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some cyclic subcovers of the Giulietti–Korchmáros curve or of the curves constructed 
by Skabelund. New examples of plane curves with two Galois points are described, 
as plane models of such quotient curves.
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1. Introduction

The notion of a Galois point was introduced by Hisao Yoshihara in 1996 ([1,14,17]): for a plane curve 
C ⊂ P 2, if the field extension k(C)/π∗

P k(P 1) of function fields induced by the projection πP from a 
point P ∈ P 2 is Galois, then the point P is called a Galois point. If a Galois point P is contained in 
C \ Sing(C) (resp. in P 2 \ C), where Sing(C) is the set of all singular points of C, then we call it an in-
ner Galois point (resp. an outer Galois point). The associated Galois group at P is denoted by GP . It is 
interesting that many important families of algebraic curves (in positive characteristic), such as the Hermi-
tian, Suzuki, Ree and Giulietti–Korchmáros curves, admit a plane model with two or more Galois points 
([4–6,12]).
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Let X be a (reduced, irreducible) smooth projective curve over an algebraically closed field k of char-
acteristic p ≥ 0 and let k(X ) be its function field. Recently, a criterion for the existence of a birational 
embedding with two Galois points was presented by the first author ([3]), and by this criterion, several new 
examples of plane curves with two Galois points were described. We recall this criterion.

Fact 1. Let G1, G2 be finite subgroups of Aut(X ) and let P1, P2 be different points of X . Then the three 
conditions

(a) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b) G1 ∩G2 = {1}, and
(c) P1 +

∑
σ∈G1

σ(P2) = P2 +
∑

τ∈G2
τ(P1)

are satisfied, if and only if there exists a birational embedding ϕ : X → P 2 of degree |G1| +1 such that ϕ(P1)
and ϕ(P2) are different inner Galois points for ϕ(X ) and Gϕ(Pi) = Gi for i = 1, 2.

Fact 2. Let G1, G2 be finite subgroups of Aut(X ) and let Q ∈ X . Then the three conditions

(a) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b) G1 ∩G2 = {1}, and
(c)

∑
σ∈G1

σ(Q) =
∑

τ∈G2
τ(Q)

are satisfied, if and only if there exists a birational embedding ϕ : X → P 2 of degree |G1| and different outer 
Galois points P1, P2 ∈ P 2 \ ϕ(X ) exist for ϕ(X ) such that GPi

= Gi for i = 1, 2 and points ϕ(Q), P1 and 
P2 are collinear.

Some known examples of plane curves with two Galois points are regarded as quotient curves X/H of 
curves X with a subgroup H ⊂ Aut(X ) such that X admits a birational embedding with two Galois points. 
Typical examples are quotient curves of the Hermitian curve ([5,12]), and the Hermitian curve as a Galois 
subcover of the Giulietti–Korchmáros curve ([4,6]). Quotient curves are important in the study of maximal 
curves with respect to the Hasse–Weil bound (see, for example, [7–10]).

Motivated by this observation, the aim of this article is to present a criterion for the existence of a plane 
model with two Galois points for quotient curves. For a finite subgroup H of Aut(X ) and a point Q ∈ X , the 
quotient map is denoted by fH : X → X/H and the image fH(Q) is denoted by Q. Assume that H is a normal 
subgroup of a subgroup G ⊂ Aut(X ). Then it follows that for each σ ∈ G, the pullback σ∗ : k(X ) → k(X )
satisfies σ∗(k(X )H) = k(X )H . Therefore, there exists a natural homomorphism G → Aut(X/H); σ �→ σ, 
where σ corresponds to the restriction σ∗|k(X )H . The image is denoted by G, which is isomorphic to G/H. 
The following two theorems are our main results.

Theorem 1. Let H, G1, G2 ⊂ Aut(X ) be finite subgroups with H � Gi for i = 1, 2, and let P1, P2 ∈ X . Then 
the four conditions

(a’) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b’) G1 ∩G2 = H,
(c’)

∑
h∈H h(P1) +

∑
σ∈G1

σ(P2) =
∑

h∈H h(P2) +
∑

τ∈G2
τ(P1), and

(d’) HP1 	= HP2, where HPi is the orbit of Pi, i.e., HPi = {h(Pi) | h ∈ H} for i = 1, 2,

are satisfied, if and only if there exists a birational embedding ϕ : X/H → P 2 of degree |G1/H| + 1 such 
that ϕ(P1) and ϕ(P2) are different inner Galois points for ϕ(X/H) and Gϕ(P ) = Gi for i = 1, 2.
i
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Theorem 2. Let H, G1, G2 ⊂ Aut(X ) be finite subgroups with H � Gi for i = 1, 2, and let Q ∈ X . Then the 
three conditions

(a’) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b’) G1 ∩G2 = H, and
(c’)

∑
σ∈G1

σ(Q) =
∑

τ∈G2
τ(Q)

are satisfied, if and only if there exists a birational embedding ϕ : X/H → P 2 of degree |G1/H| and different 
outer Galois points P1, P2 ∈ P 2 \ ϕ(X/H) exist for ϕ(X/H) such that GPi

= Gi for i = 1, 2 and points 
ϕ(Q), P1 and P2 are collinear.

As an application, for the case where X admits a birational embedding with two Galois points, the 
following two results hold.

Corollary 1. Let G1, G2, H be finite subgroups of Aut(X ), and let P1, P2 be different points of X . Assume 
that the three conditions

(a) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b) G1 ∩G2 = {1}, and
(c) P1 +

∑
σ∈G1

σ(P2) = P2 +
∑

τ∈G2
τ(P1)

are satisfied. If the three conditions

(d) H ∩G1G2 = {1},
(e) HG1 = H � G1, HG2 = H � G2, and
(f) HP1 	= HP2

are satisfied, then there exists a birational embedding ψ : X/H → P 2 of degree |G1| +1 such that ψ(P1) and 
ψ(P2) are different inner Galois points for ψ(X/H) and Gψ(Pi)

∼= Gi for i = 1, 2.

Corollary 2. Let G1, G2, H be finite subgroups of Aut(X ), and let Q ∈ X . Assume that the three conditions

(a) X/G1 ∼= P 1, X/G2 ∼= P 1,
(b) G1 ∩G2 = {1}, and
(c)

∑
σ∈G1

σ(Q) =
∑

τ∈G2
τ(Q)

are satisfied. If the two conditions

(d) H ∩G1G2 = {1}, and
(e) HG1 = H � G1, HG2 = H � G2

are satisfied, then there exists a birational embedding ψ : X/H → P 2 of degree |G1| and different outer 
Galois points P1, P2 ∈ P 2 \ψ(X/H) exist for ψ(X/H) such that GPi

∼= Gi for i = 1, 2 and points ψ(Q), P1
and P2 are collinear.

In Sections 3 and 4, we will apply Corollary 1 to the Giulietti–Korchmáros curve, and the curves con-
structed by Skabelund. Theorems 3, 4, 5 and 6 provide new examples of plane curves with two Galois points 
(see the Table in [18]). In Section 5, we discuss the relations between Corollaries 1, 2 and the previous works.



4 S. Fukasawa, K. Higashine / Journal of Pure and Applied Algebra 225 (2021) 106525
2. Proof of the main theorems

Before proving our main theorems, we prove Fact 2 for outer Galois points, since this fact is just stated 
in a remark [3, Remark 1] and is needed for the proof of Theorem 2.

Proof of Fact 2. We consider the only-if part. Assume that conditions (a), (b) and (c) are satisfied. Let D
be the divisor

D =
∑
σ∈G1

σ(Q) =
∑
τ∈G2

τ(Q),

by (c). Let f, g ∈ k(X ) be generators of k(X )G1 , k(X )G2 such that (f)∞ = D and (g)∞ = D, by (a), where 
(f)∞ is the pole divisor of f . Then f, g ∈ L(D). Let ϕ : X → P 2 be given by (f : g : 1). Similarly to [3, 
Proposition 1], by (b), ϕ is birational onto its image. The sublinear system of |D| corresponding to 〈f, g, 1〉
is base-point-free, since supp(D) ∩ supp((f) + D) = ∅. Therefore, degϕ(X ) = degD, and the morphism 
(f : 1) (resp. (g : 1)) coincides with the projection from the point P1 = (0 : 1 : 0) ∈ P 2 \ ϕ(X ) (resp. 
P2 = (1 : 0 : 0) ∈ P 2 \ ϕ(X )).

We consider the if part. Assume that P1 and P2 are outer Galois points for ϕ(X ) such that GPi
= Gi for 

i = 1, 2, and ϕ(Q) ∈ P1P2, where P1P2 is the line passing through P1 and P2. Since k(X )Gi = k(ϕ(X ))GPi for 
i = 1, 2, condition (a) is satisfied. According to [2, Lemma 7], condition (b) is satisfied. Let D be the divisor 
induced by the intersection of ϕ(X ) and the hyperplane P1P2, that is, D = ϕ∗P1P2 =

∑
P∈X (ordPϕ

∗P1P2) ·
P . We can consider the line P1P2 as a point in the images of πP1 ◦ϕ and πP2 ◦ϕ. Since πP1 ◦ϕ (resp. π2 ◦ϕ) 
is a Galois covering and Q ∈ ϕ−1(ϕ(X ) ∩ P1P2),

(πP1 ◦ ϕ)∗P1P2 =
∑
σ∈G1

σ(Q)
(

resp. (πP2 ◦ ϕ)∗P1P2 =
∑
τ∈G2

τ(Q)
)

as divisors (see, for example, [16, III.7.1, III.7.2, III.8.2]), where (πP1 ◦ ϕ)∗ denotes the pullback (see, for 
example, [11, p. 137]). On the other hand, it follows that (πP1 ◦ ϕ)∗P1P2 = D (resp. (πP2 ◦ ϕ)∗P1P2 = D). 
Therefore,

D =
∑
σ∈G1

σ(Q) =
∑
τ∈G2

τ(Q),

which is nothing but assertion (c). �
Proof of Theorem 1. We consider the only-if part. Assume that conditions (a’), (b’), (c’) and (d’) of Theo-
rem 1 are satisfied. By condition (d’), P1 	= P2. We would like to prove that conditions (a), (b) and (c) of 
Fact 1 are satisfied for the 4-tuple (G1, G2, P1, P2). Since k(X/H)Gi = k(X )Gi , by condition (a’), the fixed 
field k(X/H)Gi is rational. It follows from condition (b’) that G1 ∩G2 = {1}. Therefore, conditions (a) and 
(b) for the 4-tuple (G1, G2, P1, P2) are satisfied. Since

∑
σ∈G1

σ(P2) =
∑

Hσ∈G1/H

∑
h∈H

hσ(P2),

it follows that

(fH)∗

( ∑
σ(P2)

)
=

∑
|H| · σ(P2) = |H|

∑
σ(P2),
σ∈G1 Hσ∈G1/H σ∈G1
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where (fH)∗ : Div X → Div X/H is a homomorphism such that (fH)∗(
∑

niPi) =
∑

nifH(Pi) for any 
divisor 

∑
niPi on X ([11, IV, Exercise 2.6]). On the other hand, (fH)∗(

∑
h∈H h(P1)) = |H|P1. It follows 

from condition (c’) that

|H|

⎛
⎝P1 +

∑
σ∈G1

σ(P2)

⎞
⎠ = |H|

⎛
⎝P2 +

∑
τ∈G2

τ(P1)

⎞
⎠ .

Since |H| ·D = 0 implies D = 0 for any divisor D, we are able to cut the multiplier |H|. Condition (c) for 
the 4-tuple (G1, G2, P1, P2) is satisfied.

We consider the if part. By Fact 1, we have that conditions (a), (b) and (c) of Fact 1 are satisfied for 
the 4-tuple (G1, G2, P1, P2). Since k(X )Gi = k(X/H)Gi , by condition (a), the fixed field k(X )Gi is rational. 
Condition (a’) is satisfied. Since G1 ∩G2 = {1}, condition (b’) is satisfied. Since ϕ(P1) 	= ϕ(P2), condition 
(d’) is satisfied. By condition (c),

P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1).

Since f∗
H(Q) =

∑
h∈H h(Q) for each Q ∈ X , where f∗

H denotes the pullback (see, for example, [16, III.7.1, 
III.7.2, III.8.2]),

f∗
H

⎛
⎝P1 +

∑
σ∈G1

σ(P2)

⎞
⎠ = f∗

H(P1) +
∑
σ∈G1

f∗
H(σ(P2))

=
∑
h∈H

h(P1) +
∑

Hσ∈G1/H

∑
h∈H

hσ(P2)

=
∑
h∈H

h(P1) +
∑
σ∈G1

σ(P2).

Similarly,

f∗
H

⎛
⎝P2 +

∑
τ∈G2

τ(P1)

⎞
⎠ =

∑
h∈H

h(P2) +
∑
τ∈G2

τ(P1).

Condition (c’) is satisfied. �
Proof of Theorem 2. We consider the only-if part. Assume that conditions (a’), (b’) and (c’) of Theorem 2
are satisfied. We would like to prove that conditions (a), (b) and (c) of Fact 2 are satisfied for the triple 
(G1, G2, Q). Since k(X/H)Gi = k(X )Gi , by condition (a’), the fixed field k(X/H)Gi is rational. It follows 
from condition (b’) that G1 ∩ G2 = {1}. Therefore, conditions (a) and (b) for the triple (G1, G2, Q) are 
satisfied. Since

∑
σ∈G1

σ(Q) =
∑

Hσ∈G1/H

∑
h∈H

hσ(Q),

it follows that

(fH)∗

( ∑
σ(Q)

)
=

∑
|H| · σ(Q) = |H|

∑
σ(Q).
σ∈G1 Hσ∈G1/H σ∈G1
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It follows from condition (c’) that

|H|

⎛
⎝ ∑

σ∈G1

σ(Q)

⎞
⎠ = |H|

⎛
⎝ ∑

τ∈G2

τ(Q)

⎞
⎠ .

Since |H| ·D = 0 implies D = 0 for any divisor D, we are able to cut the multiplier |H|. Condition (c) for 
the triple (G1, G2, Q) is satisfied.

We consider the if part. By Fact 2, we have that conditions (a), (b) and (c) of Fact 2 are satisfied for the 
triple (G1, G2, Q). Since k(X )Gi = k(X/H)Gi , by condition (a), the fixed field k(X )Gi is rational. Condition 
(a’) is satisfied. Since G1 ∩G2 = {1}, condition (b’) is satisfied. By condition (c),

∑
σ∈G1

σ(Q) =
∑
τ∈G2

τ(Q).

Since f∗
H(Q) =

∑
h∈H h(Q) for each Q ∈ X (see, for example, [16, III.7.1, III.7.2, III.8.2]),

f∗
H

⎛
⎝ ∑

σ∈G1

σ(Q)

⎞
⎠ =

∑
σ∈G1

f∗
H(σ(Q)) =

∑
Hσ∈G1/H

∑
h∈H

hσ(Q)

=
∑
σ∈G1

σ(Q).

Similarly,

f∗
H

⎛
⎝ ∑

τ∈G2

τ(Q)

⎞
⎠ =

∑
τ∈G2

τ(Q).

Condition (c’) is satisfied. �
Proof of Corollary 1. By condition (d), H ∩ Gi = {1} for i = 1, 2. By condition (e), HGi = H � Gi. Let 
Ĝi = H �Gi for i = 1, 2. Note that H �Ĝi for i = 1, 2. We would like to prove that conditions (a’), (b’), (c’) 
and (d’) of Theorem 1 are satisfied for the 5-tuple (Ĝ1, Ĝ2, H, P1, P2). Condition (f) is the same as condition 
(d’). Since k(X )Ĝi ⊂ k(X )Gi , by condition (a) and Lüroth’s theorem, it follows that X/Ĝi

∼= P 1. Condition 
(a’) is satisfied.

Let η ∈ Ĝ1 ∩ Ĝ2. Then there exist h1, h2 ∈ H, σ ∈ G1 and τ ∈ G2 such that η = h1σ = h2τ . Then 
στ−1 = h−1

1 h2 ∈ H. By condition (d), στ−1 = 1 and hence, σ = τ ∈ G1 ∩G2. By condition (b), σ = τ = 1. 
This implies that η ∈ H. It follows that Ĝ1 ∩ Ĝ2 = H. Condition (b’) is satisfied.

By condition (c), it follows that

P1 +
∑
σ∈G1

σ(P2) = P2 +
∑
τ∈G2

τ(P1).

For each h ∈ H,

h(P1) +
∑
σ∈G1

hσ(P2) = h(P2) +
∑
τ∈G2

hτ(P1).

Therefore,
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∑
h∈H

h(P1) +
∑
h∈H

∑
σ∈G1

hσ(P2) =
∑
h∈H

h(P2) +
∑
h∈H

∑
τ∈G2

hτ(P1).

Condition (c’) is satisfied, since each element of Ĝ1 (resp. of Ĝ2) is represented uniquely as hσ (resp. hτ) 
for some h ∈ H and σ ∈ G1 (resp. τ ∈ G2). �
Proof of Corollary 2. Similarly to the proof of Corollary 1, we prove that conditions (a’), (b’) and (c’) 
of Theorem 2 are satisfied for the 4-tuple (Ĝ1, Ĝ2, H, Q), where Ĝi = H � Gi for i = 1, 2. The proof 
for conditions (a’) and (b’) is the same as the proof of Corollary 1. By condition (c), it follows that ∑

σ∈G1
σ(Q) =

∑
τ∈G2

τ(Q). For each h ∈ H, 
∑

σ∈G1
hσ(Q) =

∑
τ∈G2

hτ(Q). Therefore,

∑
h∈H

∑
σ∈G1

hσ(Q) =
∑
h∈H

∑
τ∈G2

hτ(Q).

Condition (c’) is satisfied, since each element of Ĝ1 (resp. of Ĝ2) is represented uniquely as hσ (resp. hτ) 
for some h ∈ H and σ ∈ G1 (resp. τ ∈ G2). �
3. An application to cyclic subcovers of the Giulietti–Korchmáros curve

Let p > 0 and let q be a power of p. We consider the Giulietti–Korchmáros curve X ⊂ P 3, which is 
defined by

xq + x− yq+1 = 0 and y((xq + x)q−1 − 1) − zq
2−q+1 = 0

(see [8]). The group

G1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 bq 0 a

0 1 0 b

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ | a, b ∈ Fq2 , aq + a− bq+1 = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⊂ PGL(4, k)

of order q3 acts on X (see [8, Lemma 7]). This group acts on the set X ∩{Z = 0} = X (Fq2) of all Fq2-rational 
points of X , and fixes a point P1 := (1 : 0 : 0 : 0) ∈ X . Let

ξ(x, y, z) =
(

1
x
,−y

x
,
z

x

)
.

Then ξ acts on X ([8, Lemma 7]). This automorphism acts on X (Fq2), and P2 := ξ(P1) = (0 : 0 : 0 : 1). 
Let G2 := ξG1ξ

−1, which fixes P2. According to [6, Theorem 2], conditions (a), (b) and (c) of Fact 1 are 
satisfied for the 4-tuple (G1, G2, P1, P2).

It follows from [8, Equation (9)] that the cyclic group

Cq2−q+1 :=
{

(x, y, z) �→ (x, y, ζz) | ζq2−q+1 = 1
}

acts on X . We prove the following.

Theorem 3. Let H be a subgroup of Cq2−q+1. Then there exists a birational embedding ψ : X/H → P 2 of 
degree q3 + 1 with two inner Galois points.
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Proof. Note that H fixes all points of X (Fq2) (= X ∩ {Z = 0}). Therefore, HP1 = {P1} 	= {P2} = HP2. 
Since σ|X (Fq2 ) 	= τ |X (Fq2 ) for any σ ∈ G1 \{1} and τ ∈ G2 \{1}, H ∩G1G2 = {1} follows. It is easily verified 
that HG1 = H ×G1. Since ξh = hξ for each element h ∈ H, HG2 = H ×G2 follows. Therefore, conditions 
(d), (e) and (f) of Corollary 1 are satisfied for the 5-tuple (G1, G2, P1, P2, H). By Corollary 1, the assertion 
follows. �
4. The curves constructed by Skabelund and their quotient curves

We consider the cyclic cover S̃ of the Suzuki curve S, constructed by Skabelund ([15]). Let p = 2, let q0
be a power of 2, and let q = 2q2

0 . The curve S̃ is the smooth model of the curve defined by

yq + y = xq0(xq + x) and xq + x = zq−2q0+1

in P 3. Let P1 ∈ S̃ be the pole of x. It is known that the group

G1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 0 0 a

aq0 1 0 b

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ | a, b ∈ Fq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⊂ PGL(4, k)

of order q2 acts on S̃ (see [15, Lemma 3.3], [9, Section 2]). This group acts on the set S̃(Fq) of all Fq-rational 
points of S̃, and fixes P1. Let α := y2q0 + x2q0+1, β := xy2q0 + α2q0 and let

ξ(x, y, z) =
(
α

β
,
y

β
,
z

β

)
.

Then ξ acts on S̃ (see [15, Proofs of Lemmas 3.3 and 3.4], [9, Section 2]). This automorphism acts on S̃(Fq), 
and P2 := ξ(P1) = (0 : 0 : 0 : 1) (see [15, Proofs of Lemmas 3.3 and 3.4], [9, Section 2]). Let G2 := ξG1ξ

−1, 
which fixes P2. Then we have the following.

Theorem 4. The curve S̃ admits a plane model of degree q2 + 1 with two inner Galois points.

Proof. We prove that conditions (a), (b) and (c) of Fact 1 are satisfied for the 4-tuple (G1, G2, P1, P2). It 
is not difficult to check that k(S̃)G1 = k(z) and k(S̃)G2 = k(z/β). Since no nontrivial element of G1 fixes 
P2, G1 ∩G2 = {1}. Conditions (a) and (b) are satisfied. Condition (c) is satisfied, since

P1 +
∑
σ∈G1

σ(P2) =
∑

Q∈S̃(Fq)

Q = P2 +
∑
τ∈G2

τ(P1). �

It follows from the shape of the second equation that the cyclic group

Cq−2q0+1 :=
{
(x, y, z) �→ (x, y, ζz) | ζq−2q0+1 = 1

}
acts on S̃. Similarly to the proof of Theorem 3, the following holds.

Theorem 5. Let H be a subgroup of Cq−2q0+1. Then there exists a birational embedding ψ : S̃/H → P 2 of 
degree q2 + 1 with two inner Galois points.

We consider the cyclic cover R̃ of the Ree curve R, constructed by Skabelund. Let p = 3, let q0 be a 
power of 3 and let q = 3q2

0 . The curve R̃ is the smooth model of the curve defined by
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yq − y = xq0(xq − x), zq − z = x2q0(xq − x) and xq − x = tq−3q0+1.

Let P1 ∈ R̃ be the pole of x. It is known that the group

G1 :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 a

aq0 1 0 0 b

a2q0 −aq0 1 0 c

0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ | a, b, c ∈ Fq

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⊂ PGL(5, k)

of order q3 acts on R̃ (see [15, Lemma 4.2], [9, Section 2]). This group acts on the set R̃(Fq) of all Fq-
rational points of R̃, and fixes P1. There exists an involution ξ of R̃ such that ξ acts on R̃(Fq) and 
P2 := ξ(P1) = (0 : 0 : 0 : 0 : 1) (see [15, Proofs of Lemmas 4.2 and 4.3], [9, Section 2]). Let G2 := ξG1ξ

−1, 
which fixes P2.

It follows from the shape of the third equation that the cyclic group

Cq−3q0+1 :=
{
(x, y, z, t) �→ (x, y, z, ζt) | ζq−3q0+1 = 1

}
acts on R̃. Similarly to Theorems 4 and 5, the following result holds.

Theorem 6. Let H be a subgroup of Cq−3q0+1. Then the curves R̃ and R̃/H admit plane models of degree 
q3 + 1 with two inner Galois points.

5. Relations with the previous works

We can provide another proof of Theorems 1 and 2 in [5], by Corollaries 1, 2 and the analysis of the 
Hermitian curve H ⊂ P 2: xq + x = yq+1. We recover Theorem 1(1) in [5] here. Precisely:

Fact 3. Let a positive integer m divide q + 1. Then the smooth model of the curve ym = xq + x possesses a 
birational embedding into P 2 of degree q + 1 with two inner Galois points.

Proof. Let P1 = (1 : 0 : 0) and P2 = (0 : 0 : 1) ∈ P 2. Then P1 and P2 are inner Galois points for the 
Hermitian curve H ⊂ P 2 ([12]). The associated Galois groups at P1, P2 are represented by

G1 :=

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 1 0 α

0 1 0
0 0 1

⎞
⎟⎠ | αq + α = 0

⎫⎪⎬
⎪⎭ , G2 :=

⎧⎪⎨
⎪⎩
⎛
⎜⎝ 1 0 0

0 1 0
α 0 1

⎞
⎟⎠ | αq + α = 0

⎫⎪⎬
⎪⎭

respectively. Then conditions (a), (b) and (c) of Fact 1 are satisfied for the 4-tuple (G1, G2, P1, P2). Let 
sm = q + 1 and let Cs be a cyclic group of order s generated by the automorphism group (x, y) �→ (x, ζy), 
where ζ is a primitive s-th root of unity. Note that Cs fixes all points in the line Y = 0. Therefore, 
CsP1 = {P1} 	= {P2} = CsP2. It is easily verified that Cs ∩ G1G2 = {1} and CsGi = Cs × Gi. Conditions 
(d), (e) and (f) of Corollary 1 are satisfied. By Corollary 1, the quotient curve H/Cs has a birational 
embedding of degree q + 1 with two inner Galois points. On the other hand, the quotient curve H/Cs has 
a plane model defined by ym = xq + x. �

A similar argument is applicable to the curve C ⊂ P 2 defined by x3 + y4 + 1 = 0, which has two inner 
Galois points P1 = (1 : 0 : 0) and P2 = (−1 : 0 : 1) on the line Y = 0 (under the assumption p 	= 2, 3), by 
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taking H = 〈η〉 with η(x, y) = (x, −y) (see [13,14,17]). Here, the associated Galois groups G1, G2 at P1, P2
are generated by matrices ⎛

⎜⎝ ω 0 0
0 1 0
0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝

−ω
−ω+1 0 2

−ω+1
0 1 0
1

−ω+1 0 ω2

−ω+1

⎞
⎟⎠

respectively, where ω2 + ω + 1 = 0 (see [13, Lemma 1] for the explicit description of the generators). Then 
the quotient curve C/H is the elliptic curve y2 +x3 +1 = 0. It is well known that this curve is isomorphic to 
the Fermat curve. (An elliptic curve E admitting a triple Galois covering E → P 1 is uniquely determined 
[11, IV, Corollary 4.7]. One proof is given in [3, p. 100].) Since the Galois group Gi at Pi fixes Pi, the group 
Gi fixes Pi for i = 1, 2. Then the point Pi is a ramification point of index ePi

= |Gi| = 3 for the covering 
C/H → (C/H)/Gi (see [16, III.8.2]). Let ψ be the induced birational embedding, according to Corollary 1. 
Then ψ(Pi) is an inner Galois point for ψ(C/H) ⊂ P 2. Since ePi

+ 1 = Iψ(Pi)(ψ(C/H), Tψ(Pi)ψ(C/H)) for 
the projection from ψ(Pi), where Iψ(Pi)(ψ(C/H), Tψ(Pi)ψ(C/H)) is the intersection multiplicity of ψ(C/H)
and the tangent line Tψ(Pi)ψ(C/H) of ψ(C/H) at ψ(Pi), it follows that ψ(Pi) is a total inflection point. The 
following result is similar to [3, Theorem 3], but the proofs are different.

Theorem 7. Let p 	= 2, 3. For the cubic Fermat curve, there exists a plane model of degree four with two 
inner Galois points such that they are total inflection points.

In [3, Theorem 3], we were not able to assert that two Galois points are inflection points, for the embedding 
provided in the proof.
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