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Let G = SLn(C) and T be a maximal torus in G. We show that the quotient 
T\\G/Pα1 ∩ Pα2 is projectively normal with respect to the descent of a suitable line 
bundle, where Pαi is the maximal parabolic subgroup in G associated to the simple 
root αi, i = 1, 2. We give a degree bound of the generators of the homogeneous 
coordinate ring of T\\(G3,6)ssT (L2�3). If G = Spin7, we give a degree bound of the 
generators of the homogeneous coordinate ring of T\\(G/Pα2 )ssT (L2�2) whereas we 
prove that the quotient T\\(G/Pα3)ssT (L4�3) is projectively normal with respect to 
the descent of the line bundles L4�3 .
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1. Introduction

For the action of a maximal torus T on the Grassmannian Gr,n the quotients T\\Gr,n have been studied 
extensively. Allen Knutson called them weight varieties in his thesis [17]. In [8] Hausmann and Knutson 
identified the GIT quotient of the Grassmannian G2,n by the natural action of the maximal torus with the 
moduli space of polygons in R3 and this GIT quotient can also be realized as the GIT quotient of an n-fold 
product of projective lines by the diagonal action of PSL(2, C). In the symplectic geometry literature these 
spaces are known as polygon spaces as they parameterize the n-sides polygons in R3 with fixed edge length 
up to rotation. More generally, T\\Gr,n can be identified with the GIT quotient of (P r−1)n by the diagonal 
action of PSL(r, C) via the Gelfand-MacPherson correspondence. In [15] and [16] Kapranov studied the 
Chow quotient of the Grassmannians and he showed that the Grothendieck-Knudsen moduli space M0,n
of stable n-pointed curves of genus zero arises as the Chow quotient of the maximal torus action on the 
Grassmannian G2,n.
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In [6] Dabrowski has proved that for any parabolic subgroup P of G, the Zariski closure of a generic 
T -orbit in G/P is normal. For a precise statement, see [6, Theorem 3.2, pg. 327]. In [4] Carrell and Kurth 
proved that if G is of type An, D4 or B2 and P is any maximal parabolic subgroup of G, then every T orbit 
closure in G/P is normal. In the context of a problem on projective normality for torus actions, Howard 
proved that for any parabolic subgroup P of SLn(C), the Zariski closure T.x of the T -orbit of any point x
in SLn(C)/P is projectively normal for the choice of any ample line bundle L on SLn(C)/P . For a precise 
statement, see [9, Theorem 5.4, pg. 540].

In [14] the authors consider the quotients of a projective space X for the linear action of finite solvable 
groups and for finite groups acting by pseudo reflections. They prove that X//G is projectively normal 
with respect to the descent of OX(1)|G|. In [5] these results were obtained for every finite group but with a 
larger power of the descent of OX(1)|G|. In [13] there was an attempt to study the projective normality of 
T\\(G2,n) (n odd) with respect to the descent of the line bundle corresponding to the fundamental weight 
ω2. There it was proved that the homogeneous coordinate ring of T\\(G2,n) is a finite module over the 
subring generated by the degree one elements. In [2] and [10] the authors show that the quotient T\\G2,n is 
projectively normal with respect to the descent of the line bundle corresponding to n�2 using the Kempe 
embedding.

In this paper we give a short proof of the projective normality of the quotient T\\G2,n with respect to 
the descent of the line bundle Ln�2 using Standard Monomial Theory and some graph theoretic techniques. 
We also prove that the quotient T\\G/Pα1 ∩ Pα2 is projectively normal with respect to the descent of 
a suitable line bundle, where Pαi

is the maximal parabolic subgroup in G associated to the simple root 
αi, i = 1, 2, which is the main ingredient of this paper. We give a degree bound of the generators of the 
homogeneous coordinate ring of T\\(G3,6)ssT (L2�3). If G = Spin7, we give a degree bound of the generators 
of the homogeneous coordinate ring of T\\(G/Pα2)ssT (L2�2) whereas we prove that T\\(G/Pα3)ssT (L4�3) is 
projectively normal with respect to the descent of the line bundles L4�3 .

The layout of the paper is as follows. Section 2 consists of preliminary definitions and notation. In Section 3
we recall some preliminaries of Standard Monomial Theory and in Section 4 we recall some preliminaries 
of graph theory. In Section 5 we show that the GIT quotients T\\(Gr,n) and T\\(Gn−r,n) are isomorphic. 
In Section 6 we give a proof of the projective normality of the quotient T\\(G2,n)ssT (Ln�2) with respect 
to the descent of the line bundle Ln�2 and we give a degree bound of the generators of the homogeneous 
coordinate ring of T\\(G3,6)ssT (L2�3). In Section 7 for G = SLn we prove projective normality of the quotient 
T\\G/Pα1 ∩ Pα2 with respect to the descent of a suitable line bundle and in Section 8 for G = Spin7, we 
give a degree bound of the generators of the homogeneous coordinate ring of T\\(G/Pα2)ssT (L2�2) and we 
prove that T\\(G/Pα3)ssT (L4�3) is projectively normal with respect to the descent of the line bundle L4�3.

2. Preliminaries

In this section we set up some preliminaries and notation. We refer to [11], [12], [25] for preliminaries 
in Lie algebras and algebraic groups. Let G be a semi-simple algebraic group over C. We fix a maximal 
torus T of G and a Borel subgroup B of G containing T . Let NG(T ) be the normaliser of T in G. Let 
W = NG(T )/T be the Weyl group of G with respect to T . Let R denote the set of roots with respect 
to T . Let S = {α1, α2, . . . , αn} ⊂ R be the set of simple roots and for a subset I ⊆ S we denote by PI

the parabolic subgroup of G generated by B and {nα : α ∈ S \ I}, where nα is a representative of sα in 
NG(T ). Let X(T ) (resp. Y (T )) denote the set of characters of T (resp. one parameter subgroups of T ). Let 
E1 := X(T ) ⊗R, E2 := Y (T ) ⊗R. Let 〈., .〉 : E1 × E2 → R be the canonical non-degenerate bilinear form. 
For all homomorphism φα : SL2 → G, (α ∈ R), we have α̌ : Gm → G defined by

α̌(t) = φα(
[
t 0
0 t−1

]
).
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We also have sα(χ) = χ − 〈χ, α̌〉α for all α ∈ R and χ ∈ E1. Set si = sαi
for all i = 1, 2, . . . , n. Let 

{�i : i = 1, 2, . . . , n} ∈ E1 be the fundamental weights; i.e. 〈�i, α̌j〉 = δij for all i, j = 1, 2, . . . n.
For a simply connected semi-simple algebraic group G and for a parabolic subgroup P , the quotient space 

G/P is a homogeneous space for the left action of G. The quotient G/P is called a generalized flag variety. 
When G = SLn(C) and Pr is the maximal parabolic subgroup corresponding to the simple root αr, the 
quotient can be identified with Gr,n, the Grassmannian of r dimensional subspaces of Cn.

Now we recall the definition of projective normality of a projective variety. A projective variety X ⊂ Pn

is said to be projectively normal if the affine cone X̂ over X is normal at its vertex. For a reference, see 
exercise 3.18, page 23 of [7]. For the practical purpose we need the following fact about projective normality 
of a polarized variety.

A polarized variety (X, L) where L is a very ample line bundle is said to be projectively normal if its 
homogeneous coordinate ring ⊕n∈Z≥0H

0(X, L⊗n) is integrally closed and it is generated as a C-algebra by 
H0(X, L) (see Exercise 5.14, Chapter II of [7]). Projective normality depends on the particular projective 
embedding of the variety.

Example. The projective line P 1 is obviously projectively normal since its cone is the affine plane C2 (which 
is non-singular). However it can also be embedded in P 3 as the quartic curve, namely,

V+ = {(a4, a3b, ab3, b4) ∈ P 3 | (a, b) ∈ P 1},

then it is normal but not projectively normal (see [7], Chapter 1, Ex. 3.18).

For preliminaries in Geometric Invariant Theory we refer to [23] and [24]. Let X be a projective variety 
which is acted upon by a reductive group G. Let L be a G-linearized very ample line bundle on X. The 
GIT quotient X//G is by definition the uniform categorical quotient of the (open) set of semistable points 
Xss

G (L) by G. We denote the GIT quotient of X by G with respect to L by Xss
G (L)//G. Assume that the 

line bundle L descends to the quotient Xss
G (L)//G and denote the descent by L′. Then the polarized variety 

(Xss
G (L)//G, L′) is Proj(⊕n∈Z≥0(H0(X, L⊗n)G).
Let G be a simple, simply-connected algebraic group. Let T be a maximal torus in G and B be a Borel 

subgroup of G containing T . Let W be the Weyl group of G with respect to T and Q be the root lattice of 
G. Let λ be a dominant weight of G and let Pλ be the parabolic subgroup of G associated to λ which is 
by definition the subgroup of G generated by the Borel subgroup B and the isotropy group Wλ of λ in W . 
Let Lλ be the homogeneous ample line bundle on G/Pλ associated to λ. The T -linearization of Lλ is given 
by restricting the action of G on Lλ to T . Then the following theorem due to Shrawan Kumar describes 
which line bundles descend to the GIT quotient T\\(G/Pλ)ssT (Lλ) (see [18, Theorem 3.10]). We note that 
Kumar’s result in [18] is more general than what is presented here.

Theorem 2.1. With all the notations as above, the line bundle Lλ descends to a line bundle on the GIT 
quotient T\\(G/Pλ)ssT (Lλ) if and only if λ is of the following form depending upon the type G:

1. G of type An(n ≥ 1): λ ∈ Q,
2. G of type B2: λ ∈ Zα1 + 2Zα2 = 2X(T ),
3. G of type Bn(n ≥ 3): λ ∈ 2Q.

3. Some preliminaries of Standard Monomial Theory

Let {e1, e2, . . . , en} be the standard basis of Cn. Let Ir,n = {(i1, i2, . . . , ir)|1 ≤ i1 < · · · < ir ≤ n}. The 
set {ei1 ∧ ei2 ∧ . . . ∧ eir |(i1, i2, . . . , ir) ∈ Ir,n)} forms a basis of ∧rCn. We denote by {pi1,i2,...,ir} the dual 
basis of the basis {ei1 ∧ ei2 ∧ . . . ∧ eir}; the pi1,i2,...,ir are called the Plücker coordinates of P (∧rCn).
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The Grassmannian Gr,n ⊆ P (∧rCn) is precisely the zero set of the following well known Plücker relations:

r+1∑
h=1

(−1)hpi1,i2,...,ir−1jhpj1,...,ĵh,...,jr+1
,

where {i1, . . . , ir−1} and {j1, . . . , jr+1} are two subsets of {1, 2, . . . , n}.

3.1. SLn-standard Young tableau

In this subsection we recall some basic facts about standard Young tableau for generalized flag varieties 
(see [19, pg. 216]).

Let G = SLn and λ = Σn−1
i=1 ai�i, ai ∈ Z+ be a dominant weight. To λ we associate a Young diagram 

(denoted by Γ) with λi number of boxes in the i-th column, where λi := ai + . . . + an−1, 1 ≤ i ≤ n − 1.
A Young diagram Γ associated to a dominant weight λ is said to be a Young tableau if the diagram is 

filled with integers 1, 2, . . . , n. We also denote this Young tableau by Γ. The Young tableau is said to be 
standard if it is strictly increasing in the row and non-decreasing in column.

Given a Young tableau Γ, let τ = {i1, i2, . . . , id} be a typical row in Γ, where 1 ≤ i1 < · · · < id ≤ n, 
for some 1 ≤ d ≤ n − 1. To the row τ , we associate the Plücker coordinate pi1,i2,...,id . We set pΓ =

∏
τ pτ , 

where the product is taken over all the rows of Γ. We say that pΓ is a standard monomial on G/Pλ if Γ is 
standard, where Pλ is the parabolic subgroup of G associated to the weight λ.

Now we recall the definition of weight of a standard Young tableau Γ (see [22, Section 2]). For a positive 
integer 1 ≤ i ≤ n, we denote by cΓ(i), the number of boxes of Γ containing the integer i. Let εi : T → Gm

be the character defined as εi(diag(t1, . . . , tn)) = ti. We define the weight of Γ as

wt(Γ) := cΓ(1)ε1 + · · · + cΓ(n)εn.

We have the following lemma about T -invariant monomials in H0(G/Pλ, Lλ).

Lemma 3.1. A monomial pΓ ∈ H0(G/Pλ, Lλ) is T -invariant if and only if all the entries in Γ appear equal 
number of times.

Proof. Recall that the action of T on H0(G/Pλ, Lλ) is given by

(t1, . . . , tn) · pi1,i2,...,ir = (ti1 · · · tir )−1pi1,i2,...,ir .

Since pi1,...,ir is the dual of ei1 ∧ · · · ∧ eir , the weight of pi1,...,ir is −(εi1 + · · · + εir). Thus the weight of pΓ
is −wt(Γ). Therefore, we see that pΓ is T invariant if and only if the weight of Γ is zero. Since the weight 
of Γ is 

∑n
i=1 cΓ(i)εi and 

∑n
i=1 εi = 0, we conclude that pΓ is T -invariant if and only if cΓ(i) = cΓ(j) for all 

1 ≤ i, j ≤ n. This proves the lemma. �
3.2. Spin2n+1-standard Young tableau

In this subsection we recall some basic facts about standard Young tableau for G, where G = Spin2n+1. 
(see the Appendix in [22]).

Let λ = Σn
i=1ai�i, ai ∈ Z+ be a dominant weight. Define pi = Σn−1

j=i 2aj + an, for 1 ≤ i ≤ n.
To λ we associate a Young diagram (denoted by Γ) of shape p(λ) = (p1, p2, . . .) with p1 ≥ p2 ≥ . . .

consists of p1 boxes in the first column, p2 in the second column etc.
Let r = (i1, . . . , it) be a row of length t ≤ n with entries ij ≤ 2n. For i = 1, . . . , n denote by si(r) the 

row defined as follows:
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If i < n and i +1 and 2n +1 − i are entries of the row r, then si(r) is the row obtained from r by replacing 
the entry i + 1 by i and the entry 2n + 1 − i by 2n − i. Else we set si(r) := r. If i = n and n + 1 is an entry 
of the row r, then denote by si(r) the row obtained from r by replacing the entry n + 1 by n. Else we set 
sn(r) := r.

We say that a pair of rows (r, r′) are admissible if r = r′ or there exists a sequence of different rows 
(r0, r1, . . . , rl) such that r0 = r, rl = r′ and sik(rk−1) = rk for k = 1, 2, . . . , l for some integers i1, . . . , il ∈
{1, 2, . . . n}.

A Young diagram Γ of shape p is said to be a Young tableau (also denoted by Γ) if the diagram is filled 
with positive integers such that

1. the entries are less than or equal to 2n,
2. i and 2n + 1 − i do not occur in the same row, for all 1 ≤ i ≤ n and
3. For all i = 1, . . . , p̄1, the pair of rows (r2i, r2i−1) are admissible, where p̄1 = p1−an

2 .

The Young tableau is said to be standard if it is strictly increasing in the row and non-decreasing in 
column. If i is a positive integer and Γ is a given Young tableau then we denote by cΓ(i), the number of 
boxes of Γ containing the integer i. We define the weight of the young tableau Γ as

wt(Γ) := 1
2((cΓ(1) − cΓ(2n))ε1 + · · · + (cΓ(n) − cΓ(n + 1))εn).

Let Pλ be the parabolic subgroup of G associated to λ. Then the T -eigenvectors of H0(G/Pλ, Lλ) are 
denoted by pΓ which are indexed by the Young tableau Γ of shape p(λ) and the weight of pΓ is defined to 
be wt(Γ). We say that pΓ is a standard monomial if Γ is standard.

Lemma 3.2. A monomial pΓ ∈ H0(G/Pλ, Lλ) is T -invariant if and only if cΓ(t) = cΓ(2n + 1 − t), for all 
1 ≤ t ≤ 2n.

Proof. A monomial pΓ ∈ H0(G/Pλ, Lλ) is T -invariant if and only if the weight of Γ is zero. Recall that 
weight of a Young tableau Γ is given by 1

2
∑n

j=1(cΓ(j) − cΓ(2n + 1 − j))εj . Thus, pΓ is T -invariant if and 
only if cΓ(t) = cΓ(2n + 1 − t), for all 1 ≤ t ≤ 2n. �

The main theorem of the Standard Monomial Theory for any classical group is the following (see [21], 
[22]):

Theorem 3.3. Let G be a simple, simply connected algebraic group and Pλ be the parabolic subgroup of G
associated to a dominant weight λ. Then the standard monomials pΓ form a basis of H0(G/Pλ, L⊗m

λ ) as a 
vector space, where Γ is a standard Young tableau associated to the weight mλ.

We also note that the above standard monomial basis of H0(G/Pλ, L⊗m
λ ) is compatible when restricting 

to Schubert and Richardson varieties. For a precise statement see Theorem 16 of [20].

4. Some preliminaries of graph theory

We follow [1] for the preliminary definitions in graph theory.
Let G be a graph which is represented by the pair (V (G), E(G)), where V (G) denotes the set of vertices 

and E(G) denotes the set of edges respectively. A graph having loops and multiple edges is called a general 
graph. A graph having no loops but having multiple edges is called a multigraph. A graph without loops 
and at most one edge between any two vertices is called a simple graph. The degree of a vertex in a graph 
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is the number of edges connected to the vertex with loops counted twice. A graph G is called k-regular if 
each vertex of V (G) is of degree k.

A spanning subgraph of G is a subgraph of G which contains every vertex of G. For a positive integer k, 
a k-factor of G is a spanning subgraph of G that is k-regular. A graph G is said to be k-factorable if it has 
a k-factor.

A walk in a graph is defined as a sequence of alternating vertices and edges v0, e1, v1, e2, . . . , vk−1, ek, vk, 
where ei = (vi−1, vi) is the edge between vi−1 and vi. The length of this walk is k. A walk that passes 
through every one of its vertices exactly once is called a path. Thus, by an even length path we mean k is 
even and by an odd length path we mean k is odd. If the initial vertex v0 and the terminal vertex vk of a 
walk are the same, then we say that such a walk is closed. A cycle is a closed path i.e. initial and terminal 
vertices of the path are same.

A graph G is called a bipartite graph if V (G) is partitioned into two disjoint sets A and B such that 
every edge of G joins a vertex of A to a vertex of B.

Let G1 and G2 be two graphs where V (G1) is same as V (G2). Then we define G1 ◦ G2 = (V (G1), E(G1) ◦
E(G2)), where E(G1) ◦ E(G2) = {e | e ∈ E(G1) or e ∈ E(G2)} and G1\G2 = (V (G1), E(G1)\E(G2)), where 
E(G1)\E(G2) = {e | e ∈ E(G1) and e /∈ E(G2)}.

We recall the following two results which will be used in the proof of the main theorem.

Theorem 4.1 (Petersen’s 2-factor theorem). [1, Theorem 3.1, pg. 70] For every integer r ≥ 1, every 2r-regular 
general graph is 2-factorable. More generally, for every integer k, 1 ≤ k ≤ r, every 2r-regular general graph 
has a 2k-regular factor.

Theorem 4.2. [1, Theorem 2.2, pg. 18] Every regular bipartite multigraph is 1-factorable, in particular, it 
has a 1-factor.

In Section 6, our definition of ‘degree of a vertex’ differs from ‘degree of a vertex’ in [1]. The difference 
is because of the number of degrees contributed by a loop - in our case, a loop is counted once, however in 
[1], it is counted twice. Since we will be using the results of [1] directly, we make the following remark.

Remark 4.3. In [1], a general graph means a graph with multiple edges and loops where one loop contributes 
with degree 2 to a vertex incident to it. In our case, one loop contributes with degree 1 to the vertex incident 
to it. Consider a graph G with the vertex set {vi : 1 ≤ i ≤ n}, with degree defined as in our case. If G has 
an even number of loops then the same number of loops at vertex vi and vertex vj can be paired up and 
joined together to get edges between vi and vj . Doing this procedure will result in an even number of loops 
remaining at a vertex. Now, any two loops at this vertex can be joined together to get a new loop. Now this 
loop contributes with degree 2 to the vertex. This will result in a graph in [1], without changing the degree 
of any vertices. For example, see Fig. 1.

Here the labels on the edges are their multiplicities. In Graph (a), there are four loops at the vertex v5

and ten loops at the vertex v6. Now we pair up four loops at vertex v5 with four loops at vertex v6 and this 
results in four edges between vertex v5 and vertex v6 (the dotted lines in Graph (b)). After doing this the 
remaining number of loops at vertex v6 is six. So we pair up two loops together to get a new loop and so 
this results in three loops at the vertex v6 (the dotted loops in Graph (b)), each of which contributes with 
degree 2 to the vertex v6.

Note that the notion of a k-factor is preserved in the modification of the graph with respect to the 
different notions of degree.
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Fig. 1. In Graph (a) the loops at v5 and v6 are joined to get Graph (b).

5. Isomorphic torus GIT quotients

Let G = SLn(C) and T be a maximal torus of G. Let L�r
and L�n−r

be the line bundles associated to the 
fundamental weights �r and �n−r respectively. The projective varieties Gr,n and Gn−r,n are isomorphic. 
In the following proposition we show that their torus quotients are also isomorphic.

Proposition 5.1. The GIT quotients T\\(Gr,n)(Ln�r
) and T\\(Gn−r,n)(Ln�n−r

) are isomorphic.

Proof. Note that n�r and n�n−r are in the root lattice Q. So by [18, Theorem 3.10] the line bundle Ln�r

(resp. Ln�n−r
) descends to the quotient T\\(Gr,n)ssT (L�r

) (resp. T\\(Gn−r,n)ssT (L�n−r
)).

Let Pr and Pn−r be the maximal parabolic subgroups of G corresponding to the simple roots αr and 
αn−r respectively. Let Pr (resp. Pn−r) denote the conjugacy class of Pr (resp. Pn−r) with respect to the 
conjugation action of G. Then there is an G-equivariant isomorphism between Gr,n (resp. Gn−r,n) and the 
variety Pr (resp. Pn−r).

There exists an outer automorphism φ : G → G that sends Pr to Pn−r. Note that the outer automorphism 
comes from the non-trivial diagram automorphism of the Dynkin diagram of G. Hence the induced map 
φr : Pr → Pn−r, H �→ φ(H) is an isomorphism. This map φr is not G-equivariant but the actions of G on 
Pr and Pn−r are intertwined by φ. That is φ(gHg−1) = φ(g)φ(H)φ(g)−1. Note that φ(T ) = T .

Let q : (Pr)ssT (Ln�r
) → T\\(Pr)ssT (Ln�r

) and q′ : (Pn−r)ssT (Ln�n−r
) → T\\(Pn−r)ssT (Ln�n−r

) be the 
quotient morphisms. Since φ∗

r(Ln�n−r
) = Ln�r

the map φr restricts to an isomorphism (we still call it φr)

(Pr)ssT (Ln�r
) → (Pn−r)ssT (Ln�n−r

).

Then the map q′◦φr : (Pr)ssT (Ln�r
) → T\\(Pn−r)ssT (Ln�n−r

) is a morphism. This map is also T -invariant.
So there exists a unique map ψ : T\\(Pr)ssT (Ln�r

) → T\\(Pn−r)ssT (Ln�n−r
) such that ψ ◦ q = q′ ◦φr and 

it follows that ψ is an isomorphism. �
Remark. From the proof of the above theorem we conclude that the polarised varieties (T\\(Gr,n)ssT (Ln�r

),
Ln�r

) and (T\\(Gn−r,n)ssT (Ln�n−r
), Ln�n−r

) are isomorphic as φ∗
r(Ln�n−r

) = Ln�r
.

6. Projective normality of the torus quotient of Grassmannians

For the fundamental weight �r, n�r ∈ Q. So the line bundle Ln�r
descends to the quotient 

T\\(Gr,n)ssT (Ln�r
) (see [18]). In this section we prove that the quotient T\\(G2,n)ssT (Ln�2) is projec-

tively normal with respect to the descent of Ln�2 using standard monomial theory and some graph 
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theoretic techniques and we give a degree bound of the generators of the homogeneous coordinate ring 
of T\\(G3,6)ssT (L2�3).

Theorem 6.1. The GIT quotient T\\(Gr,n)ssT (Ln�r
) is projectively normal with respect to the descent of 

Ln�r
if r = 1, 2, n − 2, n − 1.

Proof. For r = 1, Gr,n
∼= Pn−1 and hence the quotient T\\Pn−1(O(n)) is projectively normal.

Let r = 2. We have

T\\(G2,n)ssT (Ln�2) = Proj(⊕k∈Z≥0H
0(G2,n,L⊗k

n�2
)T ) = Proj(⊕k∈Z≥0Rk),

where Rk := H0(G2,n, L⊗k
n�2

)T . Let R := ⊕k∈Z≥0Rk. The C-algebra R is normal since ⊕k∈Z≥0H
0(G2,n, L⊗k

n�2
)

is normal. Hence it is enough to prove that R is generated by R1 as a C-algebra.
As a vector space the T -invariant standard monomials in Plücker coordinates of the form of 

∏
i<j p

mij

ij

form a C-basis of Rk, where 1 ≤ i, j ≤ n. Note that since 
∏

i<j p
mij

ij ∈ Rk is a T -invariant standard monomial 
of degree k, by Lemma 3.1 we have 

∑
j>i mi,j +

∑
j<i mj,i = 2k, for all 1 ≤ i ≤ n and 

∑
1≤i<j≤n mij = nk.

Given a standard monomial M =
∏

i<j p
mij

ij in Plücker coordinates we associate a multigraph as follows. 
For each 1 ≤ i ≤ n we associate a vertex vi and for each pij appearing in M we associate an edge joining 
the vertex vi to the vertex vj . Similarly using the reverse process, from every multigraph, we can associate 
a monomial in Plücker coordinates. If moreover M is T -invariant then each of the indices 1 ≤ i ≤ n appears 
exactly 2k times in the monomial M . So each vertex in the graph is connected to exactly 2k number of 
edges. Hence it is a 2k-regular graph.

Using Petersen’s 2-factor theorem this graph can be decomposed into k line-disjoint 2-factors. Each 2-
factor sub-graph is associated to a sub-tableau of the original tableau where each integer in {1, 2, . . . , n}
appears exactly twice. The sub-tableau is standard as the original tableau was standard. So the standard 
monomials associated to the 2-factor sub-graphs lie in R1. So by induction we conclude that each standard 
monomial in Rk can be written as a product of k standard monomials in R1. So R is generated by R1 as an 
algebra and hence the GIT quotient T\\(G2,n)ssT (Ln�2) is projectively normal with respect to the descent 
of the line bundle Ln�2 .

For r = n − 2 and n − 1, the proof follows from Proposition 5.1. �
Corollary 6.2. The GIT quotient of a Schubert variety and a Richardson variety in G2,n and Gn−2,n by a 
maximal torus T of SLn is projectively normal with respect to the descent of the line bundles Ln�2 and 
Ln�n−2 respectively.

Proof. Let Xw be a Schubert variety in G2,n, w ∈ WPα2 . Since T is linearly reductive, the restriction map φ :
H0(G2,n, L⊗k

n�2
)T → H0(Xw, L⊗k

n�2
)T such that f �→ f |Xw

is surjective. So by Theorem 6.1, H0(Xw, L⊗k
n�2

)T
is generated by H0(Xw, Ln�2)T . Since (Xw)ssT (Ln�2) is normal, T\\(Xw)ssT (Ln�2) is projectively normal.

Let Xv
w be a Richardson variety in G2,n, v, w ∈ WPα2 . By [3, Proposition 1], the map H0(Xw, L⊗k

n�2
) →

H0(Xv
w, L⊗k

n�2
) is surjective. Since T is linearly reductive, the map φ : H0(Xw, L⊗k

n�2
)T → H0(Xv

w, L⊗k
n�2

)T
surjective. Since the quotient T\\(Xw)ssT (Ln�2) is projectively normal and (Xv

w)ssT (Ln�2) is normal, the 
quotient T\\(Xv

w)ssT (Ln�2) is projectively normal.
The proof of the projective normality of the GIT quotient of a Schubert variety and a Richardson variety 

in Gn−2,n is similar. �
For r ≥ 3, the combinatorics of the standard monomials in ⊕k∈Z≥0(H0(Gr,n, L⊗k

r )T ) is complicated. So 
we restrict our case to n = 6. Again L 6

gcd(6,r)�r
is the smallest line bundle on Gr,6 which descends to the 

quotient T\\(Gr,6)ssT (L 6 � ).

gcd(6,r) r
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For r = 1, 2, 4 and 5 the quotient T\\(Gr,6)ssT (L 6
gcd(6,r)�r

) is projectively normal with respect to the 

descent of the line bundle L 6
gcd(6,r)�r

. For r = 1, G1,6 ∼= P 5 and hence the quotient T\\(P 5)ssT (O(6)) is 
projectively normal. For r = 2, T\\(G2,6)ssT (L3�2) is projectively normal as proved in [10]. For r = 4 and 5
the quotient T\\(Gr,6)ssT (L 6

gcd(6,r)�r
) is projectively normal by Proposition 5.1.

In the following theorem we give a degree bound of the generators of the homogeneous coordinate ring 
of the quotient T\\(G3,6)ssT (L2�3).

Theorem 6.3. The homogeneous coordinate ring of the quotient T\\(G3,6)ssT (L2�3) is generated by elements 
of degree at most 2.

Proof. We have

T\\(G3,6)ssT (L2�3) = Proj(⊕k∈Z≥0H
0(G3,6,L⊗k

2�3
)T ) = Proj(⊕k∈Z≥0Rk),

where Rk = H0(G3,6, L⊗k
2�3

)T . Let M be a standard monomial in Plücker coordinates in Rk. Then M is 
associated to a 2k×3 tableau having each of the integers from 1 to 6 appearing exactly k times with strictly 
increasing rows and non-decreasing columns. Let Rowi denote the ith row of the tableau and Colj denote 
the jth column of the tableau, where 1 ≤ i ≤ 2k and 1 ≤ j ≤ 3. Let Ei,j be the (i, j)-th entry of the tableau 
and Nt,j = #{i|Ei,j = t}. Clearly, ∑

t

Nt,j = 2k and
∑
j

Nt,j = k. (6.1)

Note that Ei,1 = 1 for all 1 ≤ i ≤ k and Ei,3 = 6 for all k + 1 ≤ i ≤ 2k.
If E1,2 = 4 then Nt,1 = k for 1 ≤ t ≤ 3, a contradiction. Similarly E1,2 cannot be 5. So, Row1 can be one 

of the elements from the set {(1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5)}.
If Row1 = (1, 3, 5) then we have N2,1 = k and Ei,1 = 2 for all k + 1 ≤ i ≤ 2k. In particular, we have 

E2k,1 = 2. Since E1,3 = 5, we have N4,2 = k and N3,2 = k. So we have E2k,2 = 4. Hence we conclude that 
Row2k = (2, 4, 6). Then p135p246 ∈ R1 and divides M . So by induction we are done.

If Row1 = (1, 3, 4) then we have E2k,1 = 2. Since E1,3 = 4 we have N5,2 ≥ 1. So E2k,2 = 5. Hence we 
conclude that Row2k = (2, 5, 6). Then p134p256 ∈ R1 and is a factor of M .

If Row1 = (1, 2, 5) then Ei,3 = 5, for all 1 ≤ i ≤ k. So N5,2 = 0 and E2k,2 = 4 and hence E2k,1 = 2 or 
3. Since N2,2 ≥ 1, we have N2,1 ≤ k − 1 and hence E2k,1 = 3. So we conclude that Row2k = (3, 4, 6). Then 
p125p346 ∈ R1 and is a factor of M .

We are now left with two cases, either Row1 = (1, 2, 3) or Row1 = (1, 2, 4)
Case - 1 Row1 = (1, 2, 4)
Since E1,3 = 4 we have N5,3 < k. Since N5,1 = 0 it follows that N5,2 ≥ 1 and hence, E2k,2 = 5. If N4,1 = 0

then N3,1 ≥ 1. It follows that Row2k = (3, 5, 6). So the monomial p124p356 ∈ R1 and is a factor of M . If 
N4,1 ≥ 1 then E2k,1 = 4 and hence Row2k = (4, 5, 6). We claim that Rowk = (1, 3, 5).

(a) If Ek,2 = 2 then we have Ei,2 = 2 for all 1 ≤ i ≤ k. Since E1,3 = 4 we have N3,3 = 0. Since 
Row2k = (4, 5, 6) we have N3,1 + N3,2 < k, a contradiction.

(b) If Ek,2 = 4, then (N4,1 + N4,2 + N4,3) + (N5,2 + N5,3) ≥ 2k + 2, which is a contradiction.
(c) For a similar reason we cannot have Ek,2 = 5.
Hence, Ek,2 = 3.
If Ek,3 = 4 then Ei,3 = 4 for all 1 ≤ i ≤ k. So, N4,1 +N4,3 ≥ k + 1, a contradiction. So we conclude that 

Rowk = (1, 3, 5), the claim is proved.
Now we consider the entries Ei,2, where 1 ≤ i ≤ k. Since E1,2 = 2 and Ek,2 = 3 we have Ei,2 = 2 or 3

for 1 ≤ i ≤ k. Let m1 = #{i : Ei,2 = 2, 1 ≤ i ≤ k} and m2 = #{i : Ei,2 = 3, 1 ≤ i ≤ k}. Then m1, m2 ≥ 1
and m1 + m2 = k.
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Subcase - 1. m1 = m2 = k
2 .

(a) If N4,3 = k
2 then Rowi = (1, 2, 4) for all 1 ≤ i ≤ k

2 and Rowi = (1, 3, 5) for all k2 + 1 ≤ i ≤ k. Then 

the monomial M is p
k
2
124p

k
2
135p

q
236p

k
2−q
246 p

k
2−q
356 pq456 with q ≥ 1.

If q < k
2 then M has a factor p124p356 ∈ R1.

If q = k
2 then the monomial M is (p124p135p236p456)

k
2 . Then p124p135p236p456 ∈ R2 and is a factor of M .

(b) If N4,3 < k
2 then N5,3 > k

2 and so E k
2 ,3

= 5. Hence, Row k
2

= (1, 2, 5). Since N5,3 > k
2 we have 

N5,2 < k
2 and since N2,1 = k

2 we have Ei,1 = 2 for all k + 1 ≤ i ≤ 3k
2 and 2 /∈ Row 3k

2 +1. Since N5,2 < k
2 we 

have 5 /∈ E 3k
2 +1,2 and hence Row 3k

2 +1 = (3, 4, 6). So the monomial p125p346 ∈ R1 and is a factor of M .
(c) If N4,3 > k

2 then Row k
2 +1 = (1, 3, 4). Now using a similar argument as (b) we get p134p256 ∈ R1 and 

is a factor of M .
Subcase - 2. Let m1 �= m2.
Let m1 > m2. Note that m1 > k

2 .
(a) If N4,3 = m1 then Rowi = (1, 2, 4) for all 1 ≤ i ≤ m1 and Rowi = (1, 3, 5) for all m1 + 1 ≤ i ≤ k

i.e. N5,3 = m2, N5,2 = m1 and N2,1 = m2. Hence, N3,2 < 2m2 < k and it follows that N3,1 > 1. So 
Rowk+m2+1 = (3, 5, 6) and hence the monomial p124p356 ∈ R1 and is a factor of M .

(b) If N4,3 > m1 then Rowm1+1 = (1, 3, 4) and N5,3 < m2. Hence N5,2 > m1 and Rowk+m2 = (2, 5, 6). 
So the monomial p134p256 ∈ R1 and is a factor of M .

(c) If N4,3 < m1 then using a similar argument as (b) we get p125p346 ∈ R1 and is a factor of M .
The proof for the case m1 < m2 is similar.
Case - 2 Row1 = (1, 2, 3)
In this case since E1,3 = 3 we have N5,3 < k. Further since N5,1 = 0 we have N5,2 ≥ 1. Therefore, we 

have E2k,2 = 5. Since N2,2 > 1 we have N2,1 < k. Hence, E2k,1 = 3 or 4.
If E2k,1 = 4 then Row2k = (4, 5, 6) and so the monomial p123p456 ∈ R1 and is a factor of M .
If E2k,1 = 3 then Row2k = (3, 5, 6). We claim that Rowk = (1, 4, 5).
(a) If Ek,2 = 2 then we have Ei,2 = 2 for all 1 ≤ i ≤ k. Then Ei,1 = 3 for all k + 1 ≤ i ≤ 2k and since 

E1,3 = 3 we have N3,1 + N3,3 > k, a contradiction.
(b) If Ek,2 = 3 then (N3,1 + N3,2 + N3,3) + (N2,1 + N2,2) ≥ 2k + 1, a contradiction.
(c) If Ek,2 = 5 then Ek,3 = 6, a contradiction.
Hence, Ek,2 = 4 and we conclude that Rowk = (1, 4, 5).
Now we claim that Rowk+1 = (2, 4, 6).
Since N3,3 > 1 we have N3,1 < k and hence, Ek+1,1 = 2. Since Ek,2 = 4 we have Ek+1,2 = 4 or 5. If 

Ek+1,2 = 5 then N5,2 + N5,3 > k, a contradiction. Hence, Ek+1,2 = 4. Therefore, Rowk+1 = (2, 4, 6). So the 
monomial p123p145p246p356 ∈ R2 and is a factor of M .

So by induction we conclude that M is generated by the elements of degree at most 2 and hence the 
homogeneous coordinate ring of the quotient T\\(G3,6)ssT (L2�3) is generated by elements of degree at 
most 2. �
7. Torus quotient of partial flag varieties

Let G = SLn and �1, �2 be the fundamental weights associated to the simple roots α1 and α2 respec-
tively. Let P = Pα1 ∩ Pα2 . Since n(r1�1 + r2�2) ∈ Q for r1, r2 ∈ N, the line bundle Ln(r1�1+r2�2)
descends to the quotient T\\(G/P )(Ln(r1�1+r2�2)) (see [18]). In this section we prove that the quo-
tient T\\(G/P )ssT (Ln(r1�1+r2�2)) is projectively normal with respect to the descent of the line bundle 
Ln(r1�1+r2�2).

Remark 7.1. Any 2-regular graph is a disjoint union of (i) even cycles, (ii) odd cycles, (iii) even length paths 
starting with a loop and ending with a loop, (iv) odd length paths starting with a loop and ending with a 
loop, and (v) vertices with two loops.
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Proof. Recall that in our case a loop contributes with degree 1 to a vertex. It is well known that a 2-regular 
connected simple graph is a cycle [1, pg. 83]. If the graph is not simple then it may have loops and multiple 
edges. If it has multiple edges then at least two of the vertices are connected by two edges, hence, it is a 
2-cycle. If the graph has a loop at a vertex v then either v has another loop around it or it is connected to 
another vertex w by an edge. In the later case w may have another loop around it or connected to another 
vertex u by an edge. In the former case the graph is an odd length path starting with a loop and ending 
with a loop and continuing this process we get either an even length path starting with a loop and ending 
with a loop or an odd length path starting with a loop and ending with a loop. �

Now we are in a position to state and prove the main theorem of this section.

Theorem 7.2. Let G = SLn and P = Pα1 ∩Pα2 , � = r1�1 + r2�2. The GIT quotient T\\(G/P )ssT (Ln�) is 
projectively normal with respect to the descent of the line bundle Ln�.

Proof. Note that T\\(G/P )ssT (Ln�) = Proj(⊕k∈Z≥0H
0(G/P, L⊗k

n�)T ) = Proj(⊕k∈Z≥0Rk), where Rk =
H0(G/P, L⊗k

n�)T . The algebra R = ⊕k∈Z≥0Rk is normal. Here we use induction on k to prove that R is 
generated by R1 as a C-algebra. We set s = r1 + 2r2, l1 = n(r1 + r2) and l2 = nr2.

Let f =
∏kl2

t=1 pitjt
∏kl1

t=kl2+1 pmt
∈ Rk be a T -invariant standard monomial in the Plücker coordinates. 

We associate a graph Gf corresponding to f as follows:

(a) for each integer 1 ≤ i ≤ n, associate a vertex vi,
(b) for each pij appearing in f , associate an edge between vi and vj , and
(c) for each pk appearing in f , associate a loop at the vertex vk.

Similarly, using the reverse process, we can associate a monomial fG in Plücker coordinates with a graph G.
For f ∈ Rk, the associated graph Gf has total k(l1 − l2) = knr1 number of loops. Since f ∈ Rk, it is T

invariant and so each of the indices 1 ≤ i ≤ n appears exactly ks-times in the monomial f . This results in 
all the vertices of Gf having the same degree. Thus Gf is ks-regular.

Here we introduce some operations on the graphs which are induced by the operations on the monomials 
corresponding to the graphs:

G = G1 + G2 if fG = fG1 + fG2 ,

G = G1 − G2 if fG = fG1 − fG2 ,

G = G1 ◦ G2 if fG = fG1 .fG2 ,

G = G1\G2 if fG = fG1/fG2 ,

where fG and fGi
are the monomials associated to the graphs G and Gi respectively, for i = 1, 2.

We proceed case by case and in each case we first show that Gf is a linear combination of ks-regular 
graphs and from each summand we get a s-factor.

Case 1: r1 is even.
In this case s is even and the number of loops in the graph is even. So by Theorem 4.1 and Remark 4.3, 

Gf has a s-factor.
Case 2: r1 is odd.
In this case s is odd. We consider two cases, k is even and k is odd.
k is even.
In this subcase the number of loops in the graph is even. So by Theorem 4.1, Gf can be factored into ks2

number of 2-factors. We make the following claim.
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v1

v2

v3 v4

v5

v6

=

v1

v2

v3 v4

v6
−

v5 v1

v2

v3 v4

v6

v5

Fig. 2. Plücker relation on the edges (v1, v3) and (v4, v5).

Claim 1. One of the 2-factors can be written as a linear combination of 2-regular graphs such that from each 
of the summands we can extract a 1-factor.

Since Gf had at least two loops, by Remark 7.1, one of the 2-factors also has at least two loops. Denote 
this particular 2-factor (with at least two loops) by Gf(2) . We denote other 2-factors by Gf1 , Gf2 , . . . , G

f
ks
2 −1 .

Since Gf(2) is a 2-regular graph, using Remark 7.1, Gf(2) is a disjoint union of (i) even cycles, (ii) odd 
cycles, (iii) even length paths starting with a loop and ending with a loop, (iv) odd length paths starting 
with a loop and ending with a loop, and (v) vertices with two loops.

Now, to get the graph free of odd cycles we merge two odd cycles together by taking one edge from each 
and apply Plücker relations on them.

In the following example we use the Plücker relation p13p45 = p14p35 − p15p34 on the edges (v1, v3) and 
(v4, v5) to merge two odd cycles (see Fig. 2).

Repeating this process we write Gf(2) =
∑p

i=1 aiGf
(2)
i

, where ai ∈ Z and each G
f
(2)
i

is a 2-regular graph 

which is a disjoint union of (i) even cycles, (ii) even length paths starting with a loop and ending with a 
loop, (iii) odd length paths starting with a loop and ending with a loop, (iv) vertices with two loops and 
(v) possibly one odd cycle.

(a) Suppose G
f
(2)
i

has no odd cycle. We can extract a 1-factor from G
f
(2)
i

in the following ways:
If G

f
(2)
i

has an even cycle as a component it can be factored into two 1-factors by taking every alternate 
edge.

If G
f
(2)
i

has an even length path starting with a loop and ending with a loop as a component we pick a 
loop and every alternate edge to get a 1-factor.

If G
f
(2)
i

has an odd length path stating with a loop and ending with a loop as a component we pick up 
the two loops and every alternate edge to get a 1-factor.

If G
f
(2)
i

has a vertex with two loops as a component we take one loop from it.
(b) Suppose G

f
(2)
i

has an odd cycle. Since Gf(2) has at least two loops, G
f
(2)
i

will also have at least two 

loops. To get the graph free of the odd cycle we choose an edge (vi, vj) in the odd cycle, and a loop (vk, vk)
(w.l.o.g. {i, j, k : i < j < k}) and apply the Plücker relation pijpk = pikpj − pjkpi.

We may take an odd cycle and one of the components of the following types to apply Plücker relation:

a. Vertex with two loops.
b. Even length path starting with a loop and ending with a loop.
c. Odd length path starting with a loop and ending with a loop.

In the following examples the Plücker relation p13p4 = p14p3 − p34p1 is applied on the edge (v1, v3) and the 
loop (v4, v4) (see Fig. 3).

After doing this we write G
f
(2)
i

=
∑mi

k=1 bikGf
(2)
ik

, where bik ∈ Z and each G
f
(2)
ik

is a 2-regular graph which 

is a disjoint union of (i) even cycles, (ii) even length paths starting with a loop and ending with a loop, (iii) 
odd length paths starting with a loop and ending with a loop, (iv) vertices with two loops. So, from each 
of the components of G

f
(2) we can extract a 1-factor G

f
(2) as explained in (a).
ik ik,1



A. Nayek et al. / Journal of Pure and Applied Algebra 224 (2020) 106389 13
v1

v2

v3

v4 =
2

v1

v2

v3

1
v4 −

1
v1

1

v2

v3

v4
1

v1

v2

v3

v6
1

v5 =
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1
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1
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Fig. 3. Plücker relation on the edge (v1, v3) and the loop (v4, v4).

We have Gf = (Gf1 ◦ Gf2 ◦ · · · ◦ G
f

ks
2 −1) ◦ Gf(2) = (Gf1 ◦ Gf2 ◦ · · · ◦ G

f
ks
2 −1) ◦

∑p
i=1

∑mi

k=1 aibikGf
(2)
ik

=∑p
i=1

∑mi

k=1 aibik(Gf1 ◦ Gf2 ◦ · · · ◦ G
f

ks
2 −1) ◦ Gf

(2)
ik

=
∑p

i=1
∑mi

k=1 aibikGfik
′′ , where each Gfik

′′ is a ks-regular 
graph and for each Gfik

′′ we get a s-factor by combining Gf1 ◦Gf2 ◦ · · · ◦G
f

s−1
2

with the 1-factor G
f
(2)
ik,1

which 

corresponds to the monomial f1 · f2 · · · f s−1
2 · f (2)

ik,1.

k is odd and n is even.
In this case Gf is ks-regular with an even number of vertices and an even number of loops. We form a 

new graph Gf̃ by doubling the vertex set: for each vertex vi we associate two vertices Mi and Ni, i.e., the 
vertex set of Gf̃ is:

Vert(Gf̃ ) = {M1, . . . ,Mn, N1, . . . , Nn}.

For each edge (vi, vj) of G, we associate two edges (Mi, Nj) and (Mj , Ni) in Gf̃ . For each loop (vi, vi), 
we associate an edge (Mi, Ni) in Gf̃ . Note that Gf̃ is ks-regular and bipartite between M and N . So, by 
Theorem 4.2, it has a 1-factor, say Δ̃, in Gf̃ .

From Δ̃ we construct another graph Δ as follows:

(a) Δ has n vertices, denoted by {1, 2, . . . , n}.
(b) For each edge (Mi, Nj) in Δ̃, we associate an edge (i, j) in Δ.
(c) For each edge (Mi, Ni) in Δ̃, we associate a loop (i, i) in Δ.

Note that the loops are disjoint components in Δ and the remaining graph (Δ\{vertices having loops}) is 
2-regular consisting of cycles. However, we may have both (Mi, Nj) and (Mj , Ni) are edges of Δ̃. This may 
result in two occurrences of the edge (i, j) in Δ but only one in Gf . So, this type of component is a 2-cycle. 
Note that Δ\{2-cycles} is a subgraph of Gf . If we pick 1-factor from each of the 2-cycles then the graph 
obtained by taking union of Δ\{2-cycles} and the chosen 1-factors of 2-cycles is a spanning subgraph of Gf

and we denote it by Gf ′ . Now we apply Plücker relations to write Gf ′ as a linear combination of graphs such 
that from each of the summands we can extract a 1-factor in the following way and in each case we get a 
s-factor from each of the summands of Gf .



14 A. Nayek et al. / Journal of Pure and Applied Algebra 224 (2020) 106389
(1) If Gf ′ has some loops then we consider two cases:
(a) If Gf ′ has an even number of odd cycles then Gf ′ has an even number of loops. Now we use Plücker 

relations repeatedly to merge two odd cycles into an even cycle and write Gf ′ =
∑

i aiGf ′
i
, ai ∈ Z, where 

Gf ′
i

is a disjoint union of even cycles, loops and 1-factors of 2-cycles of Gf ′. Now we can extract a 1-factor 
Gf ′

i,1
from each Gf ′

i
as explained in (a) of the case k is even.

Gf = (Gf\Gf ′) ◦ Gf ′ = (Gf\Gf ′) ◦
∑

i aiGf ′
i

=
∑

i ai((Gf\Gf ′) ◦ Gf ′
i
) =

∑
i aiGfi′′ , where each Gfi′′

is a ks-regular graph and for each Gfi′′ we get a s-factor by combining any s−1
2 number of 2-factors of 

(Gf\Gf ′) ◦ (Gf ′
i
\Gf ′

i,1
) (which is a ks −1-regular graph with an even number of loops) with the 1-factor Gf ′

i,1
.

(b) If Gf ′ has an odd number of odd cycles then Gf ′ also has an odd number of loops. Now we use Plücker 
relations repeatedly to merge two odd cycles into an even cycle and write Gf ′ =

∑
i aiGf ′

i
, ai ∈ Z where Gf ′

i

is a disjoint union of even cycles, loops, one odd cycle and 1-factors of 2-cycles of Gf ′ .
Since Gf ′ has at least one loop, each Gf ′

i
also has at least one loop. So to get Gf ′

i
free of the odd cycle we 

apply Plücker relation on an edge of the odd cycle and one of the loops to write Gf ′
i

=
∑

k bikGf ′
ik

, bik ∈ Z, 
where Gf ′

ik
is a disjoint union of even cycles, loops (even in number) and one odd path starting with a loop 

and 1-factors of 2-cycles of Gf ′ . We now extract a 1-factor from the odd path by taking alternate edges and 
we extract 1-factors from the other components of the linear combination as explained in (a) of the case 
k is even. Thus we extract a 1-factor Gf ′

ik,1
from each Gf ′

ik
.

In this case Gf can be written as a linear combination of ks-regular graphs and for each of the summands 
in Gf we can get a s-factor as explained in (1)(a).

(2) If Gf ′ does not contain any loop then since the number of vertices is even, there are an even number 
of odd cycles in Gf ′ . Now we use Plücker relations repeatedly to merge two odd cycles into an even cycle 
and write Gf ′ =

∑
i aiGf ′

i
, ai ∈ Z where Gf ′

i
is a disjoint union of even cycles and 1-factors of 2-cycles of 

Gf ′ . We then extract a 1-factor from each Gf ′
i

as explained in (a) of the case k is even.
So, Gf can be written as a linear combination of ks-regular graphs and for each of the summands in Gf

we can get a s-factor as explained in (1)(a).

k and n both are odd.
In this case Gf is a ks-regular graph with an odd number of loops. As in the case where k is odd and n is 

even in this case also we get a bipartite graph, with bipartitions M and N , which is 1-factorable. Note that 
one of the factors contains an odd number of edges of type (Mi, Ni). So the associated graph Δ contains 
an odd number of loops. Note that Δ\{2-cycles} is a subgraph of Gf . If we pick a 1-factor from each of the 
2-cycles then the graph obtained by taking union of Δ\{2-cycles} and the chosen 1-factors of 2-cycles is a 
spanning subgraph of Gf and we denote it by Gf ′ . Note that Gf ′ is a disjoint union of an even number of 
odd cycles, even cycles, an odd number of loops and 1-factors of 2-cycles. Now we apply Plücker relations 
repeatedly to merge two odd cycles into an even cycle and write Gf ′ =

∑
aiGf ′

i
, where ai ∈ Z and each Gf ′

i

is a disjoint union of even cycles, loops and 1-factors of 2-cycles. Then we can extract a 1-factor Gf ′
i,1

from 
each Gf ′

i
as explained in (a) of the case k is even.

In this case also Gf can be written as a linear combination of ks-regular graphs and for each of the 
summands in Gf we can get a s-factor as explained in (1)(a).

Now using the s-factors that we have obtained in each of the above cases we will get a s-factor with nr1
number of loops with which the associated monomial lies in R1.

We interchange loops and edges between the s-factor and the (k − 1)s-factor without interchanging the 
degree of the vertices so that the monomial associated to the new s-factor lies in R1. For example, (1) if 
(vi, vi) and (vj , vj) are two loops in the s-factor and (vi, vj) is an edge in the (k − 1)s-factor then we can 
interchange them and (2) if {(vi, vj), (vk, vk), (vl, vl)} is a set of an edge and two loops in the s-factor and 
{(vi, vk), (vj , vl)} is a set of edges in the (k − 1)s-factor then we can interchange them. We shall do this 
interchange for all possible loops and edges in the s-factor and the (k − 1)s-factor.

If interchange between loops and edges is not possible then we use Plücker relation on the factors repeat-
edly (possibly multiple times) to get a set of graphs where interchange between loops and edges is possible. 
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Fig. 4. Plücker relation on the edge (v2, v4) and the loop (v5, v5).

We use Plücker relations to shift a loop at a vertex to another vertex in such a way that a set of edges 
and loops can be interchanged with another set of edges. Hence, we always end up with a situation where 
interchanges between loops and edges are possible. The Plücker relation on the edge (vi, vj) and the loop 
(vk, vk) (w.l.o.g. we take {i, j, k : i < j < k}), is pijpk = pikpj − pjkpi, and the Plücker relation on two 
edges (vi, vj) and (vk, vl) (w.l.o.g. {i, j, k, l : i < j < k < l}), is pijpkl = pikpjl − pilpjk. We illustrate this 
possibility by an example given below (see Fig. 4).

Now using induction on the number of loops we get a s-factor with which the associated monomial lies 
in R1.

So we conclude that R is generated by R1. Hence, the quotient T\\(G/P )ssT (Ln�) is projectively normal 
with respect to the descent of the line bundle Ln�. �
Example. Here we give an example where interchange between loops and edges in the above theorem is not 
possible. Then we use Plücker relation on the factors to get a set of graphs where interchange between loops 
and edges is possible. Let us consider λ = 6(�1 + 2�2) and k = 3. So s = 5 and nr1 = 6. After using the 
above procedure, suppose we get a 5-factor with which the associated monomial is

p2
12p

3
14p

2
24p25p

4
35p36p

4
6 (Graph 4),

and another graph which is a 10-factor, with which the associated monomial is

p2
12p

5
13p

3
14p

7
24p25p

5
35p

4
5p

10
6 (Graph 1).

Here directly we can not interchange loops and edges between the factors. So we apply Plücker relation on 
the edge (v2, v4) and the loop (v5, v5) in Graph 1, and obtain

p2
12p

5
13p

3
14p

7
24p25p

5
35p

4
5p

10
6 = p2

12p
5
13p

3
14p

6
24p

2
25p

5
35p

3
5p4p

10
6 − p2

12p
5
13p

3
14p

6
24p25p

5
35p45p2p

3
5p

10
6 .

The graph associated with the monomial p2
12p

5
13p

3
14p

6
24p

2
25p

5
35p

3
5p4p

10
6 is in Graph 2, and the graph associated 

with the monomial p2
12p

5
13p

3
14p

6
24p25p

5
35p45p2p

3
5p

10
6 is in Graph 3.

Now we can do the interchange as follows:
(a) Interchange the pair of edges {(v1, v4), (v3, v6)} in Graph 4 with the set {(v1, v3), (v4, v4), (v6, v6)} in 

Graph 2, and obtain the graph in Graph 5 with which the associated monomial p2
12p13p

2
14p

2
24p25p

4
35p4p

5
6 lies 

in R1 and the graph in Graph 6 with which the associated monomial lies in R2 (see Fig. 5).
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Fig. 5. The pair of edges {(v1, v4), (v3, v6)} in Graph 4 are interchanged with the set {(v1, v3), (v4, v4), (v6, v6)} in Graph 2.
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Fig. 6. The pair of edges {(v2, v5), (v3, v6)} in Graph 4 are interchanged with the set {(v3, v5), (v2, v2), (v6, v6)} in Graph 3.

(b) Interchange the pair of edges {(v2, v5), (v3, v6)} in Graph 4 with the set {(v3, v5), (v2, v2), (v6, v6)} in 
Graph 3 to obtain the graph in Graph 7 with which the associated monomial p2

12p
3
14p

2
24p

5
35p2p

5
6 lies in R1

and the graph in Fig. 8 with which the associated monomial lies in R2 (see Fig. 6).
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Fig. 7. Plücker relation on the edges (v1, v4) and (v3, v5).
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Fig. 8. Plücker relation on the edge (v3, v4) and the loop (v7, v7).

Example. Here we give another example with both k and n are odd and where interchange between 
loops and edges in the above theorem is not possible. Then we use Plücker relation on the factors 
to get a set of graphs where interchange between loops and edges is possible. Let λ = 7(�1 + 2�2)
and k = 3. Here s = 5 and nr1 = 7. After using the above procedure, suppose we get a 5-factor 
with which the associated monomial is p3

12p
2
13p

2
24p

3
35p

3
46p

2
57p

2
6p

3
7 (Graph 14) and another graph which 

is a 10-factor, with which the associated monomial is p5
12p

2
13p

3
14p

5
24p

8
35p

2
46p56p57p

7
6p

9
7 (Graph 9). Here 

directly we can not interchange loops and edges between the factors. We apply Plücker relation on 
the edges (v1, v4) and (v3, v5) in Graph 9 (see Fig. 7) and obtain p5

12p
2
13p

3
14p

5
24p

8
35p

2
46p56p57p

7
6p

9
7 =

p5
12p

3
13p

2
14p

5
24p

7
35p45p

2
46p56p57p

7
6p

9
7 + p5

12p
2
13p

2
14p15p

5
24p34p

7
35p

2
46p56p57p

7
6p

9
7. The graph associated with the 

monomial p5
12p

3
13p

2
14p

5
24p

7
35p45p

2
46p56p57p

7
6p

9
7 is in Graph 10 and the graph associated with the mono-

mial p5
12p

2
13p

2
14p15p

5
24p34p

7
35p

2
46p56p57p

7
6p

9
7 is in Graph 11. Again we apply Plücker relation on the edge 

(v3, v4) and the loop (v7, v7) in Graph 11 (see Fig. 8) and obtain p5
12p

2
13p

2
14p15p

5
24p34p

7
35p

2
46p56p57p

7
6p

9
7 =

p5
12p

2
13p

2
14p15p

5
24p37p

7
35p

2
46p56p57p4p

7
6p

8
7 - p5

12p
2
13p

2
14p15p

5
24p

7
35p

2
46p47p56p57p3p

7
6p

8
7. The graph associated with 

the monomials p5
12p

2
13p

2
14p15p

5
24p37p

7
35p

2
46p56p57p4p

7
6p

8
7 and p5

12p
2
13p

2
14p15p

5
24p

7
35p

2
46p47p56p57p3p

7
6p

8
7 are in 

Graphs 12 and 13 respectively.

Now we do the following
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Fig. 9. The pair of edges {(v4, v6), (v5, v7)} in Graph 14 are interchanged with the set {(v4, v5), (v6, v6), (v7, v7)} in Graph 10.

(a) Interchange the pair of edges {(v4, v6), (v5, v7)} in Graph 14 with the set {(v4, v5), (v6, v6), (v7, v7)} in 
Graph 10 and obtain the graph in Graph 15 with which the associated monomial p3

12p
2
13p

2
24p

3
35p45p

2
46p57p

3
6p

4
7

lies in R1 and the graph in Graph 16 with which the associated monomial lies in R2 (see Fig. 9).
(b) Interchange the edge {(v4, v6)} in Graph 14 with the set {(v4, v4), (v6, v6)} in Graph 12 to obtain the 

graph in Graph 17 with which the associated monomial p3
12p

2
13p

2
24p

3
35p

2
46p

2
57p4p

3
6p

3
7 lies in R1 and the graph 

in Graph 18 with which the associated monomial lies in R2 (see Fig. 10).
(c) Interchange the pair of edges {(v1, v3), (v5, v7)} in Graph 14 with the set {(v1, v5), (v3, v3), (v7, v7)} in 

Graph 13 to obtain the graph in Graph 19 with which the associated monomial p3
12p13p15p

2
24p

3
35p

3
46p57p3p

2
6p

4
7

lies in R1 and the graph in Graph 20 with which the associated monomial lies in R2 (see Fig. 11).

Corollary 7.3. The GIT quotient of a Schubert variety and a Richardson variety in SLn/(Pα1 ∩ Pα2) by a 
maximal torus T is projectively normal with respect to the descent of the line bundle Ln(r1�1+r2�2).

Proof. The proof is same as the proof of Corollary 6.2. �
8. Spin5 and Spin7

In this section for G = Spin5 or Spin7 and for a maximal parabolic subgroup P we study projective 
normality of the quotient T\\(G/P ) with respect to the descent of a suitable line bundle on G/P .

Notation. We denote a Young tableau Γ with rows Row1, Row2, . . . , Rown by Γ = (Row1, Row2, . . . , Rown).

8.1. Spin5

Let G = Spin5. Let �1 and �2 be the fundamental weights associated to the simple roots α1 and α2
respectively. Since 2�1 ∈ 2Q and 2�2 ∈ Zα1 + Z2α2, by Theorem 2.1, the line bundles L2�1 and L2�2

descend to the quotients T\\(G/Pα1)ssT (L2�1) and T\\(G/Pα2)ssT (L2�2) respectively. We have,
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Fig. 10. The edge {(v4, v6)} in Graph 14 interchanged with the set {(v4, v4), (v6, v6)} in Graph 12.
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Fig. 11. The pair of edges {(v1, v3), (v5, v7)} in Graph 14 are interchanged with the set {(v1, v5), (v3, v3), (v7, v7)} in Graph 13.

T\\(G/Pα1)ssT (L2�1) ∼= Proj(⊕H0(G/Pα1 ,L⊗k
2�1

)T ) ∼= Proj(⊕k∈Z≥0Rk),

where Rk := H0(G/Pα1 , L⊗k
2�1

)T . By Theorem 3.2.4 the standard monomials pΓ form a basis of Rk, where 
Γ is a standard Young tableau associated to the weight 2k�1. The standard monomials in Rk are of the 
form pΓ, where
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Γ = ((1), . . . , (1)︸ ︷︷ ︸
2q

, (2), . . . , (2)︸ ︷︷ ︸
2k−2q

, (3), . . . , (3)︸ ︷︷ ︸
2k−2q

, (4), . . . , (4)︸ ︷︷ ︸
2q

),

0 ≤ q ≤ k. So, the homogeneous coordinate ring of the quotient T\\(G/Pα1)ssT (L2�1) is generated by pΓ1

and pΓ2 , where Γ1 = ((1), (1), (4), (4)) and Γ2 = ((2), (2), (3), (3)) as an algebra. Since T\\(G/Pα1)ssT (L2�1)
is normal, it is projectively normal. In fact, in this case T\\(G/Pα1)ssT (L2�1) ∼= P 1.

For the quotient T\\(G/Pα2)ssT (L2�2), the standard monomials in Rk are of the form pΓ, Γ =
((1, 2), . . . , (1, 2)︸ ︷︷ ︸

q

, (1, 3), . . . , (1, 3)︸ ︷︷ ︸
k−q

, (2, 4), . . . , (2, 4)︸ ︷︷ ︸
k−q

, (3, 4), . . . , (3, 4)︸ ︷︷ ︸
q

), 0 ≤ q ≤ k. So, the homogeneous co-

ordinate ring of the quotient T\\(G/Pα1) is generated by pΓ1 and pΓ2 , where Γ1 = ((1, 2), (3, 4)) and 
Γ2 = ((1, 3), (2, 4)) as an algebra. Since the quotient T\\(G/Pα2) is normal, it is projectively normal. In 
this case also T\\(G/Pα2)ssT (L2�2) ∼= P 1.

8.2. Spin7

Let G = Spin7 and Pαi
be the maximal parabolic subgroup associated to αi, 1 ≤ i ≤ 3. In this case the 

line bundle L2�i
descends to the quotient T\\(G/Pαi

)ssT (L2�i
) for 1 ≤ i ≤ 2 whereas L4�3 descends to the 

quotient T\\(G/Pα3)ssT (L4�3).
We show that T\\(G/Pα1)ssT (L2�1) and T\\(G/Pα3)ssT (L4�3) are projectively normal with respect to the 

descent of the line bundles L2�1 and L4�3 respectively whereas we give a degree bound of the generators 
of the homogeneous coordinate ring of T\\(G/Pα2)ssT (L2�2).

We have T\\(G/Pα1)ssT (L2�1) ∼= Proj(⊕k∈Z≥0Rk), where Rk := H0(G/Pα1 , L⊗k
2�1

)T . The standard 
monomials pΓ form a basis of Rk, where Γ is a standard Young tableau associated to the weight 2k�1. 
The standard monomials in Rk are of the form pΓ, where

Γ = ((1), . . . , (1)︸ ︷︷ ︸
k1

, (2), . . . , (2)︸ ︷︷ ︸
k2

, (3), . . . , (3)︸ ︷︷ ︸
2k−k1−k2

, (4), . . . , (4)︸ ︷︷ ︸
2k−k1−k2

, (5), . . . , (5)︸ ︷︷ ︸
k2

, (6), . . . , (6)︸ ︷︷ ︸
k1

),

where 0 ≤ k1 + k2 ≤ 2k. So the homogeneous coordinate ring of the GIT quotient T\\(G/Pα1)ssT (L2�1) is 
generated by pΓ1 , pΓ2 and pΓ3 as an algebra, where

Γ1 = ((1), (1), (6), (6)), Γ2 = ((2), (2), (5), (5)) and Γ3 = ((3), (3), (4), (4)).

Since the quotient T\\(G/Pα1)ssT (L2�1) is normal so it is projectively normal. In fact, in this case 
T\\(G/Pα1)ssT (L2�1) ∼= P 2.

In the following theorem we give a degree bound of the generators of the homogeneous coordinate ring 
of the quotient T\\(G/Pα2)ssT (L2�2).

Theorem 8.1. The homogeneous coordinate ring of the quotient T\\(G/Pα2)ssT (L2�2) is generated by ele-
ments of degree at most 3.

Proof. We have

T\\(G/Pα2)ssT (L2�2) = Proj(⊕k∈Z≥0H
0(G/Pα2 ,L⊗k

2�2
)T ) = Proj(⊕k∈Z≥0Rk),

where Rk := H0(G/Pα2 , L⊗k
2�2

)T . Let f ∈ Rk be a standard monomial.
We claim that f = f1.f2 where f1 is in R1 or R2 or R3.
From the discussion in Section 3.2, the Young diagram associated to f has the shape p = (p1, p2) =

(4k, 4k). So the Young tableau Γ associated to this Young diagram has 4k rows and 2 columns with strictly 
increasing rows and non-decreasing columns. Since f is T -invariant, by Lemma 3.2 we have,
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cΓ(t) = cΓ(7 − t) for all 1 ≤ t ≤ 6, (8.1)

where cΓ(t) = #{t|t ∈ Γ}. Also from the discussion in Section 3.2, we have (Row2i, Row2i−1) is an admissible 
pair for all 1 ≤ i ≤ 2k, where Rowi denotes the i-th row of the tableau for all 1 ≤ i ≤ 4k. We also have 
if t ∈ Rowi then 7 − t /∈ Rowi, for all 1 ≤ t ≤ 6 and for any i, 1 ≤ i ≤ 4k.

Let Colj denote the j-th column where 1 ≤ j ≤ 2. Let Ei,j be the (i, j)-th entry of the tableau Γ and 
Nt,j = #{i|Ei,j = t}.

Since (Row2i, Row2i−1) is admissible, either Row2i−1 = Row2i or (Row2i−1, Row2i) ∈ {((1, 3), (1, 4)),
((1, 5), (2, 6)), ((2, 3), (2, 4)), ((2, 4), (3, 5)), ((2, 3), (3, 5)), ((2, 4), (4, 5)), ((2, 3), (4, 5)), ((3, 5), (4, 5)), ((3, 6),
(4, 6))}.

We consider Row1. If E1,1 = 3 then E1,2 �= 4 and so E1,2 = 5 or 6, a contradiction to Eq. (8.1). By a 
similar reason, E1,1 can not be 4, 5 or 6. So Row1 ∈ {(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4)}.

(a) Let Row1 = (2, 4). Since (Row2, Row1) is admissible, we have Row2 = (2, 4), (3, 5), or (4, 5). If Row2 =
(4, 5) then 5 or 6 has to appear in one of the rows below, which is a contradiction to (8.1). By the same reason 
Row2 �= (3, 5). If Row2 = (2, 4) then (Row4k−1, Row4k) ∈ {((3, 5), (3, 5)), ((3, 5), (4, 5)), ((4, 5), (4, 5))}.

If (Row4k−1, Row4k) = ((4, 5), (4, 5)) then cΓ(4) + cΓ(5) ≥ 4k + 2 and hence cΓ(2) + cΓ(3) ≤ 4k − 2, 
a contradiction. By a similar reason (Row4k−1, Row4k) can not be ((3, 5), (4, 5)). If (Row4k−1, Row4k) =
((3, 5), (3, 5)) then pΩ ∈ R1, where Ω = ((2, 4), (2, 4), (3, 5), (3, 5)) and is a factor of f .

(b) If Row1 = (2, 3) then Row2 is either (2, 3) or (2, 4) or (3, 5). If Row2 = (3, 5) then 5 or 6 has to appear 
in one of the rows below, which is a contradiction to (8.1) and if Row2 = (2, 3) then by a similar argument 
as above, (Row4k−1, Row4k) = ((4, 5), (4, 5)). Then pΩ ∈ R1, where Ω = ((2, 3), (2, 3), (4, 5), (4, 5)) and is a 
factor of f .

Similarly if Row2 = (2, 4) then we have pΩ ∈ R1, where Ω = ((2, 3), (2, 4), (3, 5), (4, 5)) and is a factor 
of f .

(c) If Row1 = (1, 5) then Row2 = (1, 5). Then (Row4k−1, Row4k) ∈ {((2, 6), (2, 6)), ((3, 6), (3, 6)), ((3, 6),
(4, 6)), ((4, 6), (4, 6)), ((5, 6), (5, 6))}. By a similar argument as above (Row4k−1, Row4k) can not be any other 
pair except ((2, 6), (2, 6)). Then pΩ ∈ R1, where Ω = ((1, 5), (1, 5), (2, 6), (2, 6)) and is a factor of f .

(d) If Row1 = (1, 4) then Row2 = (1, 4). By a similar argument as above (Row4k−1, Row4k) has to be 
((3, 6), (3, 6)). Then pΩ ∈ R1 and is a factor of f , where Ω = ((1, 4), (1, 4), (3, 6), (3, 6)).

(e) If Row1 = (1, 2) then Row2 = (1, 2) and (Row4k−1, Row4k) ∈ {((2, 6), (2, 6)), ((3, 6), (3, 6)), ((3, 6),
(4, 6)), ((4, 6), (4, 6)), ((5, 6), (5, 6))}. By a similar argument as above

(Row4k−1, Row4k) is either ((5, 6), (5, 6)) or ((4, 6), (4, 6)). If (Row4k−1, Row4k) = ((5, 6), (5, 6)) then 
pΩ ∈ R1 and is a factor of f , where Ω = ((1, 2), (1, 2), (5, 6), (5, 6)).

Now assume that (Row4k−1, Row4k) = ((4, 6), (4, 6)). Let N1,1 = N6,2 = m1. By the admissibility prop-
erty m1 is even.

Case 1: Let m1 = 2. Note that Rowi has either 2 or 5 as an entry for all 3 ≤ i ≤ 4k − 2. Since E1,2 =
E2,2 = 2 we have cΓ(2) = cΓ(5) = 2k−1. Similarly, we have cΓ(3) = cΓ(4) = 2k−1. Since E4k,1 = 4 we have 
Ei,2 = 5, for all 2k ≤ i ≤ 4k−2. Also since cΓ(4) = 2k−1 we have Row2k = Row2k+1 = (3, 5). Since the pairs 
(Row2k, Row2k−1) and (Row2k+2, Row2k+1) are admissible we have Row2k−1 = (2, 3) or (2, 4). If Row2k−1 =
(2, 3) then cΓ(1) +cΓ(2) +cΓ(3) ≥ (2k+1) +(2k−1) = 4k. Since cΓ(1) +cΓ(2) +cΓ(3) = 4k we have Row2k+2 =
(4, 5). Then pΩ ∈ R2 and is a factor of f , where Ω = ((1, 2), (1, 2), (2, 3), (3, 5), (3, 5), (4, 5), (4, 6), (4, 6)). For 
a similar reason if Row2k−1 = (2, 4) then Row2k+2 = (3, 5). Then pΩ ∈ R2 and is a factor of f , where 
Ω = ((1, 2), (1, 2), (2, 4), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6)).

Case 2: Let m1 = 2k. We have Ei,1 = 1 for all 1 ≤ i ≤ 2k and Ei,2 = 6 for all 2k + 1 ≤ i ≤ 4k. Note that 
E2k−1,2 = E2k,2 = 5. Since cΓ(1) +cΓ(2) +cΓ(4) = 4k we have Ei,1 = Ei+1,1 = 3, for some i, 2k+1 ≤ i ≤ 4k. 
Then pΩ ∈ R2 and is a factor of f , where Ω = ((1, 2), (1, 2), (1, 5), (1, 5), (3, 6), (3, 6), (4, 6), (4, 6)).
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Case 3: Let 4 ≤ m1 ≤ 2k − 2. Note that k ≥ 3. Since E1,2 = E2,2 = 2 and Rowi contains either 2 or 5
as an entry for m1 + 1 ≤ i ≤ 4k −m1 we have N5,2 ≥ 2k −m1 + 1. Hence, Row2k = Row2k+1 = (3, 5). Let 
N2,1 = l.

(i) If l = 0 then Ei,2 = 5 for all m1 + 1 ≤ i ≤ 4k −m1 and hence N2,2 ≥ 4. So we have Row3 = Row4 =
(1, 2). Since cΓ(4) ≤ 2k − 1 we have Row2k−1 = (3, 5). Since (Row2k+2, Row2k+1) is admissible we have 
Row2k+2 is either (3, 5) or (4, 5). If Row2k+2 = (4, 5) then cΓ(4) = 2k−1 whereas cΓ(3) ≤ (2k−4) +1 = 2k−3, 
a contradiction. Hence Row2k+2 = (3, 5).

We claim that N4,1 ≥ 4. If not then N4,1 ≤ 3. In this case cΓ(3) ≥ 2k − 3 + 2 = 2k − 1 whereas 
cΓ(4) ≤ 2k − 6 + 3 = 2k − 3, a contradiction. Hence, N4,1 ≥ 4. So we have Row4k−3 = Row4k−2 = (4, 6). 
Then pΩ ∈ R3 and is a factor of f , where

Ω = ((1, 2), (1, 2), (1, 2), (1, 2), (3, 5), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6), (4, 6), (4, 6)).

(ii) If l = 1 then Rowm1+1 = (2, 4). Since (Rowm1+2, Rowm1+1) is admissible and cΓ(4) ≤ 2k− 1 we have 
Rowm1+2 = (3, 5). Again since cΓ(4) ≤ 2k − 1 we have Row2k+1 = Row2k+2 = (3, 5). Then pΩ ∈ R2 and is 
a factor of f , where

Ω = ((1, 2), (1, 2), (2, 4), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6)).

(iii) If l ≥ 2 then the rows of Γ containing 2 as the first entry are either (2, 3) or (2, 4). If Γ has at least 
two rows equal to (2, 4) then pΩ ∈ R1 and is a factor of f , where Ω = ((2, 4), (2, 4), (3, 5), (3, 5)). If Γ has 
exactly one row equal to (2, 4) then since cΓ(4) ≤ 2k − 1 we have Row2k+2 = (3, 5). So pΩ ∈ R2 and is a 
factor of f , where Ω = ((1, 2), (1, 2), (2, 4), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6)).

Now suppose that none of the rows of Γ is (2, 4). Since Row2k = (3, 5) and (Row2k, Row2k−1) is admissible 
we have Row2k−1 = (2, 3) or (3, 5). If Row2k−1 = (2, 3) then Ei,1 = 2 for all m1 + 1 ≤ i ≤ 2k − 1 and 
Rowi = (2, 3) for all m1 + 1 ≤ i ≤ 2k − 1. Since cΓ(4) + cΓ(5) + cΓ(6) = 4k and cΓ(5) + cΓ(6) = 2k + 1 we 
have cΓ(4) = 2k − 1. Hence, Ei,1 = 4, for all 2k + 2 ≤ i ≤ 4k. In particular, Row2k+2 = (4, 5). So pΩ ∈ R2
and is a factor of f , where Ω = ((1, 2), (1, 2), (2, 3), (3, 5), (3, 5), (4, 5), (4, 6), (4, 6)).

If Row2k−1 = (3, 5) then N5,2 ≥ 2k − m1 + 2. Then N2,1 ≤ 2k − m1 − 2 and so N2,2 ≥ 4. Hence, 
Row3 = Row4 = (1, 2). We claim that Row4k−3 = Row4k−2 = (4, 6). If not then cΓ(4) ≤ 3 whereas 
cΓ(3) ≥ 2k−3 +2 = 2k−1, a contradiction to k ≥ 3. Since (Row4k−m1 , Row4k−m1−1) is admissible we have 
(Row4k−m1−1, Row4k−m1) ∈ {((3, 5), (3, 5)), ((3, 5), (4, 5)), ((4, 5), (4, 5))}.

If (Row4k−m1−1, Row4k−m1) = ((4, 5), (4, 5)) then pΩ ∈ R1 and is a factor of f , where Ω =
((2, 3), (2, 3), (4, 5), (4, 5)).

If (Row4k−m1−1, Row4k−m1) = ((3, 5), (3, 5)) then Row2k+2 = (3, 5) and in this case pΩ ∈ R3 and is a 
factor of f , where

Ω = ((1, 2), (1, 2), (1, 2), (1, 2), (3, 5), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6), (4, 6), (4, 6)).

If (Row4k−m1−1, Row4k−m1) = ((3, 5), (4, 5)) then for m1 = 2k − 2 we have cΓ(4) = 2k − 1 whereas 
cΓ(3) ≤ (2k−4) +1 = 2k−3, a contradiction and for m1 ≤ 2k−4 we have Row2k+2 = (3, 5). Then pΩ ∈ R3
and is a factor of f , where

Ω = ((1, 2), (1, 2), (1, 2), (1, 2), (3, 5), (3, 5), (3, 5), (3, 5), (4, 6), (4, 6), (4, 6), (4, 6)).

(f) If Row1 = (1, 3) then Row2 = (1, 3) or (1, 4).
If Row2 = (1, 4) then (Row4k−1, Row4k) ∈ {((2, 6), (2, 6)), ((3, 6), (3, 6)), ((3, 6), (4, 6)), ((4, 6), (4, 6)),

((5, 6), (5, 6))}. By a similar argument as above (Row4k−1, Row4k) = ((3, 6), (4, 6)). Then pΩ ∈ R1 and 
is a factor of f , where Ω = ((1, 3), (1, 4), (3, 6), (4, 6)).
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If Row2 = (1, 3) then (Row4k−1, Row4k) ∈ {((2, 6), (2, 6)), ((3, 6), (3, 6)), ((3, 6), (4, 6)), ((4, 6), (4, 6)),
((5, 6), (5, 6))}. By a similar argument as above (Row4k−1, Row4k) is either ((4, 6), (4, 6)) or ((5, 6), (5, 6)). If 
(Row4k−1, Row4k) = ((4, 6), (4, 6)) then pΩ ∈ R1 and is a factor of f , where Ω = ((1, 3), (1, 3), (4, 6), (4, 6)).

Now assume (Row4k−1, Row4k) = ((5, 6), (5, 6)). If we flip over the Young tableau and replace k by 7 − k

then this case is reduced to the case (e) where (Row1, Row2) = ((1, 2), (1, 2)) and (Row4k−1, Row4k) =
((4, 6), (4, 6)).

So by induction we conclude that f is generated by the elements of degree at most 3. �
Theorem 8.2. The quotient T\\(G/Pα3)ssT (L4�3) is projectively normal with respect to the descent of the 
line bundle L4�3 .

Proof. We have

T\\(G/Pα3)ssT (L4�3) = Proj(⊕k∈Z≥0H
0(G/Pα3 ,L⊗k

4�3
)T ) = Proj(⊕k∈Z≥0Rk),

where Rk := H0(G/Pα3 , L⊗k
4�3

)T . Since the quotient T\\(G/Pα3)ssT (L4�3) is normal, in order to show that it 
is projectively normal we show that Rk is generated by R1. Let f ∈ Rk be a standard monomial. The Young 
diagram associated to f has the shape p = (p1, p2, p3) = (4k, 4k, 4k). So the Young tableau Γ associated to 
this Young diagram has 4k rows and 3 columns with strictly increasing rows and non-decreasing columns. 
Since f is T -invariant, by Lemma 3.2 we have,

cΓ(t) = cΓ(7 − t) for all 1 ≤ t ≤ 6. (8.2)

Since p̄1 = 0, the admissibility condition is empty. We also have if t ∈ Rowi then 7 − t /∈ Rowi, for all 1 ≤
t ≤ 6 and for any i, 1 ≤ i ≤ 4k, where Rowi denotes the ith row of the tableau. For 1 ≤ t ≤ 6 all the rows 
of Γ contain either t or 7 − t. So cΓ(t) = 2k for all 1 ≤ t ≤ 6.

Let Colj denote the jth column of the tableau. Let Ei,j be the (i, j)-th entry of the tableau and Nt,j =
#{i|Ei,j = t}.

Note that Ei,1 = 1 for all 1 ≤ i ≤ 2k and Ei,3 = 6 for all 2k + 1 ≤ i ≤ 4k.
If E1,2 = 4 or 5 then 1, 2 and 3 appear 2k times each in the first column, a contradiction.
So, Row1 ∈ {(1, 2, 3), (1, 2, 4), (1, 3, 5)}.
Case - 1 Row1 = (1, 3, 5)
In this case we have Ei,1 = 2 for all 2k+1 ≤ i ≤ 4k, Ei,2 = 3 for all 1 ≤ i ≤ 2k, Ei,3 = 5 for all 1 ≤ i ≤ 2k

and Ei,2 = 4 for all 2k+1 ≤ i ≤ 4k. So we conclude that, Rowi = (2, 4, 6) for all 2k+1 ≤ i ≤ 4k and Rowi =
(1, 3, 5) for all 1 ≤ i ≤ 2k. Then pΩ ∈ R1 and divides f , where Ω = ((1, 3, 5), (1, 3, 5), (2, 4, 6), (2, 4, 6)). So 
by induction we conclude that f belongs to the subalgebra generated by R1.

Case - 2 Row1 = (1, 2, 4)
In this case we have E4k,2 = 5 and E4k,1 is either 3 or 4.
(a) If E4k,1 = 3 then Row4k = (3, 5, 6). In this case E2k,3 is either 4 or 5.
If E2k,3 = 4 then E2k,2 = 2 and hence, Ei,2 = 2 for all 1 ≤ i ≤ 2k and Ei,3 = 4 for all 1 ≤ i ≤ 2k. So we 

conclude that Ei,1 = 3 for all 2k + 1 ≤ i ≤ 4k and Ei,3 = 5 for all 2k + 1 ≤ i ≤ 4k. Then pΩ ∈ R1 and is a 
factor of f , where Ω = ((1, 2, 4), (1, 2, 4), (3, 5, 6), (3, 5, 6)).

If E2k,3 = 5 then E2k,2 is either 3 or 4. If E2k,2 = 3 then E2k+1,1 = 2 and so E2k+1,2 is either 3 or 4. If 
E2k+1,2 = 4 then pΩ ∈ R1 and is a factor of f , where Ω = ((1, 2, 4), (1, 3, 5), (2, 4, 6), (3, 5, 6)). If E2k+1,2 = 3
then cΓ(2) + cΓ(3) ≥ 4k + 1, a contradiction.

(b) If E4k,1 = 4 then E2k,3 = 5 and so E2k,2 is either 3 or 4. If E2k,2 = 3 then E2k+1,1 = 2 and so E2k+1,2
is either 3 or 4. If E2k+1,2 = 4 then cΓ(4) + cΓ(5) ≥ 4k + 1, a contradiction. If E2k+1,2 = 3 then pΩ ∈ R1
and is a factor of f , where Ω = ((1, 2, 4), (1, 3, 5), (2, 3, 6), (4, 5, 6)).
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Case - 3 Row1 = (1, 2, 3)
In this case E4k,2 = 5 and E4k,1 is either 3 or 4.
(a) If E4k,1 = 4 then E2k,3 is either 3 or 4 or 5.
If E2k,3 = 3 then Ei,3 = 3 for all 1 ≤ i ≤ 2k and Ei,2 = 2 for all 1 ≤ i ≤ 2k. Hence Ei,1 = 4 for 

all 2k + 1 ≤ i ≤ 4k and Ei,2 = 5 for all 2k + 1 ≤ i ≤ 4k. Then pΩ ∈ R1 and is a factor of f , where 
Ω = ((1, 2, 3), (1, 2, 3), (4, 5, 6), (4, 5, 6)).

If E2k,3 = 4 then E2k,2 = 2, Ei,2 = 5 for all 2k + 1 ≤ i ≤ 4k and Row2k+1 = (3, 5, 6). Then pΩ ∈ R1 and 
is a factor of f , where Ω = ((1, 2, 3), (1, 2, 4), (3, 5, 6), (4, 5, 6)).

If E2k,3 = 5 then E2k,2 is either 3 or 4.
If E2k,2 = 3 then E2k+1,1 = 2 and so E2k+1,2 is either 3 or 4. If E2k+1,2 = 4 then pΩ ∈ R1 and is a factor 

of f , where Ω = ((1, 2, 3), (1, 3, 5), (2, 4, 6), (4, 5, 6)). If E2k+1,2 = 3 then for all 2 ≤ i ≤ 2k + 1 we have Ei,2
either 2 or 3. We claim that Γ will either have a row (1, 2, 4) or a row (2, 4, 6). If not then 2 and 3 appear in all 
the rows of Γ containing 3, which is a contradiction, since Row2k = (1, 3, 5). If (1, 2, 4) is a row of Γ then pΩ1

is a factor of f and if (2, 4, 6) is a row then pΩ2 is a factor of f , where Ω1 = ((1, 2, 4), (1, 3, 5), (2, 3, 6), (4, 5, 6))
and Ω2 = ((1, 2, 3), (1, 3, 5), (2, 4, 6), (4, 5, 6)).

If E2k,2 = 4 then E2k+1,1 = 2 and E2k+1,2 = 4. So Row2k+1 = (2, 4, 6). Since E2k,3 = 5 we have N3,1 ≥ 1. 
So if Eq,1 = 3 for some 2k + 2 ≤ q ≤ 4k − 2 we have Rowq = (3, 5, 6). Then pΩ ∈ R1 and is a factor of f , 
where Ω = ((1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 5, 6)).

(b) If E4k,1 = 3 then E2k+1,1 = 2 and E2k,3 is either 4 or 5. If E2k,3 = 4 then Ei,2 = 5 for all 
2k + 1 ≤ i ≤ 4k. Hence, cΓ(4) < 2k, a contradiction. If E2k,3 = 5 then E2k,2 is either 3 or 4. If E2k,2 = 3
then cΓ(2) + cΓ(3) ≥ 4k + 1, a contradiction. If E2k,2 = 4 and in this case we have E2k+1,2 = 4. Then 
pΩ ∈ R1 and is a factor of f , where Ω = ((1, 2, 3), (1, 4, 5), (2, 4, 6), (3, 5, 6)).

So by induction we conclude that f belongs to the subalgebra generated by R1 and hence the quotient 
is projectively normal. �
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