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1. Introduction

Supergeometry is a Z2-graded generalization of ordinary geometry. The idea of this extension comes from 
supersymmetry in physics. Instead of sheaves of commutative rings, we consider sheaves of supercommutative 
rings. For references, see [2,3,26,27]. Note that superstring perturbation theory can be described as an 
integral over the moduli space Mg of super Riemann surfaces, and if there is a projection map Mg → Mg

then we can use the push forward to integrate it. However, Mg is non-projected in general.

Proposition 1.1. ([12]) The supermoduli space Mg is not projected for g ≥ 5.

After it has been shown that the supermoduli space is not projected, the importance of establishing 
mathematical foundations about supermanifolds, supermoduli spaces, (analytic) superspaces, etc. has in-
creased.
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In this paper, we first show the existence of the (analytic) Hilbert scheme Hilb(S) of 0-dimensional 
subspaces on a supercurve S of dimension 1|1 (see 2.3 for definition). This Hilbert scheme can be broken 
up into disjoint union Hilb(S) =

⋃
(p,q) Hilbp|q(S) and each Hilbp|q(S) is a smooth superspace of dimension 

p | p.

Theorem 1.2. Let S be a supermanifold of dimension 1 | 1. Then the super Hilbert scheme Hilbp|q(S) is 
smooth and has dimension p | p.

This can be seen as an analogous result to the ordinary case that the Hilbert scheme of p points on a 
smooth surface is smooth and has dimension 2p [18]. In general, the (ordinary) Hilbert schemes can have 
bad singularities [34].

Note that an element in the super Hilbert scheme Hilbp | q(S) can be viewed as a supercurve S with (p −q)
Neveu-Schwarz punctures and q Ramond punctures. The moduli space Mg parameterizes super Riemann 
surfaces of genus g, where super Riemann surfaces are supermanifolds of dimension 1 |1 with superconformal 
structure. In general, supercurves need not have superconformal structure. [10,13–17,19,25]

Another interesting related topics that we will not deal with in this paper are Abel’s theorem for super-
curves and Teichmüler theory. For more details see [4,31,32] and [2,5,9,30].

The final chapter of this paper is devoted to the (non) splitness of the Hilbert scheme. To be 
specific, the Hilbert scheme Hilb1|1 (S (

P 1,OP1(k)
))

is split for any k, whereas the Hilbert scheme 
Hilb2|1 (S (

P 1,OP1(k)
))

is not split for all k �= 0. In fact, Hilb2|1 (S (
P 1,OP1(k)

))
is not even projected if 

k �= 0. This also guarantees that any superspace containing Hilb2|1 (S (
P 1,OP1(k)

))
for some nonzero k is 

not split.

2. Backgrounds

2.1. Supergeometry

We will review definitions of major terms in this section.

Definition 2.1. A superspace is a pair (S, OS) where S is a topological space and OS = OS,0 ⊕ OS,1 is a 
sheaf of supercommutative rings which is a locally ringed space. Let J be the ideal generated by the odd 
part OS,1. The bosonic space Sb ⊂ S is defined as the closed subspace (S,OS/J ).

The Z2-graded structure is inspired by supersymmetry in Physics. For more details see [6,7].
From now on, we will only consider the superspaces over C.
Similar to the ordinary space, We can define locally free sheaves on superspaces. The only difference is 

that they have even and odd ranks. For example, a free sheaf of rank (p | q) on a superspace S is O p
S ⊕ΠO q

S , 
where ΠO q

S is the parity reversed bundle of O q
S .

A superspace (S, OS) is said to be split if there is a locally free sheaf E on Sb such that (S, OS) isomorphic 
to S(Sb, E) := (Sb,∧•E∨). We say a superspace (S, OS) is locally split if for any x ∈ S there is a neighborhood 
U of x such that (U, OS |U ) is split. Let m be the dimension of Sb and let n be the rank of vector bundles 
that define local split subspaces of S. Then the dimension of (S, OS) is defined as m |n. We say S is projected
if it has a projection map from S to its bosonic part Sb so that OS endowed with a OSb

-module structure.
For the rest of this paper, we mainly discuss about analytic superspaces. One basic property of analytic 

superspace is that, like ordinary analytic spaces, we can take local coordinates.

Example 2.1. An analytic affine superspace

Cm|n = (Cm,OCm|n) = S(Cm,O n
Cm)
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is one of the simplest examples of a split superspace. Here, OCm represents the sheaf of analytic functions. 
The structure sheaf of Cm|n is given by

OCm|n = OCm [θ1, · · · , θn]

with relations θiθj = −θjθi for all i, j.
Let U be an open subset of Cm. For an ideal I ⊂ OCm|n(U), we can define an closed subset Z(I) :=

Z (I ∩ OCm(U)) ⊂ Cm. The analytic subspace defined by I on U is the superspace (Z(I),OZ := OU/I).

Definition 2.2. An analytic superspace (S, OS) is a superspace which is locally isomorphic to some analytic 
subspace.

We say that an analytic superspace (S, OS) is smooth at x ∈ S if there is an open neighborhood U of 
x such that (U, OS |U ) is isomorphic to an open subspace of some analytic affine superspace. An analytic 
superspace (S, OS) is called smooth if it is smooth at every point in S.

A locally split analytic superspace (S, OS) is called a supermanifold if Sb is a manifold. Note that a 
locally split analytic superspace (S, OS) is smooth if and only if it is a supermanifold.

Definition 2.3. A supercurve is a complex supermanifold of dimension 1 |n for some non-negative integer n.

We will focus on analytic superspaces and will drop “analytic” for simplicity, and denoting it as super-
spaces.

Let R be a supercommutative ring. The Jacobson radical J(R) of R is defined to be the intersection of 
all maximal ideals of R.

Lemma 2.4. (Nakayama’s lemma [24]) Let R be a supercommutative ring with the Jacobson radical J(R) ⊂ R. 
For any finitely generated left R-module M , J(R)M = M implies M = 0.

2.2. Super Hilbert scheme

In this section, we define super version of Hilbert scheme. More careful treatment about the theory of 
representable functors and super-stacks can be found in [1,8]. For the theory of ordinary Hilbert scheme see 
[20–22,28].

Definition 2.5.

i) Let S be a superspace. The Hilbert functor Hp|q
S is the contravariant functor from the category S of 

superspaces to the category of sets defined as follows:

Hp|q
S (B) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Z

π

S ×B

B

Z is a closed subspace of S ×B

such that π∗OZ is a locally free
OB-module of rank (p | q) and
Z is finite over B

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The morphism is defined by the pullback

Hp|q
S (f) = f∗ : Hp|q

S (B) → Hp|q
S (C)

where f : C → B and B, C ∈ S.
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ii) Suppose that the Hilbert functor Hp|q
S is representable by the superspace Hilbp|q(S). We call this the 

analytic Hilbert scheme, abbreviated to the Hilbert scheme.

Example 2.2. The Hilbert functor H1|1
C1|1 is representable by C1|1.

Z

π

C1|1
x | θ ×C1|1

a | α

C1|1
a | α

Here, the subscripts define coordinates and Z is defined by the ideal (x + a + αθ). This can be checked 
directly, or as a consequence of the proof of Theorem 2.6.

We prove the following theorem in Section 4.

Theorem 2.6. Let S be a supercurve. Then the functor Hp|q
S is representable by the smooth superspace 

Hilbp|q(S) of dimension p | p.

Note that the dimension of the Hilbert scheme Hilbp|q(S) only depends on the even part of the Hilbert 
polynomial.

2.3. Obstruction class for splitting

In this section, we review the definition of an obstruction class which has a critical role in verifying 
splitness of supermanifolds [11,12,35–37].

Consider a supermanifold S = (M, OS). Let J ⊂ OS be the sheaf of ideals generated by all nilpotents 
and let E := (J /J 2)∨. Let Isom(S, S(M, E)) be a sheaf of local isomorphisms defined by relating an open 
subset U ⊂ M to the isomorphisms from S|U to S(M, E)|U . Note that Isom(S, S(M, E)) is locally isomorphic 
to Aut(∧•E∨) 
 Aut(∧•E). Therefore, for given a supermanifold S which is modeled on M and E , we get 
an element φ ∈ H1(M, Aut(∧•E)). Let G be the set of automorphisms of ∧•E which act trivially on M and 
E . Since the automorphism induced from S preserves M and E , and we can say that φ ∈ H1(M, G).

Consider the filtration of S

M = S(0) ⊂ S(1) ⊂ · · · ⊂ S(n) = S

where S(i) = (M, OS/J i+1) and n = rank( E).
Define G(i) to be the set of automorphisms of S(M, E) which are trivial on S(M, E)(i−1) for i = 1, 2, · · · , n. 

Observe that G(i)/G(i+1) can be identified with T(−)iS ⊗ ∧iE∨ where T(−)i = T− is an odd tangent space 
if i is odd and T(−)i = T+ is an even tangent space if i is even. Moreover, it induces a long exact sequence

· · · → H1(M,G(i+1)) → H1(M,G(i)) ω−→ H1(M,T(−)iM ⊗ ∧iE∨) → · · ·

We define ωi in a similar manner. Suppose S(i) and S(M, E)(i) are isomorphic. Then, since S(i+1)

and S(M, E)(i+1) are locally isomorphic, the local isomorphism defines the cohomology class φ(i) ∈
H1(M, G(i+1)). The i-th obstruction class is defined by

ωi := ω(φ(i−1)) ∈ H1(M,T(−)iM ⊗ ∧iE∨)
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Note that if S is isomorphic to its split model S(M, E), then φ(i+1) is the image of φ(i) and thus ωi is 
vanishing, for all i. In conclusion, a non-vanishing obstruction class ω2 guarantees the non-splitness of a 
supermanifold S. In section 5.2, we will use this fact to show the non-splitness of the Hilbert scheme.

We also remark the following lemmas.

Lemma 2.7. ([27]) A supermanifold of odd dimension 1 is always split.

Lemma 2.8. ([12]) A supermanifold of odd dimension 2 is split if and only if it is projected.

3. Local structure of the Hilbert schemes

We first show the existence and the smoothness of the Hilbert schemes for special cases in this section 
and extend it to general cases in Section 4.

Let’s fix coordinates (x | θ) on C1|1. Consider a family in Hp|q
C1|1(Y ).

Z

π

C1|1
x | θ × Y

Y

Then by the definition, the pushforward π∗OZ is locally free. In fact, it turns out that π∗OZ is free.

Lemma 3.1. ([23]) Let Y ⊂ C1|1 be a closed subspace such that dimC H0(C1|1,OY ) is p | q. Then 
H0(C1|1, OY ) has a basis 1, x, . . . , xp−1, θ, xθ, . . . , xq−1θ as a C-vector space.

Lemma 3.2. ([23]) Let X = (xij) be an n × n (left) invertible matrix and let Γ = (γij) be an n × n matrix 
such that γ 2

ij = 0 for each i and j, then X + Γ is (left) invertible.

Proposition 3.3. Pick [Z π−→ Y ] ∈ Hp|q
C1|1(Y ), then π∗OZ is a free OY -module generated by 1, x, . . . , xp−1, θ,

xθ, . . . , xq−1θ.

Proof. Let R = C[x | θ] and let I ⊂ R be an ideal such that dimC R/I = p | q. Lemma 3.1 says that 
1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ generate R/I as a C-vector space.

Pick y ∈ Y and let I be the ideal sheaf of Z. Then I := (Iy + my)/my can be viewed as an ideal in R, 

where my is the maximal ideal of the local ring OY,y. Then 
(π∗OZ)y

my(π∗OZ)y
is isomorphic to R/I and has rank 

p | q as a C-vector space. Therefore, 
(π∗OZ)y

my(π∗OZ)y
is generated by 1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ.

By Lemma 2.4, we can find an open neighborhood U of y such that π∗OZ |U is generated by 
1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ as an OY |U -module. Therefore, π∗OZ is a OY -module with free generators

1, x, · · · , xp−1, θ, xθ, · · · , xq−1θ. �
3.1. Flattening stratifications

Flattening stratifications provide a key step for proving the existence of the ordinary Hilbert scheme 
([29]). We demonstrate a super-version of the Fattening stratification that is needed in our situation.
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Proposition 3.4. (Flattening stratification) Let X and Y be analytic superspaces. Let F be a coherent sheaf 
of modules on Y ×X such that the restriction of the support of F to each fiber of the projection Y ×X → X

is zero dimensional. Then for each (p, q) ∈ N × N we have a locally closed subspace X(p,q) ⊂ X with the 
following properties:

i) X = ∪̇(p,q)X(p,q)
ii) π∗F|X(p,q) is locally free of rank p | q
iii) for any analytic superspace C and a map f : C → X, the pullback f∗F is flat over C if and only if f

factors through C → X(p,q) ↪→ X for some (p, q) ∈ N ×N

Proof. Pick x ∈ Xb. Then there are p, q ∈ N such that

dimk(x) Fx ×OX,x
k(x) = p | q.

Using Lemma 2.4, find a neighborhood U of x such that generators of Fx also generate F on U . Then F|U
has p even and q odd generators as an OX |U -module and they define the surjection

O p
U ⊕ ΠO q

U

ζ−→ F|U → 0.

Since F is coherent, ker ζ is also coherent and thus it is finitely generated. By shrinking U , if necessary, 
we have an exact sequence

O s
U ⊕ ΠO t

U
σ−→ O p

U ⊕ ΠO q
U

ζ−→ F|U → 0

where the image of σ is the kernel of ζ.
Consider a map f : C → X|U and the induced exact sequence

O s
C ⊕ ΠO t

C
f∗σ−−−→ O p

C ⊕ ΠO q
C

f∗ζ−−→ f∗(F|U ) → 0

Observe that f∗ (F|U ) is free of rank p | q if and only if f∗σ = 0. Let Uσ ⊂ U be the closed subspace of 
U defined by the ideal I = (σij)i,j where σ = (σij) is the matrix representation of σ. Then we can see that 
f∗F|U is free of rank p | q if and only if f factors through Uσ.

Therefore, Uσ represents the functor GU defined by

GU (f : C → X|U ) = {f∗F → C is flat of rank (p | q)}

We can glue all Uσ’s with fixed (p | q) by the universality of representable functors, and X(p,q) := ∪σUσ

satisfies the required properties. �
A flattening stratification plays a pivotal role in constructing the super Hilbert scheme Hilbp|q(C1|1) in 

the next section.

3.2. Defining equation for the Hilbert scheme

Let’s fix coordinates

((x | θ) , (a0, · · · , ap−1, b0, · · · , bq−1 |α0, · · · , αq−1, β0, · · · , βp−1))

on C1|1 ×Cp+q|p+q.
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Let Y be the closed subspace of C1|1 ×Cp+q|p+q defined by the ideal

J =
(
xp +

p−1∑
i=0

aix
i +

q−1∑
i=0

αix
iθ, xqθ +

q−1∑
i=0

bix
iθ +

p−1∑
i=0

βix
i

)

and let π : Y → Cp+q | p+q be the projection

Y

π

C1|1 ×Cp+q|p+q

Cp+q|p+q

Then, according to Proposition 3.4, we can find locally closed subspaces Cp+q|p+q
(m,n) ⊂ Cp+q|p+q for each 

(m, n) ∈ N ×N such that Cp+q|p+q =
⋃

m,n Cp+q|p+q
(m,n) and each Cp+q|p+q

(m,n) has the universal property.
We follow the proof of Proposition 3.4 to show that Cp+q|p+q

(p,q) 
 Cp|p.

Theorem 3.5. Cp+q|p+q
(p,q) is isomorphic to Cp|p.

Proof. Let Y ⊂ C1|1 ×Cp+q | p+q be the closed subspace defined by the ideal

J =
(
xp +

p−1∑
i=0

aix
i +

q−1∑
i=0

αix
iθ, xqθ +

q−1∑
i=0

bix
iθ +

p−1∑
i=0

βix
i

)

For simplicity, denote generators of J by

f := xp +
p−1∑
i=0

aix
i +

q−1∑
i=0

αix
iθ and g := xqθ +

q−1∑
i=0

bix
iθ +

p−1∑
i=0

βix
i.

Apply the long division by 
(
xq +

q−1∑
i=0

bix
i

)
to f and g

f =
(
xq +

q−1∑
i=0

bix
i

)(
xp−q +

p−q−1∑
i=0

c′ix
i

)
+

q−1∑
i=0

d ′
ix

i +
q−1∑
i=0

γix
iθ

g =
(
xq +

q−1∑
i=0

bix
i

)(
θ +

p−q−1∑
i=0

δix
i

)
+

q−1∑
i=0

εix
i

Then change coordinate on Cp+q|p+q to make this form

f =(xq +
q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

aix
i) +

q−1∑
i=0

cix
i +

q−1∑
i=0

βix
i(θ +

p−q−1∑
i=0

αix
i)

g =(xq +
q−1∑
i=0

bix
i)(θ +

p−q−1∑
i=0

αix
i) +

q−1∑
i=0

γix
i

Denote 
∑p−q−1

i=0 aix
i, 
∑q−1

i=0 bix
i, · · · by a, b, · · · for simplicity.

According to the proof in Proposition 3.4, there is an open subset U ⊂ Cp+q|p+q and an exact sequence

O s
U ⊕ ΠO t

U
σ−→ O p

U ⊕ ΠO q
U

φ−→ π∗OY
∣∣ → 0 (1)

U
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where Cp+q|p+q
(p,q) is defined by the ideal I := (σij)i,j and the map φ is defined as

(Ai | Aj)i,j 
→
p∑

i=0
Aix

i +
q∑

j=0
Ajx

jθ.

We claim that I is generated by c0, · · · , cq−1 and γ0, · · · , γq−1.
As a first step, we assert that

(
q−1∑
i=0

cix
i)θ + (

q−1∑
i=0

cix
i)(

p−q−1∑
i=0

αix
i) −

q−1∑
i=0

γix
i(xp−q +

p−q−1∑
i=0

aix
i) (2)

and

(
q−1∑
i=0

γix
i)θ + (

q−1∑
i=0

γix
i)(

p−q−1∑
i=0

αix
i) (3)

are contained in the kernel of φ.
Observe that

f(θ + α) − g(xp−q + a) = c(θ + α) − γ(xp−q + a)

= (
q−1∑
i=0

cix
i)θ + (

q−1∑
i=0

cix
i)(

p−q−1∑
i=0

αix
i) −

q−1∑
i=0

γix
i(xp−q +

p−q−1∑
i=0

aix
i)

and

g(θ + α) = γ(θ + α)

= (
q−1∑
i=0

γix
i)θ + (

q−1∑
i=0

γix
i)(

p−q−1∑
i=0

αix
i)

Since Y is defined by the ideal generated by f and g, (2) and (3) are in the kernel of φ.

((c0α0 − a0γ0, · · · , γq−1,

p−q︷ ︸︸ ︷
0, · · · , 0 ), (c0, · · · , cq−1)) ∈ kerφ

((γ0α0, · · · , γq−1αp−q−1,

q︷ ︸︸ ︷
0, · · · , 0 ), (γ0, · · · , γq−1)) ∈ kerφ

Hence, Cp+q|p+q
(p,q) ∩ U is contained in the closed subspace Z

(
{ci, γi}q−1

i=0

)
∩ U . By restricting (1) to H :=

Z
(
{ci, γi}q−1

i=0

)
∩ U we get

O s′

H ⊕ ΠO t′

H
σH−−→ O p

H ⊕ ΠO q
H

φH−−→ π∗OY |H → 0

Claim: φH is an isomorphism.
Let (A1, · · · , Ap | A1, · · · ,Aq) be an element in a section of kerφH. We can find sections Ci’s and Dj ’s of 

OC1|1×Cp+q|p+q such that
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p−1∑
i=0

Aix
i +

q−1∑
i=0

Aix
iθ

= Cf + Dg

= C(xq + b)(xp−q + a) + Cβα + Cβθ + Dθ(xq + b) + Dα(xq + b).

I.e.,

p−1∑
i=0

Aix
i = C

(
xq +

q−1∑
i=0

bix
i

)(
xp−q +

p−q−1∑
i=0

aix
i

)

+ C

(
q−1∑
i=0

βix
i

)(
p−q−1∑
i=0

αix
i

)
+ D

(
p−q−1∑
i=0

αix
i

)(
xq +

q−1∑
i=0

bix
i

) (4)

and

q−1∑
i=0

Aix
i = C

(
q−1∑
i=0

βix
i

)
+ D

(
xq +

q−1∑
i=0

bix
i

)
(5)

Comparing the highest degree terms in (4), we see that C = 0. Similarly, from (5) we can check D = 0. 
Then Ai and Aj vanish for all i and j, and φH is an isomorphism. Therefore, Cp+q|p+q

(p,q) is defined by the 
ideal

(c0, · · · , cq−1, γ0, · · · , γq−1)

and thus Cp+q|p+q
(p,q) is isomorphic to Cp|p. �

Theorem 3.6. Cp|p represents the Hilbert functor Hp|q
C1|1.

Proof. Pick a flat family in Hp|q
C1|1(X).

X

p

C1|1 ×X

X

Then p∗OX is generated by 1, x, · · · , xp−1 and θ, xθ, · · · , xq−1θ, by Proposition 3.3. Therefore, X is defined 
by an ideal (

xp +
p−1∑
i=0

cix
i +

q−1∑
i=0

γix
iθ, xqθ +

q−1∑
i=0

dix
iθ +

p−1∑
i=0

δix
i

)

for some ci, di, γi, δi ∈ H0 (X,OX) where ci, di are commutative and γi, δi are anticommutative. Then there 
is a unique map φ : X → Cp+q|p+q such that the pull-back of π : X → Cp+q | p+q is p. Since p is flat, φ
factors through Cp+q|p+q

(p,q) . Therefore, the pull-back of X to Cp+q|p+q
(p,q) is the universal family. �

For the rest of this paper, we fix coordinates

(a0, · · · , ap−q−1, b0, · · · , bq−1 |α0, · · · , αp−q−1, β0, · · · , βq−1) (6)
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on the super Hilbert scheme Hilbp|q(C1|1) 
 Cp|p, so that the ideal of the universal family is generated by

(xq +
q−1∑
i=0

bix
i)(xp−q +

p−q−1∑
i=0

aix
i) +

q−1∑
i=0

βix
i(θ +

p−q−1∑
i=0

αix
i)

and

(xq +
q−1∑
i=0

bix
i)(θ +

p−q−1∑
i=0

αix
i).

4. Families of 0-dimensional subspaces on supercurves

For ordinary functors, it is well known that a functor is representable if it has an open covering by 
representable open subfunctors ([33]). We can use the same logic to show the representability of the Hilbert 
functor Hp|q

S for a smooth supercurve S.

Proof of Theorem 2.6. Let U =
⋃̇

iUi ⊂ S be a finite disjoint union of open subspaces of S such that Ui is 
isomorphic to some nonempty open subspace of C1|1. Let Hp|q

S,U be the open subfunctor of Hp|q
S defined as ∐∑

pi=p∑
qi=q

∏
i Hpi|qi

Ui

Then the Hilbert functor Hp|q
S is the union of open subfunctors 

⋃
U Hp|q

S,U , and each Hp|q
S,U is representable 

by a smooth superspace of dimension (p|p) as an application of Theorem 3.6.
To be specific, let’s consider any family Z ⊂ S×X in Hp|q

S (X). For each x ∈ X, we can find a neighborhood 
V of x such that the support of Z|π−1(V ) is contained in U ×X for some U = ∪̇iUi ⊂ S. Then there is a 
map from V to Hilbp|q(U) such that Z|π−1(V ) is the pullback of the universal family. Let X = ∪αVα be an 
open covering of X constructed as above and let Uα ⊂ S be the corresponding open subspaces. Then the 
universality of the Hilbert scheme guarantees that we can glue Hilbp|q(Uα) for all Vα.

Therefore, the Hilbert functor Hp|q
S is representable by a dimension (p|p) smooth superspace. �

For the ordinary Hilbert scheme of points, the Hilbert scheme Hilb4(C3) is not smooth. We can see this 
by checking the non-smoothness of Hilb4(C3) at I = m2 = (x, y, z)2. More details about the smoothness or 
non-smoothness of the Hilbert scheme Hilbp|q(C1|2) can be found in my PhD thesis. Actually, it turns out 
that Hilbp|q(C1|2) is not smooth for certain cases.

5. (Non)splitness of the Hilbert scheme

In the previous sections, we found local defining equations and gluing maps of the Hilbert scheme Hilbp|qC

where C is a supermanifold of dimension 1 | 1. We use these to construct an obstruction class and show (non) 
splitness of the Hilbert scheme.

5.1. A split Hilbert scheme

Example 5.1. Consider the line bundle OP1(k) on P 1. Then the supermanifold S := S
(
P 1,OP1(k)

)
has 

dimension 1|1 and the Hilbert scheme Hilbp|q(S) has dimension p | p.
Consider the standard open cover P 1 = U0 ∪ U1 and assign affine coordinates on each S|Ui

S|U0 
 C1|1
, S|U1 
 C1|1
x,θ y,ψ
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Observe that 
(
Hilb1|1(S)

)
b

= P 1 and, due to Theorem 3.6, we have Hilb1|1(S)|U0 
 C1|1
a,α and 

Hilb1|1(S)|U1 
 C1|1
b,β . Then the Hilbert scheme Hilb1|1(S) is split since it has odd dimension 1, but it 

still has interesting structure.
From the relations

x = a + αθ, y = b + βψ, y = 1/x, ψ = θ/xk and b = 1/a

on the intersection U0 ∩ U1, we can compute the transition map β = −ak−2α. Therefore, Hilb1|1(S) =
S(P 1, W ) where W = O(k − 2) = O(−2) ⊗O(k) and Hilb1|1(S) is split.

5.2. The super Hilbert scheme Hilb2|1 (S (
P 1,OP1(k)

))
Consider the supercurve S := S

(
P 1,OP1(k)

)
. Note that the bosonic part of Hilb2|1 (S) is P 1 × P 1.

Let Δ ⊂ P 1 × P 1 be the diagonal. Let Uij = Ui ×Uj ⊂ P 1
[z0;z1] × P 1

[w0;w1] be the open subset where Ui

is defined by zi �= 0 and Uj is defined by wj �= 0.
Consider the open cover P 1 × P 1 =

⋃4
k=1 Vi, where

V1 := U00, V2 := U10 − Δ, V3 := U01 − Δ and V4 := U11.

Then we can see that the Hilbert scheme Hilb2|1(S) can be covered by four open subsets

Hilb2|1(S) =
4⋃

k=1

Hilb2|1(S)
∣∣
Vk

Let p10 and p01 to be the projections to the reduced parts

p10 : Hilb1|1(S|U1) × Hilb1|0(S|U0) → U1 × U0 ⊂ P 1 × P 1

p01 : Hilb1|1(S|U0) × Hilb1|0(S|U1) → U0 × U1 ⊂ P 1 × P 1

Note that, since Hilb1|1(S|Ui
) and Hilb1|0(S|Ui

) are isomorphic to the affine space C1|1, we can take the 
natural projection to the reduced parts.

Let Δ∗ := p∗Δ be the pullback of the diagonal for each p = p10, p01.
First, note that we can naturally identify

Hilb2|1(S)
∣∣
V2


 Hilb1|1(S|U1) × Hilb1|0(S|U0) − Δ∗

Hilb2|1(S)
∣∣∣
V3


 Hilb1|1(S|U0) × Hilb1|0(S|U1) − Δ∗

Assign coordinates as in (6)

S|U0 
 C1|1
x,θ (7)

S|U1 
 C1|1
y,ψ (8)

Hilb2|1(S)|V1 
 C2|2
a1,a2 | α1,α2

(9)

Hilb2|1(S)
∣∣
V2


 Hilb1|1(S|U1) × Hilb1|0(S|U0) − Δ∗ (10)


 C1|1 ×C1|1 − Δ̃ (11)
b1|β1 b2|β2
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Hilb2|1(S)
∣∣∣
V3


 Hilb1|1(S|U0) × Hilb1|0(S|U1) − Δ∗ (12)


 C1|1
c1 | γ1

×C1|1
c2 | γ2

− Δ̃ (13)

Hilb2|1(S)|V4 
 C2|2
d1,d2 | δ1,δ2 (14)

where Δ̃ is defined by b1b2 = 1 in (11) and c1c2 = 1 in (13).
Observe that the isomorphism (11) and (13) are given by

C1|1
b1|β1

×C1|1
b2|β2

− Δ̃ → Hilb1|1(S|U1) × Hilb1|0(S|U0) − Δ∗

((b1|β1), (b2|β2)) 
→ 〈y + b1 + β1ψ〉 × 〈x + b2, θ + β2〉

→ Hilb2|1(S)
∣∣∣
V2


→ 〈(y + b1 + β1ψ) (x + b2) , (y + b1 + β1ψ) (θ + β2)〉

and

C1|1
c1 | γ1

×C1|1
c2 | γ2

− Δ̃ → Hilb1|1(S|U0) × Hilb1|0(S|U1) − Δ∗

((c1| γ1), (c2| γ2)) 
→ 〈x + c1 + γ1θ〉 × 〈y + c2, ψ + γ2〉

→ Hilb2|1(S)
∣∣∣
V3


→ 〈(x + c1 + γ1θ)(y + c2), (x + c1 + γ1θ)(ψ + γ2)〉 .

On the intersection V1 ∩ V3, by using the condition c2 �= 0 and identities y = 1
x and ψ = θ

xk , we get

〈(x + c1 + γ1θ)(y + c2), (x + c1 + γ1θ)(ψ + γ2)〉

=
〈

(x + c1 + γ1θ)(x + 1
c2

), (x + c1 + γ1θ)(θ + γ2

(−c2)k
)
〉

=
〈(

x + c1 −
γ1γ2

(−c2)k

)
(x + c−1

2 ) + γ1(c−1
2 − c1)

(
θ + γ2

(−c2)k

)
,(

x + c1 −
γ1γ2

(−c2)k

)(
θ + γ2

(−c2)k

)〉
.

(15)

Then the gluing map on V1 ∩ V3 is given by

(a1, a2 |α1, α2) =
(
c1 − γ1γ2(−c2)−k,

1
c2

∣∣∣∣ γ1

(
1
c2

− c1

)
, γ2(−c2)−k

)
(16)

Similarily, we can compute the gluing map on V1 ∩ V2

(a1, a2 |α1, α2) =
(

1
b1

+ β1β2(−b1)k−2, b2

∣∣∣− β1(−b1)k−2(b2 −
1
b1

), β2

)
(17)

The gluing maps on V2 ∩ V4 and V3 ∩ V4 can be computed by using symmetry.
Let W be the vector bundle defined by W∨ = J /J 2 where J ⊂ OHilb2|1(S) is the ideal sheaf generated 

by all nilpotents. To check the (non)splitness of the Hilb2|1(S), it is enough to find the obstruction class 
ω2 = w(ϕ(1)) ∈ H1(P 1 × P 1, TP1×P1 ⊗ ∧2W∨) and check it is vanishing or not. ([12])

Since ∧2W∨ is a line bundle on P 1 × P 1, there are a and b such that

∧2W∨ 
 O(a, b)
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Lemma 5.1. a = k − 3 and b = −k − 1.

Proof. First of all, to compute a, restrict ∧2W∨ to P 1 × {0}.

∧2W∨∣∣
P1×{0} 
 OP1(a)

Then the transition map between V1 and V2 gives the transition map between U0 and U1, where U0 and U1
are standard open sets on P 1 
 P 1 × {0}. By setting b2 = 0, the gluing map (17) gives us

α1α2 = β1β2(−b1)k−3 (18)

Note that the section α1α2 generates the line bundle ∧2W∨ on V1 and β1β2 generates the line bundle ∧2W∨

on V2. Therefore, (18) gives us a = k − 3.
To compute b, restrict the line bundle ∧2W∨ to {0} × P 1. Then by plugging in b1 = 0 to the transition 

map on V2 ∩ V4, we get

δ1 
→ β1

b2

δ2 
→ (−b2)−kβ2

Therefore, δ1δ2 = −β1β2(−b2)−k−1 and b = −k − 1. �
We are now ready to prove the main theorem. Note that every supermanifold of odd dimension 2 modeled 

on M and W is uniquely determined up to isomorphism by a cohomology class ω ∈ H1(M, TM ⊗ ∧2W∨). 
Therefore, the Hilbert scheme Hilb2|1(S) of odd dimension 2 is split if and only if the obstruction class ω
vanishes.

Theorem 5.2. Let S be the Hilbert scheme S(P 1, OP1(k)). The Hilbert scheme Hilb2|1(S) is not split for all 
k �= 0 and it is split for k = 0.

Proof. First, note that TP1×P1 ⊗ ∧2W∨ is the sheaf of ∧2W∨-valued even derivations on P 1 × P 1.

i) The transition map (17) on V12 := V1 ∩ V2

a1 
→ 1
b1

+ β1β2(−b1)k−2

a2 
→ b2

α1 
→ −β1(−b1)k−2(b2 −
1
b1

)

α2 
→ β2

defines a section ω12
2 ∈ Γ(V1 ∩ V2, TP1×P1 ⊗ ∧2W∨) as

ω12
2 = β1β2(−b1)k−2 ∂

∂a1
= −

α1α2

a2 − a1

∂

∂a1

Here the identification α1α2 = −(−b1)k−2(b2 −
1

)β1β2 is used.

b1
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ii) On V13 := V1 ∩ V3
The transition map (16) defines ω13

2 ∈ Γ(V1 ∩ V3, TP1×P1 ⊗ ∧2W∨)

ω13
2 = −(−c2)−kγ1γ2

∂

∂a1
= − α1α2

a2 − a1

∂

∂a1

iii) On V23 := V2 ∩ V3.
We have ω23

2 = 0 because V23 ⊂ V12 ∩ V13.
iv) The transition map on V24 := V2 ∩ V4 gives a section ω24

2 ∈ Γ(V2 ∩ V4, TP1×P1 ⊗ ∧2W∨) as

ω24
2 = β1β2

(−b2)k
∂

∂b1
= δ1δ2

d2 − d1

∂

∂d1

Then non-vanishing of the obstruction class ω2 can be proven by showing that there is no element 
σ = (σi)i ∈

∏
i Γ(Vi, T ⊗ ∧2W∨) such that the boundary map sends (σi)i to 

(
ωij

2

)
ij

.

Suppose that there are σi’s such that ωij
2 = σj − σi on each Vij . More specifically, fix coordinates 

([z0; z1], [w0;w1]) ∈ P 1 × P 1 and let f( z1z0 , 
w1
w0

), f̄( z1z0 , 
w1
w0

), g( z0z1 , 
w1
w0

), ḡ( z0z1 , 
w1
w0

), h( z1z0 , 
w0
w1

), h̄( z1z0 , 
w0
w1

) and 
l( z0z1 , 

w0
w1

), l̄( z0z1 , 
w0
w1

) be polynomials such that

σ1 = f

(
z1

z0
,
w1

w0

)
α1α2

∂

∂( z1z0 ) + f̄

(
z1

z0
,
w1

w0

)
α1α2

∂

∂(w1
w0

)

σ2 = g

(
z0

z1
,
w1

w0

)
β1β2

∂

∂( z0z1 ) + ḡ

(
z0

z1
,
w1

w0

)
β1β2

∂

∂(w1
w0

)

σ3 = h

(
z1

z0
,
w0

w1

)
γ1γ2

∂

∂( z1z0 ) + h̄

(
z1

z0
,
w0

w1

)
γ1γ2

∂

∂(w0
w1

)

σ4 = l

(
z0

z1
,
w0

w1

)
δ1δ2

∂

∂( z0z1 ) + l̄

(
z0

z1
,
w0

w1

)
δ1δ2

∂

∂(w0
w1

)

(19)

Observe that

ω12
2 = (−z0

z1
)k−2β1β2

∂

∂( z1z0 )

= σ2 − σ1

= − f

(
z1

z0
,
w1

w0

)
α1α2

∂

∂( z1z0 ) − f̄

(
z1

z0
,
w1

w0

)
α1α2

∂

∂(w1
w0

)

+ g

(
z0

z1
,
w1

w0

)
β1β2

∂

∂( z0z1 ) + ḡ

(
z0

z1
,
w1

w0

)
β1β2

∂

∂(w1
w0

)

= f ·
(
b2 −

1
b1

)
(−b1)k−2β1β2

∂

∂( z1z0 ) − g ·
(
z1

z0

)2

β1β2
∂

∂( z1z0 ) +
(
−f̄α1α2 + ḡβ1β2

) ∂

∂(w1
w0

)

(20)

By comparing coefficients, we get

(
−z0

)k

= −g

(
z0

,
w1

)
+ f

(
z1

,
w1

)(
w1 − z1

)(
−z0

)k

(21)

z1 z1 w0 z0 w0 w0 z0 z1
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Similarly, from ω13
2 we get

−
(
−w1

w0

)k

= h

(
z1

z0
,
w0

w1

)
− f

(
z1

z0
,
w1

w0

)(
w1

w0
− z1

z0

)(
−w1

w0

)k

(22)

and ω23
2 gives

h

(
z1

z0
,
w0

w1

)
− g

(
z0

z1
,
w1

w0

)(
−w1

w0

)k (
−z1

z0

)k

= 0 (23)

Case I. k > 0
If k is positive, g

(
z0
z1
, w1
w0

)(
−w1

w0

)k (
− z1

z0

)k

has a term with w0 at the denominator for all nonzero 

g. Since h 
(

z1
z0
, w0
w1

)
can not have w0 at the denominator, to make the equality (23) true, g and h

must vanish. Then the equation (22) implies

(
−w1

w0

)k

= f

(
z1

z0
,
w1

w0

)(
w1

w0
− z1

z0

)(
−w1

w0

)k

⇒ 1 = f

(
z1

z0
,
w1

w0

)(
w1

w0
− z1

z0

)
which is a contradiction.

Case II. k < 0
Observe that g

(
z0
z1
, w1
w0

)
·
(
−w1

w0

)k (
− z1

z0

)k

has z1 at the denominator for any nonzero g �= 0. 
Hence, the equation (23) means that h = g = 0. Then, as in the case k > 0, the equation (22)
implies 1 = f

(
z1
z0
, w1
w0

)(
w1
w0

− z1
z0

)
which is a contradiction.

Case III. k = 0
If k = 0, (21) and (23) implies h = g = −1 and f = 0. Furthermore, from (20), we get f̄ = 0 and 
ḡ = 0. Then by using symmetry, we can also see that h̄ = 0 and l̄ = 0.
In conclusion, we have

σ1 = 0

σ2 = −β1β2
∂

∂( z0z1 )

σ3 = −γ1γ2
∂

∂( z1z0 )

σ4 = 0

and ωij
2 = σj − σi for all i and j. Therefore, the obstruction class is vanishing. Therefore, the 

Hilbert scheme Hilb2|1 (S(P 1,OP1)
)

is isomorphic to its split model ∧•W where W =
(
J /J 2)∨

and J ⊂ OHilb2|1(S(P1,OP1 )
) is the ideal generated by nilpotents. �
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