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Graded-division algebras are building blocks in the theory of finite-dimensional 
associative algebras graded by a group G. If G is abelian, they can be described, 
using a loop construction, in terms of central simple graded-division algebras.
On the other hand, given a finite abelian group G, any central simple G-graded-
division algebra over a field F is determined, thanks to a result of Picco and Platzeck, 
by its class in the (ordinary) Brauer group of F and the isomorphism class of a G-
Galois extension of F .
This connection is used to classify the simple G-Galois extensions of F in terms 
of a Galois field extension L/F with Galois group isomorphic to a quotient G/K
and an element in the quotient Z2(K, L×)/B2(K, F×) subject to certain conditions. 
Non-simple G-Galois extensions are induced from simple T -Galois extensions for 
a subgroup T of G. We also classify finite-dimensional G-graded-division algebras 
and, as an application, finite G-graded-division rings.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Division algebras and the Brauer group play a key role in the theory of finite-dimensional associative 
algebras. Any finite-dimensional central simple associative algebra over a field F is isomorphic to a matrix 
algebra Matn(D) over a central division algebra D or, in other words, the algebra EndD(V ) of endomor-
phisms of a finite rank right D-module V . The Brauer group Br(F) is the group of equivalence classes 
of finite-dimensional central simple algebras, with two such algebras being equivalent if they are isomor-
phic to matrix algebras over the same division algebra. The equivalence class of A, which is an element of 
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Br(F), will be denoted by [A]. The multiplication in Br(F) is induced by the tensor product of F -algebras: 
[A][B] = [A ⊗F B]. We are interested in the graded version of this theory.

Given a group G, a G-graded algebra over a field F is an algebra A endowed with a G-grading, i.e., a 
vector space decomposition Γ : A =

⊕
g∈G Ag, such that AgAh ⊂ Agh for all g, h ∈ G. The subspaces Ag

are called the homogeneous components of the grading Γ (or of the graded algebra A), and the elements of ⋃
g∈G Ag are said to be homogeneous. The nonzero elements of Ag are said to have degree g. The support

of Γ (or of A) is the subset {g ∈ G | Ag �= 0} of G. A homomorphism of G-graded algebras A → B is an 
algebra homomorphism ψ : A → B such that ψ(Ag) ⊂ Bg for all g ∈ G. In particular, A and B are said to 
be graded-isomorphic if there is an isomorphism of graded algebras A → B.

1.1. Graded-division algebras and the graded Brauer group

A G-graded (associative) algebra is said to be a graded-division algebra if all nonzero homogeneous 
elements are invertible. The support is then a subgroup of G.

Graded-division algebras are key objects in the graded theory, as any finite-dimensional G-graded-central-
simple associative algebra A, i.e., a G-graded associative algebra A that is graded-central (Z(A) ∩Ae = F1, 
where e is the identity of G) and graded-simple (A has no proper graded ideals), is graded-isomorphic to 
EndD(V ) where D is a G-graded-central-division algebra and V is a graded right D-module of finite rank. 
The reader may consult the book [25] or Chapter 2 in our monograph [14], where this theory is used to 
study gradings on finite-dimensional simple Lie algebras.

However, the definition of a “graded Brauer group” is not evident. For abelian G (for example, G = Z/2
in the case of the Brauer-Wall group), one possibility is to fix a bicharacter φ : G × G → F× and define 
central simple algebras and (twisted) tensor products relative to φ (see [30,20]). Far-reaching generalizations 
are obtained using algebras with an action and coaction of a Hopf algebra (see e.g. [9] and the references 
therein). But here we will focus on the special case of trivial φ. In this setting, the graded Brauer group
BrG(F) consists of the equivalence classes of finite-dimensional associative algebras that are central simple 
and G-graded, with two such algebras A and B being equivalent if there is a central simple G-graded-division 
algebra D and G-graded right D-modules V and W such that A is graded-isomorphic to EndD(V ) and B
to EndD(W ). The class of A in BrG(F) will be denoted by [A]G. The multiplication in BrG(F) is induced 
by the standard tensor product: [A]G[B]G = [A ⊗F B]G, where the homogeneous component (A ⊗F B)g is 
defined to be the span of all elements a ⊗ b with a ∈ Ag1 , b ∈ Bg2 , and g1g2 = g.

Our motivation to consider this setting is explained in the next two subsections, but first we point out 
that the group BrG(F) depends functorially on both F and G. As with the classical Brauer groups, any 
embedding of fields F → K induces a homomorphism BrG(F) → BrG(K) by extension of scalars: the class of 
A =

⊕
g∈G Ag is sent to the class of A ⊗F K =

⊕
g∈G Ag ⊗F K. Also, any group homomorphism α : G → H

induces a homomorphism BrG(F) → BrH(F) by “push-forward” of grading: the class of A =
⊕

g∈G Ag is sent 
to the class of the same algebra, but equipped with the grading A =

⊕
h∈H Ah where Ah =

⊕
g∈α−1(h) Ag.

1.2. Loop algebra construction

Given an epimorphism of abelian groups π : G → G, the “push-forward” mentioned above turns any 
G-graded algebra to a G-graded algebra by coarsening the grading. The loop algebra construction is the 
right adjoint of this functor: it sends a G-graded algebra A =

⊕
ḡ∈G Aḡ to the G-graded algebra

Lπ(A) :=
⊕

Aπ(g) ⊗ g ⊂ A⊗F FG,

g∈G
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where the multiplication is as in A ⊗F FG and the G-grading is given by the above direct sum. This 
construction is well known in Lie theory, but it works for any variety of algebras: since the group algebra 
FG is commutative, the loop construction preserves (homogeneous) polynomial identities.

It is shown in [13], based on previous results in [5,1,4], that, for abelian G, any G-graded-central-simple 
algebra (not necessarily associative or finite-dimensional) is graded-isomorphic to a cocycle-twisted loop 
algebra of a central simple G-graded algebra, for a suitable quotient G of G. Thus, all graded-central-simple 
algebras can be obtained, at least in principle, from gradings on central simple algebras. It is important 
to point out that graded-simple algebras may be far from being simple, or even semisimple, as ungraded 
algebras.

1.3. Gradings on Lie algebras and their representations

Let L be a finite-dimensional semisimple Lie algebra over a field F of characteristic 0 and let V = V (λ)
be a finite-dimensional irreducible representation of LF = L ⊗F F , where F is an algebraic closure of F and 
λ is the highest weight of V relative to a Cartan subalgebra of LF . A natural question is whether or not 
V descends to a representation of L, i.e., whether or not there exists a representation of L that becomes 
(isomorphic to) V after extension of scalars to F . A necessary condition is that λ be invariant under the 
∗-action of the absolute Galois group Gal(F/F), as in [21, §27.A]. If this is the case, one can define the Tits 
algebra Aλ over F , with Aλ⊗F F 	 EndF (V ), and a surjective homomorphism from the universal enveloping 
algebra U(L) onto Aλ that, after scalar extension, becomes the representation U(LF) → EndF (V ). Then V
descends to a representation of L if and only if the class of Aλ in the Brauer group Br(F) is trivial.

If LF is graded by an abelian group G, a natural question is whether or not V = V (λ) admits a G-grading 
that makes it a graded LF -module. A necessary condition is that λ be invariant under the action of the 

dual group Ĝ = Hom(G, F
×). If this is the case, one can define a G-grading on EndF (V ) such that the 

representation U(LF) → EndF (V ) is a homomorphism of graded algebras — see [15] and [16, Appendix]. 
Then V admits a G-grading if and only if the class of EndF (V ) in the graded Brauer group BrG(F) is trivial.

Now suppose L (and hence LF) is graded by G, V = V (λ) admits a G-grading, and λ is Gal(F/F)-
invariant. Then we get a G-grading on Aλ such that U(L) → Aλ is a homomorphism of graded algebras, 
and V descends to a graded L-module if and only if the class of Aλ in the graded Brauer group BrG(F) is 
trivial.

1.4. Classifications of graded-division algebras

There are two natural ways to classify graded-division algebras: up to isomorphism of graded algebras 
or up to equivalence of graded algebras. If D and D′ are graded-division algebras with supports T and T ′, 
then D and D′ are equivalent if there exists an isomorphism of algebras D → D′ that maps Dt to D′

α(t)
where α : T → T ′ is a group isomorphism.

If D is a graded-division algebra, then the identity component De is a division algebra, the support 
T is a subgroup of G, and D is graded-isomorphic to the crossed product of De and T , for a suitable 
action and 2-cocycle in Z2(T, D×

e ), where D×
e is the group of invertible elements of De. In principle, group 

actions and cohomology can be used to classify the graded-division algebras with fixed De and T . As 
shown in [19], they are classified, up to graded-isomorphism, by the following data: (i) a homomorphism 
σ : T → Out(De) ⊂ Out(D×

e ) such that the corresponding obstruction in H3(T, Z(D×
e )) vanishes, and (ii) 

with σ already fixed (up to conjugation in Out(De)), an orbit in H2(T, Z(D×
e )) under a certain twisted action 

of Aut(De, σ). In practice, however, even if all these homomorphisms and orbits can be found, it is still 
difficult to construct the corresponding graded-division algebras explicitly and determine their properties.

The situation is more manageable if De is the ground field F , which is the case if F is algebraically 
closed and D is finite-dimensional. Then D is graded-isomorphic to the twisted group algebra FτT for 
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some 2-cocycle τ : T × T → F× (with T acting trivially on F×), and FτT is graded-isomorphic to Fτ ′
T if 

and only if [τ ] = [τ ′] in H2(T, F×). In particular, if G is abelian and F is algebraically closed then finite-
dimensional graded-division algebras are classified by pairs (T, β) where T is a finite subgroup of G and 
β : T × T → F× is an alternating bicharacter. Moreover, the graded-division algebra can be constructed 
from this data explicitly; it is simple as an ungraded algebra if and only if β is nondegenerate (see [5,6] and 
[14, Chapter 2]).

Over an arbitrary field F , the study of finite-dimensional graded-division algebras can be, in principle, 
reduced to the case of twisted group algebras by means of extension of scalars to the field L = Z(De), which 
is a finite Galois extension of F , and then using Galois descent (see [3]). Over the field of real numbers, 
an explicit classification up to isomorphism of finite-dimensional graded-division algebras with an abelian 
grading group was given in [3] (see also [27] for the simple case). An explicit classification up to equivalence 
was given for these algebras in [8] (see also [7,27] for the simple case).

1.5. Exact sequence of Picco-Platzeck

Given a finite abelian group G, Picco and Platzeck proved in [26] the existence of the following split short 
exact sequence of abelian groups (see Theorem 2.2 in the next section):

1 −→ Br(F) ι−→ BrG(F) ζ−→ EG(F) −→ 1

where EG(F) is the group of isomorphism classes of G-Galois extensions of F (Definition 2.1). This allows 
us to classify finite-dimensional G-graded-division algebras in terms of (ungraded) division algebras and 
G-Galois extensions, but it can also be used to understand the structure of these Galois extensions. We will 
use both directions in this paper.

We note that the splitting of the above sequence is canonical: the embedding ι sends [A] ∈ Br(F) to 
[A0]G ∈ BrG(F), where A0 denotes the algebra A equipped with the trivial grading (i.e., A = Ae), and the 
“forgetful” map BrG(F) → Br(F), sending the class [A]G of a central simple G-graded algebra A to the 
class [A] of A as an ungraded algebra, is a left inverse of ι. (If we regard Br(F) as Br1(F), these maps are 
induced by the group homomorphisms 1 → G and G → 1.) In particular, ζ gives a bijection between the 
isomorphism classes of division G-gradings on matrix algebras over F (i.e., the G-gradings that turn the 
said algebras into graded-division algebras) and the isomorphism classes of G-Galois extensions of F .

The paper is organized as follows. In Section 2, we review the definition of G-Galois extensions and the 
exact sequence of Picco-Platzeck. In Section 3, we will show that, for a finite abelian group G, if D is a finite-
dimensional central simple G-graded-division algebra with support T , then the centralizer C = CentD(De)
of the identity component De is a simple T -Galois extension, and the opposite algebra of IndG

T (C) is a 
G-Galois extension representing the image of [D]G under ζ (Theorem 3.2).

The surjectivity of ζ in the sequence of Picco-Platzek shows that any G-Galois extension is, up to 
isomorphism, of the form IndG

T (C) above. This is used in Section 4 to describe the structure of simple G-
Galois extensions (Theorem 4.4). They are determined by a Galois field extension L/F with Galois group 
isomorphic to a quotient G/K and an element ξ ∈ Z2(K, L×)/B2(K, F×), where K and ξ satisfy certain 
conditions (Corollary 4.5). In particular, we give an easy-to-use criterion (Corollary 4.9) to check if a finite-
dimensional F -algebra A, endowed with an action by automorphisms σ : G → AutF (A), is a G-Galois 
extension of F . We also give an explicit description of the simple Galois extensions in terms of generators 
and relations (Proposition 4.11).

Section 5 will make use of the results in Sections 3 and 4, together with the main results in [13], to 
classify, for any abelian group G, all finite-dimensional G-graded-central-division algebras over a field F up 
to graded-isomorphism (Theorem 5.5 and Corollary 5.6). Specializing to finite fields, we obtain an explicit 
classification of finite G-graded-division rings (Theorem 5.14).
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Throughout, all algebras will be assumed unital, associative and finite-dimensional, unless stated other-
wise. For any n ∈ N, we will denote by G[n] and G[n], respectively, the kernel and image of the endomorphism 
[n] of G that sends g 
→ gn.

2. Galois extensions and the graded Brauer group

Given an action of a group G on an algebra C by automorphisms: G → AutF (C), sending g ∈ G to the 
automorphism c 
→ g ·c of C, we will say that C is a G-algebra. The fixed subalgebra {c ∈ C | g ·c = c ∀g ∈ G}
will be denoted by CG. A homomorphism of G-algebras is a G-equivariant homomorphism of algebras, i.e., 
an algebra homomorphism ψ : C1 → C2 such that ψ(g · c) = g · ψ(c) for all g ∈ G and c ∈ C1.

Definition 2.1. Let G be a finite group. A G-Galois extension of F is a finite-dimensional unital G-algebra 
C over F such that the action of G on C is faithful, CG = F1, and the following equivalent conditions hold:

(a) The homomorphism

Φ : C#FG −→ EndF (C)

cg 
→
(
x 
→ c(g · x)

)
is an isomorphism.

(b) The linear map

C⊗F C −→ Maps(G,C)

a⊗ b 
→
(
g 
→ a(g · b)

)
is bijective.

The definition of commutative Galois extensions seems to have appeared for the first time in [2] using 
condition (a), where C#FG denotes the smash product (recalled below), which in this case is the same as 
the skew group ring of G with coefficients in C. Galois extensions that are not necessarily commutative were 
introduced in [10, Definition 4.5] using condition (b), and indicating that it is equivalent to condition (a).

Note that condition (b) shows immediately that if C is a G-Galois extension, then so is its opposite 
algebra Cop, i.e., the algebra with the same underlying vector space as C, but with multiplication x.y := yx.

Galois extensions of an algebraically closed field F were classified in [12] using a method developed (for 
a different purpose) in [24].

In what follows, the ground field F will be arbitrary, but G will be assumed abelian, unless indicated 
otherwise.

We denote by [C]G-alg the isomorphism class of a G-algebra C. Let EG(F) be the following set:

EG(F) = {[C]G-alg | C is a G-Galois extension of F}.

Given two G-Galois extensions of F , C1 and C2, the tensor product C1 ⊗F C2 is naturally a (G ×G)-Galois 
extension. Let H = {(g, g−1) | g ∈ G}. Since G is abelian, H is a subgroup of G ×G, and the fixed subalgebra 
(C1 ⊗F C2)H is a G-Galois extension, using the isomorphism G 	 (G ×G)/H, g 
→ (g, 1)H = (1, g)H. This 
defines an abelian group structure on EG(F). The identity element is the class of (FG)∗ 	 Maps(G, F), 
where G acts as follows: (g · f)(h) = f(hg) for g, h ∈ G and f ∈ Maps(G, F).

Recall the graded Brauer group BrG(F) and the embedding ι : Br(F) → BrG(F) from Subsections 1.1 and 
1.5. We are now going to define a homomorphism ζ : BrG(F) → EG(F) to complete the short exact sequence 
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of Picco-Platzeck. Although it is not stated like this in [26], ζ and its right inverse ϑ : EG(F) → BrG(F) are 
given in terms of smash products, which we briefly recall (see e.g. [29, Chapter VII] or [23, Chapter 4]).

Consider a unital algebra A and a Hopf algebra H over F (which are not necessarily finite-dimensional), 
and suppose A is an H-module algebra via a linear map H ⊗F A → A, h ⊗ a 
→ h · a, which means that 
h1 · (h2 · a) = (h1h2) · a and 1 · a = a for all h1, h2 ∈ H and a ∈ A, and

h · (a1a2) =
∑(

h(1) · a1
)(
h(2) · a2

)
and h · 1 = ε(h)1

for all h ∈ H and a1, a1 ∈ A, where the comultiplication of H is Δ(h) =
∑

h(1) ⊗ h(2) (using Sweedler’s 
notation) and the counit is ε. Under these conditions, the smash product A#H is the algebra defined on 
the vector space A ⊗F H by setting

(a⊗ h)(b⊗ k) =
∑

a
(
h(1) · b

)
⊗ h(2)k

for all a, b ∈ A and h, k ∈ H. Both A 	 A ⊗ 1 and H 	 1 ⊗H are subalgebras of A#H and, for simplicity, 
we will write ah for the element a ⊗ h in A#H.

For example, if an arbitrary group G acts on A by automorphisms, then A is a module algebra over the 
group algebra FG. The smash product A#FG consists of the formal sums 

∑
g∈G agg, with ag ∈ A for all 

g ∈ G and only a finite number of ag being nonzero, and the multiplication is determined by ga = (g · a)g
for all a ∈ A and g ∈ G. Moreover, A#FG is naturally G-graded with 

(
A#FG)g := Ag for any g ∈ G.

Dually, if G is a finite group, consider the dual Hopf algebra (FG)∗ of the group algebra FG. Then 
(FG)∗ =

⊕
g∈G Fεg, where εg : h 
→ δg,h (Kronecker’s delta). The elements εg are orthogonal idempotents, 

and the comultiplication is given by Δ(εg) =
∑

h∈G εgh−1⊗εh. If A =
⊕

g∈G Ag is a unital G-graded algebra, 
then A is an (FG)∗-module algebra with the following action: for any element a =

∑
g∈G ag, with ag ∈ Ag, 

we set εg · a = ag, i.e., the action of εg is the projection onto the homogeneous component of degree g. 
The smash product A#(FG)∗ consists of the formal sums 

∑
g∈G agεg, with ag ∈ A for all g ∈ G, and the 

multiplication is determined by

(aεg)(bεh) =
(
abgh−1

)
εh

for all a, b ∈ A and g, h ∈ G, where b =
∑

k∈G bk, bk ∈ Ak. Moreover, G acts on A#(FG)∗ by automorphisms 
as follows:

g · (aεh) := aεhg−1

for all g, h ∈ G and a ∈ A.
The following result is valid for all finite abelian groups G and unital commutative rings F , but we will 

restrict ourselves to the case of fields.

Theorem 2.2 ([26, Section 1]). The mapping ζ
(
[A]G

)
= [CentA#(FG)∗(A)]G-alg is a well-defined group ho-

momorphism, and

1 −→ Br(F) ι−→ BrG(F) ζ−→ EG(F) −→ 1 (2.1)

is a split exact sequence. �
Remark 2.3. The G-algebra denoted by AE in [26] is isomorphic to the smash product A#(FG)∗ by means 
of aeg 
→ aεg−1 for a ∈ A and g ∈ G.
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For a G-graded algebra A, we will denote Γ(A) := CentA#(FG)∗(A), so that, if A is central simple, 
ζ
(
[A]G

)
= [Γ(A)]G-alg in (2.1). There is an alternative construction of Γ(A), which is valid for any strongly 

graded A, but we will restrict ourselves to the following special case. Assume that, for every g ∈ G, the 
homogeneous component Ag contains an invertible element, say, ug. (In other words, A is isomorphic to a 
crossed product of Ae and G, as Ag = Aeug for all g ∈ G.) Consider the graded subalgebra C = CentA(Ae). 
For any g ∈ G, the inner automorphism Intug : x 
→ ugxu

−1
g preserves Ae, and hence also C. Moreover, its 

restriction to C does not depend on the choice of the invertible element ug ∈ Ag, because any other such 
element has the form aug, with invertible a ∈ Ae, and (Int a)|C = idC. Therefore, there is a well-defined 
group homomorphism

σ : G −→ AutF (C)

g 
→ (Intug)|C for any invertible homogeneous ug of degree g.
(2.2)

As usual, we will write g · c for the image of c ∈ C under σg.

Lemma 2.4. Let G be a finite abelian group and A be a G-graded algebra such that, for every g ∈ G, the 
homogeneous component Ag contains an invertible element. Then CentA#(FG)∗(A) is antiisomorphic to 
CentA(Ae) as a G-algebra.

Proof. First we compute CentA#(FG)∗(A). Let x =
∑

g∈G agεg, where ag ∈ A for all g ∈ G. For any bh ∈ Ah, 
we have

xbh =
(∑
g∈G

agεg

)
bh =

∑
g∈G

(agbh)εh−1g,

bhx =
∑
g∈G

bha
gεg,

so, equating the coefficients of εg, we obtain: x ∈ CentA#(FG)∗(A) if and only if

ahgbh = bha
g ∀g, h ∈ G, bh ∈ Ah. (2.3)

With h = e, this equation gives ag ∈ C := CentA(Ae). With invertible bh and g = e, it gives ah = bha
eb−1

h =
h · ae, for any h ∈ G. Conversely, if ag = g · c where c ∈ C, then (2.3) holds. Indeed, we have bh = auh for 
some a ∈ Ae, so bhag = (h · ag)bh = (h · (g · c))bh = ((hg) · c)bh = ahgbh. Therefore, we obtain:

CentA#(FG)∗(A) =
{∑
g∈G

(g · c)εg | c ∈ C
}
.

Define a linear isomorphism

ψ : C −→ CentA#(FG)∗(A)

c 
→
∑
g∈G

(g · c)εg.

We claim that ψ is an antiisomorphism of algebras, i.e., ψ(c)ψ(d) = ψ(dc) for all c, d ∈ C. Since C is a 
graded subalgebra of A, we may assume that d ∈ Ak for some k ∈ G. Then
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ψ(c)ψ(d) =
(∑
g∈G

(g · c)εg
)(∑

h∈G

(h · d)εh
)

=
∑

g,h∈G

(g · c)δgh−1,k(h · d)εh

=
∑
h∈G

((kh) · c)(h · d)εh =
∑
h∈G

(h · d)(h · c)εh because of (2.3)

=
∑
h∈G

(h · (dc))εh = ψ(dc),

as claimed.
Finally, the action of G on A#(FG)∗ is given by h · (aεg) = aεgh−1 . For c ∈ C and h ∈ G, we compute:

ψ(h · c) =
∑
g∈G

((gh) · c)εg =
∑
g∈G

(g · c)εgh−1 = h · ψ(c),

so ψ is G-equivariant. �
Remark 2.5. This result can be considered a special case of [11, Proposition 3.4], but we included a proof 
for completeness and also because showing that the G-algebra denoted by (GA)A in [11] is, in the setting 
of [26], antiisomorphic to CentA#(FG)∗(A), requires computations similar to the above.

The fact that ζ in (2.1) is surjective follows from [26, Lemma 5], but there is a minor mistake in its proof. 
The next result gives the correct statement.

Lemma 2.6. Let G be a finite abelian group and C be a G-Galois extension of F . Then the algebras 
Cent(C#FG)#(FG)∗(C#FG) and C are isomorphic as G-algebras.

Proof. Denote A = C#FG. Clearly, A satisfies the hypothesis of Lemma 2.4 (we can take ug = g), so 
CentA#(FG)∗(A) is antiisomorphic to CentA(Ae) as a G-algebra. On the other hand, we can identify A with 
EndF (C) as in condition (a) of Definition 2.1, i.e., an element cg ∈ A is identified with the map x 
→ c(g ·x). 
Then the identity component Ae = C is identified with LC, and CentA(Ae) with CentEndF (C)(LC) = RC, 
where LC (respectively, RC) denotes the subspace of EndF (C) spanned by the operators Lc (respectively, 
Rc) of left (respectively, right) multiplication by elements c ∈ C. Finally, the G-action on A, given by 
g · a = gag−1, corresponds to the natural G-action on EndF (C): (g · f)(x) = g · (f(g−1 · x)) for all g ∈ G, 
f ∈ EndF (C) and x ∈ C. One easily checks that g ·Rc = Rg·c for all c ∈ C. Therefore, the mapping c 
→ Rc

is an antiisomorphism C → RC as G-algebras. �
Remark 2.7. In [26, Lemma 5] it is incorrectly asserted that the centralizer Cent(C#FG)#(FG)∗(C#FG) is 
isomorphic to the opposite algebra Cop. The problem lies in the fact that u1 · v1 is computed instead of 
(u · v)1 (in the notation in [26]).

As a consequence of Lemma 2.6, the map

ϑ : EG(F) −→ BrG(F)

[C]G-alg 
→ [C#FG]G,

is a right inverse of ζ. Note that, since the algebra C#FG is isomorphic to EndF (C), its class in Br(F) is 
trivial, which means that ϑ([C]G-alg) is in the kernel of the “forgetful” map ϕ : BrG(F) → Br(F). It follows 
that ϑ is an isomorphism EG(F) 	 kerϕ.
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Corollary 2.8. Let G be a finite abelian group. Then the map

BrG(F) −→ Br(F) × EG(F)

[A]G 
→ ([A], [Γ(A)]G-alg)

is a group isomorphism, and its inverse is the map

Br(F) × EG(F) −→ BrG(F)

([B], [C]G-alg) 
→ [B⊗F (C#FG)]G,

where the G-grading on B ⊗F (C#FG) is given by

(B⊗F (C#FG))g = B⊗F (Cg).

3. From graded-division algebras to Galois extensions

Let D =
⊕

g∈G Dg be a central simple graded-division algebra over F . Our aim in this section is to 
express the G-Galois extension Γ(D) = CentD#(FG)∗(D) in simpler terms. First we will assume that the 
support of D is the entire G, i.e., Dg �= 0 for all g ∈ G. Then we have a G-action on C := CentD(De) given 
by (2.2).

Proposition 3.1. Let G be a finite abelian group and let D be a central simple G-graded-division algebra with 
support G. Then Γ(D) is a simple algebra, and it is antiisomorphic to CentD(De) as a G-algebra.

Proof. Since D satisfies the hypothesis of Lemma 2.4, Γ(D) is antiisomorphic to C = CentD(De) as a G-
algebra. The fact that C is simple follows from the Double Centralizer Theorem (see e.g. [28, §8.5]), because 
D is central simple, and De is a division algebra (hence simple). �

Our next step is to suppress the condition on G being the support of D. Denote the support of D by T
(a subgroup of G). Again, let C = CentD(De). Then we have a T -action on C, and Proposition 3.1 shows 
that C is a T -Galois extension of F . Consider the vector space

IndG
T (C) := HomFT (FG,C),

which can be identified with the algebra of T -equivariant maps:

{f : G → C | f(tg) = t · f(g) ∀t ∈ T}.

Define pointwise multiplication on IndG
T (C): (f1f2)(g) = f1(g)f2(g) for all g ∈ G.

As an algebra, IndG
T (C) is isomorphic to the Cartesian product of [G : T ] copies of C. There is a natural 

action of G on IndG
T (C) by automorphisms, given by

(g · f)(h) = f(hg)

for g, h ∈ G and f ∈ IndG
T (C).

Theorem 3.2. Let G be a finite abelian group and let D be a central simple G-graded-division algebra with 
support T . Then Γ(D) is antiisomorphic to IndG

T (C) as a G-algebra, where C = CentD(De) is a simple 
T -Galois extension of F .
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Proof. Take a transversal {g1 = e, g2, . . . , gm} of T in G, so that G is the disjoint union G =
Tg1 ∪̇Tg2 ∪̇ · · · ∪̇Tgm. Then we have

D#(FG)∗ =
m⊕
i=1

(⊕
t∈T

Dεtgi

)
and, for each i = 1, . . . , m, Ji :=

⊕
t∈T Dεtgi is an ideal of D#(FG)∗ because εgdt = dtεt−1g for all g ∈ G, 

t ∈ T , dt ∈ Dt, and t−1g is in the coset Tg. Each Ji is naturally isomorphic to J1 =
⊕

t∈T Dεt 	 D#(FT )∗
by means of the map

dεtgi 
→ dεt.

As in the proof of Lemma 2.4, let x =
∑

g∈G agεg ∈ D#(FG)∗. Then, by (2.3), we have x ∈ Γ(D) =
CentD#(FG)∗(D) if and only if

atgbt = bta
g ∀g ∈ G, t ∈ T, bt ∈ Dt.

This forces ag ∈ C and atg = bta
gb−1

t for any 0 �= bt ∈ Dt, i.e., atg = t ·ag for all g ∈ G and t ∈ T . Therefore, 
Γ(D) is the subalgebra

Γ(D) =
{

m∑
i=1

(∑
t∈T

(t · agi)εtgi
)
| ag1 , . . . , agm ∈ C

}
,

which is a direct sum of ideals: Γ(D) = Γ(D)1 ⊕ · · · ⊕ Γ(D)m, where

Γ(D)i :=
{∑
t∈T

(t · c)εtgi | c ∈ C
}

= Γ(D) ∩ Ji.

All Γ(D)i are isomorphic to Γ(D)1, which is isomorphic to Cop by Proposition 3.1.
Define an injective linear map

Ψ : IndG
T (C) −→ D#(FG)∗

f 
→
∑
g∈G

f(g)εg.

Note that, for f ∈ IndG
T (C), we have f(tgi) = t · f(gi), so

Ψ(f) =
m∑
i=1

(∑
t∈T

(
t · f(gi)

)
εtgi

)
.

Therefore, the image of Ψ is precisely Γ(D). For any h ∈ G, we have

Ψ(h · f) =
∑
g∈G

(h · f)(g)εg =
∑
g∈G

f(gh)εg = h ·
(∑
g∈G

f(gh)εgh
)

= h · Ψ(f),

so Ψ is G-equivariant.
Finally, Ψ is the composition of the algebra isomorphism

IndG
T (C) −→ C× m· · · ×C( )
f 
→ f(g1), . . . , f(gm) ,
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and of the antiisomorphism (Proposition 3.1)

C× m· · · ×C −→ Γ(D) = Γ(D)1 ⊕ · · · ⊕ Γ(D)m

(c1, . . . , cm) 
→
(∑
t∈T

(t · c1)εtg1 , . . . ,
∑
t∈T

(t · cm)εtgm
)
,

so Ψ : IndG
T (C) → Γ(D) is an antiisomorphism of G-algebras. �

On Γ(D), there is not only a G-action, but also a G-grading, coming from the G-grading on C: f ∈ IndG
T (C)

is homogeneous of degree h ∈ G if f(g) ∈ Ch for all g ∈ G. The grading on C can be defined intrinsically by

Ch = {a ∈ C | ab = (h · b)a ∀b ∈ C}. (3.1)

Remark 3.3. This is an instance of the so-called Miyashita-Ulbrich action defined in the context of Hopf-
Galois extensions (see e.g. [23, Chapter 8]), in this case of the Hopf algebra (FG)∗ on a G-Galois extension 
A of F : this is the action A ⊗ (FG)∗ → A, sending a ⊗ ϕ 
→ a ↼ ϕ, characterized by the property 
ab =

∑
g∈G(g · b)(a ↼ εg) for all a, b ∈ A (cf. [17, Lemma 3.4]). Another instance of Miyashita-Ulbrich 

action is the T -action on C = CentD(De), associated to D as a Hopf-Galois extension of De.

For any finite abelian groups H ⊂ G, the surjectivity of ζ in Theorem 2.2 (applied to H), together with 
Theorem 3.2 and the natural isomorphism IndG

T 	 IndG
H ◦ IndH

T , imply that the functor IndG
H sends H-Galois 

extensions to G-Galois extensions (cf. [12, Proposition 3.2]). We can say more: the group homomorphisms 
ζ = ζG in Theorem 2.2 form a natural transformation of functors BrG(F) → EG(F) with respect to 
monomorphisms of finite abelian groups.

Remark 3.4. This allows us to extend Theorem 2.2 to arbitrary abelian groups. The definition of BrG(F) in 
Subsection 1.1 does not require that G be finite, but the support of any finite-dimensional G-graded-division 
algebra is a finite subgroup of G, hence BrG(F) can be identified with the direct limit of the groups BrH(F)
over all finite subgroups H of G ordered by inclusion. Clearly, ι = ιG is then identified with the direct 
limit of the group homomorphisms ιH . We define EG(F) to be the direct limit of the groups EH(F) and 
ζG to be the direct limit of the group homomorphisms ζH over the same ordered set. Thus we obtain the 
short exact sequence (2.1) for an arbitrary abelian group G, with a splitting given by the “forgetful” map 
BrG(F) → Br(F).

We will now investigate the relationship between D and C = CentD(De), and the structure of the latter. 
These results will be used in the next section, but are also of independent interest.

Recall that, given a group K, a field L and a 2-cocycle τ ∈ Z2(K, L×) (with trivial action of K on L×), 
the twisted group algebra LτK is the L-algebra with basis {Xk | k ∈ K} and multiplication given by

Xk1Xk2 = τ(k1, k2)Xk1k2

for any k1, k2 ∈ K. LτK is naturally K-graded, and the graded-isomorphism class is determined by the class 
of τ in the second cohomology group: [τ ] ∈ H2(K, L×). Any graded-division algebra over L with support K
and 1-dimensional homogeneous components is, up to a graded isomorphism, a twisted group algebra LτK.

We list some facts from [3], which are easy to verify and hold in a more general setting than what we 
have here:

Proposition 3.5 ([3, Section 2]). Let G be a finite group, and let D =
⊕

g∈G Dg be a graded-division ring 
with support G. Assume that D is finite-dimensional over the field F := Z(D) ∩De. Denote L := Z(De),
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K := {k ∈ G | Dk ∩ CentD(L) �= 0},

DK :=
⊕

k∈K Dk, and C := CentD(De). Then the following assertions hold:

(i) K is a normal subgroup of G and CentD(L) = DK .
(ii) The extension L/F is a Galois field extension, and the mapping

σ̄ : G −→ AutF (L) = Gal(L/F)

g 
→ (Intug)|L for any 0 �= ug ∈ Dg

(3.2)

is a well-defined surjective group homomorphism with kernel K.
(iii) C is a graded subalgebra of D with support K and Ce = L, hence graded-isomorphic to the twisted 

group algebra LτK for some τ ∈ Z2(K, L×).
(iv) DK 	 De ⊗L C. �
Corollary 3.6. Under the hypotheses of Proposition 3.5, assume further that D is simple and Z(D) = F . 
Then C is simple with Z(C) = L and the order |K| is a square.

Proof. As in the proof of Proposition 3.1, we can apply the Double Centralizer Theorem to the simple 
subalgebra De of the central simple algebra D, so C = CentD(De) is simple, and Z(C) = C ∩ CentD(C) =
C ∩De = L. Since C is a central simple L-algebra, |K| = dimL C is a square. �

Recall that the G-action on C is defined by the group homomorphism σ : G → AutF (C), g 
→ σg, 
given by (2.2). Comparing with (3.2), we see that σ̄g is the restriction of σg to L, so σg is a σ̄g-semilinear 
automorphism of C as an L-algebra: σg(lc) = σ̄g(l)σg(c) for all l ∈ L and c ∈ C.

Proposition 3.7. Under the hypotheses of Proposition 3.5, assume further that G is abelian. Fixing a nonzero 
element Xk in each homogeneous component Ck, we identify C with LτK =

⊕
k∈K LXk. For any k ∈ K

and g ∈ G, define the element fk(g) ∈ L× by

σg(Xk) = fk(g)Xk. (3.3)

Then we have the following:

(i) For any k ∈ K, fk : G → L× is a 1-cocycle: fk ∈ Z1(G, L×).
(ii) Replacing the element Xk by X ′

k = lXk, l ∈ L×, changes fk to the cohomologous 1-cocycle f ′
k = (dl)fk, 

where dl : G → L× is the 1-coboundary g 
→ σ̄g(l)l−1. In particular, the class [fk] of fk in the 
cohomology group H1(G, L×) = Z1(G, L×)/B1(G, L×) does not depend on the choice of Xk.

(iii) The alternating bicharacter β : K ×K → L× given by

β(k1, k2) = τ(k1, k2)τ(k2, k1)−1

takes values in F×, depends only on the class [τ ] ∈ H2(K, L×), and satisfies

fk(g) = β(g, k) ∀k, g ∈ K. (3.4)

(iv) For any k1, k2 ∈ K,

fk1fk2 = d
(
τ(k1, k2)

)
fk1k2 . (3.5)
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(v) The map

f : K −→ H1(G,L×)

k 
→ [fk]
(3.6)

is a group homomorphism whose kernel is the support of the graded subalgebra Z(D).
(vi) The following are equivalent: (a) D is central simple over F , (b) C is central simple over L, and (c) β

is nondegenerate.

Proof. (i) For any g1, g2 ∈ G and k ∈ K, we have:

fk(g1g2)Xk = σg1g2(Xk) = σg1

(
σg2(Xk)

)
= σg1

(
fk(g2)Xk

)
= σ̄g1

(
fk(g2)

)
fk(g1)Xk,

so fk(g1g2) = fk(g1) ̄σg1

(
fk(g2)

)
, which means fk ∈ Z1(G, L×).

(ii) For any g ∈ G, we have:

f ′
k(g)X ′

k = σg(X ′
k) = σg(lXk) = σ̄g(l)fk(g)Xk = dl(g)lfk(g)Xk = dl(g)fk(g)X ′

k,

so f ′
k = (dl)fk.

(iii) For any k1, k2 ∈ K, we have Xk1Xk2 = β(k1, k2)Xk2Xk1 , which implies that β does not depend on 
the choice of the elements Xk, k ∈ K, and is an alternating bicharacter. In view of (2.2), the fact that 
(IntXg)Xk = β(g, k)Xk, for all g, k ∈ K, implies (3.4). Since β(·, k) is the restriction of the 1-cocycle fk to 
the subgroup K, it must take values in LG = F (see (3.9) below). This is also easy to show directly:

σg(Xk1Xk2) = fk1(g)fk2(g)Xk1Xk2 = fk1(g)fk2(g)β(k1, k2)Xk2Xk1

must be equal to

σg

(
β(k1, k2)Xk2Xk1

)
= σ̄g

(
β(k1, k2)

)
fk2(g)fk1(g)Xk2Xk1 ,

so β(k1, k2) is fixed by σ̄g, for any g ∈ G.

(iv) For any g ∈ G and k1, k2 ∈ K,

σg(Xk1Xk2) = σg

(
τ(k1, k2)Xk1k2

)
= σ̄g

(
τ(k1, k2)

)
fk1k2(g)Xk1k2

must be equal to

σg(Xk1)σg(Xk2) =
(
fk1(g)Xk1

)(
fk2(g)Xk2

)
= fk1(g)fk2(g)τ(k1, k2)Xk1k2 ,

so (3.5) holds.

(v) Since (3.5) implies [fk1k2 ] = [fk1 ][fk2 ], we see that the mapping (3.6) is a group homomorphism. Since 
Z(D) ⊂ Z(C), the support of Z(D) is contained in K. For k ∈ K, we have [fk] = 1 if and only if there is 
an element l ∈ L× such that fk = dl. By part (ii), for the element X ′

k = l−1Xk, we have f ′
k = (dl)−1fk, so 

the condition fk = dl is equivalent to f ′
k(g) = 1 for all g ∈ G, and this latter, in view of (2.2) and (3.3), is 

equivalent X ′
k ∈ Z(D).

(vi) Since G is abelian, Z(C) and Z(D) are graded subalgebras. By [1, Lemma 4.2.2], a G-graded-simple 
algebra is simple if and only if its center is a field. Hence, for C and D, centrality implies simplicity. It is 
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clear that β(k, K) = 1 if and only if Xk ∈ Z(C), so (b) and (c) are equivalent. By Corollary 3.6, (a) implies 
(b). Conversely, suppose Z(C) = L. Since the elements of Z(D) must centralize De, we have Z(D) ⊂ Z(C), 
so Z(D) ⊂ L. But now (3.2) implies that Z(D) ⊂ LG, so Z(D) = F . �
Corollary 3.8. If D is central simple over F , then F contains the primitive roots of unity of degree exp(K), 
the exponent of the finite abelian group K, and K is isomorphic to A ×A for some finite abelian group A.

Proof. Since β : K ×K → F× in this case is nondegenerate, it induces a group monomorphism from K to 
the group Hom(K, F×) of characters of K with values in F×. In particular, |Hom(K, F×)| ≥ |K|. Since K
is a finite direct product of finite cyclic groups, we always have |Hom(K, F×)| ≤ |K|, and the equality holds 
if and only if F× contains a primitive root of unity of degree exp(K).

Moreover, since β is alternating, K admits a “symplectic basis” (see e.g. [14, 2,§2]), i.e., a generating set 
of the form a1, b1, . . . , am, bm with the order of both ai and bi equal to some ni ≥ 2, i = 1, . . . , m, such that

K = 〈a1〉 × 〈b1〉 × · · · × 〈am〉 × 〈bm〉, (3.7)

and β(ai, bi) = ζi, with ζi a primitive root of unity of degree ni, while β(ai, bj) = 1 for i �= j and β(ai, aj) =
β(bi, bj) = 1 for all i, j. In particular, K is the direct product of two isomorphic subgroups: 〈a1, . . . , am〉
and 〈b1, . . . , bm〉. �

To get more precise information, we recall the inflation-restriction exact sequence (coming from the 
Lyndon-Hochschild-Serre spectral sequence [22, IX, (10.6)]):

1 −→ H1(G/K, (L×)K
) inf−→ H1(G,L×) res−→ H1(K,L×)G/K

ρ−→ H2(G/K, (L×)K
) inf−→ H2(G,L×)

(3.8)

Since K acts trivially on L×, H1(G/K, (L×)K
)

= H1(G/K, L×), which is trivial by Hilbert’s Theorem 90. 
On the other hand, since G is abelian, we have

H1(K,L×)G/K = H1(K,L×)G = H1(K, (L×)G
)

= H1(K,F×) = Hom(K,F×),

and hence the restriction map:

res : H1(G,L×) −→ Hom(K,F×)

[γ] 
→ γ|K
(3.9)

is a well-defined group monomorphism.

Corollary 3.9. The homomorphisms f in (3.6) and res in (3.9) fit in the commutative diagram

H1(G,L×) Hom(K,F×)

K

res

f
β́

(3.10)

where β́ is induced by the bicharacter β as follows:

β́ : k 
→ β(·, k). (3.11)
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If D is central simple over F , then all homomorphisms in this diagram are isomorphisms, and σ is an 
isomorphism from G onto the group of automorphisms of C as a K-graded algebra over F .

Proof. The commutativity of the diagram is clear from (3.4), and res is injective. If D is central simple, 
then f is also injective, so |K| ≤ |H1(G, L×)| ≤ |Hom(K, F×)|, but |Hom(K, F×)| ≤ |K|, so we must have 
|K| = |H1(G, L×)| = |Hom(K, F×)|.

To prove the assertion about σ, suppose σg = idC for some g ∈ G. Then σ̄g = idL, so g ∈ K. But for 
g ∈ K, we have σg(Xk) = β(g, k)Xk for all k ∈ K. Hence β(g, K) = 1, so g = e by the nondegeneracy of β. 
Now, every automorphism of C as a graded algebra over L is given by a character: Xk 
→ χ(k)Xk for some 
χ ∈ Hom(K, L×). But F contains a primitive root of unity of degree exp(K), so Hom(K, L×) = Hom(K, F×). 
Since β̀ : K → Hom(K, F×), sending k 
→ β(k, ·), is an isomorphism, we conclude that σ maps K onto the 
automorphism group of C as a K-graded algebra over L. It remains to recall that σ̄ maps G onto Gal(L/F), 
and all σ̄g-semilinear automorphisms are compositions of one of them with linear automorphisms. �
Remark 3.10. Commutative diagram (3.10) shows more: the kernel of f is equal to the radical of β (i.e., the 
kernel of β́), which implies that Z(C) 	 L ⊗F Z(D) as graded algebras over L.

4. Simple abelian Galois extensions

Let G be a finite abelian group. It follows from Theorems 2.2 and 3.2 that any G-Galois extension of F is 
isomorphic to an algebra of the form IndG

T (C) where C = CentD(De) and D =
⊕

g∈G Dg is a central simple 
G-graded-division algebra with support T .

This section is devoted to studying the simple G-Galois extensions of F , i.e., the G-algebras of the form

C = CentD(De),

where D is a central simple graded-division algebra with support T = G. We continue using notation from 
the previous section. In particular, L/F is a Galois field extension and σ̄ : G → Gal(L/F) is a surjective 
homomorphism with kernel K. The ground field F contains the primitive roots of unity of order exp(K).

4.1. A structure theorem

First we take a closer look at equation (3.5). Consider the short exact sequence

1 −→ B1(G,L×) −→ Z1(G,L×) −→ H1(G,L×) −→ 1 , (4.1)

of abelian groups, which we will temporarily denote by B1, Z1 and H1 for brevity. The group B1 = {dl :
g 
→ σ̄g(l)l−1 | l ∈ L×} lies in the short exact sequence

1 −→ F× −→ L× d−→ B1 −→ 1 ,

which is isomorphic to the short exact sequence

1 −→ F× −→ L× π−→ L×/F× −→ 1 ,

where π is the natural homomorphism, by means of the maps idF× , idL× , and η : B1 → L×/F× sending 
dl 
→ lF×.

Hence, (4.1) induces the following long exact sequence:

1 → Hom(K,L×/F×) → Hom(K,Z1) → Hom(K,H1) δ→ Ext(K,L×/F×) → · · ·
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For any abelian groups A and B, we may identify Ext(A, B) with the symmetric cohomology group 
H2

sym(A, B) := Z2
sym(A, B)/B2(A, B), where Z2

sym(A, B) is the subgroup of symmetric 2-cocycles of A with 
values in B (with trivial action of A on B). Under this identification, the connecting homomorphism δ above 
becomes [22, III, Lemma 1.2 and Theorem 9.1] the homomorphism

δ : Hom(K,H1(G,L×)) −→ H2
sym(K,L×/F×)

(
≤ H2(K,L×/F×)

)
(4.2)

that takes any homomorphism f : K → H1(G, L×), k 
→ [fk], to the class of the (symmetric) 2-cocycle 
η ◦ γ : K ×K → L×/F× where the 2-cocycle γ : K ×K → B1(G, L×) is defined by the equation fk1fk2 =
γ(k1, k2)fk1k2 .

Then (3.5) tells us that γ(k1, k2) = d
(
τ(k1, k2)

)
, so

(η ◦ γ)(k1, k2) = τ(k1, k2)F× (4.3)

by definition of the isomorphism η : B1(G, L×) → L×/F×. Therefore, the homomorphism f : K →
H1(G, L×) and the class [τ ] ∈ H2(K, L×) are related as follows: δ(f) = π∗(

(
[τ ]

)
, where π∗ : [τ ] 
→ [π ◦ τ ] is 

the homomorphism

π∗ : H2(K,L×) −→ H2(K,L×/F×) (4.4)

induced by the natural homomorphism π : L× → L×/F×. We have proved one direction of the following 
result:

Lemma 4.1. For a group homomorphism f : K → H1(G, L×) and a 2-cocycle τ ∈ Z2(K, L×), the equation

δ(f) = π∗
(
[τ ]

)
(4.5)

holds if and only if there are 1-cocycles fk ∈ Z1(G, L×), for all k ∈ K, such that f(k) = [fk] and (3.5)
holds: fk1fk2 = d

(
τ(k1, k2)

)
fk1k2 .

Proof. For the remaining direction, suppose that (4.5) holds and pick, for each k ∈ K, some element 
fk ∈ Z1(G, L×) such that f(k) = [fk]. As above, δ(f) = [η ◦ γ] where γ is defined by the equation 
fk1fk2 = γ(k1, k2)fk1k2 . Hence, (4.5) means that (4.3) holds up to a coboundary in B2(K, L×/F×), i.e., 
there exist elements lk ∈ L×, for all k ∈ K, such that

(lk1 lk2 l
−1
k1k2

F×)(η ◦ γ)(k1, k2) = τ(k1, k2)F×.

Applying η−1 to both sides and plugging in the definition of γ, we obtain:

d(lk1 lk2 l
−1
k1k2

)fk1fk2f
−1
k1k2

= d
(
τ(k1, k2)

)
.

Hence, with f ′
k := (dlk)fk, we have f(k) = [f ′

k] and f ′
k1
f ′
k2

= d
(
τ(k1, k2)

)
f ′
k1k2

, as required. �
Lemma 4.2. Assume that the map res in (3.9) is bijective. Then, for any alternating bicharacter β : K ×
K → L×, there exists a 2-cocycle τ ∈ Z2(K, L×) such that (4.5) holds for f := res−1 ◦β́ and β(k1, k2) =
τ(k1, k2)τ(k2, k1)−1 for all k1, k2 ∈ K. Moreover, for any 1-cocycles fk ∈ Z1(G, L×) with f(k) = [fk] for all 
k ∈ K, the 2-cocycle τ can be chosen to satisfy (3.5).



A. Elduque, M. Kochetov / Journal of Pure and Applied Algebra 225 (2021) 106773 17
Proof. Denote by alt the map sending a 2-cocycle τ to the alternating bicharacter given by (k1, k2) 
→
τ(k1, k2)τ(k2, k1)−1. As already mentioned, the result depends only on the class [τ ], so we obtain a homo-
morphism H2(K, L×) → Hom(K ∧K, L×), which we also denote by alt. It is well known that the sequence

1 −→ H2
sym(K,L×) −→ H2(K,L×) alt−→ Hom(K ∧K,L×) −→ 1

is exact. Here is a proof for completeness: if we write K as a direct product of cyclic subgroups generated by 
a1, . . . , am then, for any alternating bicharacter β : K×K → L×, we can define a bicharacter τ : K×K → L×

by

τ(ai, aj) =
{
β(ai, aj) if i < j;
1 if i ≥ j.

Since the action is trivial, any bicharacter is a 2-cocycle, and clearly alt(τ) = β. Thus we obtain a homo-
morphism Hom(K ∧ K, L×) → H2(K, L×) that is a right inverse of alt. (In fact, we can put any abelian 
group B with trivial action of K in place of L×, and the splitting is even natural in B.)

Now, given β, pick a 2-cocycle τ0 ∈ Z2(K, L×) such that alt(τ0) = β, and consider a 2-cocycle γ ∈
Z2(K, L×/F×) with [γ] = δ(f)π∗([τ0])−1 in H2(K, L×/F×). Since F× contains a primitive root of unity of 
degree exp(K), β takes values in F×, so γ is a symmetric 2-cocycle. But H2

sym can be interpreted as Ext, 
and there is no higher Ext for abelian groups, so the following sequence is exact:

1 → Hom(K,L×/F×) → H2
sym(K,F×) → H2

sym(K,L×) π∗→ H2
sym(K,L×/F×) → 1, (4.6)

where we have used the fact that Hom(K, F×) → Hom(K, L×) is an isomorphism. Therefore, we can find a 
2-cocycle α ∈ Z2

sym(K, L×) such that π∗([α]) = [γ]. Then τ := τ0α satisfies (4.5) and alt(τ) = β, as required.
Finally, given 1-cocycles fk with f(k) = [fk], we can find elements lk ∈ L× as in the proof of Lemma 4.1

and use them to modify τ rather than fk: the 2-cocycle τ ′(k1, k2) := τ(k1, k2)l−1
k1

l−1
k2

lk1k2 will satisfy fk1fk2 =
d
(
τ ′(k1, k2)

)
fk1k2 , for all k1, k2 ∈ K, and alt(τ ′) = β. �

Remark 4.3. The exact sequence (4.6) also shows that, for a given β, not all 2-cocycles τ ∈ Z2(K, L×)
with alt(τ) = β will satisfy (4.5), unless H2

sym(K, L×/F×) happens to be trivial. The classes of 2-cocycles 
satisfying (4.5) form a coset of the image of H2

sym(K, F×) in H2(K, L×).

Theorem 4.4. Let G be a finite abelian group and let F be a field.

(1) Any simple G-Galois extension of F is isomorphic (as a G-algebra) to a twisted group algebra LτK for 
a subgroup K of G, a Galois field extension L/F with Gal(L/F) isomorphic to G/K, and a 2-cocycle 
τ ∈ Z2(K, L×) such that the following conditions hold:

(i) With respect to the G-action σ̄ : G → Gal(L/F) given by the identification G/K 	 Gal(L/F), we 
have |H1(G, L×)| = |K| or, equivalently, F contains a primitive root of unity of degree exp(K) and 
the monomorphism res in (3.9) is surjective (hence bijective);

(ii) The alternating bicharacter β(k1, k2) := τ(k1, k2)τ(k2, k1)−1, whose values are automatically in 
F× by the previous condition, is nondegenerate (so β́ in (3.11) is bijective);

(iii) The isomorphism f := res−1 ◦β́ satisfies δ(f) = π∗
(
[τ ]

)
, where δ and π∗ are as in (4.2) and (4.4).

The G-action on LτK is given by σ : G → AutF (LτK) as follows:

σg(lXk) = σ̄g(l)fk(g)Xk ∀g ∈ G, k ∈ K, l ∈ L, (4.7)

where fk ∈ Z1(G, L×) is a representative of f(k) ∈ H1(G, L×).
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(2) Conversely, given K, L and τ satisfying the above conditions, the twisted group algebra LτK becomes 
a simple G-Galois extension of F if we define the G-action by (4.7) where the representatives fk are 
chosen (by Lemma 4.1) so that fk1fk2 = d

(
τ(k1, k2)

)
fk1k2 for all k1, k2 ∈ K.

Proof. (1) This has already been proved: see Proposition 3.7, its corollaries, and Lemma 4.1.
(2) Let A = LτK, with K, L, and τ satisfying conditions (i), (ii), and (iii). The nondegeneracy of β

shows that Z(A) = L. Now, A is naturally K-graded, and as such it is a graded-division algebra, so we can 
apply [1, Lemma 4.2.2], as in the proof of part (vi) of Proposition 3.7, to conclude that A is simple.

For any k ∈ K, we have fk ∈ Z1(G, L×) and hence the computation in the proof of part (i) of Proposi-
tion 3.7 shows that σg1g2 = σg1σg2 . Also, since fk1fk2 = d

(
τ(k1, k2)

)
fk1k2 for all k1, k2 ∈ K, the computation 

in the proof of part (iv) of that result shows that σg is an automorphism of A for any g ∈ G. Thus, 
we have a well-defined G-action on A. Note that if g ∈ K then the automorphism σg is L-linear and 
σg(Xk) = β(g, k)Xk because fk|K = β́(k) = β(·, k) by definition of f .

We have to prove that AG = F and that the algebra map Φ : A#FG → EndF (A) sending ag 
→
(
b 
→

aσg(b)
)

is an isomorphism.
The action of G on A leaves the components of the K-grading invariant, hence in order to compute 

AG, it is sufficient to consider homogeneous elements. Let l ∈ L× and k ∈ K such that lXk ∈ AG. The 
computation in the proof of part (ii) of Proposition 3.7 shows that, for all g ∈ G, σg(lXk) = (dl)(g)fk(g)lXk, 
hence fk = (dl)−1 and, since f is injective, k = e and fe = (dl)−1. But all automorphisms σg must send 
the identity element 1A = τ(e, e)−1Xe to itself, so fe = d

(
τ(e, e)

)
. It follows that lF× = τ(e, e)−1F×, and 

hence lXe ∈ F×1A.
Finally, consider the group A×

gr of nonzero homogeneous elements of A (for the natural K-grading). For 
any g ∈ G, consider the map:

χg : A×
gr −→ L×

a 
→ σg(a)a−1.

For k ∈ K and 0 �= a ∈ Ak, we have σg(a) ∈ Ak = La, so χg is well defined. (Explicitly, χg(lXk) =
(dl)(g)fk(g) for any g ∈ G.) Moreover, χg(ab) = σg(ab)(ab)−1 = σg(a)

(
σg(b)b−1)a−1 = χg(a)χg(b), so 

χg is a character. For any elements g1 �= g2 in G, let us check that χg1 �= χg2 . Clearly, this is equivalent 
to σg1 �= σg2 , so we have to show that the G-action is faithful: σg �= idA for all g �= e. If g /∈ K, then 
already σg|L �= idL. But if e �= g ∈ K, then σg(Xk) = β(g, k)Xk, so σg �= idA because β(g, K) �= 1 by the 
nondegeneracy of β.

Now, the K-grading on A induces a K-grading on A#FG and on EndF (A), and Φ is a homomorphism 
of K-graded algebras. Since dimF (A#FG) = |G|2 = dimF EndF (A), it suffices to prove that Φ is injective. 
To this end, suppose X ∈ kerΦ is homogeneous of degree k ∈ K. Then X =

∑
g∈G(lgXk)g, with lg ∈ L for 

all g ∈ G, and we get 0 = Φ(X) = Φ(Xk)Φ
(∑

g∈G lgg
)
. Since Xk is invertible, we get 0 = Φ

(∑
g∈G lgg

)
=∑

g∈G lgσg. Hence, for any a ∈ A×
gr, we have 0 =

(∑
g∈G lgσg(a)

)
a−1 =

∑
g∈G lgχg(a). By the linear 

independence of characters, we conclude that lg = 0 for all g ∈ G, so X = 0. �
4.2. Classification up to isomorphism

We can now obtain a classification of simple G-Galois extensions of F , but first we need to introduce 
some notation. Fix an algebraic closure F of F . Then every finite field extension of F is isomorphic, over F , 
to a subfield of F . It follows that, for every pair (L, θ), where L is a finite abelian Galois field extension of 
F and θ : G → Gal(L/F) is a group homomorphism, there is a unique isomorphic pair (L′, θ′) with L′ ⊂ F . 
Here isomorphism is understood in the sense of G-algebras over F : there exists an algebra isomorphism 
ψ : L → L′ such that θ′g = ψ ◦ θg ◦ ψ−1 for all g ∈ G.



A. Elduque, M. Kochetov / Journal of Pure and Applied Algebra 225 (2021) 106773 19
Consider the set ZF (G) of pairs (L, θ) where

(1) L ⊂ F is a finite Galois extension of F ;
(2) θ : G → Gal(L/F) is a surjective group homomorphism such that, for K := ker θ, the following 

conditions hold:
(i) K admits a nondegenerate alternating bicharacter with values in F× or, equivalently, K is iso-

morphic to A × A for some abelian group A and F contains a primitive root of unity of degree 
exp(K);

(ii) Every character K → F× can be extended to a 1-cocycle G → L× or, equivalently, the “transgres-
sion” map ρ : Hom(K, F×) → H2(G/K, L×) in the exact sequence (3.8) is trivial.

By Lemma 4.2 and Theorem 4.4, ZF (G) is a set of representatives for the isomorphism classes of the 
centers of simple G-Galois extensions of F . We note that (ii) is satisfied if every character K → F× extends 
to a character G → F× (for example, if F contains a primitive root of unity of degree exp(G) or if K is a 
direct summand of G), but this condition is not necessary (see Example 4.8(c)).

For every pair (L, θ) ∈ ZF (G), fix an extension of every character K → F× to a 1-cocycle G → L× and 
denote by Ξ(L, θ) the resulting subset of Z1(G, L×); it is a transversal for the subgroup B1(G, L×) 	 L×/F×.

Let TF (G) be the set of triples (L, θ, ξ) where (L, θ) ∈ ZF (G) and

(3) ξ = τB2(K, F×) ∈ Z2(K, L×)/B2(K, F×) such that the alternating bicharacter β(k1, k2) :=
τ(k1, k2)τ(k2, k1)−1, which depends only on the class [τ ] = τB2(K, L×) in H2(K, L×), is nondegen-
erate, and the following equation holds: fk1fk2 = d

(
τ(k1, k2)

)
fk1k2 for all k1, k2 ∈ K, where fk is the 

unique element of Ξ(L, θ) such that fk|K = β(·, k).

Let C be a simple G-Galois extension of F . Recall that C has a natural G-grading defined by (3.1) (the 
“Miyashita-Ulbrich grading”, see Remark 3.3). The support K of this grading is the kernel of the G-action 
on the center of C, and C is a graded-division algebra with Ce = Z(C). In particular, the nondegenerate 
alternating bicharacter β on K with values in F× is an invariant of C: β(k1, k2) = c1c2c

−1
1 c−1

2 for any 
nonzero c1 ∈ Ck1 , c2 ∈ Ck2 , k1, k2 ∈ K.

We define Ψ(C) ∈ TF (G) to be the following triple (L, θ, ξ):

(1) L is the unique subfield of F that is isomorphic to Z(C) over F ;
(2) θ is the unique homomorphism G → Gal(L/F) such that (L, θ) is isomorphic to (Z(C), ̄σ) where 

σ̄g := σg|Z(C) and σg ∈ AutF (C) is the action of g ∈ G on C;
(3) ξ := τB2(K, F×) where K = ker σ̄, τ(k1, k2) := ι−1(Xk1Xk2X

−1
k1k2

), ι : L → Z(C) is an isomorphism 
over F , and Xk ∈ Ck are nonzero elements chosen in such a way that σg(Xk) = ι(fk(g))Xk, where fk is 
the unique element of Ξ(L, θ) such that fk|K = β(·, k).

Ψ(C) is well defined. Indeed, the triple (L, θ, ξ) satisfies all required conditions by Proposition 3.7 and its 
corollaries. In particular, part (ii) of Proposition 3.7 shows that the elements Xk as above exist and are 
unique up to factors in F×, so the 2-cocycle (k1, k2) 
→ Xk1Xk2X

−1
k1k2

with values in Z(C) is determined 
up to a coboundary in B2(K, F×), and part (iv) shows that fk1fk2 = d

(
τ(k1, k2)

)
fk1k2 for all k1, k2 ∈ K. 

Finally, different choices of the isomorphism ι : L → Z(C) produce the same coset ξ. Indeed, any two such 
isomorphisms ι and ι′ differ by an element of Gal(L/F), so we can write ι′ = ι ◦ θh for some h ∈ G thanks 
to the surjectivity of θ. It follows that if the elements Xk (k ∈ K) are chosen using ι then the elements 
σh(Xk) are an allowable choice for ι′:
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σg(σh(Xk)) = σh(σg(Xk)) = σh

(
ι(fk(g))Xk

)
= σ̄h

(
ι(fk(g))

)
σh(Xk) = ι

(
θh(fk(g))

)
σh(Xk)

= ι′(fk(g))σh(Xk),

for all g ∈ G and k ∈ K, and these elements give

τ ′(k1, k2) = (ι′)−1(σh(Xk1)σh(Xk2)σh(Xk1k2)−1)
= θ−1

h

(
ι−1(σ̄h(Xk1Xk2X

−1
k1k2

))
)

= θ−1
h

(
θh(ι−1(Xk1Xk2X

−1
k1k2

))
)

= τ(k1, k2).

Corollary 4.5. Let G be a finite abelian group and F a field. Denote by Esimple
F (G) the set of isomorphism 

classes of simple G-Galois extensions of F . Then the mapping Esimple
F (G) → TF (G) sending [C]G-alg 
→ Ψ(C)

is a bijection.

Proof. Let C and C′ be simple G-Galois extensions of F . Denote Ψ(C) = (L, θ, ξ), Ψ(C′) = (L′, θ′, ξ′), and 
similarly for other parameters.

If C 	 C′, then K = K ′, β = β′ and (L, θ) 	 (L′, θ′), hence, by construction, (L, θ) = (L′, θ′) and fk = f ′
k

for all k ∈ K. Consider an isomorphism ψ : C → C′. As we have seen, the isomorphisms ι : L → Z(C) and 
ι′ : L → Z(C′) may be chosen arbitrarily, so we pick some ι and set ι′ := ψ ◦ ι. It follows that if the elements 
Xk (k ∈ K) are chosen using ι then the elements ψ(Xk) are an allowable choice for ι′:

σ′
g(ψ(Xk)) = ψ(σg(Xk)) = ψ

(
ι(fk(g))Xk

)
= ψ

(
ι(fk(g))

)
ψ(Xk) = ι′(fk(g))ψ(Xk),

for all g ∈ G and k ∈ K, and these elements give

τ ′(k1, k2) = (ι′)−1(ψ(Xk1)ψ(Xk2)ψ(Xk1k2)−1)
= ι−1(ψ−1(ψ(Xk1Xk2X

−1
k1k2

))
)

= τ(k1, k2).

We have shown that Ψ(C) = Ψ(C′), so our mapping is well defined.
Conversely, suppose that Ψ(C) = Ψ(C′). Replacing C and C′ by isomorphic copies, we may assume that 

L = Z(C) = Z(C′) and θ = σ̄ = σ̄′. Choose elements Xk and X ′
k (k ∈ K) using ι = ι′ = idL. Since τ

and τ ′ differ by an element of B2(K, F×), there exist elements λk ∈ F× (k ∈ K) such that τ ′(k1, k2) =
λk1λk2λ

−1
k1k2

τ(k1, k2). It is easy to verify that the mapping C → C′ sending 
∑

k∈K lkXk 
→
∑

k∈K λ−1
k lkX

′
k

is an isomorphism of G-algebras.
The surjectivity of Ψ follows from part (2) of Theorem 4.4. �
It is convenient to define a specific G-algebra in the isomorphism class Ψ−1(L, θ, ξ):

Definition 4.6. Given a triple (L, θ, ξ) ∈ TF (G), let τ be a representative of the coset ξ. Denote by C(L, θ, τ)
the following simple G-Galois extension of F : as an algebra, it is LτK, with K := ker θ, and the action of 
G given by g · (lXk) = θg(l)fk(g)Xk, where fk is the unique element of Ξ(L, θ) such that fk|K = β(·, k). By 
abuse of notation, we will sometimes write C(L, θ, ξ) instead of C(L, θ, τ).

For a pair (L, θ) ∈ ZF (G) and a nondegenerate alternating bicharacter β : K ×K → F×, there exists a 
2-cocycle τ0 ∈ Z2(K, L×) that satisfies β(k1, k2) = τ0(k1, k2)τ0(k2, k1)−1 and fk1fk2 = d

(
τ0(k1, k2)

)
fk1k2 for 

all k1, k2 ∈ K (Lemma 4.2). Then all other such 2-cocycles have the form τ = τ0α where α ∈ Z2
sym(K, F×), 

since the kernel of d : L× → B1(G, L×) is F×. Therefore, the isomorphism classes of simple G-Galois 
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extensions of F whose center is isomorphic to (L, θ) and commutation relations are given by β are in 
bijection with H2

sym(K, F×) 	 Ext(K, F×).

Remark 4.7. We can assign to each simple G-Galois extension C of F an easier invariant Ψ(C), which is 
obtained from Ψ(C) by replacing the third component of the triple by its image in H2(K, L×). However, 
this is not a complete invariant, in general. It classifies simple G-Galois extensions up to the following 
equivalence relation: C ∼ C′ if there exists an isomorphism of G-graded algebras ψ : C → C′ that re-
stricts to an isomorphism of G-algebras Z(C) → Z(C′). For an element (L, θ, ξ) ∈ TF (G), the set of 
isomorphism classes of simple Galois extensions of F that are equivalent to C(L, θ, ξ) in this sense is 
in bijection with the triples (L, θ, ξ′) where ξ′ belongs to the coset of ξ with respect to the subgroup (
Z2(K, F×) ∩B2(K, L×)

)
/B2(K, F×) of Z2(K, L×)/B2(K, F×). This subgroup is the kernel of the homomor-

phism H2
sym(K, F×) → H2

sym(K, L×) in the exact sequence (4.6), so it is equal to the image of the connecting 
homomorphism Hom(K, L×/F×) → H2

sym(K, F×) and therefore isomorphic to Hom(K, L×/F×). Actually, 
this latter group acts simply transitively on the above set of isomorphism classes as follows: given a simple 
G-Galois extension C of F and a homomorphism λ : K → B1(G, L×) 	 L×/F×, we define Cλ to be the 
algebra C with the modified G-action σλ : G → AutF (C) given by σλ

g (c) := λk(g)σg(c) for all c ∈ Ck, k ∈ K. 
In other words, σλ

g = σκλ(g)σg where κλ : G → K is defined by β(κλ(g), k) = λk(g) for all k ∈ K. Since 
homomorphisms G → F× are precisely the 1-cocycles with values in F×, and a 1-cocycle is a coboundary if 
and only if it has trivial restriction to K, we conclude that κλ is a homomorphism with trivial restriction 
to K, and the mapping λ 
→ κλ yields an isomorphism Hom(K, L×/F×) → Hom(G/K, K).

Examples 4.8. The following are special cases of simple G-Galois extensions of F :

(a) Galois field extensions L of F with Gal(L/F) 	 G: these correspond to the case K = 1.
(b) Central simple graded-division algebras over F with support G and 1-dimensional homogeneous compo-

nents: these correspond to the case K = G and are parametrized by the elements of H2(G, F×) such that 
the corresponding alternating bicharacter G × G → F× is nondegenerate. If F is algebraically closed, 
these are the only simple G-Galois extensions, and they are parametrized by nondegenerate alternating 
bicharacters.

(c) Suppose Br(F) is trivial (for example, F is finite). Then, for any subgroup K admitting a nondegenerate 
alternating bicharacter and any Galois field extension L with Gal(L/F) 	 G/K, every central simple 
graded-division algebra over L with support K and 1-dimensional homogeneous components admits a G-
action that makes it a G-Galois extension of F (with the given underlying grading). Up to isomorphism, 
these actions are parametrized by the set Aut(G/K) × Hom(K, L×/F×) (see Remark 4.7). All simple 
G-Galois extensions have this form.

(d) Suppose F is real closed (for example, F = R). Then K must be 2-elementary of even rank, and it 
follows from the classification of central simple graded-division algebras [7,27] (and can also be shown 
by considering 1-cocycles) that G must be 2-elementary in order for simple G-Galois extensions to exist. 
This condition is also sufficient.

Among the G-algebras, G-Galois extensions of F can be characterized as follows:

Corollary 4.9. Let G be a finite abelian group and F a field. Let A be an algebra over F endowed with a 
G-action σ : G → AutF (A). Then the G-algebra A is a G-Galois extension of F if and only if the following 
conditions hold:

(1) dimF A = |G|;
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(2) L := Z(A) is a G/K-Galois extension of F where K is the kernel of the homomorphism σ̄ : G →
AutF (L), g 
→ σg|L;

(3) F contains a primitive root of unity of degree exp(K);
(4) For every χ ∈ K̂ := Hom(K, F×), the eigenspace

Aχ := {a ∈ A | σk(a) = χ(k)a ∀k ∈ K}

contains an invertible element.

Proof. First we consider the special case where L is a field. If A is a G-Galois extension of F , then Theo-
rem 4.4 shows that conditions (1) through (4) are satisfied, since in this case Aχ = LXβ́−1(χ).

Conversely, assume that these conditions hold. By condition (2), L is a Galois field extension of F
with Gal(L/F) 	 G/K. Condition (3) shows that the commuting L-linear operators σk (k ∈ K) can be 
simultaneously diagonalized, hence A =

⊕
χ∈K̂

Aχ is a K̂-grading on A as an L-algebra. By condition (4), 
we can pick an invertible element uχ ∈ Aχ for each χ ∈ K̂. Since |K̂| = |K| by condition (3), the subspace ⊕

χ∈K̂
Luχ has F -dimension |K| dimF L = |G|, which is equal to dimF A by condition (1). We conclude 

that Aχ = Luχ for all χ ∈ K̂, so A is a K̂-graded-division algebra, and AG = (L1A)G = F1A. It is clear 
that the action of G on A is faithful, so the argument at the end of the proof of part (2) of Theorem 4.4
(with K̂ playing the role of K) shows that A is a G-Galois extension of F .

The general case reduces to the special case that we have considered using the functor IndG
T . If A 	

IndG
T (C) for a subgroup T of G and a T -algebra C then, as a T -algebra, A is isomorphic to the direct 

product of [G : T ] copies of C and Z(A) 	 IndG
T (Z(C)) is isomorphic to the direct product of [G : T ] copies 

of Z(C). It follows that conditions (1) through (4) hold for A if and only if they hold for C (with T playing 
the role of G).

If A is a G-Galois extension of F then we know that A 	 IndG
T (C) for a simple T -Galois extension C, 

and conditions (1) through (4) hold for C by the special case considered above. Conversely, let A be a 
G-algebra satisfying these conditions. By condition (2), L 	 IndG/K

T/K (K) for some Galois field extension K of 
F , with Gal(K/F) 	 T/K, where T/K is the stabilizer (under the G/K-action) of a primitive idempotent 
ε of L. The primitive idempotents of L give a decomposition of A into a direct sum of ideals, which are 
permuted transitively by G. A standard argument then shows that A 	 IndG

T (C) for C := εA. Since C
satisfies conditions (1) through (4), it is a T -Galois extension of F by the special case above. �
Remark 4.10. For a simple G-Galois extension A of F as in Corollary 4.9, the canonical K-grading is given 
as follows. Pick 0 �= uχ ∈ Aχ and define

β̂(χ, ψ) := uχuψu
−1
χ u−1

ψ ∀χ, ψ ∈ K̂.

This is an alternating bicharacter, independent of the choice of the elements uχ. It takes values in F by 
condition (3) and is nondegenerate since Z(A) = L. Hence β̂ gives an isomorphism K → K̂: for any k ∈ K, 
we define ϕ(k) to be the unique character χ such that β̂(χ, λ) = λ(k) for all λ ∈ K̂. We use ϕ to convert 
the K̂-grading on A to a K-grading: A =

⊕
k∈K Ck where Ck := Aϕ(k). We can also use ϕ to transport β̂

to K, i.e., we define β : K ×K → F× by

β(h, k) := β̂(ϕ(h), ϕ(k)) = ϕ(k)(h) ∀h, k ∈ K.

It follows that, for any b ∈ Ck, we have σh(b) = ϕ(k)(h)b = β(h, k)b = uϕ(h)bu
−1
ϕ(h), so σh(b)a = ab for all 

a ∈ Ch and b ∈ A. Therefore, the grading A =
⊕

Ck satisfies (3.1). (Also, ϕ = β́.)
k∈K
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4.3. Construction with generators and relations

For a fixed (L, θ) ∈ ZF (G), the simple Galois extensions C(L, θ, τ) as in Definition 4.6 can be explicitly 
described by means of generators and relations. Write K := ker θ as a direct product of cyclic subgroups 
generated by a1, . . . , am. Then the twisted group algebra LτK is generated over L by the elements Xi := Xai

, 
which satisfy the following relations:

XiXj = βijXjXi and X
o(ai)
i = μi1,

where βij := β(ai, aj) ∈ F×, μi ∈ L×, and o(g) denotes the order of a group element g. It is clear that these 
relations are defining. Therefore, we can forget about the 2-cocycle τ and express everything in terms of the 
bicharacter β and the scalars μi, i = 1, . . . , m. By definition of C(L, θ, τ), the G-action on the generators is 
given by

σg(Xi) = fai
(g)Xi ∀g ∈ G, (4.8)

where fai
is the fixed extension of the character β(·, ai) : K → F× to a 1-cocycle G → L×. Since σg(Xo(ai)

i ) =
σg(Xi)o(ai), we have

θg(μi) = fai
(g)o(ai)μi ∀g ∈ G. (4.9)

In other words, dμi = f
o(ai)
ai , i = 1, . . . , m.

Conversely, suppose β : K × K → F× is an alternating nondegenerate bicharacter and μ1, . . . , μm are 
elements of L× satisfying (4.9). We note that, since f := res−1 ◦β́ is a homomorphism K → H1(G, L×), the 
1-cocycles fo(ai)

ai are coboundaries, so such μi always exist. Denote

C(L, θ, β, μ) := algL〈X1, . . . , Xm | XiXj = βijXjXi and X
o(ai)
i = μi1〉. (4.10)

It is easy to see that assigning degree ai to the generator Xi makes C(L, θ, β, μ) a graded-division algebra over 
L with support K and 1-dimensional homogeneous components (see e.g. [3, Proposition 3.2]). Moreover, the 
center is L since β is nondegenerate. If we pull the L-vector space structure on C := C(L, θ, β, μ) back along 
an isomorphism ψ : L → L from Gal(L/F), the resulting algebra Cψ has the same generators X1, . . . , Xm, 
but the relations change: instead of μi, we will have ψ−1(μi) (while βij ∈ F× stay the same). From (4.9)
it follows that (4.8) defines an isomorphism of L-algebras σg : Cθ−1

g → C or, equivalently, a θg-semilinear 
automorphism of C. Moreover, since fai

: G → L× is a 1-cocycle, the mapping g 
→ σg is a homomorphism 
G → AutF (C). Thus C(L, θ, β, μ) becomes a G-algebra (over F). Since the homogeneous components are the 
eigenspaces for the action of the subgroup K, Corollary 4.9 tells us that C(L, θ, β, μ) is a G-Galois extension 
of F .

Proposition 4.11. The G-algebras C(L, θ, β, μ) and C(L, θ, β′, μ′) are isomorphic if and only if β′ = β and 
μ′
i ∈ μi(F×)[o(ai)] for all i = 1, . . . , m.

Proof. Denote the algebras C(L, θ, β, μ) and C(L, θ, β′, μ′) by C and C′, and their generators (over L) by 
Xi and X ′

i (i = 1, . . . , m), respectively. If β′ = β and μ′
i = μiλ

o(ai)
i for some λi ∈ F×, then the mapping 

Xi 
→ λ−1
i X ′

i defines an L-linear isomorphism C → C′, which is obviously G-equivariant.
Conversely, suppose there is an isomorphism ψ : C → C′ as G-algebras over F . Since G is abelian, each 

automorphism σh of C is G-equivariant. Since σh is θh-semilinear and θ : G → Gal(L/F) is surjective, we 
can replace ψ by ψ ◦σh for a suitable h ∈ G and assume that ψ is L-linear. From the commutation relations 
it follows that β′

ij = βij for all i, j, hence β′ = β. Since ψ is G-equivariant, in particular, it is an isomorphism 
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of K-graded algebras, so ψ(Xi) = liX
′
i for some li ∈ L×. But considering the G-action on the generators, 

we get

fai
(g)liX ′

i = ψ(fai
(g)Xi) = ψ(g ·Xi) = g · ψ(Xi) = g · (liX ′

i) = θg(li)fai
(g)X ′

i,

so θg(li) = li for all g ∈ G and hence li ∈ F×. Finally,

μi1C′ = ψ(μi1C) = ψ(Xo(ai)
i ) = ψ(Xi)o(ai) = l

o(ai)
i (X ′

i)o(ai) = l
o(ai)
i μ′

i1C′ ,

which implies μ′
i ∈ μi(F×)[o(ai)]. �

If β is fixed, we can use a set of generators of K adapted to β, namely, a “symplectic basis” 
a1, b1, . . . , am, bm as in (3.7). Then the generators Xi := Xai

and Yi := Xbi of C(L, θ, β, μ) satisfy the 
following defining relations:

Xni
i = μi, Y

ni
i = νi, XiYi = ζiYiXi,

XiXj = XjXi, YiYj = YjYi, and XiYj = YjXi for i �= j,

where ni = o(ai) = o(bi) and ζi = β(ai, bi) is a primitive root of unity of degree ni (which can be chosen 
arbitrarily at the expense of changing the “symplectic basis”). This implies that C(L, θ, β, μ) is a tensor 
product of symbol algebras (see e.g. [21, p. 27]):

C(L, θ, β, μ) 	 (μ1, ν1)ζ1,L ⊗L · · · ⊗L (μm, νm)ζm,L. (4.11)

As seen above, the parameters μi and νi have to satisfy dμi = fni
ai

and dνi = fni

bi
in order to make 

C(L, θ, β, μ) a G-Galois extension of F .

5. Graded-division algebras

Let G be an abelian group. In this section, we classify G-graded-division algebras in terms of simpler 
objects.

5.1. Central simple case

Let D be a central simple G-graded-division algebra over F and let T be the support of D. Then D
represents the class [D]T in BrT (F) and also the class [D]G in BrG(F). These classes correspond to each 
other under the canonical embedding of BrT (F) into BrG(F) (cf. Remark 3.4).

If [D] = 1 in Br(F), then applying Corollary 2.8 with T playing the role of G, we get [D]T = [Γ(D)#FT ]T , 
and Γ(D) 	 Cop by Proposition 3.1 where C = CentD(De) with the action of T given by equation (2.2)
(Miyashita-Ulbrich action). Hence there is a T -graded right D-module V such that Cop#FT is isomorphic, 
as a T -graded algebra, to EndD(V ). Therefore, D is graded-isomorphic to the algebra E

(
Cop#FT

)
E, where 

E is any primitive idempotent of the identity component 
(
Cop#FT

)
e

= Cop. By Corollary 4.5 (again, with 
T playing the role of G), C 	 C(L, θ, ξ) as a T -algebra (Definition 4.6), so it has the form (4.11). Thus, to 
recover D from C explicitly, one needs to find a primitive idempotent in a tensor product of symbol algebras 
over L, which is difficult in general.

If [D] = [Δ] in Br(F), for a central (ungraded) division algebra Δ (unique up to isomorphism), then 
Corollary 2.8 gives [D]T = [Δ ⊗F (Cop#FT )]T , and hence D is recovered, up to graded isomorphism, as 
E
(
Δ ⊗F (Cop#FT )

)
E, where E is any primitive idempotent of 

(
Δ ⊗F (Cop#FT )

)
e

= Δ ⊗F Cop.
In particular, Corollary 2.8 and Proposition 3.1 give the following isomorphism criterion:
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Corollary 5.1. Let G be an abelian group and let D and D′ be finite-dimensional G-graded-division algebras 
with supports T and T ′. Assume that D and D′ are central simple over F . Then D and D′ are isomorphic 
as G-graded algebras if and only if the following conditions are satisfied:

(i) T = T ′;
(ii) CentD(De) and CentD′(D′

e) are isomorphic as T -algebras;
(iii) [D] = [D′] in Br(F). �
Remark 5.2. There is another division algebra associated to D, namely, the identity component De, which 
represents an element in Br(L) since L = Z(De). This element can be recovered from Δ and C as follows. 
We have Δ ⊗F (Cop#FT ) 	 EndD(V ) for a T -graded right D-module V . Since T is the support of D, V is 
isomorphic to the direct sum of copies of D or, in other words, Fk⊗FD for some k. Hence Δ ⊗F (Cop#FT ) 	
Matk(F) ⊗F D, where the first factor has trivial grading. Looking at the identity components, we obtain 
Δ ⊗F Cop 	 Matk(F) ⊗F De. Since C and De are L-algebras, this can be rewritten as (Δ ⊗F L) ⊗L Cop 	
Matk(L) ⊗L De, so

[De] = [Δ ⊗F L] [C]−1 in Br(L).

A stronger result follows from [3, Theorem 2.3]:

[D⊗F L]G = [De]G [C]G in BrG(L).

5.2. General case

Any G-graded-simple algebra A is G-graded-central if considered as an algebra over the field Z(A)e. 
Hence we may restrict to G-graded-division algebras that are graded-central over F . These may be reduced 
to the central simple case, considered in Corollary 5.1, using a cocycle-twisted version of the loop algebra 
construction introduced in [13, §5].

Any 2-cocycle γ : G ×G → F× (with trivial action of G on F×) can be used to twist the multiplication 
of a G-graded algebra A as follows:

x ∗ y := γ(g1, g2)xy ∀x ∈ Ag1 , y ∈ Ag2 , g1, g2 ∈ G.

We will denote by Aγ the vector space A equipped with this new multiplication and the original G-grading. 
The isomorphism class of the G-graded algebra Aγ depends only on the class [γ] ∈ H2(G, F×).

If the support of A is contained in a subgroup H of G, then the twist of A as a G-graded algebra by 
a 2-cocycle in Z2(G, F×) is the same as the twist of A as an H-graded algebra by the restriction of this 
2-cocycle to H. A crucial fact is that the set of graded-isomorphism classes of the twists of A by symmetric
2-cocycles does not depend on whether we regard A as G-graded or H-graded. The reason is that any 
symmetric 2-cocycle on H can be extended to a symmetric 2-cocycle on G. Indeed, using once again the 
identification of H2

sym and Ext for abelian groups, we have the following exact sequence:

1 −→ Hom(G/H,F×) −→ Hom(G,F×) −→ Hom(H,F×)

−→ H2
sym(G/H,F×) inf−→ H2

sym(G,F×) res−→ H2
sym(H,F×) −→ 1.

(5.1)

This fact was used in [13] as follows. If A is a G-graded-central-simple algebra (not necessarily finite-
dimensional) and H is the support of the induced grading on the center(=centroid) Z(A), then Z(A) is, up 
to isomorphism, a twisted group algebra F γ̃H for some γ̃ ∈ Z2

sym(H, F×), so it can be “untwisted” by γ̃−1. 
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We can find γ ∈ Z2
sym(G, F×) whose restriction to H is γ̃, and hence the center of Aγ−1 is isomorphic to the 

group algebra FH. Following [1], we let π : G → G := G/H be the natural homomorphism and consider a 
central image Ā of Aγ−1 induced by an algebra homomorphism from the center to F . By [13, Theorem 5.2], 
Ā is a central simple G-graded algebra, and A is isomorphic, as a G-graded algebra, to the γ-twist Lγ

π(Ā)
of the loop algebra Lπ(Ā) (see Subsection 1.2). Conversely, for any central simple G-graded algebra B and 
any γ ∈ Z2

sym(G, F×), the cocycle-twisted loop algebra Lγ
π(B) is a G-graded-central-simple algebra, with 

Lγ
π(B) and Lγ′

π (B′) being isomorphic as G-graded algebras if and only if there exists α ∈ Z2
sym(G, F×) such 

that [γ′] = inf([α]−1)[γ] in H2
sym(G, F×) and B′ 	 Bα as G-graded algebras. The first condition determines 

[α] up to a factor in the image of the connecting homomorphism Hom(H, F×) → H2
sym(G, F×) in (5.1), so 

we still have the freedom to twist B by the elements of this image to satisfy the second condition (cf. [13, 
Corollary 5.5]).

We apply this procedure to obtain G-graded-central-division algebras from central simple G-graded-
division algebras. The following result describes the effect of a cocycle twist on the latter in terms of the 
centralizer of the identity component (which carries a natural action of the support of the grading) and the 
class in Br(F).

Lemma 5.3. Let D be a central simple G-graded-division algebra with support T and let α ∈ Z2
sym(T , F×). 

Then the centralizer of the identity component in D
α is the graded vector space C := CentD(Dē) with the 

same T -action but with multiplication twisted by the restriction of α to the support K of C. Moreover, if 
α is the inflation of some α′ ∈ Z2

sym(T/K, F×) then [Dα] ∈ Br(F) is the product of [D] and the element 
corresponding to the image of [α′] under the homomorphism H2(T/K, F×) → H2(T/K, L×) induced by the 
inclusion of F into L := Z(Dē), which is a Galois field extension of F with Gal(L/F) 	 T/K.

Proof. Since the 2-cocycle α is symmetric, the α-twist of multiplication on D does not affect commutation 
relations between homogeneous elements, so the first assertion is clear.

The second assertion can be proved using a variation of the classical argument (see e.g. [18, The-
orem 4.4.3]) showing that multiplication in H2(T/K, L×) corresponds to multiplication in Br(F). The 

algebra A :=
(
L#F(T/K)

)α′
represents the element of Br(F) corresponding to α′ and the algebra 

Ã :=
(
L#F(T/K)

)(α′)−1

represents the inverse of this element. Let Δ be a central division algebra that 
represents [D]. Then Δ ⊗F (Cop#FT ) 	 Matk(F) ⊗F D for some k, where the first factor has trivial grading 
(Remark 5.2). Therefore, it is sufficient to show that the algebra B := (Cop#FT )α represents the same class 
as A in Br(F). Consider E := Ã ⊗F B. Since L#1 is a subalgebra of Ã isomorphic to L and C

op#1 is a 
subalgebra of B isomorphic to C

op, the algebra E contains

L⊗F L =
⊕

ϕ∈Gal(L/F)

Lεϕ,

where εϕ are orthogonal idempotents satisfying (ϕ1 ⊗ ϕ2)(εϕ) = εϕ2ϕϕ−1
1

for all ϕ1, ϕ2 ∈ Gal(L/F). In 

particular, ε := εid is a central idempotent of the subalgebra (L#1) ⊗F (Cop#1), in which it generates an 
ideal isomorphic to C

op, and we have

ε
(
(1#F(T/K)) ⊗F (1#FT )

)
ε = εS,

where S is the span of all elements of the form (1#t̄K) ⊗ (1#t̄), t̄ ∈ T . But when we multiply two such 
elements in E, the values of the cocycles (α′)−1 and α cancel out, so S is a subalgebra of E isomorphic to 
FT . It follows that

εEε 	 C
op#FT 	 EndF (Cop),
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hence the class of E in Br(F) is trivial, proving the result. �
In terms of the isomorphism BrT (F) → Br(F) × ET (F) as in Corollary 2.8, sending [D]T to (

[D], [Cop]T -alg
)
, Lemma 5.3 says that twisting D by α has the following effect on the image of [D]T : 

the second component is twisted by res(α) and, if α = inf(α′), the first component is multiplied by the 
image of [α′] in Br(F).

By Corollary 4.5, the isomorphism classes of simple T -Galois extensions of F are parametrized by the set 
TF (T ), with a triple (L, θ, τB2(K, F×)) ∈ TF (T ) corresponding to the isomorphism class of the T -algebra 
C(L, θ, τ) = LτK as in Definition 4.6 (with T playing the role of G and K := ker θ). Clearly, twisting 
C(L, θ, τ) by a symmetric 2-cocycle K × K → F× multiplies τ by this cocycle, hence the isomorphism 
classes of these twists are parametrized by a coset of the subgroup H2

sym(K, F×) in Z2(K, L×)/B2(K, F×). 
As explained after Definition 4.6, the elements of such a coset represent the isomorphism classes of simple 
T -Galois extensions of F whose center is isomorphic to (L, θ) and commutation relations are given by a 
fixed nondegenerate alternating bicharacter β̄ : K ×K → F×. Thus, H2

sym(K, F×) acts simply transitively 
on these isomorphism classes by the twist of multiplication. Moreover, up to isomorphism and symmetric 
cocycle twist, the simple T -Galois extensions of F are classified by the triples (L, θ, β̄).

Now, for any G-graded-central-division algebra D with support T and support of the center H, we have 
D 	 Lγ

π(D) where D is a central simple G-graded-division algebra with support T := T/H. Moreover, D can 
be replaced by any of its symmetric cocycle twists at the expense of changing γ. In view of Lemma 5.3, the 
simple T -Galois extension of F corresponding to D can be replaced by any of its symmetric cocycle twists. 
Therefore, it makes sense to fix, for any triple (L, θ, β̄), a 2-cocycle τ0 ∈ Z2(K, L×) that satisfies β̄(k̄1, ̄k2) =
τ0(k̄1, ̄k2)τ0(k̄2, ̄k1)−1 and fk̄1

fk̄2
= d

(
τ0(k̄1, ̄k2)

)
fk̄1k̄2

for all k̄1, ̄k2 ∈ K (which exists by Lemma 4.2 and 
can be obtained explicitly using generators ai and scalars μi as in Definition 5.4 below). Then we let 
C := C(L, θ, τ0) as in Definition 4.6 and, for any central division algebra Δ over F , let D(T , L, θ, β̄, Δ) be a 
central simple graded-division algebra whose isomorphism class corresponds to the pair 

(
[Δ], [Cop]T -alg

)
∈

Br(F) × ET (F). We will now give a more explicit construction of such an algebra:

Definition 5.4. For any finite subgroup T of G and any (L, θ) ∈ ZF (T ), write K := ker θ as a direct 
product of cyclic subgroups generated by ā1, . . . , ̄am. Then, for any nondegenerate alternating bicharacter 
β̄ : K × K → F×, fix scalars μi ∈ L× satisfying dμi = f

o(āi)
āi

and define a θ-semilinear T -action on the 
algebra C := C(L, θ, β̄, μ) as in (4.10), i.e.,

C = algL〈X1, . . . , Xm | XiXj = β̄(āi, āj)XjXi and X
o(āi)
i = μi1〉,

by setting t̄ ·Xi = fāi
(t)Xi for all t̄ ∈ T . Finally, for any finite-dimensional central division algebra Δ over 

F , pick a primitive idempotent E ∈ Δ ⊗F C
op and define

D(T ,L, θ, β̄,Δ) := E
(
Δ ⊗F (Cop#FT )

)
E =

⊕
t̄∈T

E
(
Δ ⊗F (Cop#t̄)

)
E.

This is a central simple G-graded-division algebra (with support T ), whose graded-isomorphism class does 
not depend on E, but depends on our (fixed) choice of generators ai and scalars μi, i = 1, . . . , m.

Theorem 5.5. Let G be an abelian group and let F be a field.

(1) If H is a finite subgroup of G, π : G → G := G/H is the natural homomorphism, D is a finite-
dimensional central simple G-graded-division algebra over F , and γ : G × G → F× is a symmetric 
2-cocycle (with trivial action of G on F×), then Lγ

π(D) is a finite-dimensional G-graded-central-division 
algebra over F .
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(2) If D is a finite-dimensional G-graded-central-division algebra over F , T is the support of D, and H is 
the support of the center of D, then D is graded-isomorphic to some Lγ

π(D) where π and γ are as above 
and D = D(T/H, L, θ, β̄, Δ) is a central simple G-graded-division algebra as in Definition 5.4.

(3) Two algebras Lγ
π

(
D(T/H, L, θ, β̄, Δ)

)
and Lγ′

π′
(
D(T ′/H ′, L′, θ′, β̄′, Δ′)

)
as above are graded-isomorphic 

if and only if the following conditions hold:
(i) T = T ′, H = H ′, L = L′, θ = θ′, β̄ = β̄′;
(ii) There exists α̃ ∈ Z2

sym(T/K, F×), where K := π−1(ker θ), such that
• res([γ′]) = inf([α̃]−1) res([γ]) in H2

sym(T, F×);
• The class [Δ′] in Br(F) is the product of [Δ] and the image of [α̃] under the homomorphism 

H2
sym(T/K, F×) → H2(T/K, L×) induced by the inclusion F → L, where H2(T/K, L×) is re-

garded as a subgroup of Br(F) using the identification T/K 	 Gal(L/F) via θ.

Proof. (1) is clear from [13, Theorem 5.2] and (2) has already been proved.
To prove (3), let D = D(T/H, L, θ, β̄, Δ) and D

′ = D(T ′/H ′, L′, θ′, β̄′, Δ′). First note that conditions 
T = T ′ and H = H ′ are necessary for Lγ

π(D) and Lγ′

π′(D
′) to be graded-isomorphic, so we may consider 

these algebras as T -graded and apply [13, Theorem 5.2] with T playing the role of G. Then the remaining 
condition for graded isomorphism is the existence of α ∈ Z2

sym(T , F×) such that res([γ′]) = inf([α]−1) res([γ])
in H2

sym(T, F×) and D
′ 	 D

α as T -graded algebras, where T := T/H. We have already seen that D′ 	 D
α

implies L′ = L, θ′ = θ and β̄′ = β̄. Moreover, the restriction of α to K := K/H must give the trivial element 
of H2

sym(K, F×), since the graded-division algebras in Definition 5.4 were constructed from representatives 
of orbits for the free action of H2

sym(K, F×) on the isomorphism classes of simple T -Galois extensions of F . 
Now, since H2

sym( · , F×) is a functor, we have the following commutative diagram:

H2
sym(T/K,F×) H2

sym(T ,F×) H2
sym(K,F×) 1

H2
sym(T/K,F×) H2

sym(T,F×) H2
sym(K,F×) 1

inf

∼

res

inf inf

inf res

where the rows are exact because they are the second halves of sequences similar to (5.1). Hence we have 
[α] = inf([α′]) for some α′ ∈ Z2

sym(T/K, F×). Let α̃ be the element of Z2
sym(T/K, F×) corresponding to α′. 

Then, in view of the above diagram, equation res([γ′]) = inf([α]−1) res([γ]) in H2
sym(T, F×) is equivalent to 

the first part of (ii), while, in view of Corollary 5.1 and Lemma 5.3, condition D
′ 	 D

α is equivalent to the 
second part of (ii). �
Corollary 5.6. The set of isomorphism classes of finite-dimensional G-graded-central-division algebras over 
F is in bijection with the following set of septuples (T, H, L, θ, β̄, δ, [η]):

• H ≤ T are finite subgroups of G;
• L is a finite Galois extension of F contained in F and θ is an epimorphism T/H → Gal(L/F) such that 

|H1(T/H, L×)| = |K/H| where K/H is the kernel of θ (so θ yields an isomorphism T/K → Gal(L/F));
• β̄ is a nondegenerate alternating bicharacter on K/H with values in F×;
• δ is a coset in Br(F) of the image of Hom(K, F×) under the composition of the connecting homo-

morphism Hom(K, F×) → H2
sym(T/K, F×) and the homomorphism H2

sym(T/K, F×) → H2(T/K, L×)
induced by the inclusion F → L;

• η ∈ Z2
sym(K, F×).

Proof. In the notation of Theorem 5.5, we let δ be the coset containing [Δ] and let η be the restriction of 
γ to K. Observe that part (3) gives us a lot of freedom in the choice of γ for a given D. Indeed, γ and γ′
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satisfy the first part of condition (ii) for some α̃ if and only if resK([γ]) = resK([γ′]), which means that we 
can replace γ by an arbitrary extension of η. So we fix, for each subgroup K of G, a set-theoretic section

ξK : H2
sym(K,F×) → H2

sym(G,F×)

of the restriction homomorphism and stipulate that γ for realizing D as Lγ
π(D) be chosen according to 

this section: [γ] = ξK
(
resK([γ])

)
. Under this stipulation, α̃ in condition (ii) must belong to the kernel of 

inf : H2
sym(T/K, F×) → H2

sym(T, F×), which is the image of the connecting homomorphism above. �
The parameters corresponding to the isomorphism class of a graded-central-division algebra D in Corol-

lary 5.6 have the following meaning: T is the support of D, H is the support of Z(D), L 	 Z(De), θ is 
induced by the epimorphism σ̄ : T → Gal(L/F) (see Proposition 3.5, with T playing the role of G), K
is the kernel of σ̄ and the support of C := CentD(De), and β̄ is induced by the alternating bicharacter 
β : K ×K → F× defined by the commutation relations in C (see Proposition 3.7). The meaning of δ and 
[η] is less direct and depends on the choices we made in Definition 5.4 and the proof of Corollary 5.6: η is a 
symmetric 2-cocycle such that C 	 Lη

π(C) where C := C(L, θ, β̄, μ), and δ is the coset containing the element 
[D] ∈ Br(F) where D is a central image of Dγ−1 and [γ] = ξK([η]).

Finally, we note that all data in Corollary 5.6 involving symmetric 2-cocycles can be computed ex-
plicitly. For the connecting homomorphism Hom(K, F×) → H2

sym(T/K, F×), take a set-theoretic section 
sK : T/K → T of the natural homomorphism T → T/K and, for any λ ∈ Hom(K, F×), define

αλ(x1, x2) := λ
(
sH(x1)sH(x2)sH(x1x2)−1) ∀x1, x2 ∈ T/K.

Then the class [αλ] ∈ H2
sym(T/K, F×) is the image of λ under the connecting homomorphism [22, III, 

Lemma 1.4 and Theorem 9.1].
As to symmetric 2-cocycles K ×K → F× and their extensions, they can be found using the short exact 

sequence 1 → F× → F
× → F

×
/F× → 1 as an injective resolution of F×. Hence H2

sym(K, F×) is isomorphic 

to the quotient of Hom(K, F
×
/F×) by the image of Hom(K, F

×). Under this isomorphism, the coset of 
χ : K → F

×
/F× corresponds to the class of the following symmetric 2-cocycle:

ηχ(k1, k2) := sF (χ(k1))sF (χ(k2))sF (χ(k1k2))−1 ∀k1, k2 ∈ K, (5.2)

where sF is a set-theoretic section of the natural homomorphism F
× → F

×
/F×. Extending χ to a homo-

morphism χ̃ : G → F
×
/F×, we obtain an extension γ := ηχ̃ of the 2-cocycle ηχ.

Remark 5.7. We can realize Lγ
π(D) as an F -form of the G-graded algebra Lπ(D) ⊗F F as follows. Setting 

zg := sF (χ̃(g)) ∈ F
× for all g ∈ G, we have

Lγ
π(D) 	

⊕
g∈G

Dπ(g) ⊗ g ⊗ zg ⊂ D⊗F FG,

where we have identified FG ⊗F F with FG. (Cf. [13, Proposition 3.5(iii)].)

5.3. Finite graded-division rings

As an application of the method developed in this section, we can classify finite graded-division rings. Let 
D =

⊕
g∈G Dg be a finite graded-division ring where G is an abelian group. Then D can be considered as a 

graded algebra over the finite field F := Z(D)e. When viewed in this way, D is a finite-dimensional graded-
central-division algebra, so Theorem 5.5 applies. Our classification will be up to graded-isomorphism, so we 
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will fix G. Clearly, we can also fix the isomorphism class of F and consider finite-dimensional graded-central-
division algebras over F . Note, however, that two such objects D and D′ may be isomorphic as graded rings 
without being isomorphic as graded F -algebras. More precisely, D is isomorphic to D′ as a graded ring if 
and only if there exists an automorphism ψ of F such that Dψ (the result of pulling scalar multiplication 
back along ψ) is isomorphic to D′ as a graded F -algebra.

It will be sometimes convenient to assume that G is the support of the grading, hence finite. Since F is also 
finite, there is a number of simplifications. First, Br(F) is trivial and, hence, the mapping D 
→ CentD(De)
yields a bijection between the isomorphism classes of central simple graded-division F -algebras with support 
G and the isomorphism classes of simple G-Galois extensions of F . (In terms of Corollary 5.6, the parameter 
δ is trivial.) Second, the multiplicative groups of finite fields and the Galois groups of their finite extensions 
are cyclic, which allows explicit computations.

Denote the characteristic of F by p and let GF (p∞) be an algebraic closure of the prime field GF (p). 
(It can be constructed as a direct limit of the fields GF (pk), k ∈ N, hence our notation.) We may assume 
that GF (p) ⊂ F ⊂ GF (p∞). It is well known and easy to prove that the multiplicative group GF (p∞)× is 
isomorphic to a subgroup of the unit circle U ⊂ C, namely, the direct sum of Uq∞ over all primes q �= p, 
where Uq∞ denotes the group of all complex roots of unity of degrees qk, k ∈ N. We will fix such an 
isomorphism and, for any N ∈ N with p � N , let ωN be the element of GF (p∞)× corresponding to exp 2πi

N . 
Thus, ωN is a primitive N -th root of unity in GF (p∞) and we have ωd

N = ωN/d for any d | N . It follows 
that the multiplicative group F× is generated by ω|F×|, which we will abbreviate as ωF .

Denote by ϕ the Frobenius automorphism of GF (p∞): ϕ(x) = xp. By abuse of notation, we will use the 
same letter for the restrictions of ϕ to finite subfields of GF (p∞). Thus, for any such subfield L containing 
F , the Galois group Gal(L/F) is generated by ϕe where |F | = pe. It follows that the norm NL/F : L → F is 
given by NL/F (x) = x[L×:F×]. Hence the mapping ωj

F 
→ ωj
L (0 ≤ j < |F×|) is a set-theoretic section of the 

group epimorphism NL/F : L× → F×.
The above information gives us an explicit description of the set ZF(G): it is in bijection with the cosets 

C of the subgroups K ≤ G satisfying the following conditions: G/K is a cyclic group generated by C, 
K 	 A × A for some abelian group A, and exp(K) divides |F×| = pe − 1. Indeed, L is determined by the 
degree n := [L : F ] = [G : K] and θ : G → Gal(L/F) is determined by its kernel K and the stipulation that 
it maps the elements of C to ϕe. Next, we have to fix an extension of every character λ : K → F× to a 
1-cocycle G → L×. These extensions exist because Br(L) = 1 and hence the “transgression” map is trivial. 
Explicitly, they are given by the following lemma, whose proof is left to the reader:

Lemma 5.8. Suppose θ(t0) = ϕe and λ ∈ Hom(K, F×). Then the extensions of λ to 1-cocycles G → L× are 
as follows: for any μ0 ∈ L× satisfying NL/F (μ0) = λ(tn0 ), there exists a unique extension that sends t0 to 
μ0. �

For any coset C of K that generates G/K, we fix a representative t0 = t0(C). Then we extend every 
λ ∈ Hom(K, F×) as in Lemma 5.8 with μ0 := ωj

L where λ(tn0 ) = ωj
F and 0 ≤ j < |F×|. Thus, given 

a nondegenerate alternating bicharacter β : K × K → F×, the extension fk of the character β(·, k) is 
determined by the condition fk(t0(C)) = ω

jC,β(k)
L where, for any k ∈ K, we define jC,β(k) by

β(t0(C)n, k) = ω
jC,β(k)
F and 0 ≤ jC,β(k) < |F×|. (5.3)

This determines the objects C(L, θ, τ) as in Definition 4.6. Explicitly, we can construct them in terms of 
generators and relations (4.10) if we write K as a direct product of cyclic subgroups and fix their generators:

Proposition 5.9. Let G be a finite abelian group and let F = GF (pe). Then the simple G-Galois extensions 
of F are classified as follows: for any coset C of a subgroup K ≤ G such that C generates G/K and 
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any nondegenerate alternating bicharacter β : K × K → F×, there are exactly |K| isomorphism classes. 
Moreover, if we write K = 〈a1〉 ×· · ·× 〈am〉, the following are representatives of these isomorphism classes:

C(s1, . . . , sm) := algL〈X1, . . . , Xm | XiXj = β(ai, aj)XjXi and X
o(ai)
i = μi(si)1〉,

where each si is an integer in the interval 0 ≤ si < o(ai), L is the field extension of F of degree n = [G : K]
contained in the algebraic closure GF (p∞), the elements of the coset Cj act on L as ϕej,

μi(si) := ω
o(ai)jC,β(ai)/|F×|
L ωsi

F with jC,β : K → Z≥0 defined by (5.3),

and the (semilinear) G-action on C(s1, . . . , sm) is defined by g ·Xi = fai
(g)Xi for all g ∈ G, i = 1, . . . , m.

Proof. Recall that the elements μi ∈ L× in (4.10) are subject to the condition dμi = f
o(ai)
ai . Since 1-

coboundaries are trivial on K, it is sufficient to check it for g = t0(C), which is ϕe(μi)μ−1
i = ω

o(ai)jC,β(ai)
L . 

Writing μi = ωyi

L , this equation becomes |F×|yi ≡ o(ai)jC,β(ai) (mod |L×|). Since β(t0(C)n, ai)o(ai) = 1, 
we have o(ai)jC,β(ai) ≡ 0 (mod |F×|), so the set of all possible values of yi is given by

yi = o(ai)jC,β(ai)
|F×| + [L× : F×]si where si ∈ Z.

This gives the desired expression for μi because ω[L×:F×]
L = ωF . The result now follows from Proposition 4.11

since the group (F×)[o(ai)] is generated by ωo(ai)
F . �

This result also gives a classification of central simple graded-division algebras over F with support G: for 
each C(s1, . . . , sm) as in Proposition 5.9, there is a unique (up to graded-isomorphism) such graded-division 
algebra D(s1, . . . , sm) for which the centralizer of the identity component is isomorphic to C(s1, . . . , sm) as 
a G-algebra. Since all the G-algebras C(s1, . . . , sm) are symmetric cocycle twists of each other, the same is 
true for the G-graded algebras D(s1, . . . , sm) by Lemma 5.3. So, we can take D(0, . . . , 0) as a “base point” 
and denote it by D(G, C, β) (cf. Definition 5.4). Specializing Corollary 5.6, we obtain:

Corollary 5.10. Let G be an abelian group and let F = GF (pe). The set of isomorphism classes of finite-
dimensional G-graded-central-division algebras over F is in bijection with the following set of quintuples 
(T, H, C, β̄, [η]):

• H ≤ T are finite subgroups of G;
• C is a coset of a subgroup K of T such that H ≤ K and C generates T/K;
• β̄ is a nondegenerate alternating bicharacter on K/H with values in F×;
• η ∈ Z2

sym(K, F×).

Moreover, Lγ
π(D(T/H, C/H, β̄)) is a representative of the isomorphism class with parameters (T, H, C, β̄, [η]), 

where π : G → G/H is the natural homomorphism and γ ∈ Z2
sym(G, F×) is any extension of η. �

To address the problem of isomorphism as graded rings, we will use the following:

Lemma 5.11. If ψ ∈ Aut(F) then the graded F-algebra D(G, C, β)ψ−1 is isomorphic to a symmetric cocycle 
twist of D(G, C, ψ ◦ β). Moreover, if ψ ◦ β = β then D(G, C, β)ψ−1 is isomorphic to D(G, C, β) as a graded 
F-algebra.
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Proof. Denote D = D(G, C, β). Since the centralizer of the identity component in D is C := C(0, . . . , 0) as 
in Proposition 5.9, the centralizer of the identity component in Dψ−1 is Cψ−1 . So, it suffices to consider the 
latter. By construction, C is an L-algebra with a semilinear G-action. Extending ψ to an automorphism 
of L, we can pull the L-vector space structure back along ψ−1, which makes Cψ−1 an L-algebra with a 
semilinear G-action of the same kind as C since ψ commutes with the elements of Gal(L/F). Now, Cψ−1 has 
the same generators X1, . . . , Xm, but the relations change: β(ai, aj) is replaced by ψ(β(ai, aj)) and μi(0) is 
replaced by ψ(μi(0)). This proves the first assertion.

For the second assertion, let F0 be the subfield of F generated by the values of β or, in other words, by 
ωexp(K). Then ψ ◦ β = β if and only if ψ is a power of ϕe0 where |F0| = pe0 . So, it suffices to consider the 

case ψ = ϕe0 . The G-action on the generators of Cψ−1 is given by g ·Xi = ψ(fai
(g))Xi (with multiplication 

by scalars taken in Cψ−1 !). Since ψ ◦ β = β, we have ψ(fai
(g)) = fai

(g) for g ∈ K, but for t0 = t0(C), we 

have ψ(fai
(t0)) = ψ(ωji

L ) = ωpe0ji
L = ω

|F×
0 |ji

L fai
(t0) where ji := jC,β(ai). From the definition of ji and the 

fact that ψ ◦ β = β it follows that pe0ji ≡ ji (mod |F×|), so |F×| is a divisor of |F×
0 |ji. Taking the elements

X ′
i := ω

−|F×
0 |ji/|F×|

L Xi, i = 1, . . . ,m,

as the new generators of Cψ−1 , we get g ·X ′
i = fai

(g)X ′
i for all g ∈ G. Also,

(X ′
i)o(ai) = ω

−o(ai)|F×
0 |ji/|F×|

L ψ(μi(0)) = ω
−o(ai)|F×

0 |ji/|F×|
L ω

pe0o(ai)ji/|F×|
L = μi(0).

It follows that Cψ−1 	 C as a G-algebra over F . �
Lemma 5.11 allows us to classify the graded-central-division F -algebras in Corollary 5.10 up to isomor-

phism of graded rings. Indeed, for any G/H-graded algebra A, the loop algebra Lπ(A) can be seen as a 
graded subalgebra of the group ring AG (with the G-grading defined by declaring Ag to be the homogeneous 
component of degree g), so Lπ(A)ψ 	 Lπ(Aψ) for any ψ ∈ Aut(F). Also, for any G-graded algebra A and 
any γ ∈ Z2(G, F×), we have (Aγ)ψ−1 = (Aψ−1)ψ◦γ . Therefore, using the notation of Corollary 5.10, we ob-
tain, for any ψ ∈ Aut(F), Lγ

π(D(T/H, C/H, β̄))ψ−1 	 Lγ′
π (D(T/H, C/H, ψ ◦ β̄)) for some γ′ ∈ Z2

sym(G, F×)
that has the same restriction to H (but not necessarily to K) as ψ ◦ γ. Moreover, if ψ ◦ β̄ = β̄ then 
Lγ
π(D(T/H, C/H, β̄))ψ−1 	 Lψ◦γ

π (D(T/H, C/H, β̄)).
It is well known that Ext(G, Z/NZ) is naturally isomorphic to the dual group of G[N ], which gives 

us the group H2
sym(G, F×) since F× is cyclic. In fact, symmetric 2-cocycles representing the elements of 

H2
sym(G, F×) can be constructed explicitly. For any N ∈ N with p � N , it is convenient to define the map

[1/N ] : GF (p∞)× → GF (p∞)×, ωj
M 
→ ωj

MN where 0 ≤ j < M.

As the notation suggests, this is a set-theoretic section of the epimorphism [N ] : GF (p∞)× → GF (p∞)×, 
so we will denote the image of x under [1/N ] by x1/N .

Lemma 5.12. Let G be an abelian group, F = GF (pe) and N = pe − 1. Then there is a natural iso-
morphism Hom(G[N ], F×) 	 H2

sym(G, F×) constructed as follows: given a character χ : G[N ] → F×, if 
χ̃ ∈ Hom(G, GF (p∞)×) is an extension of χ then

γχ̃(g1, g2) := χ̃(g1)1/N χ̃(g2)1/N
(
χ̃(g1g2)1/N

)−1 ∀g1, g2 ∈ G

is a symmetric 2-cocycle G ×G → F× whose class [γχ̃] ∈ H2
sym(G, F×) depends only on χ, and the mapping 

χ 
→ [γχ̃] is the desired isomorphism.
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Proof. Let F = GF (p∞). Using the exact sequence 1 → F× → F
× [N ]−→ F

× → 1 as an injective resolution 
of F×, we obtain the isomorphism

Hom(G,F
×)/Hom(G,F

×)[N ] → H2
sym(G,F×),

explicitly given by a formula similar to (5.2), with [1/N ] playing the role of sF . Now, applying the exact 
functor Hom( · , F×) to the exact sequence 1 → G[N ] → G 

[N ]−→ G, we obtain the isomorphism

Hom(G,F
×)/Hom(G,F

×)[N ] → Hom(G[N ],F
×) = Hom(G[N ],F

×)

induced by the restriction of characters from G to G[N ]. The result follows. �
Using Lemma 5.12 and Remark 5.7, representatives of the isomorphism classes of graded-central-division 

algebras over F in Corollary 5.10 can be constructed explicitly. For the purpose of classification up to 
isomorphism of graded rings, we also fix orbit representatives for bicharacters:

Definition 5.13. Let F = GF (pe). For any finite subgroups H ≤ K ≤ T of G such that T/K is cyclic 
and K := K/H admits nondegenerate alternating bicharacters with values in F× (i.e., K 	 A × A for 
some abelian group A and exp(K) divides |F×|), fix a representative β̄0(O) for any Aut(F)-orbit of these 
bicharacters and also fix elements ā1, . . . , ̄am ∈ K such that K = 〈ā1〉 × · · · × 〈ām〉. Finally, for any coset 
C of K in T that generates T/K, fix an element t̄0(C) in the coset C := C/H of K in T := T/H. Let 
n = [T : K] and define a T -action on L := GF (pen) by letting the elements of Cj act as ϕej . Then, for 
any nondegenerate alternating bicharacter β̄ : K ×K → F×, let λi = β̄(t̄0(C)n, ̄ai) and define a semilinear 
T -action on

C := algL〈X1, . . . , Xm | XiXj = β̄(āi, āj)XjXi and X
o(āi)
i = λ

1
|L×|/o(āi)
i 1〉

by setting t̄ ·Xi = fāi
(t)Xi for all t̄ ∈ T , where fāi

: T → L× is the unique 1-cocycle that restricts to β̄(·, ̄ai)
on K and satisfies fāi

(t̄0(C)) = λ
1

[L×|/|F×|
i . Pick a primitive idempotent E ∈ C

op and define a T -graded 
F -algebra

D := E
(
C

op#FT
)
E =

⊕
t̄∈T

Dt̄ where Dt̄E
(
C

op#t̄
)
E.

Finally, for any character χ : K[|F×|] → F×, pick an extension χ̃ : T → GF (p∞)× and define the following 
G-graded F -algebra with support T :

D :=
⊕
t∈T

Dπ(t) ⊗ χ̃(t)
1

|F×| t ⊂ D⊗F GF (p∞)T,

where π : T → T is the natural homomorphism. This is a graded-central-division algebra over F , whose 
graded-isomorphism class does not depend on the choice of E or χ̃, but depends on our (fixed) choice 
of the generators āi and coset representative t̄0(C). By abuse of notation, we will denote this object by 
D(F , T, H, C, O, χ) if β̄ = β̄0(O).

We can now summarize our classification:

Theorem 5.14. Let G be an abelian group. Every finite G-graded-division ring is graded-isomorphic to 
some D(F , T, H, C, O, χ) as in Definition 5.13. Moreover, D(F , T, H, C, O, χ) and D(F ′, T ′, H ′, C ′, O′, χ′)
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are graded-isomorphic if and only if F ′ = F , T ′ = T , H ′ = H, C ′ = C, O′ = O, and χ′ = ψ ◦ χ for some 
ψ ∈ Gal(F/F0), where F0 is the subfield of F generated by the values of the bicharacters in O. �
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