a semisimple K-algebra. Along these lines, in Section 4, we use the theory of maximal orders 
(as presented in [28]) to establish the last part of our classification. In Theorem 4.10 we prove that if D
is the ring of integers of a number field K, then A is IntK-decomposable if and only if the following four 
conditions are satisfied: B is a separable K-algebra with simple components which have the same center F ; 
F is a finite unramified Galois extension of K; the simple components of B are unramified at each finite 
place of F ; and A is a maximal D-order in B.

From this general theorem, we obtain two relevant corollaries. First, if A is the ring of integers of a finite 
extension L of K, then A is IntK-decomposable if and only if L is an unramified Galois extension of K
(Corollary 4.11). Second, if D = Z, then A is IntQ-decomposable if and only if for some n, A is isomorphic 
to a finite direct sum of copies of Mn(Z) (Corollary 4.12). This last result implies that if IntQ(A) = Int(Z), 
then A is isomorphic to a finite direct sum of copies of Z.

2. Int-decomposable algebras

We begin by recalling the definition of IntK-decomposability in the case of free D-algebras which was 
given in [30].

Definition 2.1. ([30, Def. 1.2]) Let A be a D-algebra that, as a D-module, is free of finite rank, so that 
A =

⊕t
i=1 Dαi for some D-module basis {α1, . . . , αt}. We say that A is IntK-decomposable with respect to 

{αi}ti=1 if Int(A) =
⊕t IntK(A)αi as an IntK(A)-module.
i=1
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It is shown in [30, Prop. 1.4] that the IntK-indecomposability of A does not depend on the D-module basis 
{α1, . . . , αt}. That is, A is IntK-decomposable with respect to one basis if and only if it is IntK -decomposable 
with respect to every basis. Thus, we can—and will—say algebras are IntK-decomposable without referring 
to a specific basis.

A useful way to interpret Definition 2.1 is the following. Assume A =
⊕

i Dαi. Then, we have B =
⊕

i Kαi

and it follows that any f ∈ B[X] can be expressed (uniquely) in the form f =
∑

i fiαi, where each fi ∈ K[X]. 
If f ∈ Int(A) and A is IntK-decomposable then we may conclude that each fi ∈ IntK(A). This property can 
sometimes be used to quickly show that an algebra is not Int-decomposable. For example, let D = Z and 
A = Z[i], the Gaussian integers. Then, (1+i)(X2−X)

2 ∈ Int(A), but (X2−X)
2 /∈ IntQ(A); hence, A = Z[i] is not 

IntQ-decomposable. As we shall see in Corollary 4.11, this is related to the fact that 2 is ramified in Z[i].
The most prominent examples of IntK-decomposable algebras are the matrix rings Mn(D). As mentioned 

in the introduction, Frisch proved in [8, Thm. 7.2] that when A = Mn(D), there is a D-algebra isomorphism 
between Mn(IntK(A)) and Int(A), as in (1.3). Some rings of algebraic integers and certain quaternion 
algebras can also be Int-decomposable [30, Sec. 6].

The main theorem of [30] shows that IntK -decomposable algebras can be recognized by the structure of 
their residue rings A/PA, where P runs through the primes of D.

Theorem 2.2. ([30, Thm. 6.1]) Let D be a Dedekind domain with finite residue rings. Let A be a free 
D-algebra of finite rank with standard assumptions. Then, A is IntK-decomposable if and only if for each 
nonzero prime P of D, there exist n, t ∈ N and a finite field Fq such that A/PA ∼=

⊕t
i=1 Mn(Fq).

Both Definition 2.1 and the proof of Theorem 2.2 depended on the presence of a D-basis for A. Our first 
goal in this paper is to generalize the definition of IntK-decomposable so that it applies to algebras that 
are not necessarily free. We will then go on to show (Theorem 2.10) that Theorem 2.2 still holds under this 
more general definition.

Definition 2.3. Let D be an integral domain and A a torsion-free D-algebra. Consider the following D-bilinear 
map:

IntK(A) ×A → Int(A)

(f(X), a) �→ f(X) · a

By the universal property of the tensor product, there exists a unique D-module homomorphism

Φ : IntK(A) ⊗D A → Int(A) (2.4)

which maps every elementary tensor product f(X) ⊗ a to f(X) · a. We say that A is IntK-decomposable if 
Φ is an isomorphism of D-modules, so that Int(A) ∼= IntK(A) ⊗D A.

Recall that the tensor product IntK(A) ⊗D A has a natural D-algebra structure with multiplication 
given by (f1(X) ⊗ a1)(f2(X) ⊗ a2) = (f1(X)f2(X)) ⊗ (a1a2), for all fi ∈ IntK(A), ai ∈ A, i = 1, 2 (see 
[2, Chapt. III, §4, n. 1]). Moreover, since the elements of K are central in B, the map Φ above induces 
a D-algebra structure on Int(A) (and so, Φ becomes a D-algebra homomorphism). Therefore, when A is 
IntK-decomposable, Φ is an isomorphism of D-algebras.

This definition has a number of immediate consequences, among them that Definition 2.3 reduces to the 
original Definition 2.1 when A is free.

Proposition 2.5.

(1) If A is IntK-decomposable, then Int(A) is a ring.
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(2) The following are equivalent:
(i) A is IntK-decomposable;
(ii) the D-module Int(A) satisfies the universal property of the tensor product of IntK(A) and A;
(iii) Int(A) is equal to the subring of B[X] generated by IntK(A) and A.

(3) Assume A =
⊕t

i=1 Dαi is free of finite rank as a D-module. Then, A is IntK-decomposable in the sense 
of Definition 2.1 if and only if A is IntK-decomposable in the sense of Definition 2.3.

Proof. (1) This is a generalization of [30, Prop. 2.2]. When A is IntK-decomposable, it is actually isomorphic 
as a ring to the D-algebra IntK(A) ⊗D A.

(2) The equivalence of (i) and (ii) is clear. For (iii), note that for any A (IntK-decomposable or not), the 
module Int(A) contains all products of the form f(X) · a, where f ∈ IntK(A) and a ∈ A. Since Int(A) is 
closed under addition, it also contains the subring of B[X] generated by IntK(A) and A. Given the definition 
of Φ, A being IntK-decomposable is equivalent to Int(A) equaling this subring.

(3) Since A =
⊕

i Dαi, we have the chain of equalities

IntK(A) ⊗D A = IntK(A) ⊗D (
⊕
i

Dαi) =
⊕
i

(IntK(A) ⊗D Dαi) =
⊕
i

IntK(A)αi

from which the equivalence of the definitions is clear. �
Remark 2.6.

• While A being IntK -decomposable implies that Int(A) is a ring, the converse is not true. There are 
numerous examples of D-algebras A which are not IntK-decomposable but still Int(A) is a ring. For 
instance, when G is a finite group and A is the group algebra DG, Int(A) is a ring by [31, Thm. 1.2]. 
However, whenever the characteristic of D/P divides |G|, the group ring A/PA ∼= (D/P )G is not 
semisimple [26, Cor. 3.4.8], and hence cannot satisfy Theorem 2.2. Thus, the group algebra DG will not 
be IntK-decomposable in such cases.
Also, if p is an odd prime of Z, D = Z(p), and A is a free D-algebra of finite rank, then for each k > 0
the residue ring A/pkA has odd order. It then follows from [33, Thms. 2.4, 3.7] that Int(A) is a ring; 
but certainly A can be chosen so that A is not IntQ-decomposable.
Finally, let Tn(D) be the D-algebra of n × n upper triangular matrices. Frisch has recently shown [11]
that Int(Tn(D)) is a ring. But, Tn(D) does not satisfy the condition of Theorem 2.2, so Tn(D) is not 
IntK -decomposable.

• According to Proposition 2.5, Frisch’s result (1.3) can be restated as follows:

Int(Mn(D)) = IntK(Mn(D)) ⊗D Mn(D).

When D is a Dedekind domain, we can prove that the map Φ in Definition 2.3 is always injective.

Lemma 2.7. Let D be a Dedekind domain and A a D-algebra of finite type with standard assumptions. Then, 
Φ : IntK(A) ⊗D A → Int(A) is injective.

Proof. Define Ψ : K[X] ⊗DA → B[X] by Ψ(f(X) ⊗Da) = f(X)a. Then, Ψ is an isomorphism of K-algebras. 
Since D is Dedekind and A is torsion-free, it follows that A is a projective D-module, hence flat. Therefore, 
the containment IntK(A) ⊆ K[X] implies that IntK(A) ⊗D A ⊆ K[X] ⊗D A. Thus, the map Φ is the 
restriction of Ψ to IntK(A) ⊗D A, and since Ψ is injective so is Φ. �

In this way, for D Dedekind, we may identify IntK(A) ⊗D A with the subring of B[X] generated by 
IntK(A) and A. We use this fact in proving the next proposition.
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Proposition 2.8. Let D be a Dedekind domain and A a D-algebra of finite type with standard assumptions. 
If IntK(A) = Int(D) then A is IntK-decomposable.

Proof. Since D is Dedekind, Int(A) contains IntK(A) ⊗D A via the map Φ by Lemma 2.7. For the other 
containment, assume IntK(A) = Int(D) and let Int(D, A) be the set Int(D, A) := {f ∈ B[X] | f(D) ⊆ A}. 
Clearly, Int(A) ⊆ Int(D, A). By [4, Prop. IV.3.3] we have Int(D, A) = Int(D) ⊗D A, so that

Int(A) ⊆ Int(D,A) = Int(D) ⊗D A = IntK(A) ⊗D A,

as required. �
We can also generalize [30, Thm. 3.3] and prove that IntK -decomposability is a local property when A is 

finitely generated. Note that this will hold without the assumption that D is Dedekind.

Proposition 2.9. Let D be a domain and let A be a D-algebra of finite type with standard assumptions. Then 
A is IntK-decomposable if and only if AP is IntK-decomposable for each prime P of D.

Proof. By definition, A is IntK-decomposable if and only if the map Φ in (2.4) is an isomorphism. By 
[1, Prop. 3.9], this holds if and only the D-modules Int(A) and IntK(A) ⊗DA are isomorphic locally at each 
prime ideal P of D, that is, the induced maps

ΦP : (IntK(A) ⊗D A) ⊗D DP → Int(A) ⊗D DP

are isomorphisms for each prime P of D.
Recall that for a D-module M and a multiplicative set S ⊂ D, we have S−1M ∼= M ⊗D S−1D. Thus, 

we always have AP
∼= A ⊗D DP and IntK(A)P ∼= IntK(A) ⊗D DP . Since A is finitely generated, by [30, 

Prop. 3.2] we have IntK(A)P = IntK(AP ) and Int(AP ) = Int(A)P . Hence, IntK(A) ⊗DDP
∼= IntK(AP ) and 

Int(A) ⊗D DP
∼= Int(AP ).

Using this and other standard properties of tensor products (as in [2, Chap. II, §5]), we have

(IntK(A) ⊗D A) ⊗D DP
∼= IntK(A) ⊗D (A⊗D DP )
∼= IntK(A) ⊗D AP

∼= (IntK(A) ⊗D DP ) ⊗DP
AP

∼= IntK(AP ) ⊗DP
AP .

Hence, the induced map ΦP is an isomorphism if and only if

Int(AP ) ∼= (IntK(A) ⊗D A) ⊗D DP
∼= IntK(AP ) ⊗DP

AP ,

which means that AP is IntK-decomposable. �
We can now extend the classification of Int-decomposable algebras given in Theorem 2.2.

Theorem 2.10. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of finite type 
with standard assumptions. Then, A is IntK-decomposable if and only if for each nonzero prime P of D, 
there exist n, t ∈ N and a finite field Fq such that A/PA ∼=

⊕t
i=1 Mn(Fq).

In particular, if A is commutative, then A is IntK-decomposable if and only if for each P there exists a 
finite field Fq such that A/PA ∼=

⊕t Fq for some t ∈ N.
i=1
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Proof. Since D is Dedekind and A is finitely generated and torsion-free, A is a projective D-module [18, 
Cor. p. 30]. Hence, for each prime P , AP is free as a DP -module, and AP has finite rank because A
is finitely generated. Applying Theorem 2.2 to AP , we see that AP is IntK-decomposable if and only if 
AP /PAP

∼=
⊕

i Mn(Fq) for some n and some Fq. Using Proposition 2.9 and the fact that A/PA ∼= AP /PAP , 
we obtain the stated theorem. �

Under the same hypotheses on D, we can describe those A for which IntK(A) = Int(D). This generalizes 
[30, Thm. 4.6], which dealt with the case where A was free.

Theorem 2.11. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of finite type 
with standard assumptions. Then, IntK(A) = Int(D) if and only if, for each nonzero prime P of D, we have 
A/PA ∼=

⊕t
i=1 D/P for some t ∈ N.

Proof. We know that Int(D) =
⋂

P Int(D)P (where the intersection is over nonzero primes P of D) and that 
Int(D)P = Int(DP ) for each P . The analogous equalities for IntK(A) are shown in [30, Props. 3.1, 3.2]. Thus, 
IntK(A) = Int(D) if and only if IntK(AP ) = Int(DP ) for each P . But, as in Theorem 2.10, each AP is a free 
DP -module of finite rank. By [30, Thm. 4.6], IntK(AP ) = Int(DP ) if and only if AP /PAP

∼=
⊕

i DP /PDP . 
The result now follows because AP /PAP

∼= A/PA and DP /PDP
∼= D/P . �

3. Int-decomposable algebras via completions

In this section, we provide an alternate characterization of Int-decomposable algebras. As in Section 2, 
we assume that D is a Dedekind domain with finite residue rings and that A is a D-algebra of finite type 
with standard assumptions. Theorem 2.10 asserts that A is IntK -decomposable precisely when for each 
nonzero prime P of D, A/PA is isomorphic to a direct sum of copies of a matrix ring with entries in a finite 
field. Instead of focusing on A/PA, we can work with the P -adic completion ÂP = lim←−−A/P kA of A, which 
in this case is isomorphic to D̂P ⊗D A (where D̂P is the P -adic completion of D) because A is of finite 
type. In Theorems 3.6 and 3.10, we prove that both Int-decomposability and the equality IntK(A) = Int(D)
can be characterized in terms of the completions ÂP . These results complement Theorems 2.10 and 2.11, 
respectively.

Recall first the following definition.

Definition 3.1. For a ring R and an R-algebra A, the null ideal of A with respect to R, denoted NR(A), is the 
set of polynomials in R[X] that kill A. That is, NR(A) = {f ∈ R[X] | f(A) = 0}. When R is commutative, 
NR(A) is easily seen to be an ideal of R[X]. If R = A, we set NR(A) = N(A).

Null ideals are a useful tool for dealing with integer-valued polynomials because there is a correspondence 
between the elements of IntK(A) and the null ideals ND/dD(A/dA), where d ∈ D (note that D/dD ⊆ A/dA

because of the assumption K ∩ A = D). Specifically, let f(X) = g(X)/d ∈ K[X], where g(X) ∈ D[X] and 
d ∈ D. Then, f ∈ IntK(A) if and only if the residue of g in (D/dD)[X] is in ND/dD(A/dA).

Int-decomposability can be expressed in terms of null ideals (this was the main strategy employed in [30]; 
see [30, Def. 4.3, Thm. 4.4]). To do this, we need a notion of “decomposability” for N(A/P kA). This is 
accomplished in the next definition, which is the analog of Definition 2.3.

Definition 3.2. Let P be a nonzero prime of D and let k > 0. We say that A/P kA is ND/Pk-decomposable
if the canonical ring isomorphism (D/P k)[X] ⊗D/Pk A/P kA ∼= (A/P kA)[X] that maps each elementary 
tensor product f(X) ⊗ a to f(X) · a induces the following isomorphism of D/P k modules:

ND/Pk(A/P kA) ⊗D/Pk A/P kA ∼= N(A/P kA).
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Lemma 3.3. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of finite type with 
standard assumptions. Then, A is IntK-decomposable if and only if A/P kA is ND/Pk -decomposable for each 
nonzero prime P of D and each k > 0.

Proof. By Proposition 2.9 we may localize at a prime P and assume that D is a discrete valuation ring, and 
hence that A is free. Furthermore, each A/P kA is free as a D/P k-module, so we can always find α1, . . . , αt

in A/P kA such that A/P kA =
⊕t

i=1 D/P kαi. By Proposition 2.5 (3), A is IntK -decomposable if and only 
if A is IntK-decomposable in the sense of Definition 2.1; and by [30, Thm. 4.4, Def. 4.3], this is equivalent 
to having N(A/P kA) =

⊕t
i=1 ND/Pk(A/P kA)αi for each k > 0. Proceeding as in Proposition 2.5 (3), one 

may show this last condition is equivalent to having ND/Pk(A/P kA) ⊗D/Pk A/P kA ∼= N(A/P kA). �
By Proposition 2.9, IntK-decomposability is a local property. So, in this section we will often reduce to 

the local case, namely that D is a discrete valuation ring (DVR) with finite residue field Fq0 and maximal 
ideal P = πD. Moreover, notice that when P is a maximal ideal of D, we have A/PA ∼= AP /PAP , so that

ND/P (A/PA) = NDP /PDP
(AP /PAP ).

We will use this fact freely in our subsequent work. In order to ease the notation, we set Ak = A/P kA and 
Dk = D/P k, for each k ∈ N. Note that Dk ⊆ Ak and that Ak is a torsion-free Dk-algebra, which is finitely 
generated as a Dk-module.

Lemma 3.4. ([30, Thm. 5.10]) Let k ∈ N. Then, Ak is NDk
-decomposable if and only if Ak

∼=
⊕t

i=1 Mn(Tk)
for some n, t ∈ N and a finite commutative local ring Tk with principal maximal ideal mk which is generated 
by the same uniformizer π of Dk, so that mk = πTk.

Recall that a commutative ring is chain ring if its set of ideals is totally ordered by inclusion. In particular, 
a ring Tk as described in Lemma 3.4 is a chain ring, as in [16]. Note that T1 is equal to a finite field Fq, 
which contains the residue field of D at P .

In Lemma 3.4, the rings Ak form an inverse system with respect to the natural projection maps 
Ak → Ak/π

k−1Ak
∼= Ak−1, and these maps are compatible with finite direct product and matrix rings. 

In particular, we have Tk → Tk/π
k−1Tk

∼= Tk−1, so the Tk’s also form an inverse system of chain rings. 
Moreover, since the nilpotency of π in Ak is k, it follows that the nilpotency of π in Tk is also k and the 
residue field of Tk is T1 = Fq.

Given that the P -adic completion ÂP is equal to the inverse limit lim←−−Ak, it is natural to consider the 
inverse limit of the chain rings Tk. It is well known that the completion of any DVR V with maximal ideal 
m is realized as the inverse limit of the chain rings V/mk, k ∈ N. The next lemma shows that, under certain 
mild assumptions, the converse is also true (it is probable that this lemma is a known result, but a proof 
was not found in the available literature, so one is provided for the sake of the reader).

Lemma 3.5. Let {Tk}k∈N be an inverse system of chain rings with maximal ideals mk = πkTk such that 
k is the nilpotency of πk, and the transition maps θk : Tk → Tk−1 are all surjective (so, without loss of 
generality, we may assume that πk �→ πk−1). We assume that T1 is the common residue field of the rings Tk.

Then the inverse limit T̂ = lim←−−Tk is a complete DVR with residue field isomorphic to T1.

Proof. We identify the inverse limit T̂ with the subset of coherent sequences of the direct product of the Tk’s:

T̂ = lim←−−Tk = {(ak) ∈
∏
k≥1

Tk | ak+1 �→ ak, ∀k ≥ 1}.
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Let

m̂ = {(ak) ∈ T̂ | ak ∈ mk, ∀k ≥ 1}.

Note that, for (ak) ∈ T̂ , (ak) is in m̂ if and only if for some k we have ak ∈ mk. Clearly, m̂ is an ideal of T̂ . 
We claim that every element of T̂ \ m̂ is invertible, which shows that T̂ is a local ring with maximal ideal m̂. 
Indeed, let (ak) ∈ T̂ \ m̂. Then for each k ∈ N, ak is invertible in Tk, and it is easy to see that (a−1

k ) is a 
coherent sequence and is the inverse of (ak) in T̂ .

Moreover, m̂ = πT̂ , where π = (πk) ∈ T̂ . In fact, by definition π ∈ m̂. Conversely, if (ak) ∈ m̂, then, 
for all k ∈ N, we have ak = πkbk, for some bk ∈ Tk. One may verify that (bk) is a coherent sequence, 
so (ak) = π(bk) ∈ πT̂ . Note also that π is not a nilpotent element of T̂ , because if e ∈ N is such that 
πe = (πe

k) = 0, then we have e ≥ k, for all k ∈ N, a contradiction.
Now, we clearly have 

⋂
k≥1 m̂

k = (0), so by [3, Chap. VI, §1, n. 4, Prop. 2] T̂ is a DVR. It remains to 

show that T̂ is complete with respect to the m̂-adic topology.
Since each transition map θk : Tk → Tk−1 is surjective, each projection ψk : T̂ → Tk is also surjective. 

Furthermore, the kernel of ψk is πkT̂ , since the maximal ideal of Tk has nilpotency k by assumption. So, we 
may identify each chain ring Tk with the residue ring T̂ /πkT̂ = T̂ /m̂k. Hence, T̂ = lim←−− T̂ /m̂k, which shows 
that the topology on T̂ as the inverse limit of the chain rings {Tk}k∈N coincides with the m̂-adic topology 
and that T̂ is complete with respect to the m̂-adic topology [3, Chap. III, §2, n. 6]. �

The next theorem gives the promised characterization of IntK-decomposable algebras in terms of the 
completions ÂP . Given a prime ideal P of D, we denote by D̂P the P -adic completion of D, and denote 
by K̂P the P -adic completion of K (which is also the fraction field of D̂P ).

Theorem 3.6. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of finite type with 
standard assumptions. Then, A is IntK-decomposable if and only if, for each nonzero prime ideal P ⊂ D, 
there exist n, t ∈ N such that

ÂP
∼=

t⊕
i=1

Mn(T̂P ) (3.7)

where T̂P is a complete DVR with finite residue field and quotient field which is a finite unramified extension 
of K̂P .

In particular, if A is commutative then A is IntK-decomposable if and only if, for each nonzero prime 
ideal P ⊂ D, ÂP

∼=
⊕t

i=1 T̂P , where T̂P is as above.

Proof. Without loss of generality, we may suppose that D is a DVR with maximal ideal P = πD. We retain 
the notation introduced at the beginning of this section.

Suppose first that A is IntK-decomposable. Then, the P -adic completion ÂP of A is equal to the inverse 
limit of the rings Ak [3, Chap. III, §2, n. 6]. For each k ∈ N, let Tk be as in Lemma 3.4, and let T̂P be 
their inverse limit, which is a complete DVR with maximal ideal m̂P by Lemma 3.5. Since the formation of 
inverse limit commutes with finite direct sums, by Lemma 3.4 we have

ÂP = lim←−−
k≥1

Ak =
t⊕

i=1
lim←−−
k≥1

Mn(Tk) =
t⊕

i=1
Mn(T̂P ). (3.8)

Now, Dk ⊆ Ak
∼=

⊕
i Mn(Tk), so by [30, Lem. 5.1] each matrix ring Mn(Tk) contains a (central) copy 

of Dk, which is contained in the set of scalar matrices Tk. Since the maximal ideals of Dk and Tk have 
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the same generator π, Dk ⊆ Tk is an unramified extension of chain rings [16, p. 281]. So, by Lemma 3.5, 
D̂P = lim←−−Dk ⊆ T̂P = lim←−−Tk is an unramified extension of complete DVRs since π generates the maximal 
ideals of both D̂P and T̂P . Let F̂P be the quotient field of T̂P , let Fq be the residue field of T̂P , and let Fq0 be 
the residue field of D̂P . Then, F̂P /K̂P is an unramified field extension of finite degree [F̂P : K̂P ] = [Fq : Fq0 ]. 
This establishes that if A is IntK-decomposable, then we have the desired decomposition (3.7) for ÂP .

Conversely, suppose (3.7) holds, where T̂P is a complete DVR which is a finite unramified extension 
of D̂P . In particular, P̂ · T̂P = m̂, the maximal ideal of T̂P . As above, let Fq be the (finite) residue field 
of T̂P . Then,

Â/P̂ Â ∼= A/PA ∼=
t⊕

i=1
Mn(Fq)

so by Theorem 2.10 A is IntK-decomposable. �
Theorem 3.6 is the analog of Theorem 2.10. There is also an analogous form of Theorem 2.11, the proof 

of which requires the next lemma.

Lemma 3.9. Let D be a DVR with maximal ideal P = πD. Let A be a D-algebra with standard assumptions, 
and let Â be the P -adic completion of A. Then, IntK(Â) = IntK(A).

Proof. The containment IntK(Â) ⊆ IntK(A) is clear, since A embeds in Â. Conversely, let f ∈ IntK(A)
and α ∈ Â. Suppose f(X) = g(X)/πk, where g ∈ D[X] and k ∈ N. If k = 0, then f ∈ D[X] ⊆ IntK(Â), so 
assume that k > 1.

Via the canonical projection Â → A/πkA, we see that there exists a ∈ A such that α ≡ a (mod πkÂ). 
Since the coefficients of g are central in A, we get g(α) ≡ g(a) (mod πkÂ). Thus, f(α) = f(a) +λ/πk, where 
λ ∈ πkÂ, so that f(α) ∈ Â. Hence, f ∈ IntK(Â) and IntK(Â) = IntK(A). �
Theorem 3.10. Let D be a Dedekind domain with finite residue rings. Let A be a D-algebra of finite type 
with standard assumptions. Then, IntK(A) = Int(D) if and only if, for each nonzero prime ideal P of D, 
ÂP

∼=
⊕t

i=1 D̂P , for some t ∈ N.

Proof. Note that if t is the rank of A, defined as the dimension of B = K ⊗D A over K, then, for each 
prime ideal P of D, the rank of AP = DP ⊗D A ⊂ B is equal to t, so that t does not depend on the 
particular prime ideal P . As we have already remarked, AP is free as a DP -module, so that AP

∼=
⊕t

i=1 DP

(as DP -modules).
We may work locally since ÂP = (ÂP )PDP

. So, we will assume that D is a DVR and we will omit the 
subscript P .

If IntK(A) = Int(D) then A is IntK-decomposable, by Proposition 2.8. Hence, by Theorem 2.11, we have 
A/PA ∼=

⊕t
i=1 D/P . By Theorem 3.6, the completion Â decomposes as a finite direct sum of matrix rings 

over a complete DVR T̂ , which is a finite unramified extension of D̂ (so that P̂ · T̂ is equal to the maximal 
ideal m̂ of T̂ ). Since Â/P̂ Â ∼= A/PA, formula (3.7) becomes Â ∼=

⊕t
i=1 D̂, that is, n = 1 and D̂ = T̂ , 

because the residue field T̂ /m̂ of T̂ must be isomorphic to D/P , the residue field of D̂.
Conversely, if Â is isomorphic to a finite direct sum of copies of D̂, then by Lemma 3.9 we have

IntK(A) = IntK(Â) = IntK(
⊕
i

D̂) = IntK(D̂) = Int(D)

as desired. �



JID:JPAA AID:5773 /FLA [m3L; v1.224; Prn:23/10/2017; 10:17] P.12 (1-18)
12 G. Peruginelli, N.J. Werner / Journal of Pure and Applied Algebra ••• (••••) •••–•••
At this point, it is apparent that Int-decomposable algebras are related to matrix algebras via their 
residue rings and completions. At the close of this paper, we will prove (Corollary 4.12) that when D = Z, 
A is IntQ-decomposable if and only if there exist n, t ∈ N such that A ∼=

⊕t
i=1 Mn(Z) (which implies that if 

A is IntQ-decomposable, then IntQ(A) = IntQ(Mn(Z)) for some n). However, in general Int-decomposable 
algebras need not be direct sums of matrix algebras. We end this section with a theorem that considers some 
of the conditions that link matrix algebras with Int-decomposable algebras, and examines the implications 
among these conditions.

Theorem 3.11. Let D be a Dedekind domain with finite residue rings and A a D-algebra of finite type with 
standard assumptions. Consider the following four conditions:

(i) there exists n ∈ N such that A ∼= Mn(D);
(ii) there exists n ∈ N such that ÂP

∼= Mn(D̂P ), for all primes P of D;
(iii) A is IntK-decomposable;
(iv) there exists n ∈ N such that IntK(A) = IntK(Mn(D)).

Then, the following implications hold: (i) ⇒ (ii), (ii) ⇒ (iii), and (ii) ⇒ (iv); but for none of these three 
implications does the converse hold. Finally, (iii) � (iv) and (iv) � (iii).

Proof. The implication (i) ⇒ (ii) is clear, and (ii) ⇒ (iii) is Theorem 2.10.
((ii) ⇒ (iv)) Clearly, it is sufficient to prove the statement locally at each maximal ideal P of D. Thus, we 

suppose that D is a DVR. By Lemma 3.9 we have IntK(A) = IntK(Â) and IntK(Mn(D)) = IntK(Mn(D̂)), 
and since Â ∼= Mn(D̂) the statement holds.

We now show by counterexamples that the other stated implications do not hold.
((ii) � (i)) Let p be an odd prime of Z, let D = Z(p), and let A be the standard quaternion algebra 

A = D⊕Di ⊕Dj ⊕Dk (so that i2 = j2 = −1 and ij = k = −ji). Then, it is well known (cf. [12, Exer. 3A]) 
that A/pkA ∼= M2(D/pkD) ∼= M2(Z/pkZ) for all k > 0, so that Â ∼= M2(Zp). However, A � M2(D), because 
(among other reasons) A contains no nonzero nilpotent elements.

((iii) � (ii)) Take A = Mn(D) ⊕ Mn(D). Then, A is IntK -decomposable by Theorem 2.10, however 
A/PA ∼= Mn(D/P ) ⊕Mn(D/P ), so (ii) does not hold.

((iv) � (ii)) Again take A = Mn(D) ⊕Mn(D). Then, (ii) does not hold, but IntK(A) = IntK(Mn(D))
by [30, Thm. 2.3].

((iii) � (iv)) Let K � L be an unramified Galois extension of number fields. Let D = OK and take 
A = OL. Then—as we will show in Corollary 4.11—A is IntK -decomposable. However, we argue that for all 
n ∈ N we have IntK(OL) �= IntK(Mn(D)). First, if n = 1, then IntK(OL) = IntK(D) = Int(OK); but, by 
Corollary 4.11, this is impossible because L �= K. So, assume that n > 1. Then, by [23, Prop. 7] IntK(OL) is 
integrally closed (this also follows from [15, Thm. 3.7]). But, IntK(Mn(D)) is never integrally closed when 
n > 1 [24, Cor. 3.4], so IntK(OL) �= IntK(Mn(D)) for n > 1.

((iv) � (iii)) Let n > m ≥ 1 and take A = Mn(D) ⊕Mm(D). Then, IntK(Mn(D)) ⊆ IntK(Mm(D)), so 
IntK(A) = IntK(Mn(D)) by [30, Thm. 2.3]. But, for any prime P of D, A/PA ∼= Mn(D/P ) ⊕Mm(D/P ), 
which does not satisfy Theorem 2.10. �
4. Extended algebras and maximal orders

In this final section, we examine the consequences of Theorems 2.10 and 3.6, which allows us to give a 
global characterization of Int-decomposable algebras. The descriptions given in Theorems 2.10 and 3.6 show 
that an Int-decomposable algebra can be described—either residually or in terms of its completions—in 
terms of matrix rings. In the case where D is the ring of integers of a number field K, we are able to 
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completely classify IntK-decomposable algebras A as those which are the maximal orders of the extended 
K-algebra B; B is a separable K-algebra whose simple components share a common center F ; F is a finite 
unramified Galois extension of K; and each simple component of B is unramified at each finite place of F .

The work in this section relies heavily on the theory of maximal orders, as presented in [28]. We begin 
by recalling several definitions from [28] and [29]. As in earlier sections, D denotes a Dedekind domain with 
fraction field K.

Definitions 4.1. Let B be a finite dimensional K-algebra.

• By the Wedderburn Structure Theorem, if B is semisimple, then we have B =
⊕r

i=1 Mni
(Di), for some 

uniquely determined r, ni ∈ N and division rings Di (see [27, Thm. 3.5]); the Bi = Mni
(Di) are the 

simple components of B. We denote by Z(Di) the center of Di, which is a finite field extension of K. 
We say that B is separable if B is a finite dimensional semisimple K-algebra, such that the center of 
each simple component of B is a separable field extension of K [28, p. 99].

• A D-order in B is a subring A of B such that A is a finitely generated D-submodule of B and K ·A = B. 
A maximal D-order in B is a D-order that is not properly contained in any other D-order of B (see 
[28, p. 108, 110]). Note that in the setting of this paper, a D-algebra A of finite type is a D-order in 
the extended K-algebra B = K ⊗D A (and vice versa, a D-order A in a K-algebra B is a D-algebra of 
finite type).

• We say that a field extension F/K is a splitting field of the K-algebra B if the extended F -algebra 
B⊗K F is a direct sum of full matrix algebras over F , that is, B⊗K F ∼=

⊕s
i=1 Mni

(F ) [29, Def. 18.30]. 
It is easy to see that if a finite dimensional K-algebra B admits a splitting field F , then B is semisimple, 
since the extended F -algebra B ⊗K F is semisimple (cf. [29, p. 151]).

• If B = Mn(D) is a K-central simple algebra, where D is a division algebra, we denote by deg(B) =√
[B : K] the degree of B. If D is a Dedekind domain and P ⊂ D a maximal ideal, then K̂P is a 

splitting field of B if and only if B is unramified at P in the sense of [28, Chap. 8, §32], that is, 
B̂P = B ⊗K K̂P

∼= Mnd(K̂P ), where d is the degree of D.

When D is the ring of integers of a number field, we will demonstrate that IntK-decomposable algebras 
can be completely classified in terms of these definitions. We first consider the local case where D is a DVR, 
and then globalize this to the general case.

4.1. Local case

In this subsection, D is a DVR with maximal ideal P and finite residue field. As in Section 3, we denote 
by D̂ and Â the P -adic completions of D and A (and in general all completions are with respect to the 
P -adic topology). Likewise, K̂ denotes the completion of K.

Theorem 4.2. Let A be a D-algebra of finite type with standard assumptions and let B = A ⊗D K be the 
extended K-algebra. Then A is IntK-decomposable if and only if A is a maximal order in B, B is a separable 
K-algebra with simple components B1, . . . , Br and there exists a finite unramified extension F̂ of K̂ and 
n ∈ N which satisfy these conditions for each i = 1, . . . , r:

(i) Fi ⊗K K̂ ∼=
∏ki

j=1 F̂ for some ki ∈ N.
(ii) Bi ⊗Fi F̂ = Mn(F̂ ).

Note that, by [18, Chap. 6, Prop. 6.1] the above condition (i) is equivalent to the following: for each 
i = 1, . . . , r, all the prime ideals in the integral closure DFi

of D in Fi (which necessarily lie above P ) are 
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unramified and have the same residue field degree, equal to [F̂ : K̂] (which is independent of i). In particular, 
F̂ is the completion of Fi at each prime ideal of DFi

. The second condition says that F̂ is a splitting field 
of each simple component Bi, that is, Bi is unramified at each finite place of its center Fi and the degree of 
each simple component Bi as a Fi-central simple algebra is constant, independent of i. So we can say that 
P is unramified in each component Bi.

Proof. (⇐) Assume the above conditions on A, B are satisfied. Since B is semisimple, we have

B =
r⊕

i=1
Mni

(Di) (4.3)

for some r, ni ∈ N and division rings Di. We denote by Bi the simple component Mni
(Di) of B and by Fi

the center of Di, for i = 1, . . . , r.
Note that for each i = 1, . . . , r by condition (i) we have

Bi ⊗K K̂ = (Bi ⊗Fi
Fi) ⊗K K̂ = Bi ⊗Fi

(Fi ⊗K K̂)

= Bi ⊗Fi
(

ki∏
j=1

F̂ ) =
ki∏
j=1

(Bi ⊗Fi
F̂ ) (4.4)

so by condition (ii) we conclude that Bi ⊗K K̂ =
∏ki

j=1 Mn(F̂ ). Hence, the P -adic completion of B is:

B̂ ∼=
r⊕

i=1
(Bi ⊗K K̂) =

r⊕
i=1

ki⊕
j=1

Mn(F̂ ) =
t⊕

h=1

Mn(F̂ ). (4.5)

Finally, since B is a separable K-algebra and A is a maximal D-order in B, it follows by [28, Thm. 11.5]
that Â is a maximal D̂-order in B̂. Moreover, by [28, Thm. 10.5], A decomposes as A =

⊕r
i=1 Ai, where Ai

is a maximal D-order in Bi, for all i = 1, . . . , r. Similarly, Â decomposes as Â =
⊕t

i=1 Âi, where each Âi is 
a maximal D̂-order in the simple component Mn(F̂ ) of B̂. By [28, Thm. 17.3], each Âi is conjugated by a 
unit of Mn(F̂ ) to the maximal D̂-order Mn(T̂ ), where T̂ is the DVR of the local field F̂ . In particular, each 
maximal D̂-order Âi is isomorphic to Mn(T̂ ), so by Theorem 3.6 A is IntK-decomposable.

(⇒) Assume that A is IntK-decomposable. By Theorem 3.6 we have that Â = A ⊗D D̂ ∼=
⊕t

i=1 Mn(T̂ )
for some n, t ∈ N and a finite unramified extension T̂ of D̂. Let F̂ be the field of fractions of T̂ . Then,

B̂ = B ⊗K K̂ = (A⊗D K) ⊗D D̂ = Â⊗D K ∼=
t⊕

h=1

Mn(F̂ ) (4.6)

(note that T̂⊗DK = F̂ ). Therefore, B̂ is a K̂-semisimple algebra with center equal to Z(B̂) ∼=
⊕t

i=1 F̂ . Since 
an unramified extension of a local field is separable [18, Thm 5.26], B̂ is a separable K̂-algebra. Moreover, 
each component Mn(T̂ ) of Â is a maximal D̂-order in the respective simple component B̂i = Mn(F̂ ) of B̂
(see [28, Thm. 8.7]), so, by [28, Thm. 10.5], Â is a maximal D̂-order in B̂. By [28, Thm. 11.5], A is a maximal 
D-order in B.

Now, by [27, Prop. 10.6b] B is K-separable, hence semisimple. Therefore, B decomposes as a finite direct 
sum of matrix algebras Bi = Mni

(Di) as in (4.3) for some r, ni ∈ N and division rings Di whose centers 
Fi = Z(Di) are finite separable field extensions of K.

By [18, Prop. 6.1], for each i = 1, . . . , r, Fi ⊗K K̂ =
∏ki

j=1 F̂ij , where F̂ij is a finite separable extension 

of K̂ for all i, j (more precisely, the F̂ij are the completions of Fi at the different prime ideals of DFi
which 
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lie above P ). Moreover, Bi ⊗Fi
F̂ij is a central simple algebra over F̂ij, say equal to Mmij

(D̂ij), where D̂ij

is a central division algebra over F̂ij [28, Cor. 7.8]. As in (4.4) we get

B̂ ∼=
r⊕

i=1
(Bi ⊗K K̂) =

r⊕
i=1

ki⊕
j=1

(Bi ⊗Fi
F̂ij) =

r⊕
i=1

ki⊕
j=1

Mmij
(D̂ij). (4.7)

By comparing (4.6) and (4.7) and applying the Wedderburn Structure Theorem, we deduce that mij = n, 
D̂ij = F̂ for all i and j, and 

∑r
i=1 ki = t. This forces F̂ij = F̂ for all i and j, so that condition (i) is satisfied. 

Also, Bi ⊗Fi F̂ij = Bi ⊗Fi F̂ = Mn(F̂ ), so that condition (ii) is satisfied, too. �
Remark 4.8. Assume A is IntK-decomposable, so B decomposes as in (4.3). For each i = 1, . . . , r, let 
DFi

be the integral closure of D in the center Fi of the simple component Bi of B and consider it as a 
(commutative) D-algebra. Then the theorem shows (via condition (ii)) that the DFi

are IntK -decomposable 
(according to Theorem 2.10). It also shows that each component Ai of A is IntK-decomposable and also 
IntFi

-decomposable as well.
Note that while the degree of the Bi’s as Fi-central simple algebras is the same for all i, it is not 

necessarily true that the dimension of the Bi’s over K is the same for all i. The point is that the centers 
Fi’s may be different from each other (and, in particular, have different degree over K). For example, let 
D = Z(p) where p is an odd prime, let A1 be the standard quaternion algebra A1 = D ⊕ Di ⊕ Dj ⊕ Dk
(so that i2 = j2 = −1 and ij = k = −ji). Then, B1 = Q ⊕ Qi ⊕ Qj ⊕ Qk, so n1 = 1 and m1 = 2. Let 
F/Q be a quadratic field extension in which p splits completely and let DF,p be the integral closure of Z(p)
in F (so DF,p/pDF,p

∼= Z/pZ × Z/pZ). Let A2 = M2(OF,p), so B2 = M2(F ), n2 = 2, and m2 = 1. Then 
A = A1 ⊕A2 is IntK -decomposable. Note that n1m1 = n2m2 = 2 and B1 and B2 have different dimension 
over Q: [B1 : Q] = 4 but [B2 : Q] = 8.

In the global case where D is the ring of integers of a number field, which will be treated in the next 
subsection, we will see that if condition (ii) of Theorem 4.2 holds at each maximal ideal of D, then the 
simple components of the separable K-algebra B have all the same center F , which is an unramified Galois 
extension of K.

Remark 4.9. Let A be an IntK-decomposable algebra, as in the statement of Theorem 4.2. Since the finite 
unramified extension F̂ of K̂ of condition (ii) of the statement is a Galois extension, from (4.5) it is easy to 
see that F̂ is a splitting field of the K-algebra B. However, in general the converse does not hold, that is, 
a finite unramified extension F̂ of K̂ can be a splitting field of B without A being IntK -decomposable. For 
example, let F be a finite field extension of K such that the maximal ideal P of D is unramified in DF and 
the prime ideals above P have different residue field degree. Then, by Theorem 2.10 the D-algebra A = DF

is not IntK-decomposable. Let F̂ be a finite unramified extension of K̂ containing all the completions of A
at the different prime ideals above P . Then F ⊗K F̂ = (F ⊗K K̂) ⊗

K̂
F̂ =

∏
j F̂j ⊗K̂

F̂ =
∏

j F̂ (notice that 
F̂j ⊗K̂

F̂ is equal to a direct product of copies of F̂ ), so F̂ is a splitting field of B = F .

4.2. Global case

We now establish a global variant of Theorem 4.2. In this final subsection, we assume that D is the ring of 
integers of a number field K. This enables us to use some of the powerful tools of algebraic number theory, 
such as the Tchebotarev Density Theorem and the Hasse–Brauer–Noether–Albert Theorem. As usual, A is 
a D-algebra of finite type with standard assumptions.

Theorem 4.10. Let K be a number field with ring of integers D. Let A be a D-algebra of finite type with 
standard assumptions and let B = A ⊗D K be the extended K-algebra. Then, A is IntK-decomposable if and 
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only if A is a maximal order in B and B is a separable K-algebra with simple components B1, . . . , Br such 
that the following hold:

(i) the Bi share a common center F ;
(ii) F is a finite unramified Galois field extension of K;
(iii) for each i, Bi is unramified at each finite place of F ;
(iv) the degree of Bi as an F -central simple algebra is the same for each i.

Proof. (⇐) Assume the above conditions on A and B are satisfied. Let P be a fixed maximal ideal of D. 
Then, by conditions (ii) and (iii) and [18, Prop. 6.1] we have F ⊗K K̂ =

∏k
j=1 F̂P , for some k ∈ N, where 

F̂P is a finite unramified extension of K̂P ; note that F̂P is the completion of F at any prime ideal which 
lies above P . Therefore, by (4.4) and conditions (i) and (iv) we have

B̂P = B ⊗K K̂P =
r⊕

i=1
(Bi ⊗K K̂P ) =

r⊕
i=1

k⊕
j=1

(Bi ⊗F F̂P ) =
t⊕

h=1

Mn(F̂P )

Since A is a maximal D-order in B, by [28, Cor. 11.2 & Thm. 11.5] ÂP is a maximal D̂P -order in B̂P , so by 
[28, Thm. 10.5] ÂP decomposes as ÂP =

⊕t
h=1 Âh, where each Âh is a maximal D̂P -order in Mn(F̂P ). If 

T̂P is the valuation ring of F̂P , then by [28, Thm. 17.3] Âh is a conjugate of (hence isomorphic to) Mn(T̂P ), 
for each h = 1, . . . , t. Since P was an arbitrary maximal ideal of D, by Theorem 3.6 it follows that A is 
IntK -decomposable.

(⇒) Assume now that A is IntK -decomposable. Since IntK-decomposability is a local property (Propo-
sition 2.9), for each maximal ideal P of D, AP = A ⊗D DP is IntK-decomposable, so we may apply 
Theorem 4.2 to AP . Thus, AP is a maximal DP -order in B, and B is a separable K-algebra and decom-
poses as B =

⊕r
i=1 Bi with simple components Bi with centers Fi which are finite separable field extensions 

of K, for i = 1, . . . , r. Moreover, there exists n ∈ N such that [Bi : Fi] = n2, for each i = 1, . . . , r, and hence 
(iv) holds. Note that r is independent of the particular maximal ideal P of D. Moreover, since A is locally 
a maximal DP -order in B, A is a maximal D-order in B ([28, Cor. 11.2]).

For each prime ideal P of D, by condition (i) of Theorem 4.2 there exists a finite unramified extension F̂P

of K̂P such that, for each i = 1, . . . , r, F̂P is the completion of Fi at any prime ideal Q of the ring of 
integers DFi

which lies over P . Furthermore, by condition (ii) of Theorem 4.2 F̂P is a splitting field of 
the Fi-central simple algebra Bi. These facts imply that all the field extensions F1, . . . , Fr are unramified 
over K and by the Tchebotarev Density Theorem they also are Galois extensions (see [19, Cor. VII.13.8]). 
Moreover, since a finite Galois extension F of K is completely determined by the set of prime ideals of K
which split completely in F (again by the same theorem of Tchebotarev, see [19, Cor. VII.13.10]), it follows 
that F1, . . . , Fr are all equal to the same finite unramified Galois extension F . All of this proves conditions (i), 
(ii), and (iii). �

We close this paper with two corollaries. In the first one we specialize Theorems 2.10 and 2.11 to the 
case where D and A are rings of integers in number fields, which results in a very clean description of 
IntK -decomposable algebras. In the second corollary, we show that over Q, an IntQ-decomposable alge-
bra A must be isomorphic to a finite direct sum of copies of Mn(Z), for some n ∈ N. This corollary also 
demonstrates that—with our usual assumptions in place—a matrix algebra over Z can be recognized by its 
residues and completions.

Corollary 4.11. Let K ⊆ L be number fields with rings of integers OK and OL, respectively. Consider OL

as an OK-algebra. Then
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(1) OL is IntK-decomposable if and only if L/K is an unramified Galois extension.
(2) IntK(OL) = Int(OK) if and only if L = K.

Proof. (1) This follows from Theorem 4.10.
(2) Clearly, L = K implies that IntK(OL) = Int(OK). So, assume that IntK(OL) = Int(OK). By 

Theorem 2.11, OL/POL
∼=

⊕
i OK/P for each nonzero prime P of OK . From this, we see that OL is 

IntK-decomposable as an OK-algebra, and moreover that f(Q|P ) = 1 for each P and each Q above P (note 
that the same conclusion can be obtained from Theorem 3.10). By (1), L is an unramified Galois extension 
of K with all inertial degrees equal to 1, and so L = K by [19, Thm. VI.3.8]. �
Corollary 4.12. Let A be a Z-algebra of finite type with standard assumptions. The following are equivalent.

(1) A is IntQ-decomposable;
(2) There exist n, r ∈ N such that A ∼=

⊕r
i=1 Mn(Z);

(3) For all primes p, there exist n, r ∈ N such that A/pA ∼=
⊕r

i=1 Mn(Z/pZ);
(4) For all primes p, there exist n, r ∈ N such that Âp

∼=
⊕r

i=1 Mn(Zp).

In particular, if A is IntQ-decomposable, then IntQ(A) = IntQ(Mn(Z)) for some n; and if IntQ(A) = Int(Z), 
then A ∼=

⊕r
i=1 Z.

Proof. It suffices to prove (1) ⇔ (2). The other equivalences follow by Theorems 2.10 and 3.6.
By Theorem 4.10, if A is isomorphic to a finite direct sum of copies of Mn(Z), then A is IntQ-decomposable 

(the same conclusion follows by the application of either Theorem 2.10 or Theorem 3.6). Conversely, if A is 
IntQ-decomposable then by the same theorem A is a maximal Z-order in B and B is a separable Q-algebra, 
say B =

⊕r
i=1 Bi, where the Bi’s are the simple components of B. Since there is no proper unramified 

extension of Q, the center of each Bi is equal to Q, by condition (ii) of Theorem 4.10.
Now, for each i = 1, . . . , r, by the Hasse–Brauer–Noether–Albert Theorem [28, Thm. 32.11] either Bi

is isomorphic to Mn(Q) or there are at least two primes of Q (finite or infinite) which ramify in Bi (see 
[28, Chap 8, §32.1, Exer. 1]). The latter situation cannot occur, because Bi is unramified at each finite 
place of its center Q by condition (iii) of Theorem 4.10. Since this holds for each i = 1, . . . , r, we must 
have B =

⊕r
i=1 Mn(Q) (the fact that n is the same for each simple component of B is a consequence of 

condition (iv) of Theorem 4.10). Finally, since Z is a PID, each maximal Z-order of Mn(Q) is conjugate 
(hence isomorphic) to Mn(Z), so A ∼=

⊕r
i=1 Mn(Z), as desired. The implication that IntQ(A) = IntQ(Mn(Z))

is clear, and the last claim follows from Proposition 2.8 and Theorem 2.11. �
The following example shows that the conclusion of Corollary 4.12 may fail if we work over a number 

field which is a proper extension of Q.

Example 4.13. Let K = Q(
√

5). Consider the standard quaternion algebra B over K, which is defined as 
B = K ⊕Ki ⊕Kj ⊕Kk, where i2 = j2 = −1 and ij = k = −ji. This algebra is unramified at each finite 
prime of the ring of integers D of K but is ramified at the two infinite real primes. Hence, any maximal 
D-order A in B is IntK-decomposable, by Theorem 4.10, but A cannot be isomorphic to a direct sum of 
matrix rings because B is a division ring.
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