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Enomoto showed for finite dimensional algebras that the classification of exact 
structures on the category of finitely generated projective modules can be reduced to 
the classification of 2-regular simple modules. In this article, we give a combinatorial 
classification of 2-regular simple modules for Nakayama algebras and we use this 
classification to answer several natural questions such as when there is a unique exact 
structure on the category of finitely generated projective modules for Nakayama 
algebras. We also classify 1-regular simple modules, quasi-hereditary Nakayama 
algebras and Nakayama algebras of global dimension at most two. It turns out 
that most classes are enumerated by well-known combinatorial sequences, such as 
Fibonacci, Riordan and Narayana numbers. We first obtain interpretations in terms 
of the Auslander-Reiten quiver of the algebra using homological algebra, and then 
apply suitable bijections to relate these to combinatorial statistics on Dyck paths.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A Nakayama algebra is a finite-dimensional algebra over a field F , all whose indecomposable projective 
and indecomposable injective modules are uniserial. The aim of this paper is to provide a dictionary between 
homological properties of Nakayama algebras and their modules, and combinatorial statistics on (possibly 
periodic) Dyck paths. Our main results concern 1- and 2-regular simple modules. By a result of Enomoto 
([9, Theorem 3.7]) the classification of 2-regular simple modules corresponds to the classification of exact 
structures on the category of finitely generated projective modules. In general the classification of exact 
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structures on the category of finitely generated projective modules for a finite dimensional algebra is a 
hard problem and it seems there is no solution yet for a large class of algebras. For Nakayama algebras we 
use a combinatorial model via Dyck paths and explicit knowledge of the beginning of a minimal projective 
resolution of a simple module to obtain an elementary description of 2-regular simple modules and use this to 
give a first classification result for 2-regular simple modules for a large class of algebras. Nakayama algebras 
are one of the most basic classes of algebras in the representation theory of finite dimensional algebras and 
we hope that our work can be seen as a foundation for more general classification results for exact structures 
on the category of finitely generated projective modules for larger classes of algebras such as the recently 
introduced higher Nakayama algebras, see [13]. We also mention that 2-regular simple modules can be used 
to construct Iwanaga-Gorenstein algebras of finite Cohen-Macaulay type, see [9, Theorem A], which gives 
another motivation for the classification of 2-regular simple modules and equivalently exact structures on 
the category of finitely generated projective modules. Several natural questions arise, such as:

(1) When does the category of finitely generated projective modules of an algebra have a unique exact 
structure?

(2) How many exact structures on the category of finitely generated projective modules can an algebra in 
a given class of algebras have at most?

In this article we give a combinatorial description of 2-regular simple modules for Nakayama algebras and use 
this to completely answer these two algebraic questions. In addition, our results also exhibit an interesting 
interplay between the representation theory and homological algebra of Nakayama algebras on the one hand 
and combinatorial properties of Dyck paths on the other hand.

Let Q be a finite quiver with path algebra FQ, and let J denote the ideal generated by the arrows 
in Q. Then a two sided ideal I is called admissible if Jm ⊆ I ⊆ J2 for some m � 2. In this article we 
assume that all Nakayama algebras are given by a connected quiver and admissible relations. Note that this 
assumption is no loss of generality for algebraically closed fields since every algebra is Morita equivalent to a 
quiver algebra in this case and all our notions are invariant under Morita equivalence. Using this language, 
Nakayama algebras are precisely the algebras FQ/I, such that I is admissible and Q is either a linear quiver

0 1 n− 2 n− 1
· · ·

or a cyclic quiver

0 1 n− 2 n− 1
· · ·

For textbook introductions to Nakayama algebras we refer for example to [2,1,25]. We write LNakayama 
algebra for a Nakayama algebra with linear quiver and CNakayama algebra for a Nakayama algebra with 
cyclic quiver. We moreover write n-Nakayama algebra, n-LNakayama, and n-CNakayama in the cases that 
the respective Nakayama algebra has n simple modules S0, . . . , Sn−1. These are in one-to-one correspondence 
with the vertices of the quiver.

In Section 2 we provide identifications between (n + 1)-LNakayama algebras and Dyck paths of 
semilength n (Proposition 2.8) and between n-CNakayama algebras and certain n-periodic Dyck paths 
(Proposition 2.9).
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Restriction Statement
no 1-regular simples Corollary 3.21 (Riordan numbers)
no 2-regular simples Corollary 3.22 (Dyck paths without 2-hills)
k 1-regular and � 2-regular simples Corollary 3.23
� simples of projective dimension 1 Corollary 3.17 (Narayana numbers)
� simples of projective dimension 2 Corollary 3.19 (Dyck paths with � big returns)
k simples of projective dimension 1

and � simples of projective dimension 2 Corollary 3.20
global dimension 2 and � simples of projective dimension 2 Theorem 4.2 (subsets of cardinality 2�)
global dimension 2 and restricted Gorenstein Corollary 4.7 (Fibonacci numbers)
quasi-hereditary Corollary 3.30 (balanced non-constant binary necklaces)
quasi-hereditary with a simple of dimension 2 Proposition 3.32
quasi-hereditary without 1-regular simples Corollary 3.38 (periodic Dyck paths without 1-rises)
quasi-hereditary without 2-regular simples Corollary 3.39 (periodic Dyck paths without 2-hills)
quasi-hereditary with � simples of projective dimension 1 Corollary 3.36 (periodic Dyck paths with � peaks)
quasi-hereditary with � simples of projective dimension 2 Corollary 3.37 (periodic Dyck paths with � big returns)
global dimension 2 and � simples of projective dimension 2 Theorem 4.2 (subsets of cardinality 2� up to rotation by pairs)
global dimension 2 and restricted Gorenstein Corollary 4.8 (cyclic compositions of non-singleton parts)

Fig. 1. Enumerative results for LNakayama algebras and for CNakayama algebras.

Section 3 contains the main results of this paper. These are descriptions of 1- and 2-regular simple modules 
for Nakayama algebras in terms of classical Dyck path statistics (Theorem 3.14 for LNakayama algebras 
and Theorem 3.33 for CNakayama algebras). In Section 4, we classify simple modules in Nakayama algebras 
of global dimension at most two (Theorem 4.2) and Nakayama algebras of global dimension at most two 
that satisfy the restricted Gorenstein condition (Theorem 4.6). As corollaries of these classification results, 
we also obtain explicit enumeration formulas in all considered situations as summarized in Fig. 1.

The translation between Nakayama algebras and Dyck paths made it possible to search

• the Online Encyclopedia of Integer Sequences [26] for counting formulas for the homological properties, 
and

• the combinatorial statistic finder FindStat [22] for combinatorial interpretations.

All major results, including the bijections involved, are based on these searches. In particular, results found 
by FindStat suggested the main bijection employed, which is a variant of the Billey-Jockusch-Stanley bijec-
tion and the Lalanne-Kreweras involution.

For the reader’s convenience, we reference integer sequences in this article to the Online Encyclopedia of 
Integer Sequences [26] and combinatorial bijections and statistics to FindStat [22]. We also provide all dis-
cussed homological properties for several small Nakayama algebras in Fig. 2 for later reference. Experiments 
were carried out using the GAP-package QPA [19] and SageMath [23].

2. Preliminaries

Let A be an n-Nakayama algebra and let ei denote the idempotent corresponding to vertex i in the 
corresponding quiver. The Kupisch series of A is the sequence [c0, c1, . . . , cn−1], where ci � 1 denotes the 
vector space dimension of the indecomposable projective module eiA. This sequence uniquely determines 
the algebra up to isomorphism, see for example [1, Theorem 32.9]. For n-CNakayama algebras we extend 
the Kupisch series cyclically via ci = cj for i, j ∈ Z with i ≡ j mod n. Two Kupisch series give isomorphic 
CNakayama algebras if and only if they coincide up to cyclic rotation, corresponding to the cyclic rotation 
of the vertices of the quiver.

The following identification of Nakayama algebras and Kupisch series is classical and can be found, for 
example, in [1, Chapter 32]. We repeat it here for the convenience of the more combinatorially inclined 
reader and to fix notation. First observe that the Kupisch series [c0, . . . , cn−1] of an n-Nakayama algebra A

satisfies
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Kupisch series 1-reg. 2-reg. pdim 1 pdim 2 gdim
[1] - - - - 0

[2, 1] 0 - 0 - 1
[2, 2, 1] - 0 1 0 2

[3, 2, 1] 0,1 - 0,1 - 1
[2, 2, 2, 1] - - 2 1 3

[3, 2, 2, 1] 0 1 0,2 1 2
[2, 3, 2, 1] 2 0 1,2 0 2
[3, 3, 2, 1] 1 - 1,2 0 2
[4, 3, 2, 1] 0,1,2 - 0,1,2 - 1

[2, 2, 2, 2, 1] - - 3 2 4
[3, 2, 2, 2, 1] 0 - 0,3 2 3
[2, 3, 2, 2, 1] - 0,2 1,3 0,2 2
[3, 3, 2, 2, 1] 1 - 1,3 2 3
[4, 3, 2, 2, 1] 0,1 2 0,1,3 2 2
[2, 2, 3, 2, 1] 3 - 2,3 1 3
[3, 2, 3, 2, 1] 0,3 1 0,2,3 1 2
[2, 3, 3, 2, 1] 2 - 2,3 1 3
[3, 3, 3, 2, 1] - - 2,3 1 3
[4, 3, 3, 2, 1] 0,2 - 0,2,3 1 2
[2, 4, 3, 2, 1] 2,3 0 1,2,3 0 2
[3, 4, 3, 2, 1] 1,3 - 1,2,3 0 2
[4, 4, 3, 2, 1] 1,2 - 1,2,3 0 2
[5, 4, 3, 2, 1] 0,1,2,3 - 0,1,2,3 - 1

Kupisch series 1-reg. 2-reg. pdim 1 pdim 2 gdim
[3, 2] - 1 0 1 2

[2, 3, 2] - - 1 0 3
[4, 3, 2] 1 2 0,1 2 2
[5, 4, 3] 0 - 0,1 2 2

[2, 2, 3, 2] - - 2 1 4
[2, 4, 3, 2] 2 - 1,2 0 3
[3, 2, 3, 2] - 1,3 0,2 1,3 2
[3, 4, 3, 2] 1 - 1,2 0 3
[4, 3, 3, 2] 2 - 0,2 3 3
[5, 4, 3, 2] 1,2 3 0,1,2 3 2
[3, 5, 4, 3] - - 1,2 0 3
[6, 5, 4, 3] 0,2 - 0,1,2 3 2
[7, 6, 5, 4] 0,1 - 0,1,2 3 2

[2, 2, 2, 3, 2] - - 3 2 5
[2, 2, 4, 3, 2] 3 - 2,3 1 4
[2, 3, 2, 3, 2] - 2 1,3 0,2 3
[2, 3, 4, 3, 2] 2 - 2,3 1 4
[2, 4, 3, 3, 2] 3 - 1,3 0 4
[2, 5, 4, 3, 2] 2,3 - 1,2,3 0 3
[3, 2, 3, 3, 2] 3 - 0,3 4 4
[3, 2, 4, 3, 2] 3 1,4 0,2,3 1,4 2
[3, 3, 4, 3, 2] - - 2,3 1 4
[3, 5, 4, 3, 2] 1,3 - 1,2,3 0 3
[4, 3, 3, 3, 2] - - 0,3 4 4
[4, 3, 4, 3, 2] 2 4 0,2,3 1,4 2
[4, 5, 4, 3, 2] 1,2 - 1,2,3 0 3
[5, 4, 3, 3, 2] 1,3 - 0,1,3 4 3
[5, 4, 4, 3, 2] 2,3 - 0,2,3 4 3
[6, 5, 4, 3, 2] 1,2,3 4 0,1,2,3 4 2
[3, 3, 5, 4, 3] - - 2,3 1 3
[3, 6, 5, 4, 3] 3 - 1,2,3 0 3
[4, 3, 5, 4, 3] 0,2 - 0,2,3 1 3
[4, 6, 5, 4, 3] 2 - 1,2,3 0 3
[6, 5, 4, 4, 3] 3 - 0,1,3 4 3
[7, 6, 5, 4, 3] 0,2,3 - 0,1,2,3 4 2
[4, 7, 6, 5, 4] 1 - 1,2,3 0 3
[8, 7, 6, 5, 4] 0,1,3 - 0,1,2,3 4 2
[9, 8, 7, 6, 5] 0,1,2 - 0,1,2,3 4 2

Fig. 2. Some properties of small LNakayama algebras (left) and of small quasi-hereditary CNakayama algebras (right).

ci+1 + 1 � ci for all 0 � i < n,

ci � 2 for all 0 � i < n− 1,
(2.1)

with indices considered cyclically. Moreover, A is an LNakayama algebra if and only if

cn−1 = 1. (2.2)

A module over a quiver algebra has vector space dimension 1 if and only if it is simple, so the latter means 
that the projective module en−1A is simple. Equivalently, the vertex n − 1 in the quiver has no outgoing 
arrow. Together with Equation (2.1) this forces cn−2 = 2 for LNakayama algebras. Otherwise, i.e., if

cn−1 � 2, (2.3)

the Nakayama algebra A is a CNakayama algebra. Note that Equation (2.1) forces cn−1 � c0 + 1 in this 
case.

In total we obtain the following identification. Here and below, we use the term necklace of length n for 
a sequence [a0, . . . , an−1] of length n up to cyclic rotation and write [a0, . . . , an−1]� in this case.

Proposition 2.4. Sending an n-Nakayama algebra to its Kupisch series is a bijection between n-Nakayama 
algebras and necklaces of length n satisfying Equation (2.1). It moreover restricts to bijections between

(1) n-LNakayama algebras and sequences of length n satisfying Equations (2.1) and (2.2), and between
(2) n-CNakayama algebras and necklaces of length n satisfying Equations (2.1) and (2.3).
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Remark 2.5. It is well known that a Nakayama algebra is selfinjective if and only if it is a CNakayama 
algebra with constant Kupisch series, see for example [25, Theorem 6.15 (Chapter IV)]. Over a selfinjective 
algebra every module is either projective or of infinite projective dimension.

Let A be an n-Nakayama algebra with Kupisch series [c0, . . . , cn−1]. The coKupisch series is the sequence 
[d0, . . . , dn−1], where di is the vector space dimension of the indecomposable injective module D(Aei) where 
D := HomF (−, F) denotes the standard duality of a finite-dimensional algebra. Equivalently, di is the vector 
space dimension of the indecomposable projective left module Aei. For n-CNakayama algebras we extend 
the coKupisch series cyclically such that di = dj for i, j ∈ Z with i ≡ j modulo n.

The Kupisch and coKupisch series are related by

di = min
{
k | k � ci−k

}
, (2.6)

see [10, Theorem 2.2]. In particular, this implies {c0, . . . , cn−1} = {d0, . . . , dn−1} as multisets. A sequence is 
the coKupisch series of an n-Nakayama algebra if and only if the reverse sequence is a Kupisch series. Let A
and B be n-Nakayama algebras such that the Kupisch series of A coincides with the reversed coKupisch 
series of B. Then also the coKupisch series of A coincides with the reversed Kupisch series of B. In particular, 
interchanging the Kupisch and the reversed coKupisch series is an involution on n-Nakayama algebras. It 
is given by mapping an n-Nakayama algebra to its opposite algebra.

2.1. Nakayama algebras and Dyck paths

The Auslander-Reiten quiver of a representation-finite quiver algebra is the quiver with vertices corre-
sponding to the indecomposable modules of the algebra and arrows correspond to the irreducible maps 
between the indecomposable modules. We refer for example to [25, Chapter III] for a detailed introduction 
to Auslander-Reiten theory.

Nakayama algebras are representation-finite and it is well known that every indecomposable module of 
an n-Nakayama algebra A with Kupisch series [c0, . . . , cn−1] is given up to isomorphism by bi,k := eiA/eiJ

k

where J denotes the Jacobson radical, i ∈ {0, 1, . . . , n − 1} and k ∈ {1, 2, . . . , ci}. Note that dim bi,k = k. 
We identify bi,ci with eiA, which are exactly the indecomposable projective modules, and bi+1−di,di

with 
D(Aei), which are exactly the indecomposable injective modules. The modules Si = bi,1 are exactly the 
simple modules. For n-CNakayama algebras we regard the indices i of the modules bi,k and Si modulo n, 
so that they are defined for all i ∈ Z.

The Auslander-Reiten quiver of an n-Nakayama algebra with Kupisch series given by [c0, . . . , cn−1] has 
vertices bi,k with 0 � i < n and 1 � k � ci and all possible arrows of the form

bi,k−1
(i, i + k − 2)

bi,k

(i, i + k − 1)

bi−1,k+1
(i − 1, i + k − 1)

see, for example, [25, Theorem 8.7 (Chapter III)]. Note that exactly the maps bi,k → bi−1,k+1 are injective, 
and exactly the maps bi,k → bi,k−1 are surjective.

Proposition 2.7. Let A be a Nakayama algebra with Kupisch series [c0, . . . , cn−1]. The indecomposable module 
bi,m is injective if and only if ci−1 � m. In particular, bi,ci is injective if and only if ci−1 � ci and dually 
D(Aei) is projective if and only if di � di+1.
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b5,1
55

b4,1
44

b3,1
33

b2,1
22

b1,1
11

b0,1
00

b4,2
45

b3,2
34

b2,2
23

b1,2
12

b0,2
01

b3,3
35

b1,3
13

b0,3
02

b0,4
03

Fig. 3. The Auslander-Reiten quiver of the Nakayama algebras with Kupisch series [4, 3, 2, 3, 2, 1] and [3, 2, 4, 3, 5, 5, 4, 5, 4, 5, 4,
3, 2, 2, 1] and with coKupisch series [1, 2, 3, 4, 2, 3] and [1, 2, 3, 2, 3, 4, 3, 4, 5, 5, 4, 5, 4, 5, 2]. Modules without incoming arrow from 
the top left are projective, modules without outgoing arrow to the top right are injective.

Proof. See for example [1, Theorem 32.6]. �
We denote by τ(bi,k) := bi+1,k the Auslander-Reiten translate of a non-projective indecomposable mod-

ule bi,k. In particular, τ(Sr) = Sr+1 for non-projective Sr, see [2, Proposition 2.11 (Chapter IV)].
As usual, we draw the Auslander-Reiten quiver such that all arrows go from left to right diagonally up 

or down. To refer to indecomposable modules in the Auslander-Reiten quiver of a Nakayama algebra it will 
be convenient to define the coordinates of bi,j to be (i, i + j − 1).

Given a Nakayama algebra with Kupisch series [c0, . . . , cn−1] and with coKupisch series [d0, . . . , dn−1], 
these coordinates have the property that the number of vertices with x-coordinate i is given by ci and the 
number of vertices with y-coordinate j is given by dj . Fig. 3 shows two examples.

2.1.1. LNakayama algebras and Dyck paths
Sending an LNakayama algebra to the “top boundary of its Auslander-Reiten quiver defines a bijection 

between LNakayama algebras and Dyck paths as follows. We choose a coordinate system for the Z2-grid by 
having the horizontal step (0, 1) point left and the vertical step (1, 0) point down. We identify a square in 
the Z2-grid with its top-left corner coordinates (i, j). This is, the square with top-left corner (i, j), top-right 
corner (i, j − 1), bottom-left corner (i + 1, j) and bottom-right corner (i + 1, j − 1) is identified with (i, j).

A Dyck path of semilength n is a path from (0, 0) to (n, n) consisting of vertical and horizontal steps that 
never goes below the main diagonal x = y. Denote by Dn the collection of all Dyck paths of semilength n. In 
the following we use two slightly shifted variants of the area sequence associated with a Dyck path D ∈ Dn: 
the area sequence [c0, c1, . . . , cn] is obtained by setting ck, for 0 � k � n, to the number of lattice points 
with x-coordinate k in the region enclosed by the path and the main diagonal. Recall that we have identified 
a square with its top-left corner. For example, the area sequence of the Dyck path in Fig. 4 is

[3, 2, 4, 3, 5, 5, 4, 5, 4, 5, 4, 3, 2, 2, 1].
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y

x

c0 3

c1 2

c2 4

c3 3

c4 5

c5 5

c6 4

c7 5

c8 4

c9 5

c10 4

c11 3

c12 2

c13 2

c14 1

d0

2

d1

5

d2

4

d3

5

d4

4

d5

5

d6

5

d7

4

d8

3

d9

4

d10

3

d11

2

d12

3

d13

2

d14

1

Fig. 4. The Dyck path of semilength 14 corresponding to the Auslander-Reiten quiver in the bottom example in Fig. 3.

Similarly, the coarea sequence [d0, . . . , dn] is obtained by setting dk, for 0 � k � n, to the number of lattice 
points with y-coordinate k in the region enclosed by the path and the main diagonal. In the example in 
Fig. 4, the coarea sequence is

[1, 2, 3, 2, 3, 4, 3, 4, 5, 5, 4, 5, 4, 5, 2].

Sending a Dyck path D ∈ Dn to its area sequence is obviously a bijection between Dn and sequences 
[c0, . . . , cn] satisfying Conditions (2.1) and (2.2). As seen in Proposition 2.4, these are exactly the same 
conditions as those for Kupisch series of (n +1)-LNakayama algebras. This observation yields the following 
formalization of the pictorially indicated bijection between LNakayama algebras and Dyck paths given by 
sending an algebra to the top boundary of its Auslander-Reiten quiver.

Proposition 2.8. The map sending an (n + 1)-LNakayama algebra A to the unique Dyck path D of 
semilength n such that the Kupisch series of A coincides with the area sequence of D is a bijection be-
tween (n + 1)-LNakayama algebras and Dyck paths of semilength n.

This connection has already appeared in the literature, see for example [20, page 256] for (a variant of) 
this bijection. We moreover observe that Equation (2.6) implies that the coarea sequence of D also equals 
the coKupisch series of A.
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Fig. 5. A 5-periodic Dyck path of global shift 1.

2.1.2. CNakayama algebras and periodic Dyck paths
Replacing the initial condition in Equation (2.2) for LNakayama algebras with the initial condition in 

Equation (2.3) for CNakayama algebras we obtain a description of these in terms of periodic Dyck paths.
A balanced binary n-necklace is a binary necklace consisting of n white and n black beads. In the above 

language, we represent a white bead by the letter v and the black bead by the letter h, so that a balanced 
binary n-necklace is a sequence of n letters v and h each, considered up to cyclic rotation. Formally, an 
n-periodic Dyck path is a balanced binary n-necklace together with an integer c � 0; we refer to this integer 
as its global shift. This corresponds to an actual path in the Z2-grid up to diagonal translations together 
with an explicit choice of a diagonal as follows. One draws a bi-infinite path given by the balanced binary n-
necklace where white beads represent vertical steps and black beads represent horizontal steps. This path 
is chosen so that it stays weakly but not strictly above the diagonal y = x + c, and two paths are identified 
if they coincide up to diagonal translation.

The area sequence of an n-periodic Dyck path is the necklace [c0, . . . , cn−1]�, where ck is the number of 
lattice points with y-coordinate k in the region enclosed by the path and the chosen diagonal. Note that, in 
contrast to the area sequence of an ordinary Dyck path of semilength n, the area sequence of an n-periodic 
Dyck path has length n rather than n + 1. The coarea sequence is defined accordingly. Fig. 5 shows the 
5-periodic Dyck path [h, v, v, h, v, h, h, h, v, v]� with global shift 1 and area sequence [4, 3, 3, 5, 4]�.

Similar to the case of ordinary Dyck paths, it is immediate from the definition that sending an n-
periodic Dyck path to its area sequence (or, respectively, its reversed coarea sequence) is a bijection 
between n-periodic Dyck paths and necklaces [c0, . . . , cn−1]� satisfying Conditions (2.1) and (2.3). As seen in 
Proposition 2.4, these are exactly the same conditions as those for Kupisch series of n-CNakayama algebras. 
This observation yields the following proposition.

Proposition 2.9. Fix c � 0. Sending an n-CNakayama algebra with Kupisch series [c0, . . . , cn−1]� to the n-
periodic Dyck path with area sequence [c0, . . . , cn−1]� is a bijection between n-CNakayama algebras whose 
Kupisch series have minimal entry c + 2 and n-periodic Dyck paths of global shift c.

This proposition also has the following corollary.
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Corollary 2.10 ([5, Exercise 3.1.10c]). For any c � 0, the number of n-CNakayama algebras whose Kupisch 
series has minimal entry c + 2 equals the number of balanced binary n-necklaces.3 Explicitly, this number is

1
2n

∑
k|n

φ
(
n/k

)(2k
k

)
,

where φ is Euler’s totient, the number of integers relatively prime to the argument.

2.2. Combinatorial statistics on Dyck paths

It will be convenient to give names to certain special points in (periodic) Dyck paths. Note that, a 
priori, we cannot refer to individual steps in periodic Dyck paths or elements of the associated necklace, 
because they are only defined up to rotation. However, we can fix a (cyclic) labelling of the coordinates with 
0, . . . , n − 1 as provided by the correspondence with the simple modules of the associated n-CNakayama 
algebra.

Definition 2.11. Let D be a Dyck path of semilength n, or an n-periodic Dyck path.
A peak4 at coordinates (i, j) is a horizontal step with x-coordinate i followed by a vertical step with 

y-coordinate j. A point (i, j) is a peak if and only if ci � ci−1 and j = i + ci− 1, except that for Dyck paths 
(0, c0 − 1) is also a peak.

A valley5 at coordinates (i, j) is a vertical step with y-coordinate j followed by a horizontal step with 
x-coordinate i. A point (i, j) is a valley if and only if ci � ci−1 and j = i + ci−1 − 2.

A 1-rise6 at coordinates (i, j) is a horizontal step with x-coordinate i and final y-coordinate j, which is 
neither preceded nor followed by a horizontal step. A point (i, j) is a 1-rise if and only if ci = ci−1 for i > 0, 
or c0 = 2 for i = 0, and j = i + ci − 1.

A double rise at coordinates (i, j) is a segment of two consecutive horizontal steps whose midpoint has 
coordinates (i, j). There is a double rise with midpoint at y = j if and only if dj > 1 and dj+1 − dj = 1.

A double fall at coordinates (i, j) is a segment of two consecutive vertical steps whose midpoint has 
coordinates (i, j). There is a double rise with midpoint at x = i if and only if ci > 1 and ci−1 − ci = 1.

A return7 at position i is a (necessarily vertical) step with final coordinates (i, i). There is a return at 
position i if and only if ci−1 = 2 and i > 0, and if and only if di+1 = 2 or, for Dyck paths, i = n. A Dyck 
path is prime if it has only one return.

A 1-cut at position i is an occurrence of a horizontal step with x-coordinate i and a vertical step with 
y-coordinate i + 1.

A k-hill8 at position i is a segment of k consecutive horizontal steps followed by k consecutive vertical 
steps, starting at (i, i).

A rectangle at coordinates (i + 1, j) is a valley at (i + 1, j), such that the next valley has x-coordinate 
strictly larger than j + 1. In terms of area sequences, this is ci+1 + 1 = ci + ci+ci , with j = i + ci − 1.

Fig. 6 indicates the coordinates of peaks, valleys, 1-rises, double rises and double falls. We also refer to 
Fig. 8 on page 16 for examples of returns, 1-cuts and 2-hills, and to Fig. 12 on page 32 for examples of 
rectangles.

3 www .oeis .org /A003239.
4 www .findstat .org /St000015.
5 www .findstat .org /St000053.
6 www .findstat .org /St000445.
7 www .findstat .org /St000011.
8 www .findstat .org /St000674, www .findstat .org /St001139, www .findstat .org /St001141.

http://www.oeis.org/A003239
http://www.findstat.org/St000015
http://www.findstat.org/St000053
http://www.findstat.org/St000445
http://www.findstat.org/St000011
http://www.findstat.org/St000674
http://www.findstat.org/St001139
http://www.findstat.org/St001141
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Fig. 6. Coordinates of peaks, valleys, 1-rises, double rises, and double falls.

2.3. Some homological properties of finite dimensional algebras

In this section, we recall several known homological properties of finite dimensional algebras that we need 
in later sections.

We quickly recall the definitions of projective dimension and Ext here and refer for example to [3] for 
detailed information. Recall that the projective cover of a module M is by definition the unique surjective 
map (up to isomorphism) P → M such that P is projective of minimal vector space dimension. Dually the 
injective envelope of M is by definition the unique injective map M → I such that I is injective of minimal 
vector space dimension. One often just speaks of P as the projective cover for short and also as I being the 
injective envelope. We will often use that a module M is isomorphic to its projective cover P if and only if 
M has the same vector space dimension as its projective cover P . This follows immediately from the fact 
that a projective cover is a surjection and that a module homomorphism is an isomorphism if and only if it is 
surjective and both modules have the same vector space dimension. For a module M , the first syzygy module
Ω1(M) is by definition the kernel of the projective cover P → M of M . Inductively, one then defines for n � 0
the n-th syzygy module of M as Ωn(M) := Ω1(Ωn−1(M)) with Ω0(M) = M . The projective dimension pd(M)
of M is defined as the smallest integer n � 0 such that Ωn(M) is projective and as infinite in case no such n

exists. For two A-modules M and N one defines Ext1A(M, N) as Ext1A(M, N) := D(HomA(N, τ(M))), where 
τ(M) denotes the Auslander-Reiten translate of M and HomA(X, Y ) denotes the space of homomorphisms 
between two A-modules X and Y modulo the space of homomorphisms between X and Y that factor over 
an injective A-module. For n � 1, one then defines ExtnA(M, N) := Ext1A(Ωn−1(M), N). We furthermore 
define Ext0A(M, N) := HomA(M, N). Note that we choose here to present the definition of Ext in the 
probably shortest way possible (using the Auslander-Reiten formulas, see for example [25, Theorem 6.3. 
(Chapter III)]) and we refer for example to [3, Chapter 2.4] for the classical definition. For the practical 
calculation of the projective cover, injective envelope and syzygies of modules in Nakayama algebras we 
refer the reader to the preliminaries of [17].

Lemma 2.12. Let A be a finite-dimensional algebra. Let S be a simple A-module and M an A-module with 
minimal projective resolution

· · · → Pi → · · · → P1 → P0 → M → 0.

For � � 0, Ext�A(M, S) �= 0 if and only if there is a surjection P� → S. Dually, let

0 → M → I0 → I1 → · · · → Ii → · · ·

be a minimal injective coresolution of M . For � � 0, Ext�A(S, M) �= 0 if and only if there is an injection 
S → I�.

Proof. See for example [3, Corollary 2.5.4]. �
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3. 1-regular and 2-regular simple modules

In this section we provide characterizations of 1- and 2-regular simple modules of Nakayama algebras in 
terms of Kupisch series. We then exhibit bijections that transform these conditions into local properties of 
Dyck paths and periodic Dyck paths.

Definition 3.1. Let A be a finite-dimensional algebra and let S be a simple A-module. For k ∈ N, the 
module S is k-regular if

(1) pd(S) = k,
(2) ExtiA(S, A) = 0 for 0 � i < k, and
(3) dim ExtkA(S, A) = 1.

Recall that the condition dim ExtkA(S, A) = 1 is equivalent to the left A-module ExtkA(S, A) being simple, 
since modules over quiver algebras are simple if and only if they have vector space dimension equal to one.

The definition of k-regular simple modules is motivated by the notion of the restricted Gorenstein condi-
tion which is used in higher Auslander-Reiten theory, see for example [12, Proposition 1.4 and Theorem 2.7]. 
We study the restricted Gorenstein condition in the special case of Nakayama algebras of global dimension 
at most two in Section 4. The simple module Sn−1 for an n-LNakayama algebra is the unique simple pro-
jective module and thus Sn−1 is never k-regular for k � 1. Thus it is no loss of generality to exclude the 
simple module Sn−1 in our treatment of k-regular simple modules.

The most important case of k-regularity is 2-regularity, which was recently used by Enomoto [9] to 
reduce the classification of exact structures on categories of finitely generated projective A-modules for 
Artin algebras A to the classification of 2-regular simple modules. We refer to [6] for the definitions and 
discussions of exact categories. Enomoto’s result, restricted to finite-dimensional algebras, is as follows.

Theorem 3.2 ([9, Theorem 3.7]). Let A be a finite-dimensional algebra and let E be the category of finitely 
generated projective A-modules. Then there is a bijection between

(1) exact structures on E and
(2) sets of isomorphism classes of 2-regular simple A-modules.

Thus when an algebra A has exactly m 2-regular simple modules, it has exactly 2m exact structures on 
the category of finitely generated projective modules.

3.1. Description in terms of Kupisch series

For any k, a k-regular simple module Si is non-projective by Definition 3.1(1). In the case of n-LNakayama 
algebras this means that i < n − 1, whereas this is no restriction for CNakayama algebras since the latter 
do not have projective simple modules. Throughout this section, let A denote an n-Nakayama algebra 
with Kupisch series [c0, . . . , cn−1] and coKupisch series [d0, . . . , dn−1] and let Si denote a simple A-module 
corresponding to the vertex i.

Theorem 3.3. A simple non-projective module Si is

(1) 1-regular9 if and only if ci − ci+1 = di+1 − di = 1,

9 www .findstat .org /St001126.

http://www.findstat.org/St001126
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(2) 2-regular10 if and only if

ci = di+2 = 2 and ci+1 − ci+2 = di+1 − di = 1.

The first step towards this theorem is a description of the non-projective simple modules of projective 
dimensions one and two.

Proposition 3.4. A simple non-projective module Si has

(1) pd(Si) = 111 if and only if ci+1 + 1 = ci, and
(2) pd(Si) = 212 if and only if ci+1 + 1 = ci+ci + ci.

Proof. We have that pd(Si) = 1 if and only if the module eiJ in the short exact sequence

0 → eiJ → eiA → Si → 0

is projective. This is the case if and only if eiJ is isomorphic to its projective cover ei+1A, which is equivalent 
to ci − ci+1 = 1 by comparing vector space dimensions and using that dim(ei+1A) = ci+1 and dim(eiJk) =
ci − k.

The beginning of a minimal projective resolution of Si is given by splicing together the two short exact 
sequences

0 → eiJ → eiA → Si → 0

0 → ei+1J
ci−1 → ei+1A → eiJ → 0.

We have already seen in (1) that pd(Si) � 2 if and only if ci � ci+1. Moreover, pd(Si) = 2 if additionally 
ei+1J

ci−1 is projective. Now ei+1J
ci−1 being projective is equivalent to the condition that it is isomorphic 

to its projective cover ei+ciA, which in turn translates into the condition ci+1−(ci−1) = ci+ci by comparing 
vector space dimensions. �
Lemma 3.5. For a simple non-projective module Si, we have

(1) HomA(Si, A) = 0 ⇔ di+1 = di + 1,
(2) Ext1A(Si, A) = 0 ⇔ ci < ci+1 + 1.

Proof. Note that HomA(Si, A) = 0 if and only if Si does not appear in the socle of A, which is equivalent 
to the injective envelope I(Si) = D(Aei) of Si being non-projective (here we use that the injective envelope 
of A is projective-injective for every Nakayama algebra, see for example [1, Theorem 32.2]). This translates 
into the condition di+1 > di by using Proposition 2.7.

For the second property, note that Ext1A(Si, A) = 0 if and only if Ext1A(Si, erA) = 0 for every indecom-
posable non-injective module erA. Thus, suppose that erA is non-injective, then

0 → erA → D(Aer+cr−1) → D(Aer−1)

10 www .findstat .org /St001125.
11 www .findstat .org /St001007.
12 www .findstat .org /St001011.

http://www.findstat.org/St001125
http://www.findstat.org/St001007
http://www.findstat.org/St001011
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is the beginning of a minimal injective coresolution of a non-injective erA, see for example [17, Preliminaries]. 
Lemma 2.12 entails that Ext1A(Si, erA) �= 0 if and only if there is an injection Si → D(Aer−1). Since Si = bi,1
and D(Aer−1) = br−dr−1,dr−1 , such an injection exists if and only if i = r − 1. �
Lemma 3.6. We have the following two properties for a simple non-projective module Si:

(1) If HomA(Si, A) = 0 and pd(Si) = 1, then

dim Ext1A(Si, A) = 1 ⇔ di+1 = di + 1.

(2) If HomA(Si, A) = Ext1A(Si, A) = 0 and pd(Si) = 2, then

dim Ext2A(Si, A) = 1 ⇔ di+1 + 1 = di + di+ci .

Proof. For the first property, we apply the left exact functor HomA(−, A) to the short exact sequence

0 → eiJ → eiA → Si → 0

and use that eiJ ∼= ei+1A (since Si is assumed to have projective dimension equal to one). We obtain the 
exact sequence

0 → HomA(Si, A) → HomA(eiA,A) → HomA(ei+1A,A) → Ext1A(Si, A) → 0.

Comparing dimensions and using HomA(Si, A) = 0, we obtain the condition

1 = dim Ext1A(Si, A)

= dim HomA(Si, A) + dim HomA(ei+1A,A) − dim HomA(eiA,A)

= dim(Aei+1) − dim(Aei)

= di+1 − di.

For the second property, we apply the left exact functor HomA(−, A) to the short exact sequence

0 → eiJ → eiA → Si → 0,

and we obtain the exact sequence

0 → HomA(Si, A) → HomA(eiA,A) → HomA(eiJ,A) → Ext1A(Si, A) → 0.

The condition Ext1A(Si, A) = 0, together with HomA(Si, A) = 0, is equivalent to

HomA(eiA,A) ∼= HomA(eiJ,A),

which translates into the condition dim HomA(eiJ, A) = di. Now we apply the functor HomA(−, A) to the 
short exact sequence

0 → ei+1J
ci−1 → ei+1A → eiJ → 0,

where we use that ei+1J
ci−1 ∼= ei+ciA is projective since Si is assumed to have projective dimension equal 

to two. We obtain the exact sequence
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0 → HomA(eiJ,A) → HomA(ei+1A,A) → HomA(ei+ciA,A) → Ext1A(eiJ,A) → 0.

Now note that Ext1A(eiJ, A) ∼= Ext1A(Ω1(Si), A) ∼= Ext2A(Si, A). Comparing dimensions we obtain

1 = dim Ext2A(Si, A)

= dim HomA(eiJ,A) + dim HomA(ei+ciA,A) − dim HomA(ei+1A,A)

= di + di+ci − di+1. �
Proof of Theorem 3.3. The description of 1-regular simple modules is a direct consequence of the respective 
first items in Proposition 3.4 and Lemmas 3.5 and 3.6. These lemmas also give that Si is 2-regular if and 
only if

ci < ci+1 + 1 = ci + ci+ci ,

di + 2 = di+1 + 1 = di + di+ci .
(3.7)

We simplify these conditions as follows. The first condition implies that there are ci+1 +1 −ci = ci+ci > 0
horizontal steps with x-coordinate i +1 in the (possibly periodic) Dyck path corresponding to A. Thus there 
is a valley at (i + 1, i + ci − 1). The second condition implies di+ci = 2. Therefore, the valley is on the main 
diagonal, which in turn implies that ci = 2. Conversely,

ci + ci+ci = 2 + ci+2 = ci+1 + 1

di + di+ci = di + 2 = di+1 + 1. �
Example 3.8. Let A be the 5-LNakayama algebra with Kupisch series [4, 3, 2, 2, 1] and coKupisch series 
[1, 2, 3, 4, 2]. By Proposition 3.4, the simple modules S0, S1 and S3 have projective dimension 1 and the 
simple module S2 has projective dimension 2. The simple module S4 is projective. To see that S0 and S1
are 1-regular while S3 is not, we compute

d1 − d0 = d2 − d1 = 1 �= d4 − d3.

Moreover, S2 is 2-regular because

c2 = d4 = 2 and c3 − c4 = d3 − d2 = 1.

3.2. Description in terms of Dyck path statistics for LNakayama algebras

Based on Theorem 3.3, we obtain combinatorial reformulations of 1- and 2-regularity in terms of Dyck 
paths. The first of these is a direct translation into the language of Dyck paths, the second uses a classical 
involution on Dyck paths to obtain a more local description, and the third uses another bijection which 
yields a completely local description in terms of two classical statistics.

Theorem 3.9. Let A be an n-LNakayama algebra and let D be its corresponding Dyck path of semilength 
n − 1. Let D̂ be the path obtained from D by adding a horizontal step from (0, −1) to (0, 0) and a vertical 
step from (n − 1, n − 1) to (n, n − 1). Then the A-module

(1) Si is 1-regular if and only if D̂ has a double rise with y-coordinate i and a double fall with x-coordinate 
i + 1.
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Fig. 7. A mirrored Dyck path D (in black, thin), its Lalanne-Kreweras involution (in blue, thick) and the permutation (indicated 
by crosses) of the 321-avoiding permutation obtained by applying the Billey-Jockusch-Stanley bijection. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

(2) Si is 2-regular if and only if D̂ has a vertical step with final coordinates (i +1, i + 1), a double rise with 
y-coordinate i and a double fall with x-coordinate i + 2.

Proof. This is immediate from Theorem 3.3. �
As announced, the second reformulation uses a classical involution which we now recall.

Definition 3.10 ([15,14]). The Lalanne-Kreweras involution13 LK on Dyck paths of semilength n is the 
following map:

(1) Mirror the Dyck path D to obtain a path below the main diagonal, from the top right to the bottom 
left.

(2) Draw a vertical line emanating from the midpoint of each double horizontal step and a horizontal line 
emanating from the midpoint of each double vertical step.

(3) Mark the intersections of the i-th vertical and the i-th horizontal line for each i.
(4) Then LK(D) is the Dyck path of semilength n whose valleys are the marked points.

In Fig. 7, the Lalanne-Kreweras involution of the mirrored black path yields the blue path. The vertical 
and horizontal lines drawn in the second step are coloured green. The black crosses should be ignored for 
now.

13 www .findstat .org /Mp00120.

http://www.findstat.org/Mp00120
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Fig. 8. A complete example for Theorem 3.11. The mirrored Dyck path D, drawn below the main diagonal, is black and thin, its 
Lalanne-Kreweras involution is blue and thick. The area sequence for D is at the bottom, the coarea sequence for D at the right 
hand side. The 1-regular modules of the corresponding Nakayama algebra are S6, S7 and S13. Corresponding 1-cuts are marked 
with a red circle. The 2-regular modules are S0 and S11. Corresponding 2-hills are marked with a red diamond.

Theorem 3.11. Let A be an n-LNakayama algebra, let D be the Dyck path corresponding to A and let 
E = LK(D) be the image of D under the Lalanne-Kreweras involution. Then the A-module

(1) Si is 1-regular if and only if E has a 1-cut at position i.
(2) Si is 2-regular if and only if E has a 2-hill at position i.

Proof. Suppose first that Si is 1-regular. By Theorem 3.3(1), ci − ci+1 = di+1 − di = 1. Because of 
ci − ci+1 = 1, there is a double horizontal step in the path below the diagonal, whose midpoint has y-
coordinate i +1. Because of di+1 −di = 1 there is a double vertical step whose midpoint has x-coordinate i. 
The corresponding vertical and horizontal lines (coloured green in Fig. 7) intersect at the diagonal y = x +1, 
dashed in Fig. 8.

By the definition of the Lalanne-Kreweras involution, the Dyck path LK(D) has a valley at the end of 
every green line. Therefore, for each vertical line there is a peak of LK(D) with the same y-coordinate as the 
line, and for each horizontal line there is a peak at the same x-coordinate as the line. Specifically, for two 
green lines intersecting at (i, i +1), there is a peak corresponding to the vertical line with y-coordinate i +1, 
and a peak corresponding to the horizontal line with x-coordinate i, that is, a 1-cut.

Conversely, if there are two such peaks, the two corresponding vertical and horizontal lines intersect at 
the diagonal y = x + 1, implying that Si is 1-regular.

Let us now show that 2-regular modules correspond to hills of size 2. We begin by noting that a hill of 
size 2 at position i in LK(D) forces the conditions on D in Theorem 3.3(2). Suppose for simplicity that 
the 2-hill is neither at the beginning nor at the end of LK(D), the argument is easy to adapt for these 
two degenerate cases. Since LK(D) has a return at position i and no return at position i + 1, the number 
of double falls equals the number of double rises after the first 2(i + 1) steps of D, which implies that D
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has a return at i + 1. Thus, ci = di+2 = 2. Because LK(D) has a return at position i, the path below the 
diagonal has a double vertical step whose midpoint has x-coordinate i, which translates into the condition 
di+1 − di = 1 on the coarea sequence of D. Similarly, because of the return of LK(D) at position i + 2, 
the path below the diagonal has a double horizontal step whose midpoint has y-coordinate i + 2, which 
translates into the condition ci+1 − ci+2 = 1 on the area sequence of D.

Conversely, the conditions ci = di+2 = 2 imply that the mirrored Dyck path D below the diagonal has a 
return to the diagonal with x- and y-coordinate i + 1.

Let us ignore the degenerate cases where D begins or ends with a 1-hill. Then, the horizontal line 
emanating from the midpoint of the double vertical step forced by di+1 = di + 1 must be matched with the 
vertical line emanating from the midpoint of the last double horizontal step before - to the right and above 
- the return to the diagonal. Thus, the intersection of these two lines is on the diagonal of D.

Similarly, the vertical line emanating from the midpoint of the double horizontal step forced by ci+1 =
ci+2 + 1 must be matched with the horizontal line emanating from the first double vertical step after the 
return to the diagonal, and their intersection is on the diagonal. Finally, we observe that the distance 
between these two intersections is 2. �

In the following we describe a bijection on Dyck paths that yields an even simpler description of the 1-
and 2-regular simple modules. The main ingredient is the Billey-Jockusch-Stanley bijection, which is closely 
related to the Lalanne-Kreweras involution:

Definition 3.12 ([4]). A 321-avoiding permutation is a permutation π such that there is no triple i < j < k

with π(k) < π(j) < π(i). The Billey-Jockusch-Stanley bijection14 BJS sends a Dyck path D of semilength n

to a 321-avoiding permutation π of the numbers {1, . . . , n} as follows:

(1) Mirror the Dyck path D to obtain a path below the main diagonal, from the top right to the bottom 
left.

(2) Put crosses into the cells corresponding to the valleys of D.
(3) Then, working from right to left, for each column not yet containing a cross we put a cross into the top 

most cell whose row does not yet contain a cross.

Replacing all crosses with the integer 1 and filling all other cells with the integer 0 yields the permutation 
matrix of the reverse complement of π.

Note that one can equivalently fill in the crosses in step (3) from left to right, putting crosses into the 
lowest available cell.

In Fig. 7, the black crosses indicate the permutation matrix of BJS(D). As visible there, we have the 
following relation between the Lalanne-Kreweras involution and the Billey-Jockusch-Stanley bijection:

Proposition 3.13. The peaks of LK(D) are at the positions of the crosses of the permutation matrix of 
BJS(D) above the main diagonal.

Proof. Let (i0, j0), . . . , (ik, jk) with 0 = i0 < · · · < ik < n and 0 < j0 < · · · < jk = n be the coordinates of 
the peaks of LK(D). Then, by step (2) of Definition 3.10 of the Lalanne-Kreweras involution, D has a valley 
corresponding to a cell in a column just to the right of y = j, 0 < j < n, if and only if j /∈ {j0, . . . , jk = n}. 
For the same reason, D has a valley corresponding to a cell in a row just below x = i, 0 < i < n, if and 
only if i /∈ {0 = i0, . . . , ik}.

14 www .findstat .org /Mp00129.

http://www.findstat.org/Mp00129
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Fig. 9. The cycle diagram of the permutation associated with the Dyck path, together with the points indicating the 1- and 2-regular 
modules. The configurations along the diagonal specifying the composition are indicated with black ‘L’-shapes and circles.

Thus, by step (3) of Definition 3.12 of the Billey-Jockusch-Stanley bijection, there are crosses in the cells 
(i0, j0), . . . , (ik, jk), because for 0 � a � k the row just below x = ia is the top most row not containing a 
cross, once crosses have been placed in the cells (i0, j0), . . . , (ia−1, ja−1). �

Our final reformulations of 1- and 2-regularity in terms of Dyck paths use a slightly more involved 
bijection. These have the advantage of describing the 1- and 2-regular statistics in a completely local way.

Theorem 3.14. Let A be an n-LNakayama algebra and let D be corresponding Dyck path. Then there is an 
explicit bijection φ, such that the A-module

(1) Si is 1-regular if and only if φ(D) has a 1-rise with x-coordinate i.
(2) Si is 2-regular if and only if φ(D) has a 2-hill at position i.

Fig. 10 shows a detailed example for this theorem.

Proof. Taking into account Theorem 3.11, it suffices to provide a bijection ψ on Dyck paths that preserves 
hills of size 2 and maps 1-cuts to 1-rises.

Let E be a Dyck path of semilength n. We first construct Elizalde’s ‘cycle diagram’ of the 321-avoiding 
permutation associated with E by the Billey-Jockusch-Stanley bijection [8]: for each cross, draw a horizontal 
and a vertical line connecting the cross with the main diagonal. For the Dyck path E = LK(D) in Fig. 7, 
this is carried out in Fig. 9.

We then record the sequence of configurations of lines emanating from the main diagonal of the cycle 
diagram, and construct a (weak) composition α as follows. Points on the main diagonal with both lines 
being in the upper left of the diagram (as drawn in Fig. 9) correspond to 1-cuts, and are ignored. If the 
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Fig. 10. A complete example for Theorem 3.14. The Dyck path D is black and thin, its Lalanne-Kreweras involution is blue. The area 
sequence for D is at the bottom, the coarea sequence at the right hand side. The 1-regular modules of the corresponding Nakayama 
algebra are S6, S7 and S13. Corresponding 1-cuts of LK(D) are marked with a red circle. The 2-regular modules are S0 and S11. 
Corresponding 2-hills of LK(D) are marked with a red diamond. The final path, φ(D), in green, has 1-rises at x-coordinates 6, 7
and 13, and 2-hills at 0 and 11. It is slightly shifted to improve visibility.

horizontal line is in the upper left, and the vertical line in the lower right of the diagram, the point is also 
ignored.

Of the remaining points, those who have their horizontal line in the lower right and their vertical line 
in the upper left of the diagram serve as delimiters of a composition α, which we now construct. In the 
figure these are indicated by black ‘L’-shapes. Thus, by Proposition 3.13, the number of parts �(α) of the 
composition is the number of peaks of E minus the number of 1-cuts of E. The i-th part of the composition, 
αi, is the number of points between the i-th and the (i +1)-st delimiter with both lines in the lower right of 
the diagram. In the figure these points are indicated by black circles. Thus, the composition corresponding 
to the configuration in Fig. 9 is α = (0, 3, 0, 0).

Note that the number of points with the horizontal line in the upper left and the vertical line in the 
lower right equals the number of points with the horizontal line in the lower right and the vertical line in 
the upper right. Therefore, we have that

2�(α) + |α| + c = n, (3.15)

where |α| is the sum of the parts of the composition α and c is the number of 1-cuts of E.
Finally, ψ(E) is the unique Dyck path that has peaks at the same x-coordinates as E, 1-rises at the 

x-coordinates of the 1-cuts of E, and the number of horizontal steps on the remaining x-coordinates given 
by adding 2 to each part of α. This is well defined because of Equation (3.15). �
Theorem 3.16. A Dyck path D has a rectangle at (i + 1, j) if and only if LK(D) has a return at position 
j + 1 = i + ci, which is not the final step of a 1-hill.
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Proof. Suppose that D has a valley at (i + 1, j), such that its next valley has x-coordinate strictly larger 
than j + 1. Thus, BJS(D) has no crosses in the region below and to the right of (j + 1, j + 1). Because 
BJS(D) is a permutation, by the pigeonhole principle, it has no crosses in the region above and to the left 
of (j + 1, j + 1) either. Consequently, LK(D) has no peaks in this region, and therefore LK(D) must have 
a return with x-coordinate j + 1. This cannot be the second step of a 1-hill, because there is a cross in the 
cell with x-coordinate j, corresponding to the valley (i +1, j) of D, and a 1-hill would correspond to a cross 
in the cell with coordinates (j, j). �

We conclude with some corollaries enumerating LNakayama algebras with certain homological restric-
tions.

Corollary 3.17. The number of (n + 1)-LNakayama algebras with exactly � simple modules of projective 
dimension 1 and the number of (n + 1)-LNakayama algebras with exactly � simple modules of projective 
dimension at least 2 equal the Narayana numbers,15 counting Dyck paths of semilength n with exactly �

peaks. Explicitly, this number is

1
n

(
n

�− 1

)(
n

�

)
.

Proof. This is a direct consequence of Proposition 3.4(1) and the fact that the number of peaks plus the 
number of double falls equals the semilength of the Dyck path. �

The proofs of several of the further corollaries involve Lagrange inversion.

Theorem 3.18 (e.g., [24, Theorem 5.4.2]). Let H be any formal power series and let F be a formal power 
series with compositional inverse F (−1). Then

[xn]H(F (x)) = 1
n

[xn−1]H ′(x)
(

x

F (−1)(x)

)n

,

where [xn]H(x) is the coefficient of xn in H(x).

Corollary 3.19. The number of (n + 1)-LNakayama algebras with exactly � simple modules of projective 
dimension 2 is the number of Dyck paths of semilength n with exactly � returns which are not 1-hills. 
Explicitly, this number is16

n−2�∑
k=0

�

k + �

(
2(k + �)

k

)(
n− k − �

�

)
.

Proof. The claim in the first sentence follows from Proposition 3.4(2) and Theorem 3.16. To enumerate 
these, let D(x) = 1 + xD(x)2 be the generating function for all Dyck paths. Then, x

(
D(x) − 1

)
is the 

generating function for Dyck paths without 1-hills. Since 1/(1 − x) is the generating function for (possibly 
empty) paths consisting only of 1-hills,

x�
(
D(x) − 1

)�
(1 − x)�+1

15 www .oeis .org /A001263.
16 www .oeis .org /A097877.

http://www.oeis.org/A001263
http://www.oeis.org/A097877
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is the generating function for all Dyck paths with exactly � returns which are not 1-hills.
Using Lagrange inversion we find that the coefficient of xk in 

(
D(x) − 1

)� equals �
k

( 2k
k−�

)
, and using the 

binomial theorem we find that the coefficient of xn−�−k in (1 − x)−�−1 equals 
(

n−k
n−k−�

)
. �

Corollary 3.20. Let an,k,� be the number of (n + 1)-LNakayama algebras with k simple modules of projective 
dimension 1 and � simple modules of projective dimension 2 and let

N(x, q, t) =
∑
n,k,�

an,k,�x
nqkt�

= 1 + qx + (q2 + qt)x2 + (q3 + 3q2t + qt)x3 + · · ·

Then(
x2(q − t)q(t− 1) − x(2qt− 2q + t) + t− 1

)
N(x, q, t)2 +

(
(qt− 2q + t)x− t + 2

)
N(x, q, t) − 1 = 0.

Proof. According to Proposition 3.4 we want to count Dyck paths with k double falls and � rectangles. 
Using the definition of the Lalanne-Kreweras involution and Theorem 3.16, we can equivalently count Dyck 
paths with k peaks and � returns which are not 1-hills.

Let dn,k,� be the number of Dyck paths of semilength n with k peaks and � returns which are not 1-
hills, and let D(x, q, t) =

∑
n�0 dn,k,�x

nqkt� be the corresponding generating function. By the foregoing, 
D(x, q, t) = N(x, q, t).

In the following we will frequently use the so called ‘first passage decomposition’ of Dyck paths: we 
decompose a non-empty Dyck path into an initial Dyck path, which has a single return (which is its final 
step), and a remaining Dyck path.

Since a Dyck path is either empty, or begins with a 1-hill (which is a peak), or begins with a horizontal 
step, followed by a non-empty Dyck path, followed by a vertical step (which is a return, and not a 1-hill), 
D(x, q, t) satisfies the equation

D(x, q, t) = 1 + xqD(x, q, t) + xt
(
D(x, q, 1) − 1

)
D(x, q, t).

Substituting t = 1 we obtain a quadratic equation for D(x, q, 1), with a unique solution which is a formal 
power series (and not a Laurent series). It is then straightforward to check that D(x, q, t) = 1/

(
1 − xq −

xt(D(x, q, 1) − 1)
)

satisfies the claimed equation. �
Corollary 3.21. The number of (n + 1)-LNakayama algebras without 1-regular simple modules equals the 
Riordan number,17 counting Dyck paths of semilength n without 1-rises. Explicitly, this number is

1
n + 1

n∑
k=0

(
n + 1
k

)(
n− k − 1
k − 1

)
.

Corollary 3.22. For n � 1, the number of (n + 1)-LNakayama algebras A without 2-regular simple modules 
(that is, such that the category of finitely generated projective modules has a unique exact structure) equals 
the number of Dyck paths without 2-hills.18 Explicitly, this number is

�n
2 �∑

k=0

(−1)k k + 1
n− k + 1

(
2n− 3k
n− k

)
.

17 www .oeis .org /A005043.
18 www .oeis .org /A114487.

http://www.oeis.org/A005043
http://www.oeis.org/A114487
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Proof. The formula for the number of such Dyck paths was provided by Ira Gessel [18]. �
Corollary 3.23. Let an,k,� be the number of (n +1)-LNakayama algebras with k simple 1-regular and � simple 
2-regular modules and let

N(x, q, t) =
∑
n,k,�

an,k,�x
nqkt�

= 1 + qx + (q2 + t)x2 + (q3 + 2qt + q + 1)x3 + · · ·

Then

(
x3(t− 1)2 + x2(t− 1)(q − 1) − x(t− 1 + q − 1) + 1

)
N(x, q, t)2

+
(
2x2(t− 1) + x(q − 1) − 1

)
N(x, q, t) + x = 0.

Proof. Following to Theorem 3.14 it suffices to determine the number dn,k,� of Dyck paths of semilength n

with k 1-rises and � 2-hills. Let D(x, q, t) =
∑

n�0 dn,k,�x
nqkt� be the corresponding generating function. 

By the foregoing, D(x, q, t) = N(x, q, t).
D(x, q, 0) is the generating function for Dyck paths without 2-hills. Since a Dyck path either contains no 

2-hills, or begins with a Dyck path without 2-hills, followed by a 2-hill, we have the equation

D(x, q, t) = D(x, q, 0) + D(x, q, 0)x2tD(x, q, t).

To obtain an equation for D(x, q, 0), we observe that a Dyck path without 2-hills is either empty, begins 
with a 1-hill, or begins with a double rise. The generating function for prime Dyck paths beginning with a 
double rise, equals

D(x, q) = x2(D(x, q, 1) − 1
)

+ x
(
D(x, q, 0)(1 − xq) − 1

)
,

where we distinguish whether there is a peak immediately after the double rise or not. Thus,

D(x, q, 0) = 1 + xqD(x, q, 0) + DD(x, q)D(x, q, 0).

From these equations we can compute D(x, q, t), and check that it satisfies the claimed equation. �
Using Theorem 3.2, Theorem 3.14 also gives a sharp upper bound for the number of exact structures on 

the category of finitely generated projective modules for n-LNakayama algebras.

Corollary 3.24. An n-LNakayama algebra has at most 	n−1
2 
 2-regular simple modules and thus at most 

2�n−1
2 � exact structures on the category of finitely generated projective modules. This bound is sharp.

Proof. A Dyck path of semilength n − 1 has at most 	n−1
2 
 2-hills. Following Theorem 3.11, the bound is 

thus obtained for the n-LNakayama algebras with Kupisch series [2, 3, . . . , 2, 3, 2, 2, 1] if n is odd, and, for 
example, [2, 3, . . . , 2, 3, 2, 1] if n is even. �
3.2.1. Describing 1-regular simple modules using the zeta map

We finish this section with an alternative approach to Theorem 3.14(1) using the zeta map. We refer 
to [11, page 50] for the history of this map and its original context. Let D be a Dyck path of semilength n

with coarea sequence (d0, . . . , dn). We obtain a Dyck path ζ(D) as follows:
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Fig. 11. A Dyck path of semilength 14 and its image ζ(D) under the zeta map.

• First, let ak be the number of indices i with di = k and build an intermediate Dyck path (the bounce 
path) consisting of a2 horizontal steps, followed by a2 vertical steps, followed by a3 horizontal and 
vertical steps, and so on.

• Then, we fill the rectangular regions between two consecutive peaks of the bounce path. Observe that 
the rectangle between the k-th and the (k + 1)-st peak must be filled by ak+1 vertical steps and ak+2

horizontal steps. We do so by scanning the coarea sequence (d0, . . . , dn) and drawing a vertical or a 
horizontal step whenever we encounter a k + 1 or a k + 2, respectively.

In the example in Fig. 11, a Dyck path D (on the left) with coarea sequence

[1, 2, 2, 3, 4, 3, 4, 5, 6, 6, 6, 6, 7, 5, 3]

and its image ζ(D) (on the right) under the zeta map is shown. In dotted grey, the intermediate bounce 
path is shown.

For a given Dyck path with coarea sequence (d0, . . . , dn), the definition of the zeta map yields a labelling of 
the vertical steps and of the horizontal steps of ζ(D) with the indices {1, . . . , n} by associating to 1 � j � n

the vertical and the horizontal step drawn using the entry dj . In the example in Fig. 11, the vertical steps are 
labelled from top to bottom by the permutation [1, 2, 3, 5, 14, 4, 6, 7, 13, 8, 9, 10, 11, 12] as are the horizontal 
steps from right to left. In symbols and in terms of the inverse permutation, the vertical step of ζ(D)
labelled j for 1 � j � n has initial x-coordinate

k(j) = #
{
0 � i � n : di < dj

}
+ #

{
0 � i < j : di = dj

}
− 1

for the coarea sequence (d0, . . . , dn) of D, and the horizontal step labelled by j has final y-coordinate k(j) +1. 
In the example, the k(j) for 1 � k � 14 is given by [0, 1, 2, 5, 3, 6, 7, 9, 10, 11, 12, 13, 8, 4].

We then have the following alternative to Theorem 3.14(1).
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Theorem 3.25. Let D be a Dyck path of semilength n and let A be the Nakayama algebra corresponding 
to ζ(D). Then D has

• a peak with y-coordinate j if and only if the simple A-module Sk(j) has projective dimension 1, and
• a 1-rise with y-coordinate j if and only if Sk(j) is 1-regular.

We remark that the number of 1-regular modules in LNakayama algebras and the number of 1-rises 
in Dyck paths seem to have a symmetric joint distribution. It may be interesting to find an appropriate 
bijection.

The crucial observation for the proof of Theorem 3.25 is the following lemma.

Lemma 3.26. Let D be a Dyck path of semilength n and let (c0, . . . , cn) and (d0, . . . , dn) be the area and, 
respectively, the coarea sequence of ζ(D). Then,

• for any 1 � j � n, the path D has a peak with y-coordinate j if and only if ck(j) − ck(j)+1 = 1, and
• for any 2 � j � n, the path D has a valley with y-coordinate j − 1 if and only if dk(j)+1 − dk(j) = 1.

Proof. Observe first that for any 1 � j � n, the vertical step of ζ(D) labelled with j corresponds to the 
entry ck(j) of its area sequence.

Let now (d′0, . . . , d′n) be the coarea sequence of D and let 1 � j � n. Then D has a peak with y-
coordinate j if and only if d′j � d′j+1. This is the case if and only if the vertical step of ζ(D) labelled with j

is followed by another vertical step. By definition, this is the case if and only if ck(j) − ck(j)+1 = 1. This 
proves the claim in the first bullet point.

The claim in the second bullet point follows from the same argument applied to horizontal steps instead 
of vertical steps. �
Proof of Theorem 3.25. Let 2 � j � n. Then D has a 1-rise with y-coordinate j if and only if it has 
both a peak with y-coordinate j and also a valley with y-coordinate j − 1. The statement now follows 
from Proposition 3.4(1) and Theorem 3.3(1). The boundary case j = 1 follows from the observation that 
k(1) = 0, implying dk(j) = 1 and dk(j)+1 = 2. �

In the example in Fig. 11, the 1-rises in D are marked in columns 1, 9, 10, 13, 14. For each 1-rise, the 
corresponding horizontal and the corresponding vertical step is marked with the given letter inside ζ(D) in 
blue and in red, respectively. This means that the Nakayama algebra for ζ(D) has 1-regular simple module

{Sk(1), Sk(9), Sk(10), Sk(13), Sk(14)} = {S0, S10, S11, S8, S4}

and simple modules

{Sk(4), Sk(8), Sk(12)} = {S5, S9, S13}

of projective dimension 1 that are not 1-regular.

3.3. Description in terms of Dyck path statistics for CNakayama algebras

To extend Theorem 3.11 to CNakayama algebras, we introduce an analogue of the Lalanne-Kreweras 
involution for certain periodic Dyck paths.

Let us first specify a map LK0 on the set D0
n of n-periodic Dyck paths with global shift 0 and non-

constant area sequence. Given a path D in this set we essentially use Definition 3.10 to construct LK0(D). 
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For item (3) of this definition, we fix any return of D to the diagonal, and stipulate that we mark the 
intersection of the i-th vertical line after this return with the i-th horizontal line after this return.

Since the number of double rises equals the number of double falls between any two returns of D, this 
definition does not depend on the return chosen. Let us emphasize however, that LK0(D) is not necessarily 
in D0

n. For example, the image of [3, 3, 2]� equals [5, 4, 3]�, which has global shift 1.
To circumvent this defect, let Dr

n be the set of n-periodic Dyck paths that have a rectangle as defined 
in Definition 2.11. We will see below that the image of LK0 is exactly Dr

n. Moreover, we will see that the 
CNakayama algebras corresponding to Dr

n are precisely those which are quasi-hereditary.
Let us now describe the inverse LKr of LK0 explicitly. Again, we essentially use Definition 3.10 to 

construct the image of a path D in Dr
n. However, since D may not have any returns to the diagonal, we 

have to make item (3) of the definition precise in a different way. Specifically, we fix any index j such that D
has a rectangle with y-coordinate j. We then stipulate that the ‘first’ horizontal line has x-coordinate j+1, 
and the ‘first’ vertical line has y-coordinate j + 1. In particular, the image LKr(D) of D has a return at 
j + 1.

Theorem 3.27. Let Dr
n be the set of n-periodic Dyck paths with a rectangle. Then the map LK0 is a bijection 

between D0
n and Dr

n, with inverse LKr. Moreover, LK0 is an involution on D0
n ∩ Dr

n.

Essentially, this theorem allows us to extend LK0 to a map on the union D0
n ∪ Dr

n. Of course, whenever 
two maps agree on the intersection of their domains, one can regard them as a single map. However, in 
the case at hand this is particularly interesting, because the definitions of LK0 and its inverse LKr are so 
similar.

Definition 3.28. The generalized Lalanne-Kreweras involution LK is the map

LK : D0
n ∪ Dr

n → D0
n ∪ Dr

n

D 
→
{

LK0(D) if D ∈ D0
n

LKr(D) if D ∈ Dr
n.

This is well-defined, because LK0 is an involution on D0
n ∩ Dr

n.

Proof of Theorem 3.27. Let D ∈ D0
n and let D̃ ∈ D3n be the Dyck path obtained from D by restricting it 

to 3 periods, ending with a return which is not the final step of a 1-hill. Such a return exists because D has 
non-constand area sequence. By Theorem 3.16, Ẽ = LK(D̃) has a rectangle with y-coordinate n − 1.

By definition of the classical Lalanne-Kreweras involution and the definition of LK0, the positions of the 
valleys of Ẽ coincide with the positions of the valleys of E = LK0(D) in the corresponding region - there 
are only additional peaks in Ẽ at the beginning and the end of the period.

In particular, E also has a rectangle with y-coordinate n − 1, and therefore, the mirrored path has a 
double horizontal step whose midpoint has y-coordinate n, and a double vertical step whose midpoint has 
x-coordinate n. Let LKr

n(E) be the path constructed from E by specifying that the ‘first’ horizontal line has 
x-coordinate n and the ‘first’vertical line has y-coordinate n. Thus, also the following horizontal and vertical 
lines used to construct LKr

n(E) match up in the same way as they do to construct LK(Ẽ). In particular, 
LKr

n(E) and LK(Ẽ) coincide between (n, n) and (2n, 2n). Since LKr
n(E) is determined by this region, and 

LK is an involution, LKr
n is indeed the inverse of LK0, and LK0 is an involution on D0

n ∩ Dr
n.

To see that LKr
n does not depend on the rectangle chosen, note that, by Theorem 3.16, each rectangle of 

Ẽ corresponds to a return of D̃, which in turn corresponds to a return of D. �
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Let us now turn to a description of quasi-hereditary Nakayama algebras. We briefly recall the general 
definition, and then give an alternative description for the case of Nakayama algebras.

Let A be a quiver algebra and let e := (e1, e2, . . . , en) denote an ordered complete set of primitive 

orthogonal idempotents of A, where complete means that 1A =
n∑

k=1
ek. For i ∈ {1, . . . , n}, set εi := ei +

ei+1 + · · · + en, and also set εn+1 := 0. Moreover, define the right standard modules Δ(i) := eiA/eiAεi+1A

and dually the left standard modules Δ(i)op as the right standard modules of the opposite algebra of A. 
Define the right costandard modules then as ∇(i) := D(Δ(i)op). An algebra A is then called quasi-hereditary
in case there is an ordering e := (e1, e2, . . . , en) such that EndA(Δ(i)) is a division algebra for all i and 
Ext2A(Δ(i), ∇(j)) = 0 for all i and j.

Note that we used here one of the many characterizations of quasi-hereditary algebras and we refer [7, 
Theorem A.2.6] for many more equivalent characterizations. It is well known that any quiver algebra with an 
acyclic quiver is quasi-hereditary and thus every LNakayama algebra is quasi-hereditary. Not all CNakayama 
algebras are quasi-hereditary, but there is an easy homological characterization as the next proposition 
shows. We remark that the more general class of standardly stratified Nakayama algebras has been recently 
classified in [16].

Proposition 3.29 ([27, Proposition 3.1]). A CNakayama algebra is quasi-hereditary if and only if it has a 
simple module of projective dimension 2.

Thus, by Proposition 3.4, the CNakayama algebras corresponding to Dr
n are precisely those which are 

quasi-hereditary. The new description and Corollary 2.10 yields their number.

Corollary 3.30. For any c � 0, there is an explicit bijection between quasi-hereditary n-CNakayama algebras 
and n-CNakayama algebras whose Kupisch series is non-constant and has minimal entry c +2. In particular, 
the number of quasi-hereditary n-CNakayama algebras is

1
2n

∑
k|n

φ
(
n/k

)(2k
k

)
− 1.

As an aside, we compute the size of D0
n ∩ Dr

n. To do so, we recall the cycle construction.

Theorem 3.31 (e.g. [5, Equation 1.4(18)]). Consider a family of mutually disjoint finite sets (Dn,�)n,�∈N
and let D(x, q) =

∑
n,� |Dn,�|xnqk be its generating function. For n, � ∈ N, let Cn,� be the set of cycles

{[d1, . . . , dk]� | di ∈ Dni,�i ,
∑
i

ni = n,
∑
i

�i = �}.

Then

|Cn,�| =
∑

k| gcd(�,n)

φ(k)
k

[xn/kq�/k] log 1
1 −D(x, q) ,

where φ is Euler’s totient.

Proposition 3.32. The number of quasi-hereditary n-CNakayama algebras whose Kupisch series have minimal 
entry 2 equals

1
n

∑
φ
(
n/k

) � k
2 �∑ (

2k − 2m− 2
k − 2

)
.

k|n m=0
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Proof. Let us call an area sequence [c0, . . . , cn−1]� primitive, if (without loss of generality) cn−1 = 2 and 
ci > 2 for i �= n − 1. Note that the concatenation of primitive area sequences has no rectangle if and only if 
none of the factors has a rectangle. Thus, it is sufficient to count primitive area sequences without rectangle, 
and apply the cycle construction.

The number of primitive area sequences of length n without rectangles equals the number of 321-avoiding 
permutations without fixed points, counted by the Fine numbers.19 This can be seen by interpreting [c0 −
1, . . . , cn−1 − 1] as the area sequence of a Dyck path, and applying the Billey-Jockusch-Stanley bijection. 
Fixed points in the resulting permutation then correspond to rectangles. �
Theorem 3.33. Let A be an n-CNakayama algebra, and let D be the corresponding n-periodic Dyck path. 
Suppose that D ∈ D0

n ∪ Dr
n. Then the A-module

(1) Si is 1-regular if and only if LK(D) has a 1-cut at position i,
(2) Si is 2-regular if and only if LK(D) has a 2-hill at position i.

Proof. The proof of Theorem 3.11 applies verbatim. �
Corollary 3.34. Let A be an n-CNakayama algebra, and let D be the corresponding n-periodic Dyck path. 
Suppose that A has a 2-regular simple module. Then D ∈ D0

n ∩ Dr
n.

Proof. Suppose that Si is 2-regular for some i. Then, by Theorem 3.3(2), ci = 2 and therefore D ∈ D0
n. By 

Theorem 3.33, LK(D) has a 2-hill, so in particular LK(D) ∈ D0
n, and, by Theorem 3.27, D ∈ Dr

n. �
We note that there are n-CNakayama algebras with 1-regular simple modules such that the corresponding 

n-periodic Dyck path is not even in D0
n ∪Dr

n. An example is the 2-CNakayama algebra with Kupisch series 
[4, 3].

Remark 3.35. There is an alternative way to extend the map LK = LK0 = LKr on D0
n ∩ Dr

n to D0
n ∪ Dr

n

as follows. For a given n-periodic Dyck path D with area sequence [a0, . . . , an−1]� with global shift c, let 
D̃ be the corresponding periodic Dyck path with global shift 0 and area sequence [a0 − c, . . . , an−1 − c]�. 
One may now define an involution on periodic Dyck paths with global shift c for which the associated path 
with global shift 0 lies inside D0

n ∩ Dr
n by mapping this associated path via the involution LK and then 

adding back the global shift. Observe that this map preserves the global shift, but does not coincide with 
LK outside of D0

n ∩ Dr
n. More importantly, one cannot replace LK with this definition in Theorem 3.33.

For example, let D ∈ Dr
3 be the 3-periodic Dyck path with area sequence [5, 4, 3]�. Then LK(D) ∈ D0

3
has area sequence [3, 2, 3]�, whereas the construction just outlined yields the area sequence [3, 3, 4]�. The 
unique 1-regular module of the CNakayama algebra corresponding to D is S0, and indeed LK(D) has a 
unique 1-cut at position 0. By contrast, the 3-periodic Dyck path with area sequence [3, 3, 4]� has 1-cuts at 
positions 0 and 1.

We conclude with some corollaries enumerating CNakayama algebras with certain homological restric-
tions. All of these are obtained using the bijection between quasi-hereditary CNakayama algebras and 
periodic Dyck paths with global shift 0.

Corollary 3.36. The number of quasi-hereditary n-CNakayama algebras with exactly � < n simple modules 
of projective dimension 1 equals the number of n-periodic Dyck paths with global shift 0 and exactly � peaks. 
Explicitly, this number is

19 www .oeis .org /A000957.

http://www.oeis.org/A000957
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1
n

∑
k| gcd(�,n)

φ(k)
(
n/k − 1
�/k − 1

)(
n/k

�/k

)
.

Proof. Let dn,� be the number of prime Dyck paths of semilength n with � peaks, and let D(x, q) =∑
n,� dn,�x

nq� be the corresponding generating function.
Let ñ = n/k and �̃ = �/k. According to the cycle construction, we have to compute [xñq�̃] log 1

1−D(x,q) . 

Note that D(x, q) = x 
(
q + D(x,q)

1−D(x,q)

)
, because it is either a 1-hill, or a horizontal step followed by a non-

empty sequence of prime Dyck paths and a vertical step. Therefore, D(−1)(x, q) = x
q− x

1−x
.

Using Lagrange inversion and the binomial theorem we obtain

1
k

[xñq�̃] log 1
1 −D(x, q) = 1

n
[xñ−1q�̃] 1

1 − x

(
q + x

1 − x

)ñ

= 1
n

(
ñ

�̃

)
[xñ−1] xñ−�̃

(1 − x)ñ−�̃+1

= 1
n

(
ñ

�̃

)
[x�̃−1] 1

(1 − x)ñ−�̃+1

= 1
n

(
ñ

�̃

)(
ñ− 1
�̃− 1

)
. �

Corollary 3.37. The number of quasi-hereditary n-CNakayama algebras with exactly � > 0 simple modules of 
projective dimension 2 equals the number of n-periodic Dyck paths with global shift 0 and exactly � returns 
which are not 1-hills. Explicitly, this number is

∑
k| gcd(�,n)

φ(k)
k

(n−2�)/k∑
m=0

1
m + �/k

(
2(m + �/k)

m

)(
(n− �)/k −m− 1

�/k − 1

)
.

Proof. Let D(x) = 1 + xD(x)2 be the generating function for all Dyck paths. Furthermore, let dn,� be 
the number of prime Dyck paths of semilength n with � returns which are not 1-hills, and let R(x, q) =∑

n,� dn,�x
nq� be the corresponding generating function.

Let ñ = n/k and �̃ = �/k. According to the cycle construction, we have to compute [xñq�̃] log 1
1−R(x,q) . 

Note that R(x, q) = qxD(x) − qx + x.
Thus, using the expansion of the logarithm, we have

[xñq�̃] log 1
1 −R(x, q) = [xñq�̃] log

(
1

1−x

1 − qxD(x)−1
1−x

)

= 1
�̃
[xñ]

(
x
D(x) − 1

1 − x

)�̃

.

Recall from the proof of Corollary 3.19 that

[xñ]
x�
(
D(x) − 1

)�
(1 − x)�+1 =

n−2�̃∑
m=0

�̃

m + �̃

(
2(m + �̃)

m

)(
ñ−m− �̃

�̃

)
.

Now, using 
(ñ−m−�̃

˜
)
−

(ñ−1−m−�̃
˜

)
=

(ñ−1−m−�̃
˜

)
, the result follows. �
� � �−1
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Corollary 3.38. The number of quasi-hereditary n-CNakayama algebras without 1-regular simple modules 
equals the number of n-periodic Dyck paths with global shift 0 without 1-rises. Explicitly, this number is

1
n

∑
k|n

φ(k)
n/k−1∑
m=1

(
n/k

m

)(
n/k −m− 1

m− 1

)
.

Proof. Let R(x) = x2 + xR(x) + R(x)2 be the generating function for prime Dyck paths without 1-rises 
and let S(x) = R(x)/x. Let ñ = n/k and �̃ = �/k. According to the cycle construction, we have to compute 
[xñ] log 1

1−xS(x) . Using the expansion of the logarithm, and Lagrange inversion with S(−1)(x) = x
1+x+x2 , we 

obtain

[xñ] log 1
1 − xS(x) =

n−1∑
m=1

[xñ−m]S(x)m

m

=
n−1∑
m=1

1
ñ−m

[xñ−2m](1 + x + x2)ñ−m

(
substitute n − m for m

and 1/x for x

)
= [xñ]

n−1∑
m=1

1
m

(1 + x + x2)m

(expand
(
1 + x(1 + x)

)) =
ñ−1∑
m=1

1
m

ñ∑
j=1

(
m

j

)(
j

n− j

)

=
ñ∑

j=1

(
j

ñ− j

)
1
j

ñ−1∑
m=1

(
m− 1
j − 1

)

(‘hockey stick identity’) =
ñ∑

j=1

(
j

ñ− j

)
1
j

(
ñ− 1
j

)
.

A rearrangement of the final expression yields the claim. �
Corollary 3.39. The number of quasi-hereditary n-CNakayama algebras without 2-regular simple modules 
equals the number of n-periodic Dyck paths with global shift 0 without 2-hills, other than the path with 
constant area sequence. Explicitly, this number is

∑
k|n

φ(k)
k

� n
2k �∑

m=0

(−1)m

n/k −m

(
2n/k − 3m− 1
n/k −m− 1

)
− 1.

Proof. Let D(x) = 1 + xD(x)2 be the generating function for all Dyck paths and let H(x) = xD(x) − x2

be the generating function for prime Dyck paths without the 2-hill. Let ñ = n/k and �̃ = �/k. According 
to the cycle construction, we have to compute [xñ] log 1

1−H(x) . Note that 1
1−H(x) = D(x) 1

1+x2D(x) , we will 
compute the coefficient in the logarithm of these two factors separately. For the first factor, using that the 
compositional inverse of D(x) − 1 is x

(1+x)2 , we obtain

[xñ] log (1 + (D(x) − 1)) = 1
ñ

[xñ−1](1 + x)2ñ−1 = 1
ñ

(
2ñ− 1
ñ− 1

)
.

For the second factor, we expand the logarithm and use that the compositional inverse of xD(x) is x(1 −x):
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[xñ] log
(

1
1 + x2D(x)

)
=

∑
m�1

(−1)m

m
[xñ−m]

(
xD(x)

)m
=

ñ−1∑
m=1

(−1)m

ñ−m
[xñ−2m](1 − x)m−ñ

=
ñ−1∑
m=1

(−1)m

ñ−m

(
2ñ− 3m− 1
ñ−m− 1

)
.

We now note that we can extend the sum to m = 0, and the additional term is precisely the expression 
computed in Section 3.3. �

Using Theorem 3.2, Theorem 3.33 also gives a sharp upper bound for the number of exact structures on 
the category of finitely generated projective modules for n-CNakayama algebras.

Corollary 3.40. An n-CNakayama algebra has at most 	n
2 
 2-regular simple modules and thus at most 2�n

2 �

exact structures on the category of finitely generated projective modules. This bound is sharp.

Proof. A periodic Dyck path of semilength n has at most 	n
2 
 2-hills. Following Theorem 3.33, the bound 

is thus obtained for the n-CNakayama algebras with Kupisch series [2, 3, . . . , 2, 3] if n is even, and, for 
example, [2, 3, . . . , 2, 3, 2, 2] if n is odd. �
4. Nakayama algebras of global dimension one and two

The global dimension gd(A) of an algebra A is the maximal projective dimension of a simple module, 
see for example [2, Proposition I.5.1]. In this section we consider Nakayama algebras of global dimension at 
most two.

Definition 4.1. The height of a (possibly periodic) Dyck path is the maximal entry in its area sequence minus 
one.

Theorem 4.2. An n-Nakayama algebra A has global dimension 1 if and only if it has Kupisch series [n, . . . , 1]
corresponding to the unique Dyck path without valleys. Any other n-LNakayama algebra has global dimension 
2 if and only if for all i such that Si is non-projective, we have

ci+1 + 1 ∈ {ci, ci+ci + ci},

i.e., if and only if all valleys of the corresponding (possibly periodic) Dyck path are rectangles.
If A is an n-LNakayama algebra or the (possibly periodic) Dyck path D corresponding to A is in D0

n∪Dr
n, 

the Nakayama algebra has global dimension 2 if and only if LK(D) has height 2.
Moreover, (n + 1)-LNakayama algebras of global dimension 2 with exactly � simple modules of projective 

dimension 2 are in bijection with subsets of {1, . . . , n} of cardinality 2�, counted by 
(
n
2�
)
.

n-CNakayama algebras of global dimension 2 with exactly � simple modules of projective dimension 2 are 
in bijection with subsets of {0, . . . , n − 1} of cardinality 2� up to rotation by pairs.20 Explicitly, this number 
is

2
n

∑
k| gcd(�,n)

φ(k)
(
n/k

2�/k

)
.

20 www .oeis .org /A052823.

http://www.oeis.org/A052823
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Proof. The global dimension of a Nakayama algebra equals the maximal projective dimension of a sim-
ple module Si. Thus, the characterization in terms of the Kupisch series is an immediate consequence of 
Proposition 3.4. The reformulation in terms of rectangles is immediate from the definition.

It remains to describe the claimed bijections. Let A be an (n + 1)-LNakayama algebra whose simple 
modules of projective dimension 2 are Si1 , . . . , Si� , corresponding to rectangles of D with x-coordinates 
1 < i1 + 1 < · · · < i� + 1 � n. Mirroring D below the main diagonal, BJS puts crosses into the cells of the 
corresponding valleys, with top left coordinates (j1, i1 +1), . . . , (j�, i� +1). Then, working from right to left, 
BJS puts crosses into the cells on the main diagonal, with top-left coordinates (0, 1), . . . , (i1 − 1, i1).

Because there is a rectangle with x-coordinate i1 + 1, the next valley at (j2, i2 + 1) has y-coordinate 
strictly larger than j1 + 1. Thus, there are no crosses corresponding to valleys of D with y-coordinates 
i1 + 2, . . . , j1 + 1. Therefore, BJS puts crosses into the cells on the super diagonal with top-left coordinates 
(i1, i1 + 2), . . . , (j1 − 1, j1 + 1).

The process then continues by putting crosses into the cells on the main diagonal again, with top-left 
coordinates (j1 + 1, j1 + 2), . . . , (i2 − 1, i2), and so on. It is not hard to see that any Dyck path of height 2
can be obtained this way.

Similarly, one finds that mapping D to the set

i1 + 1 < j1 + 1 < i2 + 1 < · · · < i� + 1 < j� + 1

is a bijection with subsets of {1, . . . , n} of size 2�. �
Example 4.3. The 13-LNakayama algebra with Kupisch series

[5, 4, 10, 9, 8, 7, 6, 5, 4, 4, 3, 2, 1]

has global dimension 2 and its simple modules Si have projective dimension 2 exactly for indices i ∈ {1, 8}, 
where we compute

c2 + 1 − c1 = 7 = c5 = c1+c1 , c9 + 1 − c8 = 1 = c12 = c8+c8 .

The corresponding Dyck path is shown in Fig. 12, and is sent to the set {2, 5, 9, 12}. To see how to recover 
the path from this set {j1 = 2, j2 = 5, j3 = 9, j4 = 12}, observe that we obtain that ci+1 + 1 = ci for all i
except

i ∈ {j1 − 1, j3 − 1} = {1, 8},

and

c1 = j2 − (j1 − 1) = 4, c8 = j4 − (j3 − 1) = 4.

This in turn uniquely determines the Kupisch series as given.

Combining Theorem 3.3(2) with Theorem 4.2, we thus obtain the following description of 2-regular simple 
modules of Nakayama algebras of global dimension 2.

Corollary 4.4. Let A be an n-Nakayama algebra of global dimension 2.

(1) if A is a CNakayama algebra, Si is 2-regular if and only if ci = 2.
(2) if A is an LNakayama algebra, Sn−2 and Sn−1 are never 2-regular, and Si is 2-regular for i < n − 2 if 

and only if ci = 2.
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c0 5

c1 4

c2 10

c3 9

c4 8

c5 7

c6 6

c7 5

c8 4

c9 4

c10 3

c11 2

c12 1

Fig. 12. The Dyck path in Example 4.3 with rectangles at coordinates (2, 4) and coordinates (9, 11).

Proof. Suppose that ci = 2. It follows that the (possibly periodic) Dyck path D corresponding to A has 
a valley at (i + 1, i + 1) and in particular di+2 = 2. By Theorem 4.2, ci+1 = 1 or ci+1 = ci+2 + 1. In the 
former case, A is an LNakayama algebra and i = n − 1. It remains to show that in the latter case, we also 
have di+1 = di +1, as required by Theorem 3.3(2). Suppose on the contrary that di+1 � di, so that D has a 
valley at (j+1, i) for some j. This valley cannot belong to a rectangle with x-coordinate j+1, because then 
the next valley should have y-coordinate strictly larger than i + 1. Thus, by Theorem 4.2, cj+1 + 1 = cj , 
contradicting the assumption that there is a valley at (j + 1, i). �

Observe that the conclusion in the previous corollary does not hold in general for Nakayama algebras of 
higher global dimension as the next example shows.

Example 4.5. Let A be the LNakayama algebra with Kupisch series [2, 2, 2, 1]. Then A has global dimension 3
and does not have any simple 2-regular modules. The LNakayama algebra with Kupisch series [2, 3, 2, 2, 2, 1]
also has global dimension 3, and S0 is its only simple 2-regular module.

Let us now use our preceding results to classify LNakayama algebras of global dimension at most two that 
satisfy the restricted Gorenstein condition. An algebra A with finite global dimension k � 0 satisfies the 
restricted Gorenstein condition if k = 0 or if every simple left and right module with projective dimension k

is k-regular, see for example [12, Definition 1.3].
We say that a Dyck path is a bounce path if it is of the form ha1va1 . . . ha�va� for positive integers 

a1, . . . , a�. Observe that this is the case if and only if all its valleys are of the form (i, i). Moreover, an 
LNakayama algebra has a associated Dyck path that is a bounce path if and only if its Kupisch series is of 
the form

[a1 + 1, . . . , 2, a2 + 1, . . . , 2, . . . , a� + 1, . . . , 2, 1].

Theorem 4.6. Let A be an n-Nakayama algebra and let D be the associated Dyck path. Then A has global 
dimension at most 2 and satisfies the restricted Gorenstein condition if and only if D is a bounce path and 
has no 1-hill after position 0 and before position n − 1.
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Similarly, let A be an n-CNakayama algebra. Then A has global dimension at most 2 and satisfies the 
restricted Gorenstein condition if and only if D is a bounce path and has no 1-hills.

Proof. Suppose that D is a bounce path without 1-hills after position 0 and before position n − 1. Then 
all valleys of D belong to rectangles, so by Theorem 4.2, the global dimension of A is at most 2. Since all 
rectangles of D are returns, the corresponding simple modules are all 2-regular by Theorem 3.9(2).

Conversely, suppose that A has global dimension at most 2, but D has a rectangle with x-coordinate 
i + 1 which is not a return. Then ci > 2, so Si is not 2-regular.

To conclude that A satisfies the restricted Gorenstein condition, it remains to recall that the simple left 
modules of A are the simple right modules of the opposite algebra, corresponding to the reversed Dyck 
path. The above reasoning applies verbatim. �
Corollary 4.7. The number of (n + 1)-LNakayama algebras of global dimension at most 2 that satisfy the 
restricted Gorenstein condition equals the Fibonacci number21 F (n +1), counting subsets of {1, 2, . . . , n −1}
that contain no consecutive integers. Explicitly, this number is given by the recurrence

F (n + 2) = F (n) + F (n + 1)

with initial conditions F (1) = F (2) = 1.

Proof. A bounce path of semilength n can be identified with the subset of {1, . . . , n − 1} given by the 
positions of its valleys. Under this identification, a 1-hill at a position between 1 and n − 2 corresponds to 
two consecutive numbers in the given subset, which implies the claim. �

The analogous result for CNakayama algebras is as follows.

Corollary 4.8. The number of n-CNakayama algebras of global dimension 2 that satisfy the restricted Goren-
stein condition equals the number of cyclic compositions of n into parts of size at least 2.22 Explicitly, this 
number is

1
n

∑
k|n

φ(n/k)
(
F (k − 1) + F (k + 1)

)
− 1

where F is the Fibonacci number defined above.

We remark that by [12, Proposition 1.4], the class of Nakayama algebras with global dimension at 
most 2 satisfying the restricted Gorenstein condition coincides with the class of Nakayama algebras of 
global dimension at most 2 that are 2-Gorenstein. For the general enumeration of 2-Gorenstein LNakayama 
algebras we refer to the recent article [21].
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