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This paper gives a complete answer of the following question: which (singular, 
projective) curves have a categorical resolution of singularities which admits a full 
exceptional collection? We prove that such full exceptional collection exists if and 
only if the geometric genus of the curve equals to 0. Moreover we can also prove 
that a curve with geometric genus equal or greater than 1 cannot have a categorical 
resolution of singularities which has a tilting object. The proofs of both results are 
given by a careful study of the Grothendieck group and the Picard group of that 
curve.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For a triangulated category C, having a full exceptional collection is a very good property. Recall that 
the definition of full exceptional collection is as follows.

Definition 1.1. A full exceptional collection of a triangulated category C is a collection {A1 . . . An} of objects 
such that

(1) for all i one has HomC(Ai, Ai) = k and HomC(Ai, Ai[l]) = 0 for all l �= 0;
(2) for all 1 ≤ i < j ≤ n one has HomC(Aj , Ai[l]) = 0 for all l ∈ Z;
(3) the smallest triangulated subcategory of C containing A1, . . . , An coincides with C.

However it is not very common that a triangulated category C has a full exceptional collection. In 
algebraic geometry, it is well-known that for a smooth projective curve X over an algebraically closed 
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field k, its bounded derived category of coherent sheaves Db(coh(X)) has a full exceptional collection if and 
only if the genus of X equals to 0.

Moreover for a singular projective curve X and a (geometric) resolution of singularities X̃ → X, the 
geometric genus of X̃ and X are equal, hence it is clear that Db(coh(X̃)) has a full exceptional collection if 
and only if the geometric genus of X equals to 0.

In this paper we would like to consider the categorical resolution of X, which is introduced in [4].

Definition 1.2. (See [4] Definition 3.2 or [5] Definition 1.3.) A categorical resolution of a scheme X is a 
smooth, cocomplete, compactly generated, triangulated category T with an adjoint pair of triangulated 
functors

π∗ : D(X) → T and π∗ : T → D(X)

such that

(1) π∗ ◦ π∗ = id;
(2) both π∗ and π∗ commute with arbitrary direct sums;
(3) π∗(T c) ⊂ Db(coh(X)) where T c denotes the full subcategory of T which consists of compact objects.

Remark 1. The first property implies that π∗ is fully faithful and the second property implies that 
π∗(Dperf(X)) ⊂ T c.

Remark 2. The categorical resolution of X is not necessarily unique.

Remark 3. In this paper we will not discuss further on the smoothness of a triangulated category and the 
interested readers may refer to [5] Section 1. Moreover, the main result in this paper does not depend on 
the smoothness, see Corollaries 3.6 and 4.8 below.

We are interested in the question that when does T c have a full exceptional collection. If X is an 
projective curve of geometric genus g = 0, it can be deduced from the construction in [5] that there exists 
a categorical resolution (T , π∗, π∗) of X such that T c has a full exceptional collection. See Proposition 4.1
below.

The main result of this paper is the following theorem, which rules out the possibility for any categorical 
resolution of a curve with geometric genus g ≥ 1 has a full exceptional collection.

Theorem 1.1. (See Theorem 4.9 below.) Let X be a projective curve over an algebraically closed field k. Let 
(T , π∗, π∗) be a categorical resolution of X. If the geometric genus of X is ≥ 1, then T c cannot have a full 
exceptional collection.

In other words, X has a categorical resolution which admits a full exceptional collection if and only if the 
geometric genus of X equals to 0.

Remark 4. In a recent paper [1] a result which is related to the above claim has been proved. Actually it 
has been proved that if X is a reduced rational curve, then there exists a categorical resolution (T , π∗, π∗)
of X such that T c has a tilting object, which in general does not come from an exceptional collection. See 
[1] Theorem 7.4.

Recall that the definition of tilting object is given as follows.

Definition 1.3. Let C be a triangulated category. A tilting object is an object L of C which satisfies the 
following properties.
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(1) L is a compact object of C;
(2) HomC(L, L[i]) = 0 for any non-zero integer i;
(3) the smallest thick triangulated subcategory of C which contains L is C itself.

For a tilting object let Λ = EndC(L). Then it can be shown that we have equivalence of triangulated 
categories

C ∼= Db(Λ − mod)

where Db(Λ − mod) is the derived category of bounded complexes of finitely generated Λ-modules.

Actually we can also prove a related result in the g ≥ 1 case (thanks to Igor Burban for pointing it out).

Theorem 1.2. (See Theorem 4.10 below.) Let X be a projective curve over an algebraically closed field k of 
geometric genus ≥ 1. Let (T , π∗, π∗) be a categorical resolution of X. Then T c cannot have a tilting object, 
moreover there cannot be a finite dimensional k-algebra Λ of finite global dimension such that

T c ∼= Db(Λ − mod)

The proofs of both theorems depend on a careful study of various Grothendieck groups of X. In particular 
we will investigate the natural map K0(Dperf(X)) → K0(Db(coh(X))) and show that if g ≥ 1 then the image 
is not finitely generated, of which Theorem 1.1 and 1.2 will be a direct consequence.

2. Some generalities on K-theory and the Picard group

In this section we quickly review the K-theory and the Picard group of schemes. For reference see [9]
Chapter II.

Let A be an abelian category (or more generally an exact category). The Grothendieck group K0(A) is 
defined as an abelian group with generators [A] for each isomorphism class of objects A in A and subjects 
to the relation that

[A2] = [A1] + [A3]

for any short exact sequence 0 → A1 → A2 → A3 → 0 in A.
Similarly let C be a triangulated category. The Grothendieck group K0(C) is defined as an abelian group 

with generators [C] for each isomorphism class of objects C in C and subjects to the relation that

[C2] = [C1] + [C3]

for any exact triangle C1 → C2 → C3 → C1[1] in C.

Proposition 2.1. If a triangulated category C has a full exceptional collection {A1 . . . An}, then the 
Grothendieck group of C, K0(C), is isomorphic to Zn.

Proof. It is an immediate consequence of Definition 1.1. �
Definition 2.1. Let X be an Noetherian scheme, follow the standard notation (see for example [8] Section 5.6 
or [9] Chapter II) we denote the Grothendieck group of Dperf(X) by K0(X) and the Grothendieck group of 
Db(coh(X)) by G0(X).

Notice that in some literatures, say [3] Exposé IV or [7], K0(X) is denoted by K0(X) and G0(X) is 
denoted by K0(X). Nevertheless in this paper we will use the previous notation.
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Remark 5. In the literature people also define Knaïve
0 (X) to be the Grothendieck group of the exact category 

V B(X) and Gnaïve
0 (X) to be the Grothendieck group of the abelian category coh(X).

Nevertheless Gnaïve
0 (X) is isomorphic to G0(X) for any Noetherian scheme X ([3], Exposé IV, 2.4) and 

Knaïve
0 (X) is isomorphic to K0(X) for any quasi-projective scheme X ([3], Exposé IV, 2.9). Since we always 

work with quasi-projective schemes in this paper, we can identify Gnaïve
0 (X) and G0(X) as well as Knaïve

0 (X)
and K0(X).

Definition 2.2. Let X be a Noetherian scheme. The inclusion Dperf(X) ↪→ Db(coh(X)) gives a group homo-
morphism

c : K0(X) → G0(X)

which is called the Cartan homomorphism.

Proposition 2.2. For a Noetherian scheme X, the tensor product gives K0(X) a ring structure and G0(X)
a K0(X)-module structure. Moreover, the Cartan homomorphism c : K0(X) → G0(X) is a morphism of 
K0(X)-modules.

Proof. See [7] 1.5 and 1.6. �
Proposition 2.3. If X is a regular Noetherian scheme, then the Cartan homomorphism is an isomorphism, 
i.e. we have

c : K0(X)
∼=→ G0(X)

Proof. See [9] Chapter II Theorem 8.2. �
Smooth schemes are regular hence the Cartan homomorphism is an isomorphism for any smooth scheme.

Remark 6. For general X the Cartan homomorphism is not an isomorphism, actually it is not even injective 
in general.

Next we talk about the functorial properties of K0 and G0, which are more involved. First we have the 
following definition.

Definition 2.3. Let f : X → Y be a morphism of schemes, then the derived pull-back Lf∗ functor induces 
the map

f∗ : K0(Y ) → K0(X).

See [3] Exposé IV, 2.7.
If f : X → Y is a flat morphism between Noetherian schemes, or more generally f is of finite Tor-

dimension. Then Lf∗ is a functor Db(coh(Y )) → Db(coh(X)) and induces the map

f∗ : G0(Y ) → G0(X).

See [3] Exposé IV, 2.12.

We can also define the push-forward map for G0(−) for proper morphisms.



3336 Z. Wei / Journal of Pure and Applied Algebra 220 (2016) 3332–3344
Definition 2.4. Let f : X → Y be a proper morphism of Noetherian schemes, then the derived push-forward 
functor Rf∗ induces the map

f∗ : G0(X) → G0(Y ).

We will also need some results on the relationship between the Grothendieck group and the Picard group. 
Let Pic(X) denote the Picard group of X and we have the following proposition.

Proposition 2.4. There is a determinant map

det : K0(X) → Pic(X)

which is a surjective group homomorphism. Moreover, the determinant map commutes with the restriction 
map, i.e. we have the following commutative diagram

K0(X) det−−−−→ Pic(X)
⏐⏐�r

⏐⏐�r

K0(U) det−−−−→ Pic(U)

Proof. For an n-dimensional vector bundle E we can take its determinant line bundle, i.e. the top exterior 
power ∧nE and we call it det(E). Moreover, for a short exact sequence of vector bundles 0 → E → F → G → 0
we have det(F) ∼= det(E) ⊗det(G) hence we get a well-defined group homomorphism det : K0(X) → Pic(X).

The above diagram commutes because the construction of the determinant map is natural. The sur-
jectivity of det also comes from the construction since we could pick E to be any line bundle and hence 
det(E) = E . �
3. The irreducible and reduced case of the main theorem

To illustrate the idea, we focus on the case that X is an irreducible, reduced, projective curve over k in 
this section.

In this case let p : X̃ → X be a (geometric) resolution of singularity and we can obtain more information 
on Pic(X̃). First we have

Theorem 3.1. (See [6] Corollary 7.4.41.) Let X̃ be a smooth, connected, projective curve over an algebraically 
closed field k, of genus g. Let Pic0(X̃) denote the subgroup of Pic(X̃) consisting of divisors of degree 0. Let 
n ∈ Z be non-zero and Pic0(X̃)[n] denote the kernel of the multiplication by n map.

(1) If (n, char(k)) = 1, then Pic0(X̃)[n] ∼= (Z/nZ)2g;
(2) If p = char(k) > 0, then there exists an 0 ≤ h ≤ g such that for any n = pm, we have Pic0(X̃)[n] =

(Z/nZ)h.

Corollary 3.2. Let X̃ be a smooth, connected, projective curve over an algebraically closed field k of genus 
g ≥ 1, then Pic0(X̃) and hence Pic(X̃) are not finitely generated as an abelian group. Moreover, for any 
non-zero integer n, nPic(X̃) is not finitely generated.

Proof. It is an immediate consequence of Theorem 3.1. �
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Remark 7. If the base field k is not algebraically closed, then Pic0(X̃) may be finitely generated. For example 
if k = Q and X̃ is a smooth elliptic curve, then by Mordell theorem, Pic0(X̃) is a finitely generated abelian 
group.

Let Z be the closed subset consisting of singular points of X and U = X − Z. Since p : X̃ → X is a 
resolution of singularity, the restriction of p

p|p−1(U) : p−1(U)
∼=→ U

is an isomorphism.
We want to understand the Picard group of U . In fact we have the following result

Lemma 3.3. Let X̃ be a smooth and connected projective curve with genus g ≥ 1 over an algebraically closed 
field k. Let U be a non-empty open subset of X̃. Then Pic(U) is not finitely generated. Moreover, for any 
non-zero integer n, nPic(U) is not finitely generated.

Proof. This is actually part of [6] Exercise 7.4.9. Thanks to Georges Elencwajg for helping with the 
proof. Actually we can write U = X\{p1, . . . , pl}. It follows that the kernel of the natural homomorphism 
Pic0(X) → Pic(U) is the subgroup of Pic0(X) generated by [pi] − [pj ], hence is finitely generated. Then this 
lemma is a consequence of Corollary 3.2. �

It is also necessary to know the relation between the Picard group of a non-smooth curve X and its 
non-empty subscheme U , which is given in the following lemma.

Lemma 3.4. Let X be a (not necessarily smooth) curve over an algebraically closed field k. Let U be an open 
subscheme of X.

Let L be a line bundle on U . Then we can always extend L to a line bundle on X. As a result, the 
restriction map of the Picard groups

r : Pic(X) → Pic(U)

is surjective

Proof. One way to proof this result (thanks to Kȩstutis Česnavičius for pointing it out) is to first find a 
Cartier divisor D on U whose associated line bundle is L. The existence of such D is guaranteed by [2]
Proposition 21.3.4 (a). Then apply [2] Proposition 21.9.4 we can extend D to a Cartier divisor D′ on X, 
whose associated line bundle L′ gives an extension of L. �

The next Proposition is the key step of our proof.

Proposition 3.5. Let X be a reduced, irreducible, projective curve of geometric genus g ≥ 1 over an alge-
braically closed field k, then the image of the Cartan homomorphism

c : K0(X) → G0(X)

is not finitely generated.

Proof. First let Z be the closed subset consisting of singular points of X and U = X − Z be the smooth 
open subscheme. We have the restriction maps r : K0(X) → K0(U) and r : G0(X) → G0(U) and they give 
the commutative diagram



3338 Z. Wei / Journal of Pure and Applied Algebra 220 (2016) 3332–3344
K0(X) c−−−−→ G0(X)
⏐⏐�r

⏐⏐�r

K0(U) c−−−−→ G0(U)

Since U is smooth, by Proposition 2.3 the bottom map is an isomorphism.
Now assume the image of the top map is finitely generated, then the image of the composition r ◦ c :

K0(X) → G0(U) is also finitely generated. Since we have the isomorphism c : K0(U) 
∼=→ G0(U), the left 

vertical map r : K0(X) → K0(U) must also have finitely generated image. Therefore the image of the 
composition

K0(X) r→ K0(U) det−→ Pic(U)

is finitely generated.
On the other hand we consider the commutative diagram

K0(X) det−−−−→ Pic(X)
⏐⏐�r

⏐⏐�r

K0(U) det−−−−→ Pic(U)

By Proposition 2.4 and Lemma 3.4, the top and the right vertical map of the above diagram are surjective 
and so does their composition. As a result Pic(U) = Pic(p−1(U)) is finitely generated, which is contradictory 
to Lemma 3.3. �
Corollary 3.6. Let X be a reduced, irreducible, projective curves of geometric genus g ≥ 1 over an algebraically 
closed field k. If the inclusion Dperf(X) → Db(coh(X)) factors through a triangulated category S, then S
cannot have a full exceptional collection.

Proof. The composition

K0(X) → K0(S) → G0(X)

coincides with the Cartan homomorphism c : K0(X) → G0(X). By Proposition 3.5, the image of the Cartan 
homomorphism is not finitely generated, hence K0(S) is not finitely generated. Then by Proposition 2.1, 
S cannot have a full exceptional collection. �
Corollary 3.7. Let X be a reduced, irreducible, projective curves of geometric genus g ≥ 1 over an algebraically 
closed field k. Let (T , π∗, π∗) be a categorial resolution of X. Then T c cannot have a full exceptional 
collection.

Proof. By the definition of categorical resolution, the composition

Dperf(X) π∗
→ T c π∗→ Db(coh(X))

is the same as the inclusion Dperf(X) ↪→ Db(coh(X)). Therefore the composition

K0(X) → K0(T c) → G0(X)

coincides with the Cartan homomorphism c : K0(X) → G0(X). Then it is a direct consequence of Corol-
lary 3.6. �
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4. The general case of the main theorem

In this section we consider the case that X is not irreducible nor reduced. In this case we still want to 
show that the image of the Cartan homomorphism c : K0(X) → G0(X) is not finitely generated but the 
proof is more involved.

Let Xred denote the associated reduced scheme of X and i : Xred → X the natural closed immersion. 
Then Xred is a reduced, projective curve with the same geometric genus as X.

First we investigate the g = 0 case, which is the following Proposition.

Proposition 4.1. Let X be a projective curve over an algebraically closed field k of geometric genus g = 0, 
then X has a categorical resolution (T , π∗, π∗) such that T c has a full exceptional collection.

Proof. As we mentioned in the Introduction, the result in this Proposition is a direct consequence of the 
construction of categorical resolution in [5], although it is not explicitly stated in [5].

First [5] Equation (59) in page 69 gives a chain

Xm Xm−1 . . . X1 X0 X

Zm−1 Z1 Z0

(1)

where each Xi+1 is the blowup of Xi at the center Zi and (Xm)red is smooth.
Moreover [5] Equation (61) in page 71 tells us that there exists a categorical resolution T of X such that 

its subcategory T c has the following semiorthogonal decomposition

T c = 〈Db(coh(Z0)) . . .Db(coh(Z0))︸ ︷︷ ︸
n0 times

, . . . ,

Db(coh(Zm−1)) . . .Db(coh(Zm−1))︸ ︷︷ ︸
nm−1 times

,

Db(coh((Xm)red)) . . .Db(coh((Xm)red))
︸ ︷︷ ︸

nm times

〉 (2)

where the ni’s are certain multiples given in [5] after Equation (61) and we do not need their precise 
definition.

Since X is of dimension 1, each of the Zi is 0-dimensional hence Db(coh(Zi)) has a full exceptional 
collection. Moreover since X is of genus 0, we have (Xm)red is a finite product of P1’s hence Db(coh((Xm)red))
also has a full exceptional collection. As a result T c has a full exceptional collection. �

Then we consider the g ≥ 1 case. By Definitions 2.3 and 2.4 we have the natural map

i∗ : K0(X) → K0(Xred)

and

i∗ : G0(Xred) → G0(X).

For i∗ we have the following “devissage” theorem.
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Theorem 4.2. (See [9] Chapter II Corollary 6.3.2.) Let X be a Noetherian scheme, and Xred the associated 
reduced scheme. Then i∗ : G0(Xred) → G0(X) is an isomorphism.

Proof. See [9] Chapter II Corollary 6.3.2. �
However, the following diagram

K0(X) c−−−−→ G0(X)
⏐⏐�i∗ ∼=

	⏐⏐i∗

K0(Xred) c−−−−→ G0(Xred)

does not commute. Hence we cannot directly apply the result in Section 3 and need to find another way.
Let X = ∪m

i=1Xi be the decomposition into irreducible components, hence Xred = ∪m
i=1(Xi)red (Do not 

confused with the Xi’s in the proof of Proposition 4.1). Since X has geometric genus ≥ 1, at least one of 
the irreducible components Xi’s also has geometric genus ≥ 1, say X1.

For an non-empty, open, irreducible subscheme U of X1 we also consider Ured. We can make U small 
enough so that both U and Ured are affine and Ured is smooth. Let U = Spec(A) and Ured = Spec(A/I)
where I is the nilpotent radical of A with I l+1 = 0. Since U is irreducible, I is also the minimal prime ideal 
of A. Let I denote the associated sheaf on U .

Let us consider the diagram

K0(U) c−−−−→ G0(U)
⏐⏐�i∗

	⏐⏐i∗

K0(Ured) c−−−−→ G0(Ured)

Again it does not commute. Nevertheless we will prove that it is not too far from commutative.
First let us fix the notations. Let eU denote the element [OU ] in G0(U) and eUred denote the element 

[OUred ] in G0(Ured).

Lemma 4.3. We can choose U small enough such that there is a non-zero integer n such that

eU = n i∗(eUred).

Proof. By Theorem 4.2, i∗ is an isomorphism so it is sufficient to prove

i−1
∗ (eU ) = n eUred

in G0(Ured).
It is clear that in G0(Ured) we have

i−1
∗ (eU ) = eUred + [I/I2] + . . . + [Il−1/Il] + [Il]. (3)

Each of the Ik−1/Ik is a coherent sheaf on the smooth scheme Ured hence we have a resolution of finite 
length

0 → Pmk

k → Pmk−1
k → . . . → P0

k → Ik−1/Ik for 1 ≤ k ≤ l + 1.

where the Pmk−j
k ’s are locally free sheaves on Ured. We can shrink U further to make all the Pmk−j

k ’s are 
free sheaves on Ured. Hence for each k there is an integer nk such that
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[Ik−1/Ik] = nkeUred

and as a result there is an integer n such that

i−1
∗ (eU ) = n eUred

in G0(Ured).
We still need to show that n �= 0. This can be achieved by localizing to the generic point of U . Recall 

that I is the minimal prime ideal of A hence I corresponds to the generic point of U .
Let us denote AI , the localization of A at I by B and denote the ideal IB by J . Moreover we denote 

Spec(B) by V and similarly denote Spec(B/J) by Vred. Let f : V → U , fred : Vred → Ured, and j : Vred → V

be the natural maps.
Since f : V → U is flat, we can define the pull-back map f∗ : G0(U) → G0(V ).
Let us denote the class [OV ] in G0(V ) by eV . By definition f∗(eU ) = eV . If eU = 0 then we have eV = 0

and j−1
∗ (eV ) = 0.

On the other hand B/J = AI/II ∼= Frac(A/I) is a field hence G0(Vred) = G0(B/J) ∼= Z. Similar to 
Equation (3) we have

j−1
∗ (eV ) = [B/J ] + [J/J2] + . . . + [J l−1/J l] + [J l].

Each of the Jm−1/Jm is a vector space over the field B/J hence the right hand side cannot be zero in 
G0(Vred). �
Proposition 4.4. Let U and n be as in Lemma 4.3. Then for any element a ∈ K0(U) we have

c(a) = n i∗c i
∗(a),

i.e. the diagram

K0(U) c−−−−→ G0(U)
⏐⏐�n i∗ ∼=

	⏐⏐i∗

K0(Ured)
c−−−−→ G0(Ured)

commutes.

Proof. We need the following lemma.

Lemma 4.5. For any Noetherian scheme U , G0(Ured) has a K0(U)-module structure. Moreover, the map 
i∗ : G0(Ured) → G0(U) is a morphism of K0(U)-modules.

Proof of Lemma 4.5. First the K0(U)-module structure on G0(Ured) is given by composing with i∗. More 
explicitly, for a ∈ K0(U) and m ∈ G0(Ured) we define

a ·m = i∗(a) ·m

where the right hand side uses the K0(Ured)-module structure on G0(Ured).
Then we need to show that i∗ is a K0(U)-module map, i.e.

i∗(i∗(a) ·m) = a · i∗(m).



3342 Z. Wei / Journal of Pure and Applied Algebra 220 (2016) 3332–3344
But this is exactly the projection formula. �
Now we can prove Proposition 4.4. Let us denote [OU ] ∈ K0(U) by 1U and [OUred ] ∈ K0(Ured) by 1Ured . 

Then it is clear that

c(1U ) = eU and c(1Ured) = eUred .

Then for any a ∈ K0(U) we have

c(a) = c(a · 1U )

= a · eU
= a · (ni∗(eUred)) (Lemma 4.3)

= n(a · i∗(eUred))

= ni∗(i∗(a) · eUred) (Lemma 4.5)

= n i∗c i
∗(a). �

Now we are ready to prove the following Proposition, which is the general version of Proposition 3.5.

Proposition 4.6. Let X be a projective curves of geometric genus g ≥ 1 over an algebraically closed field k, 
then the image of the Cartan homomorphism

c : K0(X) → G0(X)

is not finitely generated.

Proof. First let U be as in Lemma 4.3 and Proposition 4.4. By Proposition 4.4 and Theorem 4.2 there is a 
non-zero integer n such that the following diagram commutes

K0(U) c−−−−→ G0(U)
⏐⏐�n i∗

⏐⏐�(i∗)−1

K0(Ured) c−−−−→ G0(Ured)

hence the diagram

K0(X) c−−−−→ G0(X)

r

⏐⏐�
⏐⏐�r

K0(U) c−−−−→ G0(U)
⏐⏐�n i∗

⏐⏐�(i∗)−1

K0(Ured) c−−−−→ G0(Ured)

commutes. For short we have

K0(X) c−−−−→ G0(X)
⏐⏐�n i∗r

⏐⏐�(i∗)−1r

c

K0(Ured) −−−−→ G0(Ured)
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Now assume the image of c : K0(X) → G0(X) is finitely generated. Since Ured is smooth, the c :
K0(Ured) → G0(Ured) in the above diagram is an isomorphism, hence the image of n i∗r is also finitely 
generated.

Next we observe that we have the commutative diagrams

K0(X) n i∗−−−−→ K0(Xred)
⏐⏐�r

⏐⏐�r

K0(U) n i∗−−−−→ G0(Ured)

and

K0(X) det−−−−→ Pic(X)

n i∗
⏐⏐�

⏐⏐�n i∗

K0(Xred) det−−−−→ Pic(Xred)
⏐⏐�r

⏐⏐�r

K0(Ured) det−−−−→ Pic(Ured)

From the left-bottom composition of the above diagram we know that the image of det ◦r ◦ (n i∗) is 
finitely generated.

On the other hand we will study the top-right composition of the above diagram. By Proposition 2.4
the map det is surjective and by Lemma 3.4 the map r is also surjective. As for the map i∗ we need the 
following lemma.

Lemma 4.7. (See [6] Lemma 7.5.11.) Let X be a connected projective curve over an algebraically closed 
field k. Then i∗ : Pic(X) → Pic(Xred) is surjective.

Proof of Lemma 4.7. See [6] Lemma 7.5.11. �
Then it is clear that the image of r ◦ (ni∗) ◦det is nPic(Ured). Compare with the left-bottom composition 

we get the conclusion that nPic(Ured) is finitely generated, which is contradictory to Lemma 3.3. �
Corollary 4.8. Let X be a projective curves of geometric genus g ≥ 1 over an algebraically closed field k. If 
the inclusion Dperf(X) → Db(coh(X)) factors through a triangulated category S, then S cannot have a full 
exceptional collection.

Proof. The proof is almost the same as that of Corollary 3.6 except that we use Proposition 4.6 instead of 
Proposition 3.5. �
Theorem 4.9. [See Theorem 1.1] Let X be a projective curve over an algebraically closed field k. Let 
(T , π∗, π∗) be a categorical resolution of X. If the geometric genus of X is ≥ 1, then T c cannot have 
a full exceptional collection.

In other words, X has a categorical resolution which admits a full exceptional collection if and only if the 
geometric genus of X equals to 0.

Proof. Since we have Proposition 4.1, it is sufficient to prove the first claim of the theorem, which is a direct 
consequence of Corollary 4.8. �
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Remark 8. In the proof we did not use the fact the T is a smooth triangulated category.

Remark 9. The proof of Theorem 4.9 fails if the base field k is not algebraically closed. The main reason 
is when k is not algebraically closed, the Picard group may be finitely generated. See Remark 7 after 
Corollary 3.2.

Nevertheless, we expect that the result of Theorem 4.9 is still true in the non-algebraically closed case. We 
believe that a proof could be achieved through a systematic study of the behavior of categorical resolution 
under scalar extension and we will leave this topic for a future paper.

It is worthwhile to mention that we have another application of Proposition 4.6 (thanks to Igor Burban 
for pointing it out).

Theorem 4.10. Let X be a projective curve over an algebraically closed field k of geometric genus ≥ 1. Let 
(T , π∗, π∗) be a categorical resolution of X. Then T c cannot have a tilting object, moreover there cannot 
be a finite dimensional k-algebra Λ of finite global dimension such that

T c ∼= Db(Λ − mod)

where Db(Λ − mod) is the derived category of bounded complexes of finitely generated Λ-modules.

Proof. With Proposition 4.6 it is sufficient to prove that the Grothendieck group K0(Db(Λ −mod)) is finitely 
generated. The proof is as follows: Since Λ is finite dimensional, it is a finitely generated Artinian k-algebra, 
hence every finitely generated Λ-module has a composition series. Moreover the set of isomorphic classes of 
simple Λ-module is finite. We get the desired result. �
Remark 10. Again in the proof we did not use that fact that Λ is of finite global dimension, which corresponds 
to the smoothness of T .
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